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Abstract
Macroscopic properties of sedimenting suspensions have been studied extensively and can 
be characterized using the Galileo number (Ga), solid-to-fluid density ratio ( �p ) and mean 
solid volume concentration ( 𝜙̄ ). However, the particle–particle and particle–fluid interac-
tions that dictate these macroscopic trends have been challenging to study. We examine 
the effect of concentration on the structure and dynamics of sedimenting suspensions by 
performing direct numerical simulation based on an Immersed Boundary Method of mono-
disperse sedimenting suspensions of spherical particles at fixed Ga = 144 , �p = 1.5 , and 
concentrations ranging from 𝜙̄ = 0.5 to 𝜙̄ = 30% . The corresponding particle terminal 
Reynolds number for a single settling particle is ReT = 186 . Our simulations reproduce the 
macroscopic trends observed in experiments and are in good agreement with semi-empir-
ical correlations in literature. From our studies, we observe, first, a change in trend in the 
mean settling velocities, the dispersive time scales and the structural arrangement of parti-
cles in the sedimenting suspension at different concentrations, indicating a gradual transi-
tion from a dilute regime ( 𝜙̄ ≲ 2% ) to a dense regime ( 𝜙̄ ≳ 10% ). Second, we observe the 
vertical propagation of kinematic waves as fluctuations in the local horizontally-averaged 
concentration of the sedimenting suspension in the dense regime.

Keywords  Sedimentation · Dense suspension · Kinematic waves · Immersed boundary 
method

1  Introduction

Sedimentation is the collective settling of particles suspended in a viscous fluid under the 
influence of gravity. It plays a major role in a multitude of industrial processes such as 
slurry transport, water treatment plants, land reclamation projects and fluidized beds. It 
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also plays a prominent role in the dynamics of environmental processes such as volcanic 
eruptions, sediment transport in rivers and rain.

Researchers have employed a multitude of techniques to study the dynamics of sedi-
menting suspensions, an overview is provided by Guazzelli and Morris (2011) and Davis 
and Acrivos (1985). Sedimentation of monodisperse suspensions of non-colloidal particles 
can be fully characterized using the Galileo number Ga =

√
(�p − 1)gD3

p
∕�2

f
 , solid-to-fluid 

density ratio �p = �p∕�f  and mean solid volume concentration 𝜙̄ , where � is the gravita-
tional acceleration, �p and �f  are the density of the solid and fluid, respectively, �f  is the 
dynamic viscosity of the fluid and Dp is the diameter of the particle. For concentrations 
𝜙̄ > O(1%) , Davis and Birdsell (1988) describe that the settling of particles is hindered due 
to the increased vertical hydrostatic pressure gradient over the suspension, a net upward 
motion of the fluid and the nearby presence of other neighboring particles in their vicinity. 
As a result the average settling velocity of dense suspensions decreases for increasing con-
centration. In literature many semi-empirical laws have been proposed for the average set-
tling velocity of a suspension ( VS ) as function of the terminal settling velocity of a single 
particle ( VT ) and bulk concentration described by Garside and Al-Dibouni (1977). A popu-
lar correlation is the one proposed by Richardson and Zaki (1954a, b) which predicts the 
average settling velocity of dense suspensions with good accuracy. Based on their experi-
ments they demonstrated that the average settling velocity of a suspension exhibits a 
power-law relation in the bulk void fraction:

where the exponent n is a function of the terminal particle Reynolds number 
ReT = VTDp∕�f  . Richardson and Zaki (1954a) determined n and VT by fitting Eq. 1 to their 
experimental results for various concentrations in the dense regime (typically 𝜙̄ > 10% ). 
However, in later studies it was found that Eq. 1 underestimates the settling velocity for 
𝜙̄ < 10% . The value of VT obtained from fitting Eq. 1 to the dense regime appears to under-
estimate the actual value of VT for a single settling particle. Yin and Koch (2007) therefore 
proposed to multiply Eq. 1 with a certain correction factor of typically 0.86 − 0.92 when 
the actual value of VT is used. Furthermore, Garside and Al-Dibouni (1977) proposed an 
empirical and implicit logistic curve equation for the (relative) settling velocity that agrees 
well with experimental data over the entire range of 𝜙̄ , including the regime of 𝜙̄ < 10%.

While Richardson and Zaki consistently found that the settling velocity of dense sus-
pensions is always smaller than the settling velocity of a single sphere, it was recently 
found that very dilute suspensions may show enhanced settling velocities for certain Ga 
and �p . This has been connected to stable vertical columnar structures within which par-
ticles settle at enhanced velocities. Heitkam et al. (2013) observed in their experiments 
at very low Reynolds number an increase of the sedimentation velocity of particles con-
fined in circular capillaries. Experimental observation of columnar structures in dilute 
particle suspensions in homogenous turbulence was reported by Nishino and Matsuhita 
(2004). These columnar structures were also observed recently in a Direct Numerical 
Simulation (DNS) study by Uhlmann and Doychev (2014). They found that at Ga = 178 
and �p = 1.5 a dilute suspension with 𝜙̄ = 0.5% settles faster than a single particle at the 
same Ga and �p values. A single settling particle experiences instabilities in its wake as 
a function of Ga and �p . As a result the path the particle travels may not be rectilinear 
and aligned with the direction of gravity. Path instabilities experienced by a single set-
tling particle as a function of Ga and �p have recently been studied in detail by Uhlmann 
and Dušek (2014) and Jenny et  al. (2004). At Ga ≈ 178 and �p ≈ 1.5 a particle has a 

(1)Vs = VT (1 − 𝜙̄)n,
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relatively long planar wake and settles at a slightly oblique trajectory. Uhlmann and 
Doychev suggested that the lateral motion and the elongated wakes of particles settling 
in close proximity to one another may lead to one particle being captured in the wake of 
another particle, which subsequently may result in the formation of columnar structures 
in which particles settle at enhanced velocities. The exact mechanism of this phenom-
enon is not fully understood yet. An enhanced settling velocity was also found later in 
experiments by Huisman et al. (2016), who investigated concentrations up to 𝜙̄ = 0.1% 
at Ga varying between 110 and 310 and �p = 2.5 . However, in their experiments vertical 
clustering was observed even at Ga and �p values where in case of a single particle no 
path instabilities were expected.

At dense concentrations, suspensions exhibit instabilities in the form of vertically 
propagating, horizontally oriented kinematic waves and shocks. Kynch theory provides an 
expression for the velocities of the kinematic shocks and waves as a function of concentra-
tion and sedimentation volume flux (Kynch, 1952). The development and propagation of 
these waves have been researched extensively in the context of fluidized beds by Kytömaa 
and Brennnen (1991), El-Kaissy and Homsy (1976), Batchelor (1988) and Jackson (1963). 
However, it has been challenging to relate the development of these instabilities to indi-
vidual particle–particle and particle–fluid interactions.

The development of non-intrusive experimental techniques mentioned in Shih et  al. 
(1986) and Williams et  al. (1990),  without the need for optical access has been able to 
provide insight into the dynamics of sedimenting suspensions. In addition, with the avail-
ability of computational resources and efficient numerical methods, it has been possible 
to provide a detailed account of the behavior of individual particles in these suspensions. 
In-depth descriptions of computational methods used to study particle laden flows are pro-
vided by Prosperetti and Tryggvason (2009) and more recently by Maxey (2017).

In this work, we aim to provide a description of gravity-driven monodisperse sedi-
mentation of dense suspensions in a viscous fluid. The main questions we would like to 
address are: (1) how are the macroscopic properties of a dense sedimenting suspension 
related to particle–particle and particle–fluid interactions? and (2) how is this influenced 
by the concentration? We have performed DNS of gravity-driven sedimenting suspensions 
of non-colloidal spherical particles in a triply periodic computational domain, with the 
solid volume concentration varying from 𝜙̄ = 0.5% to 𝜙̄ = 30% at a fixed Ga = 144 and 
�p = 1.5 . The choice of Ga and �p was motivated by a numerical study of Uhlmann and 
Dušek (2014) of a single settling particle in which they considered the same Ga and �p val-
ues. At a comparable Ga = 121 , in the DNS performed by Uhlmann and Doychev (2014) 
no significant particle clustering was reported. This was confirmed by the DNS performed 
by Fornari et al. (2016) at Ga = 144 and concentrations 𝜙̄ = 0.5% and 𝜙̄ = 1% . While the 
previous works of Uhlmann and Doychev and Fornari et al. focused on the dynamics of 
very dilute suspensions 𝜙̄ < O(1%) , we focus our analysis on the influence of concentra-
tion on the dynamics of sedimenting suspensions with an emphasis on dense suspensions 
for which 𝜙̄ > O(1%).

We use an interface-resolved DNS based on an Immersed Boundary Method for the 
fluid/solid coupling described by  Breugem (2012). In addition, a soft-sphere collision 
model described by Costa et  al. (2015) is used for frictional particle collisions. We first 
describe the computational method and provide validation of the method. Next, we study 
the particle–particle and particle–fluid interactions by investigating the mean structural 
configurations and the average flow field around a particle as a function of concentration. 
Lastly, we focus our attention on investigating macroscopic trends in the average settling 
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velocity, dispersion of particles within the suspension and development of kinematic 
waves.

2 � Computational Setup

2.1 � Governing Equations

Fully resolved DNS is carried out in a triply periodic rectangular domain filled with a viscous 
fluid in which immersed non-colloidal spherical particles are allowed to settle under gravity. 
The two phases in the simulation (fluid and particulate) are treated independently and coupled 
through a no-slip boundary condition enforced on the surface of the particle. The solution to 
the fluid phase is computed on a fixed Eulerian mesh and the moving surface of the particle is 
represented using a Lagrangian mesh that translates with the particle. For the fluid/solid cou-
pling the Immersed Boundary Method of Breugem (2012) is used. In this method the no-slip/
no-penetration condition at the particle/fluid interface is approximately enforced by (1) inter-
polating the provisional velocity in the fractional-step integration scheme from the Eulerian 
to the Lagrangian mesh, (2) calculating the force ( fIBM ) required to correct the fluid velocity 
to the local particle velocity, and (3) spreading this force from the Lagrangian to the Eulerian 
mesh. This approach is a blend of the regularized �-function approach proposed by Peskin 
(1972) and the direct-forcing approach of Fadlun et al. (2000) initially described by Uhlmann 
(2005) and later improved to obtain second-order accuracy by Breugem (2012).

The fluid phase is governed by the incompressible Navier-Stokes equations and the par-
ticle interactions are governed by the Newton-Euler equations. The governing equations 
are made dimensionless using reference scales, lref = Dp , uref =

√
gDp , tref = lref∕uref  and 

aref = u2
ref
∕lref  . The fluid phase in the simulation is advanced in time by solving the incom-

pressible Navier-Stokes equations, given by:

where � is the velocity, p is the modified pressure (total pressure - ph ). Here, ∇ph is the 
contribution to the hydrostatic pressure gradient from the submerged weight of the parti-
cles. For a homogenous suspension with concentration 𝜙̄ , ∇ph = (𝜋p − 1)𝜙̄ �̃ and the gravi-
tational acceleration g is non-dimensionalized as �̃ = �∕|�| . The penultimate term in Eq. 3 
becomes singular for �p = 1 , but note that this corresponds to the case in which particles 
are not settling at all. The translational and angular velocities of monodisperse spherical 
particles are determined from the Newton-Euler equations, given by:

(2)∇ ⋅ � = 0,

(3)
�
��

�t
+ ∇ ⋅ ��

�
= −∇ph − ∇p +

√
�p − 1

Ga
∇2� + fIBM ,

(4)𝜋p

d�p

dt
=

6

𝜋

(

∮
𝜕V

(� ⋅ �)dA + (
𝜋

6
)(𝜋p − 1)(1 − 𝜙̄)�̃ + �c

)
,

(5)�p

d�p

dt
=

60

�

(

∮
�V

� × (� ⋅ �)dA + �c

)
,
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where �p and �p are the translational and rotational velocity of the particle, 
� = −p� + [

√
�p − 1∕Ga](∇� + ∇�T ) is the stress tensor for a Newtonian fluid with I the 

unit tensor, � is the position vector with respect to the particle centroid, � is the outward 
normal directed from the surface ( �V  ) of the particle and �c and �c are the force and torque 
acting on the particle from inter-particle collisions. We consider non-colloidal particles in 
our simulations and hence the inter-particular interactions exclude electrostatic and Van 
der Waals forces. Brownian motion is neglected as well.

2.2 � Collision Model and Lubrication Correction

A soft-sphere collision model described by Costa et al. (2015) is used to model frictional 
particle collisions. The collision model simulates a spring-damper interaction by allow-
ing partial overlap between colliding entities. The collision force consists of a normal and 
tangential component. The normal repulsive component is represented by a spring-dashpot 
model,

where kn and �n represent the stiffness and damping coefficient, respectively, and �n and un 
are the overlap distance and the relative velocity between the particles in the normal direc-
tion respectively. The tangential force component is modeled with a spring-dashpot model 
in the stick regime and Coulomb’s friction model in the slip regime,

where kt , �t and �c are the stiffness, damping coefficient in the tangential direction and the 
coefficient of sliding friction respectively, and �t and ut are the overlap distance and the rel-
ative velocity between the particles in the tangential direction. kn,t and �n,t are determined 
from the reduced mass of the particles, the dry coefficient of restitution and a preset col-
lision time described by Costa et al. (2015). In our simulations en,dry = 0.97 , et,dry = 0.10 
and �c = 0.15 based on experimental data for oblique glass particle-wall collisions in an 
aqueous glycerine solution discussed by Costa et al. (2015) and Joseph and Hunt (2004).

Lubrication effects are automatically accounted for in our DNS, although underresolved 
at inter-particle distances smaller than a grid cell. When prior to a collision the distance 
between the particles is lower than a threshold of the order of the mesh size and the par-
ticles are not colliding yet, a lubrication force correction is added to the rhs of Eq. 4. The 
(dimensional) lubrication correction is given by,

where � = 2�n∕Dp and ��x is the threshold gap between two particles, and � is the Stokes 
amplification factor given by Jeffrey (1982). The collision model has been validated against 
several benchmark experiments and the results show a good quantitative agreement, see 
Costa et al. (2015) for details.

2.3 � Numerical Method

The Navier-Stokes equations are solved by a fractional step approach and a three-step 
Runge-Kutta scheme is used for integration in time. The spatial discretization uses second-
order central finite differences on a uniform, staggered and isotropic grid. The Eulerian 

(6)Fn = −kn�n − �nun,

(7)Ft = min(|| − kt�t − �tut||, || − �cFn||),

(8)�Flub = −3��f �f Dpun[�(�) − �(��x)]
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mesh employs a Cartesian coordinate system where the y-axis is aligned with the vertical 
direction. Gravity is the only external force acting on the system and it is directed verti-
cally downwards in the negative y-direction. The domain size was chosen to minimize the 
effect of periodic boundary conditions. The time taken for fluctuations in particle veloci-
ties to decorrelate was determined by computing the auto-correlation of particle veloci-
ties in each component direction, shown in Fig. 9. A vertical decorrelation distance was 
calculated as a product of the vertical decorrelation time scale and the mean settling 
velocity of the suspension. The evolution of the settling velocity of suspensions at dif-
ferent concentrations is shown in Fig.  1. We have checked a posteriori that the domain 
size in each direction was several times larger than the decorrelation distance, see fourth 
and last column in Table  1. The domain size for all the simulations (except 𝜙̄ = 0.5% ) 
was fixed at 25Dp × 100Dp × 25Dp . The domain size for the case 𝜙̄ = 0.5% was chosen 
to be 37.5Dp × 200Dp × 37.5Dp in order to account for a longer decorrelation distance 
and to increase the number of particles for statistical convergence. A grid resolution of 
Dp∕�x = 16 was chosen for our simulations and validation for it is provided in the next 
section. An illustration of the computational domain with particles is shown in Fig. 2. The 

Fig. 1   Evolution of the mean 
settling velocity of suspensions 
at different concentrations at 
Ga = 144 and �p = 1.5 . The 
dashed line corresponds to the 
settling velocity of a single 
particle

Table 1   Physical parameters in the DNS: global solid volume fraction 𝜙̄ , size of the computational domain 
L� (in the coordinate direction x� ), the number of particles Np , Tobs is the duration of the observation inter-
val over which statistics were calculated and the product Vs�L is the decorrelation distance. The Galileo 
number Ga = 144 and density ratio �p = 1.5 in all simulations

Case 𝜙̄ Np Lx × Ly × Lz Tobs∕
√

Dp∕g
(Vs�L)∕Dp

A 0.005 2686 37.5Dp × 200Dp × 37.5Dp 1096 46.79
B 0.02 2388 25Dp × 100Dp × 25Dp 1072 14.29
C 0.04 4775 25Dp × 100Dp × 25Dp 1036 9.91
D 0.06 7163 25Dp × 100Dp × 25Dp 1046 7.72
E 0.08 9549 25Dp × 100Dp × 25Dp 1060 6.01
F 0.1 11937 25Dp × 100Dp × 25Dp 1060 3.80
G 0.15 17903 25Dp × 100Dp × 25Dp 1143 3.46
H 0.20 23871 25Dp × 100Dp × 25Dp 1154 2.55
I 0.25 29838 25Dp × 100Dp × 25Dp 1144 2.56
J 0.30 35806 25Dp × 100Dp × 25Dp 1134 1.97
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domain size, mean solid volume concentration, number of particles and observation time 
for calculating the statistics is provided in Table 1.

At the start of the simulation, particles in the domain are initialized at random locations 
within the domain with zero velocity and allowed to settle under gravity. The fluid is ini-
tialized over the entire domain with zero velocity as well. After an initial transient of about 
t = 50

√
Dp∕g the particles settle at the mean settling velocity, after which statistics are 

collected. At every time step the hydrostatic pressure gradient in Eq.  3 is implicitly 
imposed from the requirement that the overall bulk flow (particle and fluid) has to be zero. 
This mimics the presence of a bottom wall in a batch sedimentation process.

2.4 � Validation

The present numerical code is validated against experimental results by Ten Cate et  al. 
(2002) for settling of a sphere in a viscous fluid at ReT = 11.6 . The experiment was per-
formed in a container of dimensions 100 × 100 × 160mm3 . The fluid used in the experi-
ment is silicon oil with a density of 962 kg∕m3 and dynamic viscosity 0.113 kg/ms and the 
solid used is a nylon sphere with density 1120 kg∕m3 and diameter of 15 mm, which cor-
responds to Ga = 19.85 or ReT = 11.6 and �p = 1.16 . The numerical simulation was set up 
to be similar to the experiment. A no-slip, no-penetration boundary condition is imposed 
on all 6 walls of the container. In Fig. 3, the solid line represents the computed result from 
the DNS and the blue dots represent the experimental data. The numerical results are found 
to be in good agreement with the experimental data.

In addition, we performed a DNS of a single settling particle at Ga = 144 and �p = 1.5 . 
A moving frame of reference with inflow/outflow conditions was used in the vertical direc-
tion and periodic boundary conditions were imposed in the horizontal directions. The 

Fig. 2   Computational domain 
used in the simulations with 
domain size Lz = Lx = 25Dp and 
Ly = 100Dp and solid volume 
concentration 𝜙̄ = 10% with 
np = 11937 particles
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domain size is 5.33Dp in the horizontal direction and 16Dp in the vertical direction. The 
grid resolution was uniform with Dp∕�x = 16 . The results were compared against spectral/
spectral-element simulations by Uhlmann and Dušek (2014) for a similar case in a cylin-
drical domain with a diameter of 5.34Dp . Our terminal settling velocity was close to the 
one of Uhlmann and Dušek with an error of 0.45% . The particle was found to settle in a 
rectilinear fashion as expected. The vertical velocity field relative to the particle is shown 
in Fig. 6a. The terminal Reynolds number, ReT = VTDp∕�f  , is 186. This is also very close 
to the expected value of 184.5 obtained from Abraham’s correlation for the drag coefficient 
(Abraham, 1970), indicating a negligible effect of the lateral domain size. The DNS has 
also been validated against several different flows previously by Breugem (2012) and Costa 
et al. (2015).

3 � Results

3.1 � Snapshots of Instantaneous Particle Distribution and Velocity

From our simulations, we observe a distinct change in the structure and dynamics of sedi-
menting suspensions at different concentrations. We support our observations with a num-
ber of statistical correlations that demonstrate this change. Instantaneous snapshots of the 
computational domain at three different solid volume concentrations are shown in Fig. 4. 
We observe different structural arrangements of particles as the solid volume concentra-
tion is increased. At 𝜙̄ = 2% we observe a tendency for vertical aggregation of particles. 
This can be observed in the trains of particles that settle significantly faster compared to 
the average settling velocity of the suspension, indicated by the red colored particles at the 
flanks of the domain. On moving to the denser solid volume concentrations of 𝜙̄ = 10% 
and 𝜙̄ = 20% the particles exhibit a seemingly random distribution, however it is hard to 
discern any structural trends from visual inspection alone. At 𝜙̄ = 10% and 𝜙̄ = 20% we 
observe a trace amount of particles traveling upwards (i.e., V∕Vs < 0 , V > 0 and Vs < 0 ). 
The distribution of colors (velocities), indicate the presence of fairly large scale structures 
in the sedimenting suspensions at 𝜙̄ = 10% and 𝜙̄ = 20%.

Fig. 3   Comparison of the results 
of a nylon sphere settling in 
silicon oil using DNS (black line) 
and experimental results of Ten 
Cate et al. (2002) (blue dots)
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3.2 � Particle‑Conditioned Average Particle Distribution

The local average distribution of particles in the vicinity of each particle is studied by com-
puting the particle-conditioned average. A solid phase-indicator function is defined over 
the entire domain. This function is defined to have a value of 1 within solid particles and 0 
elsewhere. By averaging the solid phase-indicator function in the vicinity of each particle, 
the local particle-conditioned average is obtained.

The particle-conditioned average in a vertical plane passing through the center of the 
particle for different solid volume concentrations is shown in Fig. 5. The yellow colors in 
the plot indicate regions of higher than average concentration and the blue regions indi-
cate regions of lower than average concentration. In Fig.  5, we observe that the regions 
away from the center of the particle show a concentration equal to the mean solid vol-
ume concentration. For 𝜙̄ = 0.5% we notice that there is a tendency for vertical aggrega-
tion of particles indicated by the cone-shaped profiles in the vertical direction. We also 
observe a significantly lower than average concentration of particles in the regions adjacent 
to the vertical columns. In the case of 𝜙̄ = 10% , we notice that there is a higher concen-
tration of particles adjacent to the reference particle in the horizontal direction, but this 
anisotropy in particle arrangement is restricted to distances less than 2Dp . This suggests 

Fig. 4   Instantaneous snapshot of a thin slab of the computational domain at solid volume concentrations a 
𝜙̄ = 2% , b 𝜙̄ = 10% and c 𝜙̄ = 20% . The slab thickness is 6.25 particle diameters. Particles are colored dis-
creetly by their vertical velocity scaled with the mean sedimenting velocity ( Vs < 0 ) of the suspension. The 
vertical trains of particles in the instantaneous snapshot for the case 𝜙̄ = 2% are outlined using rectangles 
in a. Positive values of V∕Vs indicate that particles are settling along the direction of gravity, i.e vertically 
downwards
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the increased probability of a particle to settle adjacent to a neighboring particle in the 
horizontal direction.

In the case of 𝜙̄ = 30% , we notice first, spherical contours around the particle at radii of 
1.16Dp and 2.09Dp and second, a slightly higher concentration in the horizontal direction. 
However, this effect is much weaker as compared to 𝜙̄ = 10% . The concentric circles near 
the reference particle can be explained by the kinematic constraint that particles cannot 
overlap with the reference particle; this effect fades away within a few particle diameters. 
This results in a largely uniform hard sphere like distribution. A similar arrangement was 
also observed in the dense regime of sedimenting spherical particles at ReT ≪ 1 , shown 
using a radial distribution function by Guazzelli and Morris (2011), and using a pair prob-
ability distribution function by Yin and Koch (2007) at 𝜙̄ = 20% for ReT = 10.

3.3 � Average Flow Field Around a Particle

The average vertical flow field around a particle relative to the mean settling velocity of 
the suspensions is determined by computing the average vertical fluid flow field in two 
mutually perpendicular vertical planes centered around each particle. The mean settling 
velocity of the suspension is subtracted from the flow field to obtain the velocities rela-
tive to the particle’s frame of reference. The mean is computed over all particles in the 
suspension and at 5 different instants in time over the course of the simulation. The aver-
aged flow fields for the concentrations 𝜙̄ = 2% and 𝜙̄ = 30% as shown in Fig.  6b and c 
respectively. For comparison, the instantaneous flow field around a single particle is shown 
in Fig. 6a using a simulation with inflow/outflow conditions described in Sect. 2.4. Com-
paring Fig. 6b and c, we observe that the extent of the wake at 𝜙̄ = 30% is much smaller 
than at 𝜙̄ = 2% , while the latter is similar to the wake structure of a single particle. The 
presence of other neighboring particles in close proximity to the reference particle disrupts 
the formation of elongated wakes at 𝜙̄ = 30% . This limits the influence of particle–fluid 
interactions and suggests a dominance of particle–particle interactions by lubrication and 
collisions, while the opposite holds for 𝜙̄ = 2% as the wake in this case is similar to the 
case of a single settling particle.

Fig. 5   Averaged solid volume concentration conditioned on particle positions (scaled by the global solid 
volume concentration of the suspensions) for different solid volume concentrations: a 𝜙̄ = 0.5% , b 𝜙̄ = 10% 
and c 𝜙̄ = 30%
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3.4 � Particle Velocity Statistics

From literature, it is known that the settling velocity of a suspension decreases with the 
increasing solid volume concentration, with the exception of very dilute suspensions at 
specific Ga and �p such as mentioned in the introduction. For dense suspensions the set-
tling velocity can be described by Eq. 1 suggested by Richardson and Zaki (1954a). Our 
simulations reproduce a similar trend for the solid volume concentrations simulated. We 
observe that Eq.  1 is valid for suspensions at solid volume concentrations 𝜙̄ > O(10%) , 
while Richardson and Zaki underpredicts settling velocity at lower concentrations; the 

Fig. 6   a Relative vertical flow field around a settling particle for an isolated single particle (the red contour 
marks the location where the vertical fluid velocity Vf = 0 , which indicates the extent of the recirculation 
region), (b) averaged flow field relative to a particle for a suspension with 𝜙̄ = 2% , (c) Idem for 𝜙̄ = 30% . 
Colors and contour lines in each figure span from 0 to the terminal settling velocity VT for the single parti-
cle and the mean settling velocity Vs for concentrations 𝜙̄ = 2% and 𝜙̄ = 30%

Fig. 7   Double-logarithmic plot of settling velocities of suspensions at different 𝜙̄ . The red dot indicates 
the terminal settling velocity VT of a single settling particle and the blue dot indicates the terminal settling 
velocity VT of a single settling particle computed from fitting the power relation proposed by Richardson 
and Zaki (1954a) and given in Eq. 1 to the settling velocities for 𝜙̄ ≥ 10%
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deviation increases for lower concentration in agreement with previous studies mentioned 
in the introduction section. In our DNS suspensions at lower solid volume concentrations 
show a deviation from this trend and settle faster than that predicted by the power-law rela-
tion. This can be seen in the double logarithmic plot of the settling velocity as a function of 
concentration, shown in Fig. 7.

The red dot in the figure is the terminal settling velocity VT = 0.91
√
gDp of a sin-

gle particle settling under gravity. Richardson and Zaki (1954a) determined VT ,ext of a 
particle settling under gravity by extrapolating Eq. 1 to a suspension at infinite dilution 
i.e. 𝜙̄ = 0% . We compute VT ,ext = 0.76

√
gDp (indicated in blue in Fig. 7) in our DNS 

using the same approach and the corresponding ReT = 154.3 . Note that VT ,ext computed 
using this approach is different from the real VT of a single settling particle (indicated 
by the red dot in Fig.  7). From fitting Eq.  1 to the results for 𝜙̄ ≥ 10% we find that 
n = 3.0 . Richardson and Zaki (1954a) performed their experiments in 2 different pipes 
and found a clear dependency of the exponent n on the ratio of the particle to tube 
diameter. For ReT = 154.3 their proposed correlation for n varies between n = 2.69 for 
Dpipe∕Dp = ∞ and n = 3.12 for Dpipe∕Dp = 25 . In our simulations the ratio of particle 
diameter to the lateral extent of the domain is equal to 25. Note, however, that we 
make use of periodic boundary conditions, so we expect that the value from our DNS 
is in between these limits. This is indeed the case as our measured value for n = 3 is in 
between the 2 limits mentioned before : 2.69 < n < 3.12.

3.5 � Particle Dispersion Statistics

The dispersion of the particles in the suspension is measured from the mean square 
displacement of the particle as a function of time. The expression to compute the mean 
square displacement is given by:

where, Y is the displacement, � is time interval over which the displacement is measured 
and t is the simulation time over which the mean is computed. The term −Vs� is a correc-
tion for the mean vertical displacement over a time interval � . The overline represents an 
average over t, the time over which statistics were computed and over the displacements 
of all the particles in the vertical direction. The expression for the mean square displace-
ment provided in Eq. 9 is analogous for the lateral directions, but without −Vs� term. Ein-
stein (1956) predicted ballistic and diffusive transport at short and long times, respectively, 
for Brownian motion of small particles. Similarly, for sedimenting suspensions the parti-
cles are in the ballistic regime for short times, where the mean square displacement scales 
quadratically with time, while for long times they are in diffusive regime, where the mean 
square displacement scales linearly with time. In turbulent flows dispersion of a passive 
scalar also displays ballistic and diffusive regime as shown by Taylor (1921) similar to 
Einstein’s theory of Brownian motion. The time scale � = �L at which the two regimes 
(indicated by the linear and quadratic fits) intersect is the integral time scale. This is indi-
cated by the red line in Fig. 8 for the case of 𝜙̄ = 2% . The integral time scale marks the 
transition from the ballistic to the dispersive regime. The integral time scale is a meas-
ure of the typical time over which the particle velocity decorrelates with itself or, alterna-
tively, is a typical diffusive time scale. The integral time scale associated with each solid 

(9)Y2(�) = (Y(t + �) − Y(t) − Vs�)
2,
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volume concentration is computed and expressed as a function of 𝜙̄ in Fig.  9. It can be 
observed from this plot that the rate of diffusion increases with increasing concentration up 
to 𝜙̄ ∼ 6% and 10% in the horizontal and vertical direction, respectively, while it remains 
nearly constant for higher concentrations. The dispersive time scale for the vertical direc-
tion is larger than for the lateral directions. Because of symmetry, the dispersive time scales 
for the x and z directions should be identical. This can indeed be observed, except for some 
discrepancies in the smallest concentrations related to some lack of statistical convergence. 

3.6 � Kinematic Waves

Kynch theory of sedimentation makes use of two assumptions (Kynch, 1952). First, the con-
centration of a sedimenting suspension is assumed to be uniform in the lateral directions. 
This enables the distribution of the local concentration of the sedimenting suspension to be 
expressed as a function of vertical position and time �(y, t) . Second, the settling velocity of 
the suspension is assumed to be quasi-steady only dependent on the local concentration. Using 
these assumptions, mass conservation requires that:

(10)
��

�t
+ VKW

��

�y
= 0,

Fig. 8   Double logarithmic plot 
of mean square displacement 
at 𝜙̄ = 2% . The slopes indicate 
the scaling of the mean square 
displacement with time. The red 
line indicates the integral time 
scale �L

Fig. 9   Integral time scale 
expressed as a function of solid 
volume concentration. The blue 
circles indicate the integral time 
scale in the vertical direction and 
the red and yellow circles are the 
integral time scales in the lateral 
directions
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with the kinematic wave velocity VKW = �(�Vs)∕�� , where �Vs represents the vertical vol-
ume flux of solids in the suspension. Based on the correlation provided by Richardson and 
Zaki given in Eq. 1, the mean sedimentation flux can be computed analytically using the 
above expressions, given by:

A comparison of the sedimentation flux computed from this theoretical expression and the 
measured value from our DNS, is shown in Fig. 10. The results are found to be in good 
agreement.

Due to the strong dependence of sedimentation on the solid volume concentration, local 
fluctuations in the solid volume concentration are expected to trigger small amplitude kin-
ematic waves. These appear as vertically propagating fluctuations in the local solid volume 

(11)𝜙̄Vs = VT 𝜙̄(1 − 𝜙̄)n.

Fig. 10   Comparison of solid 
volume flux of a sedimenting 
suspension as a function of con-
centration between theory (black 
dashed line) with the measured 
sedimentation flux from DNS 
(blue dots) at particle Reynolds 
number ReT = 154.3

Fig. 11   Space/time plot of the plane-averaged solid volume concentration �(y, t) as a function of height and 
time. The colors represent the local volume concentration scaled with the global solid volume concentration 
( 𝜙̄ = 20% ). The red dashed line indicates kinematic wave velocity determined from the space/time autocor-
relation
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concentration. To study this, we calculate the plane-averaged solid volume concentration as 
function of the vertical height and time. This is shown in Fig. 11 for the case 𝜙̄ = 20%.

From this space/time plot, we observe local fluctuations in the vertical concentration profile 
around the global solid volume concentration (indicated by the blue and yellow bands) that 
show a wave-like pattern that propagates downwards, though at a lower velocity than the aver-
age settling velocity.

In order to measure the velocity of the wave-like structures in the sedimenting suspension, 
we performed an autocorrelation of the plane averaged solid volume concentration. The auto-
correlation is given by:

where 𝜙�(y, t) = 𝜙(y, t) − 𝜙̄ is the fluctuation in the plane-averaged solid volume concentra-
tion. The overline represents an average over y and t. The correlations over large displace-
ments in space and time are expected to correspond to kinematic waves. By means of a 
linear fit through the correlation peaks over large displacements in y and t, the velocity of 
the correlated structure (i.e. kinematic wave) can be determined. The velocity of the kin-
ematic waves VKW corresponding to the cases 𝜙̄ = 10% to 𝜙̄ = 30% are computed in a simi-
lar manner. From Kynch sedimentation theory, the velocity of the kinematic waves VKW at 
a particular concentration can be determined by computing the slope of the sedimentation 
flux curve in Fig. 10, given by:

We compare the kinematic wave velocities at different concentrations from the DNS and 
theory, shown in Fig.  12. The measured results from the DNS follow a similar trend as 
predicted by the theory. Deviations between the DNS data and Eq. 13 may be related to 
dispersive effects not accounted for in Eq. 10, as discussed by Jackson (1963).

(12)�(�y,�t) = ��(y, t)��(y + �y, t + �t)

(13)
VKW

VS

=
1 − (n + 1)𝜙̄

1 − 𝜙̄

Fig. 12   Comparison of kinematic 
wave velocity of a sedimenting 
suspension as a function of con-
centration between theory (black 
dashed line) with the measured 
sedimentation flux from DNS 
(red dots)
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4 � Conclusions and Discussion

Particle–particle and particle–fluid interactions influence the macroscopic properties of a 
sedimenting suspension and are a strong function of the global particle volume concentra-
tion. From our results we observe for increasing concentration a gradual transition from a 
dilute ( 𝜙̄ ≲ 2% ) to a dense regime ( 𝜙̄ ≳ 10% ). From the instantaneous snapshots of the sus-
pensions at different concentrations and the particle-conditioned concentration, we notice 
that structural arrangement of particles is different in each regime. From the conditionally 
averaged particle concentrations, we observe with increasing 𝜙̄ a gradual transition from a 
preference for vertical particle aggregation in the dilute regime to a uniform distribution in 
the dense regime with a slightly higher preference of a particle to settle adjacent to another 
particle.

A particle settling in the wake of another particle experiences less drag and hence tends 
to draft towards that particle. The trailing particle can either spend an extended duration 
of time drafting towards the leading particle or can come into contact (kissing) with the 
leading particle and tumble into a more stable horizontal configuration. The latter is known 
as the drafting, kissing and tumbling (DKT) mechanism. The former is expected to play a 
significant role in the dilute regime where the wake of a settling particle is elongated and 
relatively undisturbed by the presence of other particles as compared to the dense regime. 
This leads to vertical aggregation of particles which we observed at the most dilute con-
centrations considered, i.e. 𝜙̄ = 0.5% and 𝜙̄ = 2% . At 𝜙̄ > 2% , the slight increase in the 
horizontal concentration close to the reference particle observed in the particle-conditioned 
concentration can be explained by the DKT mechanism. The negative velocities of a few 
particles observed in the dense regime could be due to the presence of particle-rich and 
particle-poor regions that set up local convection of fluid causing a few particles in the 
latter region to travel upwards. Lubrication and collisions likely play an important role in 
the dynamics of the dense regime, though a more quantitative analysis of their influence is 
required.

In tandem with this change, we observe first, a deviation of the mean settling velocity 
from the power-law relation suggested by Richardson and Zaki (1954a) in the dilute regime 
and second, the dispersive time scales were found to decrease rapidly up to 𝜙̄ ∼ 10% , 
while they remained relatively unaltered in the dense regime. This highlights the change 
in dynamics from the dilute to the dense regime. Yin and Koch (2007) suggested that the 
power-law scaling of the settling velocity is associated with a hard sphere like (random) 
particle distribution. In our simulation we study the structural arrangement of particles in 
the suspension by means of the particle-conditioned concentrations and we can confirm 
that the power-law scaling is indeed associated with such a distribution as observed in 
the dense regime. The statistically homogeneous distribution of particles could be a pos-
sible reason for the good agreement of our results with the power-law relation provided by 
Richardson and Zaki, while the vertical arrangement of particles in the dilute regime pro-
motes a settling velocity higher than predicted by the power-law relation for a homogenous 
suspension.

We observed the presence of kinematic waves in the dense regime and we computed 
their velocities by means of an autocorrelation of the fluctuations in local vertical con-
centration of the sedimenting suspension. The results are found to be in good agreement 
with that predicted by Kynch theory. The origin of this agreement can be attributed to 
two factors: an agreement with the assumptions of the theory and a trigger mechanism to 
initiate the propagation of kinematic waves. First, in the dense regime, particles exhibit 
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a hard sphere distribution which is largely uniform and any local anisotropy in the par-
ticle concentration is limited to distances less than 2Dp . Second, the settling velocity of 
the sedimenting suspensions are dependent on the local-concentration as indicated by the 
good agreement with the power-law relation presented by Richardson and Zaki, Eq. 1. We 
speculate that the slight increase in local horizontal concentration of particles could be 
the trigger that initiates the propagation of kinematic waves. Though the agreement with 
Kynch theory is good, the theory does not account for dispersion of particles within the 
suspension. It would therefore be interesting to extend this investigation to a more detailed 
analysis such as proposed by Jackson (1963).
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