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classified into three sub-groups based on their functions and 
amino acid sequence similarity. This includes the pro-apop-
totic BH3-only proteins (BIM, BID, PUMA, BMF, NOXA, 
BIK, BAD, HRK), the pro-survival proteins (BCL-2, BCL-
XL, BCL-W, MCL-1, A1/BFL-1) and the effectors of apop-
tosis (BAX, BAK, BOK) [4–6]. The interaction between 
the members of the BCL-2 protein subgroups determines 
whether a cell will undergo apoptosis or survive. In healthy 
cells the pro-survival BCL-2 proteins restrain the effectors 
of apoptosis, BAX and BAK, to safeguard their survival. 
In response to a broad range of stresses, such as nutrient 
or growth factor deprivation, oxidative stress, γ-irradiation 
and treatment with diverse cytotoxic drugs, the levels of 
the pro-apoptotic BH3-only proteins are increased through 
diverse transcriptional and/or post-transcriptional processes 
[6–8]. The BH3-only proteins can bind with high affinity 
to the pro-survival BCL-2 proteins, and this unleashes the 
effectors of apoptosis, BAX and BAK, from their restraint. 
Upon such activation, BAX and BAK oligomerise and form 
pores in the outer mitochondrial membrane, thereby causing 
mitochondrial outer membrane permeabilisation (MOMP) 
resulting in the release of apoptogenic factors from inside 
the mitochondria, including cytochrome c and SMAC/DIA-
BLO [9–11](Fig.  1). Some BH3-only proteins, including 
PUMA, BIM and the activated form of BID, called tBID, 

Introduction

Apoptosis is an important cellular phenomenon critical for 
the development, survival, and functioning of multi-cellular 
organisms [1]. Consequently, deregulation of apoptosis is 
commonly associated with a broad range of diseases, rang-
ing from cancer to degenerative disorders [2]. There are two 
well-defined pathways to apoptosis - the mitochondrial, also 
known as the intrinsic, stress-induced or BCL-2 regulated 
pathway, and the death receptor-induced, also known as the 
extrinsic pathway [3]. Several proteins participate in the 
process of programmed cell death, including caspases (cys-
teinyl aspartate-specific proteases), their adaptors/activators 
and the BCL-2 (B-cell lymphoma/leukemia-2 gene) protein 
family members which constitute the critical regulators 
of apoptosis. The BCL-2 protein family members can be 
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have also been reported to be able to bind and thereby 
directly activate BAX and BAK [12], but whether this pro-
cess is critical for apoptosis initiation has been challenged 
[13]. MOMP unleashes the cascade of caspases, that cleave 
hundreds of cellular proteins and thereby drive the ordered 
demolition of the dying cells [14]. The expression of the 
various BCL-2 protein family members is stringently con-
trolled at the transcriptional, post-transcriptional, and post-
translational levels [6, 15, 16].

The impact of abnormal over-expression of pro-survival 
BCL-2 proteins as well as abnormally reduced expres-
sion of pro-apoptotic BCL-2 family members on tumour 

development and the resistance of malignant cells to anti-
cancer agents are well established [17–19]. Therefore, 
BCL-2 family members and their regulators are attractive 
targets for the development of anti-cancer therapeutics [20, 
21]. This review describes the roles of the different BCL-2 
family members in the normal development and functioning 
of multi-cellular organisms and the impact of their dysregu-
lation in cancer. We also discuss therapeutic strategies to 
target these regulators of apoptosis for cancer therapy, for 
example using BH3-mimetic drugs which inhibit selective 
pro-survival BCL-2 proteins.

Fig. 1  The intrinsic pathway of apoptotic cell death is controlled by the 
BCL-2 protein family. This pathway is activated in response to vari-
ous stress stimuli, such as oncogene activation or DNA damage. This 
causes an increase in the levels of the BH3-only proteins (e.g., PUMA, 
NOXA, BIM, BID, BAD) through diverse transcriptional as well as 
post-transcriptional processes. For example, the genes for PUMA and 
NOXA are directly transcriptionally activated by the tumour suppres-
sor TP53/TRP53 (indicated in the dashed red box). The BH3-only pro-
teins bind to the pro-survival BCL-2 proteins (e.g., BCL-2, BCL-XL, 
MCL-1) with high affinity. This unleashes the pro-apoptotic effector 
proteins BAK and BAX from their restraint by the pro-survival BCL-2 

family members. The effectors of apoptosis, BAX and BAK, are also 
reported to be activated directly by certain BH3-only proteins, such 
as PUMA, BIM, and t-BID (the caspase activated form of BID). The 
activation of BAX and BAK allows these proteins to oligomerise and 
form pores in the outer mitochondrial membrane. This results in outer 
mitochondrial membrane permeabilisation (MOMP) causing release 
of cytochrome c from the space between the inner and the outer mito-
chondrial membranes into the cytoplasm. Upon release into the cyto-
sol, cytochrome c drives the formation of a heptameric complex of 
the apoptotic protease activating factor 1 (APAF-1), called the apop-
tosome, which triggers the caspase cascade that causes the ordered 
demolition of the cells undergoing apoptosis
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The role of pro-survival BCL-2 proteins in 
organismal development and function

The different pro-survival members of the BCL-2 protein 
family exert distinct critical roles during organismal devel-
opment and function. The differences between them are due 
in part to differences in their expression patterns [22]. BCL-2 
is expressed in a broad range of haematopoietic cell subsets, 
melanocyte progenitors, certain epithelial cell populations 
in the embryonic kidney and in certain neuronal cell popula-
tions. The absence of BCL-2 in mice causes fatal polycystic 
kidney disease within ~ 30 days post-birth, premature grey-
ing of the coat and an abnormal reduction in mature B and 
T lymphocytes [23, 24]. These defects can all be prevented 
by the concomitant absence of the pro-apoptotic BH3-only 
protein BIM [25]. The relatively high levels of BCL-2 dur-
ing early neurulation in mice (E4.5–8) suggest its role in 
preventing apoptosis at that stage. BCL-2 expression wanes 
after the neural tube is formed in the central nervous system 
(CNS), whereas high levels are maintained in the peripheral 

nervous system [26]. Notably, however, BCL-2-deficient 
mice do not have marked defects in the CNS [23, 24], 
indicating that its role in the survival of these cells can be 
effectively backed up by other pro-survival BCL-2 family 
members.

BCL-XL is expressed broadly during embryonic devel-
opment and its levels are particularly high throughout 
neuronal ontogeny including in differentiating cells [27]. 
The absence of BCL-XL in mice leads to embryonic death 
around E13.5 as a consequence of defects in the survival of 
certain neuronal cell populations and erythroid progenitors 
[28]. The loss of BCL-XL causes aberrant apoptosis in post-
mitotic immature neurons of the developing brain, spinal 
cord, and dorsal root ganglion, demonstrating its essential 
role in the survival of these cell populations [28]. Condi-
tional gene deletion studies have shown that in adult mice 
BCL-XL is critical for erythropoiesis and the survival of 
certain cell populations in the kidney [29].

BCL-W is expressed in several tissues, such as the tes-
tes, colon, brain and certain myeloid and lymphoid cell 

Fig. 2  Potential strategies targeting the intrinsic apoptotic pathway 
either by directly targeting the pro-apoptotic or the pro-survival 
BCL-2 family members or by targeting metabolic pathways and signal 

transducers to induce apoptosis by causing an increase in pro-apop-
totic BH3-only proteins and/or a decrease in the pro-survival BCL-2 
family members
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receptors for diverse cytokines (e.g. IL-2, IL-3, IL-4, IL -6, 
IL-7) [53] or the stimulation of antigen receptors on B as 
well as T cells [54].

The expression of BCL-2 protein can be transcriptionally 
regulated by the NF-κB transcription factor family [55] and 
by STATs [56]. The expression of BCL-2 is negatively regu-
lated by the miRNAs, miR-15a, and miR-16-1, whereas the 
RNA binding protein nucleolin has been shown to increase 
BCL-2 expression by binding to the 3′-UTR, thereby 
enhancing BCL-2 mRNA stability [57]. BCL-2 protein is a 
long-lived protein with a half-life of about 20 h [46], and it 
was reported that this can be impacted by phosphorylation 
at residue Ser-70 [58].

Like the BCL-2 protein, BCL-XL is also relatively stable 
with a half-life of ~ 20 h [59]. The expression of BCL-XL 
can be increased in response to a variety of stimuli, such 
as IL-2, IL-3, IL-6, granulocyte-macrophage colony-stimu-
lating factor (GM-CSF), colony-stimulating factor-1 (CSF-
l), leukaemia inhibitory factor (LIF), erythropoietin (EPO) 
as well as the stimulation of antigen receptors, which can 
all promote the survival and/or proliferation of several 
haematopoietic cell subsets [60]. The transcription factors 
ETS (erythroblastosis virus E26 oncogene homolog), REL/
NF-KB, STAT and AP-1 have all been reported to transcrip-
tionally upregulate expression of the gene encoding BCL-
XL [60]. Activated RAS/mitogen-activated protein kinase 
(RAS/MAP kinase), integrin, vitronectin and hepatocyte 
growth factor signalling cascades have also been shown to 
cause an increase in the expression of BCL-XL [61]. The 
microRNAs miR-5-5p, miR-125b, miR140-5p, miR133a-
3p, miR4300, miR-377 and hsa-let-7b-5p are all reported to 
modulate the expression of BCL-XL [62–64].

BCL-W can be transcriptionally regulated by several 
transcription factors, including NF-κB, MEF2 (myocyte 
enhancer factor 2), ETS-1 and ETS-2, and C/EBP (CCAAT/
enhancer-binding protein) [65]. BCL-W expression is posi-
tively regulated by the TCF4 (β-catenin/transcription factor 
4) complex and transgenic expression of either dominant-
negative TCF4 (TCF4ΔN) or wild-type β-catenin resulted 
in downregulated or upregulated activity of the promoter 
for BCL2L2 that encodes BCL-W, respectively [66]. Sev-
eral miRNAs, including miR-29 and miR-122 [67], were 
shown to negatively regulate the expression of BCL-W by 
binding to the 3’-untranslated region (3’-UTR) of the BCL-
W transcript[68]. A long non-coding RNA (lncRNA) RP11-
436H11.5 functions as a competitive endogenous RNA, and 
was reported to sequester miR-335-5p which then causes an 
increase in the levels of BCL-W [68].

The expression of MCL-1 is regulated at the transcrip-
tional, post-transcriptional and post-translational levels 
[69]. MCL-1 expression can be increased by many cyto-
kines and growth factors, involving a range of signalling 

populations [30]. BCL-W is essential for spermatogenesis. 
BCL-W deficient male mice display progressive testicular 
degeneration with apoptosis of Sertoli cells occurring soon 
after weaning [31, 32]. Furthermore, abnormal death of 
Leydig cells is seen in BCL-W deficient males starting at 3 
months of age. This causes disruption of the architecture of 
the testes and sterility. BCL-W knockout mice are otherwise 
normal in all other cell types examined [32].

MCL-1 is expressed in a broad range of cell types both 
during embryogenesis and in mice after birth [33]. MCL-1 
has a critical role during early embryonic development. 
Genetic studies revealed the dependency of several cell 
types on MCL-1 for survival [22]. Mcl-1 gene knock-out 
mice die prior to implantation around embryonic day 3.5 
[34]. Conditional gene knockout studies have shown that 
MCL-1 plays an essential role in hepatocytes, cardiomyo-
cytes, neuronal cells, intestinal epithelial cells, mammary 
epithelial cells and several haematopoietic cell subsets 
[35–39]. Specifically, MCL-1 is required for the survival 
of haematopoietic stem and progenitor cells (HSPCs), the 
development of B as well as T cells and NK cells, the forma-
tion and maintenance of germinal-centre B cells, the devel-
opment and survival of plasma cells (PCs) and immature 
erythroid cells [40–46].

A1/ BFL-1 is mainly expressed in haematopoietic cells, 
such as mitogen activated B and T cells, but its absence has 
only minimal impact on mice [47, 48]. A1-knockdown stud-
ies using in vivo expression of shRNAs in the haematopoi-
etic system suggested a role for A1 in mast cell maturation 
[49], mature B cell survival [50] and early T cell develop-
ment [51], but this was not replicated in studies of complete 
A1 gene knockout mice [47].

Regulation of the different members of the 
BCL-2 protein family

The balance between the various pro-survival and pro-apop-
totic members of the BCL-2 protein family is crucial for 
normal embryonic development and tissue homeostasis after 
birth. The levels and activity of BCL-2 family members can 
be controlled through a broad range of transcriptional (tran-
scriptional induction vs. repression), post-transcriptional 
(mRNA stability, effects of micro-RNAs or lncRNAs) and 
post-translational (e.g. phosphorylation, proteolytic pro-
cessing and subcellular localisation) processes [6, 52].

The expression of pro-survival members of the BCL-2 
protein family can be transcriptionally regulated by sev-
eral transcription factors, such as E2F-1, the nuclear fac-
tor kappa B (NF-kB) family, and Janus kinase (JAK)-signal 
transducers and activators of transcription (STAT). Many of 
these transcription factors are activated by signalling from 
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response element [93, 94] and also c-MYC, FOXO3a (Fork-
head box O3a) which can be activated by growth factor 
deprivation, C/EBP homologous protein CHOP, and E2F1, 
the latter two activated by ER stress [95, 96]. Puma tran-
scription can be down-regulated as part of a negative feed-
back process during TP53 activation. In response to DNA 
damage, TP53 induces the expression of the transcriptional 
repressor SLUG, which inhibits TP53-mediated transcrip-
tion of Puma [97]. Post-translational modifications can also 
regulate the expression of PUMA. For example, it has been 
reported that the levels of PUMA can be reduced through 
phosphorylation at certain sites, including Ser10, which 
promotes its proteasomal degradation [98].

The gene that encodes NOXA, PMAIP1, can be tran-
scriptionally regulated by various transcription factors, 
including by the tumour suppressor TP53 [91] and also by 
HIF-1α, E2F-1, MYC, TP63 and TP73 [99]. HIF-1α causes 
an increase in the levels of NOXA protein under hypoxic 
conditions, thereby mediating cell death in a TP53-inde-
pendent manner [100]. NOXA can also be transcriptionally 
induced in response to post-translational modifications of 
IRF-1, IRF-3 and CREB [101]. The NOXA protein can 
be degraded by the 26S proteasome after priming by K11-
linked poly-ubiquitination [102] or through a ubiquitin-
independent pathway [103].

Transcription of the BCL2L11 gene, encoding BIM, has 
been reported to be regulated by FOXO3a [104], c-MYC 
[105], NF-Y[106], SMAD1/3[107], RUNX1-3[108], c-Jun 
[109] and RELA [110] although the importance of BIM 
regulation by the FOXO transcription factors has been 
questioned [111]. It has also been reported that the promoter 
for the gene encoding BIM can be epigenetically regulated 
through methylation of CpG dinucleotides [112]. BIM 
expression is also regulated by several miRNAs, such as the 
miR-106b~25 and miR-106a~363 clusters, and most promi-
nently by the mir-17-92 cluster [113–116]. The activity and 
stability of the BIM protein is reported to be controlled by 
the phosphorylation of several residues. Phosphorylation 
can occur through a JNK-dependent mechanism, which pro-
motes BIM dissociation from dynein light chain 1 (DLC1) 
[16, 117–119] and allows it to move to the mitochondria 
and induce BAK/BAX activation and apoptosis, or by the 
MAPK/ERK pathway that promotes BIM degradation and 
thereby increases cell survival [110]. The importance of the 
latter process has been questioned and there is evidence that 
ERK inhibits BIM mediated apoptosis not via a post-trans-
lational process but through direct transcriptional repression 
or induction of miRNAs that target the gene for BIM [120].

BMF expression can be transcriptionally regulated 
through the MAP kinase and AKT signalling pathways, for 
example in apoptosis that occurs during mammary epithe-
lial morphogenesis [121]. The expression of BMF can also 

pathways [69]. Vascular endothelial growth factor (VEGF) 
and IL-6 regulate the expression of MCL-1 via autocrine 
signalling loops [70]. Activation of the MAPK/ERK (mito-
gen-activated protein kinase/extracellular signal-regulated 
kinase) signalling pathway reduces MCL-1 protein degra-
dation and thereby increases its levels [71]. Activation of 
the NOTCH-1 signalling pathway induces the production 
of IL-6, thereby increasing the expression of MCL-1 [72]. 
MCL-1 protein levels are regulated by IL-15 and IL-22 
through the JAK/STA3 [73] and phosphatidylinositol-
3-kinase (PI3K) signalling pathways [74]. A broad range of 
miRNAs have been shown to downregulate the expression 
of MCL-1, including miR-26a [75], miR-15a, miR- 101 
and miR-197 [76]. MCL-1 is a short-lived protein with a 
half-life of approximately 30 min [77]. Several E3 ubiquitin 
ligases, including MULE [78], SCFFbw7 [79], APC/CCdc20 
[80] and SCFB-TrCP [81], regulate the stability of the 
MCL-1 protein. These ubiquitin ligases prime MCL-1 for 
proteasomal degradation. Conversely, the de-ubiquitinases 
USP9X [82] and USP13 [83] have been reported to stabilise 
the expression of the MCL-1 protein. The PEST domain of 
MCL-1 contains many phosphorylation sites, including Thr-
92, Thr-163, Ser-64, Ser-155, and Ser-159. Phosphorylation 
of residues in the PEST domain of MCL-1 (region rich in 
amino acids Proline (P), glutamic acid (E), serine (S) and 
threonine (T)) by protein kinases, such as CDK1/2 (cyclin- 
dependent kinase 1/2), GSK3 (glycogen synthase kinase-3), 
JNK (c-Jun N-terminal kinase) and ERK, has been reported 
to impact access to different E3 ligases and thereby affect 
the ubiquitination and stability of MCL-1 [84, 85].

The gene encoding BFL-1/A1 is a direct target of NF-kB 
transcription factors [86]. The PI3K and JAK/STAT sig-
nalling pathways have also been reported to regulate the 
expression of BFL-1/A1. BFL-1/A1 has a short half-life of 
~ 15 min and this is at least in part due to its ubiquitination 
followed by proteasomal degradation [87, 88].

The expression of the pro-apoptotic BCL-2 family pro-
teins is also highly regulated at the transcriptional, post-tran-
scriptional and post-translational levels [16]. For example, 
the genes that encode the BH3-only proteins PUMA [89, 
90] and NOXA [91] are directly transcriptionally upregu-
lated by the tumour suppressor TP53, and consequently 
their expression is increased in response to cytotoxic stimuli 
that cause DNA damage and thereby activate TP53 [89, 91]. 
PUMA is also important in the response of cells to certain 
TP53-independent apoptotic stimuli, such as treatment with 
glucocorticoids or phorbol ester [92]. Of note, it is not well 
understood how these agents control PUMA expression. 
The PUMA gene contains binding sites for several tran-
scription factors in its promoter region, exon 1 and intron 
1. These transcription factors include TP53, as mentioned, 
its close relatives TP63 and TP73 which bind to the same 
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gene transcription [134]. However, it is also known that 
cellular dependence on distinct pro-survival BCL-2 fam-
ily proteins does not always correlate with expression pat-
terns. Studies using conditional gene targeting or inducible 
CRISPR platforms revealed that different malignant cells 
rely on the expression of distinct pro-survival BCL-2 pro-
teins for their sustained survival, such as MCL-1 for MYC-
driven lymphomas [135], even though their genes are not 
over-expressed owing to somatic copy number amplification 
or chromosomal translocation. This may be because their 
normal cellular counterparts rely on these same pro-survival 
BCL-2 proteins for their survival or because stresses present 
in malignant cells have imposed these dependencies.

The t(14;18) chromosomal translocation causes deregu-
lated over-expression of BCL-2 in human follicular lym-
phoma (FL) [136, 137]. High levels of BCL-2 were also 
detected in several other haematological malignancies, 
including chronic lymphocytic leukemia (CLL), diffuse 
large B cell lymphoma (DLBCL) and mantle cell lymphoma 
[138–140] and in certain solid tumours, including subsets of 
brain, breast and lung cancer [141, 142]. Over-expression of 
BCL-2 greatly accelerates c-MYC driven lymphoma devel-
opment in mice [143]. Moreover, over-expression of BCL-2 
(or other pro-survival BCL-2 proteins) renders both malig-
nant as well as non-transformed cells markedly resistant to 
diverse anti-cancer agents that kill cells in either a TP53-
dependent [144] or TP53-independent manner [145].

Approximately 3% of human cancers of diverse origin 
carry somatically acquired amplification of the region that 
harbours the gene for BCL-XL [133]. It has been reported 
that BCL-XL plays a critical role in the progression of glioma 
[146] and breast cancer [147]. Human multiple myeloma 
(MM) cells as well as melanoma cells express high levels of 
BCL-XL [148, 149] and, accordingly, some of these malig-
nant cells can be killed by treatment with inhibitors of BCL-
XL, either on their own or more potently in combination 
with inhibitors of oncogenic kinases [150–152]. High levels 
of BCL-XL have also been observed in certain lymphomas, 
such as B cell non-Hodgkin lymphomas, FL, and DLBCL 
as well as T cell non-Hodgkin lymphomas [153]. Nota-
bly, EBV-associated T/NK cell lymphoma cells are depen-
dent on BCL-XL for continued growth and survival [154]. 
High levels of BCL-XL can be detected in many colorectal 
cancers and, accordingly, inhibition of BCL-XL impairs 
adenoma outgrowth in vivo and enhances the efficacy of 
chemotherapy in colorectal cancer [155].

In gastric cancer, high levels of BCL-W have been 
reported to promote the survival, migration, and invasion of 
malignant cells [156]. Furthermore, BCL-W was observed 
in colorectal adenocarcinomas, with relatively higher levels 
detected in advanced-stage cancers as compared to local-
ised tumours with better prognosis [157]. It has also been 

be epigenetically modulated at the promoter for its gene via 
CpG islands. Accordingly, treatment with histone deacety-
lase (HDAC) inhibitors causes a marked increase in the lev-
els of BMF [122].

Binding patterns of the BCL-2 family 
proteins

Apoptosis signalling is controlled by complex interactions 
between the pro-survival BCL-2 family members, the pro-
apoptotic BH3-only proteins and the effectors of apoptosis, 
BAX and BAK. The pro-survival BCL-2 proteins can either 
directly inhibit BAX and BAK by binding to them or by 
binding to the BH3-only proteins, thereby preventing them 
from activating the effectors of apoptosis. BIM, PUMA and 
tBID (the caspase activated form of BID) can bind to all 
pro-survival BCL-2 proteins with very high affinity [123, 
124]. BAD selectively binds to BCL-2, BCL-XL and BCL-
W, whereas NOXA selectively binds to MCL-1 and A1 
[123, 124]. BAX and BAK also differ in their ability to bind 
to the pro-survival BCL-2 proteins. BAX can interact with 
all pro-survival BCL-2 proteins, whereas BAK associates 
only with MCL-1 and BCL-XL [125]. In contrast, the effec-
tor protein BOK is not regulated by the pro-survival BCL-2 
proteins or the BH3-only proteins; instead the activity of 
BOK appears to be regulated mostly by its levels of synthe-
sis and degradation [126, 127].

The role of BCL-2-family proteins in 
tumorigenesis

Evasion of apoptosis is one of the hallmarks of cancer 
[128]. Defects in the control of apoptosis that contribute to 
the development, expansion and therapy resistance of can-
cer can be caused by abnormally increased expression of 
pro-survival proteins or abnormally decreased expression of 
pro-apoptotic proteins.

Aberrantly increased levels of pro-survival BCL-2 
proteins

Abnormally high expression of pro-survival BCL-2 proteins 
is correlated with the development and poor prognosis of 
various cancers [4, 129, 130]. BCL-2, MCL-1, and BCL-XL 
are frequently over-expressed in lymphomas and leukae-
mias [20, 21, 131, 132]. The genomic regions containing the 
genes encoding MCL-1 and BCL-XL are somatically ampli-
fied in ~ 15% of diverse tumour types [133]. The abnormal 
over-expression of pro-survival BCL-2 family proteins can 
also be caused by chromosomal translocations or increased 
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The deletion of pro-apoptotic members 
of the BCL-2 family can accelerate tumour 
development in mice

Several studies using gene-targeted mice demonstrated 
that the absence of pro-apoptotic BCL-2 family members 
promotes tumour development and renders malignant cells 
resistant to a broad range of anti-cancer agents. Mice lacking 
either PUMA [92, 184] or BIM [185], two of the BH3-only 
proteins that can inhibit all pro-survival BCL-2 proteins, 
do not spontaneously develop tumours, but mice lacking 
both of these critical initiators of apoptosis develop plasma 
cell-like tumours with advanced age [186]. In cells geneti-
cally engineered to express oncogenes, the impact of loss 
of pro-apoptotic BCL-2 family members is even more pro-
nounced. The individual loss of the genes encoding PUMA 
or BIM (even loss of one allele) substantially accelerates 
MYC-driven pre-B/B cell lymphoma in mice carrying an 
Eµ-MYC transgene [187, 188]. The loss of PUMA was also 
shown to cooperate with the oncogenes H-Ras or E1A in 
the neoplastic transformation of fibroblasts in culture [189]. 
Finally, loss of BMF or NOXA has been shown to accelerate 
γ-irradiation induced thymic T cell lymphoma development 
in mice [122, 190].

Since the genes that encode the pro-apoptotic proteins 
PUMA and NOXA are both direct transcriptional targets of 
TRP53, it was hypothesised that mice lacking PUMA and 
NOXA (and therefore lacking the capability to undergo 
TRP53-mediated apoptosis) would develop tumours at the 
same rate as TRP53-deficient mice. However, in contrast to 
TRP53-deficient mice which all develop tumours prior to 
300 days of age (in the absence of an engineered oncogenic 
driver), the PUMA-deficient as well as PUMA/NOXA dou-
ble-deficient mice do not develop cancer spontaneously on a 
C57BL/6 genetic background [188, 191]. This demonstrates 
that loss of the pro-apoptotic function of TRP53 alone is not 
sufficient to cause tumour development, i.e. other cellular 
processes activated by TRP53, such as the coordination of 
DNA damage repair, may be even more critical for its abil-
ity to suppress tumorigenesis [192].

Defects in the intrinsic apoptotic pathway 
render malignant cells resistant to a broad 
range of anti-cancer therapeutics

Resistance to anti-cancer therapy contributes to poor clini-
cal outcomes. Defects in the intrinsic apoptotic pathway, 
owing to over-expression of pro-survival BCL-2 proteins 
or the abnormal reduction of pro-apoptotic BCL-2 family 
members, render both malignant as well as non-transformed 
cells profoundly resistant to a broad range of anti-cancer 

reported that certain lymphoma cells rely on BCL-W for 
sustained survival [158], but another study was not able to 
reproduce this finding [159].

MCL-1 is expressed at relatively high levels in many hae-
matological malignancies, including MM and acute myeloid 
leukaemia (AML), as well as in cancers of the breast, pan-
creas, prostate, lung, and ovary [160–164]. Approximately 
12% of human cancers of diverse origin carry somatically 
acquired amplifications of the region that harbours the MCL-
1 gene [133]. Transgenic mice over-expressing MCL-1 in 
haematopoietic cells develop B lymphoid [165] or myeloid 
malignancy, albeit with low incidence and long latency [165, 
166]. Moreover, MCL-1 over-expression greatly acceler-
ates the development of c-MYC driven lymphoma [166]. 
Studies using inducible gene deletion revealed that a broad 
range of cancer cells, including AML [167], MYC driven B 
cell lymphomas [135], T cell lymphomas and lung cancer 
caused by loss of TP53 or mutations in Notch [168–170] 
require MCL-1 for sustained survival and growth. These 
findings indicate that MCL-1 could be an attractive target 
for cancer therapy [164] .

Aberrantly decreased levels of pro-apoptotic BCL-2 
family proteins are observed in diverse human 
cancers

The reduction of pro-apoptotic members of the BCL-2 fam-
ily has also been implicated in the development and therapy 
resistance of cancer. The levels of the BH3-only proteins 
BIM and/or PUMA are abnormally low in several cancers 
[174, 175]. For example, ~ 40% of human Burkitt lympho-
mas express very low levels of the mRNAs for BIM and/
or PUMA, and this was ascribed to epigenetic silencing of 
their genes [174, 176]. Reduced expression of PUMA has 
also been reported in subcutaneous melanoma, and this cor-
related with poor prognosis [177]. The downregulation of 
BIM due to deletion or hyper-methylation of the gene was 
reported in mantle cell lymphoma [178] and DLBCLs [176, 
179]. Finally, abnormally low levels of NOXA and/or BIM 
were observed in colon cancer and small-cell lung cancer 
[180].

There are reports of loss of BAX expression in human 
cancers, including endometrial and colon cancers [181, 
182]. However, the combined loss of BAX and BAK, which 
would be required to render cells resistant to apoptosis 
because of the extensive functional overlap of these effec-
tors of apoptosis [127, 183], is only rarely seen in human 
cancer (e.g. some AML cells) [167], probably because four 
alleles would need to be mutated to achieve this.
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Therapeutic interventions that directly 
target the apoptotic machinery

There are several different approaches to induce apoptosis 
of cancer cells for therapy (Fig. 2). The discovery that BH3-
only proteins are critical for the initiation of apoptosis trig-
gered by diverse anti-cancer agents, and that genetic deletion 
of distinct pro-survival BCL-2 proteins can effectively kill 
certain types of malignant cells, gave rise to the concept 
that pharmacological inhibitors of pro-survival BCL-2 pro-
teins that mimic the function of BH3-only proteins could be 
effective in cancer therapy [20, 21]. This led to programs 
by pharma and biotechnology companies to generate small 
molecules that mimic the function of pro-apoptotic BH3-
only proteins, known as the BH3-mimetic drugs [21]. Since 
non-transformed cells in healthy tissues also depend on 
pro-survival BCL-2 proteins for their survival (see above), 
a notable issue for the clinical use of BH3-mimetic drugs is 
their on-target toxicity [20, 21].

The first BH3-mimetic compounds ABT- 737 and its 
orally available derivative ABT-263 (navitoclax) inhibit 
BCL-2, BCL-XL, and BCL-W. They can induce apop-
tosis in a broad range of cancer-derived cell lines in vitro 
and delay the growth of certain tumours in vivo in tumour 
transplant models [152]. ABT-263/navitoclax was the first 
BH3-mimetic drug to be tested in patients [209]. ABT-263/
navitoclax proved effective in CLL patients in clinical trials 
but dose-limiting thrombocytopenia, due to the dependence 
of platelets on BCL-XL for survival [210], hampered the 
progression of this agent in the clinic [211]. ABT-199 (vene-
toclax) was therefore developed as a BH3-mimetic drug that 
is a highly selective BCL-2 inhibitor that potently induces 
apoptosis in BCL-2 dependent malignant cells [212]. 
Venetoclax is highly effective in patients with relapsed or 
refractory CLL [52, 213]. Remarkably, the combination of 
venetoclax with rituximab (antibody against CD20) led to 
complete remissions in 51% of CLL patients, with disease-
free survival persisting for up to 2 years after completion 
of therapy [214]. In high-risk relapsed/refractory AML 
patients, administration of venetoclax in phase 2 clinical tri-
als resulted in complete response/complete response with 
incomplete blood recovery (CR/CRi) in 19% of patients 
[215]. Combination therapies for AML including veneto-
clax are proving even more effective. Considering the clini-
cal benefits of venetoclax as a monotherapy, as well as in 
combination with standard-of-care anti-cancer drugs, it has 
now been approved by the FDA and several other regula-
tory authorities worldwide for the treatment of patients with 
CLL or AML [20, 21, 216, 217].

Many cancer cells have been shown to depend on BCL-
XL for their sustained survival and proliferation, prompting 
the development of BCL-XL-specific BH3-mimetic drugs. 

therapeutics. This was first demonstrated when lymphoid 
cells from BCL-2 transgenic mice were found to be resis-
tant to several DNA damage-inducing anti-cancer agents 
and glucocorticoids [144]. Accordingly, increased levels of 
BCL-2 expression have been correlated with resistance to 
several anti-cancer drugs, including 5-fluorouracil, adria-
mycin and mitomycin, in gastric cancer [193], cisplatin in 
ovarian cancer [194] and doxorubicin in osteosarcoma and 
chondrosarcoma [195, 196].

The over-expression of BCL-XL has also been reported 
to protect tumour cells from a broad range of chemothera-
peutic drugs [197, 198]. High levels of BCL-XL driven by 
STAT5 have been implicated in the resistance of BCR/ABL+ 
chronic myelogenous leukaemia (CML) to apoptosis [199]. 
Moreover, in a cisplatin-resistant patient cohort of ovar-
ian cancer, 61.5% of samples displayed over-expression of 
BCL-XL [200]. A study using a nude mouse tumour xeno-
graft model showed that BCL-XL over-expression rendered 
ovarian cancer cells resistant to cisplatin, paclitaxel, topote-
can and gemcitabine [200].

High levels of MCL-1 have also been associated with 
the resistance of a broad range of malignant cells to chemo-
therapeutic agents [164]. Overexpression of MCL-1 causes 
resistance to various conventional chemotherapeutic agents, 
such as cisplatin in ovarian cancer cells [201], lapatinib in 
a human colon cancer cell line [202], rituximab in B-cell 
malignancies [203] and prednisone in MLL-rearranged 
infant acute lymphoblastic leukemia [204]. Of note, the 
downregulation of MCL-1 levels restores the effectiveness 
of these anti-cancer drugs in several cancer cell lines [205, 
206].

Experiments using mice lacking different BH3-only pro-
teins identified which of these proteins are critical for cell 
killing by different anti-cancer agents. PUMA is required 
for the killing of cells by DNA damage inducing agents 
that activate TRP53 [92, 184]. Of note, the combined loss 
of PUMA, NOXA, and BIM renders MYC-driven lym-
phoma cells almost completely resistant to killing by DNA 
damage inducing anti-cancer agents, such as etoposide or 
cyclophosphamide [207]. BIM and PUMA both contribute 
to the killing of lymphoid cells by glucocorticoids [92, 185] 
and BIM is also needed for the killing of malignant cells 
by inhibitors of oncogenic kinases, such as the BCR-ABL 
inhibitor Gleevec in chronic myeloid leukaemia (CML) 
[150, 151, 208]. Malignant as well as non-transformed cells 
lacking both BAX and BAK are profoundly resistant to all 
anti-cancer agents tested [183], demonstrating that these 
effectors of apoptosis are essential for such cell killing and 
that the killing of cells by these drugs is mediated to a large 
extent by the induction of apoptosis.
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combined safely in patients, given that mice lacking only 
single alleles of the genes encoding MCL-1 and BCL-XL 
die on the day of birth because of severe craniofacial and 
several other defects [228]. Of note, the combination of 
an MCL-1 inhibitor with a BCL-2 inhibitor was shown to 
be tolerable in mice, providing a synergistic response that 
was able to overcome drug resistance in models of DLBCL 
[229]. AML derived cell lines were more potently killed 
by the combination of an MCL-1 inhibitor (S63845) and a 
BCL-2 inhibitor (venetoclax) than by treatment with either 
agent alone [229]. Other than the BH3-mimetic drugs, anti-
sense oligonucleotides [230] and HDAC inhibitors that can 
lead to repression of expression of the BCL-2 pro-survival 
proteins [231] might be a promising approach in targeting 
the pro-survival members of the BCL-2 protein family.

Since the pro-apoptotic BH3-only proteins are the criti-
cal initiators of apoptosis, there should also be a focus on 
developing novel therapeutic strategies that increase the 
expression of these pro-apoptotic proteins. Such therapeutic 
interventions could be used alongside BH3-mimetic drugs 
to increase their effectiveness. This could be achieved by 
either using drugs that can boost expression of the BH3-
only proteins directly or by developing drugs that can 
inhibit negative regulators of their expression. It is known 
that many conventional chemotherapeutic drugs do induce 
expression of the BH3-only proteins, particularly those 
drugs that can induce DNA damage. Colon cancer cells 
exposed to 5-fluorouracil-based anti-cancer therapy display 
elevated expression of PUMA and BIM and high induction 
of these proteins is correlated with a better prognosis of the 
patients [180]. Decreased levels of BIM have been corre-
lated with poor response to diverse inhibitors of oncogenic 
kinases in several cancers [232] and therefore strategies to 
boost BIM expression would be anticipated to increase sen-
sitivity both to inhibitors of oncogenic kinases and to BH3-
mimetic drugs. Towards targeting negative regulators of 
BH3-only protein expression, efforts are underway to find 
TRP53 independent regulators of these proteins. Since the 
expression of PUMA and BIM can be suppressed by epigen-
etic modifications, drugs that target epigenetic regulators, 
such as HDAC inhibitors, might be beneficial for upregu-
lating these initiators of apoptosis, thereby increasing the 
effectiveness of anti-cancer therapy [233, 234].

There is considerable evidence that cellular metabo-
lism can impact the levels of certain pro-survival as well 
as pro-apoptotic BCL-2 family members. Of note, altera-
tions in tumour cell metabolism were shown to potentiate 
the ability of malignant cells to evade apoptosis. The PI3K/
AKT pathway provides a link between cell proliferation and 
cell metabolism. In cancer, the PI3K/AKT pathway is fre-
quently aberrantly activated, for example due to the expres-
sion of oncogenic kinases, loss of PTEN as well as mutation 

WEHI-539 was the first compound to specifically target 
BCL-XL [218]. Additional structure-guided design led to 
the development of A-1155463 and A-1331852, which are 
both also selective for BCL-XL. A-1155463 exhibited anti-
tumour activity in a xenograft model of small cell lung carci-
noma (SCLC) in immune-deficient mice [219]. A-1331852 
was shown to potently kill several cancer-derived cell lines 
on its own and cooperates with a broad range of anti-can-
cer agents in vitro [220]. However, at present, no BCL-XL 
specific inhibitors have been approved for clinical use, and 
clinical trials are progressing slowly because of the pre-
dicted on-target toxicity to platelets.

Abnormally increased expression of MCL-1 can drive 
tumorigenesis and often confers a poor prognosis. There-
fore, several MCL-1 inhibitors have been developed and 
assessed in pre-clinical studies, these include S63845 [171], 
A-1210477 [221], AMG176 [172] and AZD5991 [173]. The 
in vitro and in vivo potential of the tool compound S63845 
was explored in pre-clinical studies in haematological 
malignancies, such as MM, AML, CML, and c-MYC-driven 
Burkitt lymphoma [171]. S63845, either alone or in combi-
nation with inhibitors of oncogenic kinases, was found to be 
moderately effective in certain solid tumours, such as breast 
cancer and prostate cancer [171, 222] and SCLC derived 
cell lines that are express high levels of MCL-1 but low lev-
els of BCL-XL [223]. There have been limited details on the 
potency of MIK665/S64315, the related compound that has 
entered clinical trials. The MCL-1 inhibitor AMG176 has 
been found to be effective in diverse haematological malig-
nancies [172] and in certain solid tumour derived cell lines, 
such as breast cancer and non-small cell lung cancer [224]. 
AZD599, another MCL-1 specific BH3-mimetic drug, was 
also shown to be effective for the treatment of MM in mouse 
models, and its effect can be enhanced by co-treatment with 
the BCL-2 inhibitor venetoclax or the proteasome inhibi-
tor bortezomib [173]. Until now, six MCL-1 inhibitors have 
entered clinical trials, but some of these trials have been 
halted due to on-target cardiac toxicity [225, 226]. This tox-
icity was predicted from genetic studies that had shown that 
MCL-1 is critical for the survival of cardiomyocytes [37, 
227].

The survival of many cancer cells is safeguarded not 
by a single pro-survival BCL-2 protein but rather by two 
or even more of these proteins. Hence, effective killing of 
such cancer cells will require two or more BH3-mimetic 
drugs, or combined treatment with one BH3-mimetic drug 
plus one or several standard-of-care anti-cancer agents that 
cause an increase in BH3-only proteins which then inhibit 
the pro-survival BCL-2 proteins that are not targeted by the 
BH3-mimetic drug used [20]. The tolerability of such thera-
pies will need to be carefully determined. For example, it 
is unlikely that inhibitors of MCL-1 and BCL-XL can be 
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for therapeutic benefit, either alone or in combination with 
anti-cancer agents, such as BH3-mimetic drugs.

Since BAX and BAK are the critical effectors of apopto-
sis, it is possible that plasma membrane permeable agents 
that can activate these proteins could be effective in cancer 
therapy. However, the safety of such approaches would need 
to be considered carefully since most, if not all, non-trans-
formed cells express either BAX and/or BAK and would 
therefore also be targets of such agents. Possibly, activa-
tors of BAX and BAK can only be administered safely to 
patients when conjugated to antibodies or ligands that will 
direct them preferentially to malignant cells. Such conjugate 
approaches are already being explored to increase the safety 
and utility of BH3-mimetic drugs that have considerable on-
target toxicities to non-transformed cells, particularly those 
targeting MCL-1 or BCL-XL [20]. Finally, since the intrin-
sic and the death receptor activated apoptotic pathways are 
distinct, albeit converging on the activation of effector cas-
pases [3], it is expected that BH3-mimetic drugs (activat-
ing the intrinsic apoptotic pathway) and activators of death 
receptors, such as the TRAIL receptors, would cooperate in 
killing malignant cells [253]. Again, the tolerability of such 
approaches will need to be tested rigorously.

Concluding remarks

The BCL-2 protein family members constitute the crucial 
regulators of apoptosis. Abnormalities in the expression of 
pro-survival or pro-apoptotic members of the BCL-2 pro-
tein family can promote tumour development and render 
malignant cells resistant to anti-cancer therapy. The field 
has developed a detailed understanding of the control of 
apoptosis and how the different subgroups of the BCL-2 
family proteins interact with each other. This understand-
ing has enabled the development of novel anti-cancer drugs, 
called BH3-mimetics, that can directly activate the apop-
tosis machinery by inhibiting pro-survival BCL-2 proteins. 
These compounds have shown efficacy in pre-clinical stud-
ies, and some have entered clinical trials for cancer therapy, 
with the BCL-2 specific inhibitor venetoclax FDA approved 
for the treatment of patients with CLL or AML. Current 
efforts are aimed at developing effective and tolerable treat-
ment schedules for the BH3-mimetic drugs that inhibit 
MCL-1 or BCL-XL and to discover which other anti-cancer 
agents can be combined with these drugs to achieve effective 
and safe cancer therapy. We believe that gaining a clearer 
understanding of how the expression of the pro-apoptotic 
BH3-only proteins is regulated may lead to insights that can 
be harnessed to develop novel therapeutics that enhance the 
expression of these initiators of cell killing. Such agents 

or amplification of the gene for PI3K, promoting glucose 
metabolism [235–237]. The oncogenic kinase BCR-ABL 
regulates expression of the glucose transporter 1 (GLUT 1) 
via the PI3K/AKT pathway [235]. Thus, several inhibitors 
of oncogenic tyrosine kinases have been developed that act 
at least in part by inhibiting the PI3K/AKT pathway to sup-
presses glucose metabolism [238–240]. Moreover, directly 
targeting the glycolysis pathway with 2-deoxyglucose 
(2-DOG) was shown to enhance cisplatin induced killing 
of ovarian cancer cells [241]. Deprivation of nutrients, such 
as glucose or amino acids, causes a substantial decrease 
in MCL-1 levels because this causes a reduction in pro-
tein translation via activation of AMPK-activated protein 
kinase (AMPK), leading to the inhibition of mTOR [242]. 
Reduced glucose metabolism as a consequence of cytokine 
deprivation causes an increase in the levels of pro-apoptotic 
PUMA and BIM [243, 244] leading to BAX/BAK mediated 
apoptosis [245]. These approaches therefore tip the balance 
between pro-apoptotic and anti-apoptotic proteins towards 
the induction of apoptosis and the elimination of cancer 
cells.

NF-κB transcription factors are critical regulators of 
both the adaptive and innate immune systems [246]. They 
can promote cell survival by modulating the expression of 
certain pro-survival BCL-2 family members, most notably 
BCL-XL and A1/BFL-1 [54, 247]. These findings sug-
gest that inhibitors of NF-kB signalling, such as inhibitors 
of IKK, an upstream activator of NF-kB, may be used to 
enhance BH3-mimetic drug or chemotherapeutic drug 
induced killing of cancer cells by reducing the levels of pro-
survival BCL-2 proteins.

MYC is a helix-loop-helix-leucine zipper protein that, as 
a heterodimer with MAX, binds to a palindromic E-box ele-
ment CACGTG in DNA and thereby upregulates the expres-
sion of specific target genes. In non-transformed cells, the 
expression of MYC relies on mitogenic signals and MYC is 
critical for cell volume growth and cell proliferation [248]. 
Approximately 70% of cancers express high levels of MYC, 
owing to chromosomal translocations (e.g., in Burkitt lym-
phoma), genomic amplifications or oncogenic signals. Stud-
ies using mice with a regulatable Myc transgene showed that 
MYC-driven tumour cells die when MYC is removed [249]. 
Deregulated MYC expression can also enhance the predis-
position of cells to undergo apoptosis in response to stress, 
such as growth factor deprivation [250]. This involves tran-
scriptional processes relating to the MYC relative MNT 
that causes an increase in BIM [251]. Accordingly, genetic 
loss of BIM or PUMA reduces MYC-driven apoptosis 
[187, 252]. Once the mechanisms by which MYC causes an 
increase in BIM and PUMA are understood, it may become 
possible to manipulate this process to increase the levels of 
these pro-apoptotic BH3-only proteins in malignant cells 
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