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Abstract Despite the intensive studies on neurons, the control mechanism in real in-
teractions of neurons is still unclear. This paper presents an understanding of this kind of
control mechanism, controlling a neuron by stimulating another coupled neuron, with the
uncertainties taken into consideration for both neurons. Two observers and a differentia-
tor, which comprise the first-order low-pass filters, are first designed for estimating the
uncertainties. Then, with the estimated values combined, a robust nonlinear controller
with a saturation function is presented to track the desired membrane potential. Finally,
two typical bursters of neurons with the desired membrane potentials are proposed in
the simulation, and the numerical results show that they are tracked very well by the
proposed controller.
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1 Introduction

Neurons are elementary units of the nervous system and have the ability to conduct signals
rapidly over large distances. They receive, process, and transmit information by generating
characteristic electrical pulses called action potentials or voltage spikes that occur when the
membrane potential rapidly rises and falls. With the presence of external sensory stimuli,
including light, sound, taste, smell, and touch, neurons change their activities by firing sequences
of spikes in various temporal patterns. Although spikes can vary in duration, amplitude, and
shape, they are typically treated as identical stereotyped events in neural coding studies. A
number of mathematical models have been proposed for describing the phenomena of spikes,
such as the Hodgkin-Huxley (HH) modell!l, Morris-Lecar (ML) modell? | FitzHugh-Nagumo
(FHN) modell].
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The processes that generate only a single spike correspond to the depolarization, repolar-
ization, and refractory period of the neuron. These processes are relatively simple. Repeti-
tive spiking usually leads to more complicated dynamics, especially the bursting phenomenon.
Bursting (burst firing) in a neuron is the potential, or chemical concentration changes between
repetitive spiking and a quiescence statel* 9!, and it has been found in many types of neurons,
such as thalamic neurons!®’ and dopamine-containing neurons of the mammalian midbrain!™.
Bursting patterns named Types I, I, - -+, V have been introduced after Rinzel’s work on the
classification of bursting!*® 1%, In view of a geometric bifurcation theory, Izhikevich[® pre-
sented a complete classification, and suggested that the patterns of bursters should be named
on the basis of the names of the two bifurcations involved instead of descriptions or the type
plus the number, such as square-wave (Type I) burster, parabolic (Type II) burster, and elliptic
(Type III) burster.

Apart from intrinsic properties of neurons, oscillatory activities may result from neural
network properties, such as coupling strength and time delay['!l. Synchronization of coupled
neurons is a phenomenon that has been studied extensively in Refs. [12]-[14]. Synchronization
can be obtained for weakly connected networks!'?l, but not all weakly connected neurons can
be synchronized!®1>16] . While the coupling of neurons can be considered as a passive control
strategy that has been a research topic of great interest over the past few decades, external
stimuli can be regarded as active control strategies and have been used in some applications.
Taking voluntary movement of the human body as an example, one can control some neurons
to make coupled neurons do something specific, where the motor information is calculated in
cortical areas and carried by upper motor neurons along the spinal cord to activate the lower
motor neurons, and in turn to make the muscles contract. Motor cortex neurons were used
to record signals for real-time device control in rats!'” and monkeys'®l. The study of the
control (stimulus) mechanism among neurons has the potential to provide more accurate and
effective stimuli in therapies by electrical nerve stimulation, such as transcutaneous electrical
nerve stimulation (TENS) and neuromuscular electrical stimulation (NMES). Neuropeptide
release by the electrical stimulation with different frequencies was introduced in Ref. [19]. In
addition, a washout filter-aided dynamic feedback control was introduced to the Hindmarsh-
Rose model neuron to change its type from Type IT to Type I[?%). In Ref. [21], a feedback control
was proposed for synchronization of two coupled FHN models. In Ref. [22], a kind of neural
network was synchronized by using a single controller.

Some biological phenomena of neurons can be explained from the viewpoint of firing activity
and synchronization, but the control mechanism of neurons has not been fully understood yet.
It is still unclear what controllers are actually used in real interactions of neurons, and how to
control their activities precisely. In the control design of coupled neurons, uncertainties should
be taken into account, because it is hard to have the model parameters precisely measured, and
the coupled neural systems are usually subject to the external disturbance. Thus, it is more
reasonable to design the controller on the basis of measured signals. In this study, the track
control of an uncertain neuron by stimulating another coupled uncertain neuron is studied.
The following considerations distinguish this study from the previous works. (i) Uncertainties
in neurons are taken into account, and only a controller can be used to make another neuron
track a specified signal. (ii) Compared with the pinning control in neural networks, the strength
of coupling has no particular limit, provided that it is not equal to 0. (iii) A robust controller
with saturation function is presented in this paper.

2 Statement of the problem

The simplest control process between two neurons, as shown in Fig. 1, is considered. An
appropriate stimulus on the neuron 1 is designed to make the coupled neuron 2 generate a
desired action potential. The problem is a kind of track control of a two-dimensional system
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with one controller, which can be mathematically described as

fl(ul,wl + k(ul — UQ) + dl + I(t),

91(U1,’w1 )

Uy )
w, )
U = fa(uz, w2) + k(uz — u1) + da,
Wy = )

92(u2,w2 )

where u; and us denote the membrane potentials of the neuron 1 and the neuron 2, respectively.
In the HH modell!!, w;, w, € R3 denote the three types of ion channels, i.e., a sodium channel
with the index Na, a potassium channel with the index K, and an unspecific leakage channel with
the resistance R. In the ML modell?, w;, ws € R? (or R') denote the Ca and K ion channels (or
the K ion channel). In the FHN modell®, w;,w; € R' denote recovery variables. The system
(1) is also a generalized model of some other neuron models, such as the calcium-induced
calcium release (CICR) modell®®!. In mathematics, the functions fi, f2, g1, and gs should be
continuous and smooth with respect to w1, w; or ue, ws. k denotes the coupling intensity, and
d; = d;(u;,w;, t) (i =1,2) denote the unknown stimuli from the external environment or other
adjacent neurons or modeling error.

Appropriate Desired acti
: Neuron Neuron esired action
stimulus potential

Fig. 1 Sketch map of the purpose of this paper

Assumption 1 The unknown terms d; vary slowly, that is, there exist small positive
numbers & > 0 such that |d;| < & (i = 1,2).

The goal is to design an appropriate stimulus I(¢) to make uy track a desired membrane
potential uq(t) asymptotically and rapidly, that is, us — uq(t) — 0 as ¢ — +o00 asymptotically
and rapidly. Owing to the existence of uncertainties, it may be impossible to achieve such a
goal. Therefore, a more realistic goal is to make ug — uq(t) — 0 (t — +00) asymptotically, as
far as possible.

3 Design of the stimulus I(t)

3.1 Observers and the differentiator
For the slowly varied uncertainty di, the observer is designed as

dy = y1 + kius,
g1 = —kayn — Kfur — k1 (f1(ur, wi) + k(un — u2) + (1)),
and for the slowly varied uncertainty do, the observer can be presented as

dy = Y2 + kausg,
. , (3)
U2 = —koyo — kyua — ka(fa(uz, w2) + k(uz — u1)),

where dAl and dAg are the observed values of di and do, respectively, and the parameters k,
ko > 0 are to be designed.
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The principles of designing the observers (2) and (3) are similar to those found in other
papers!24 251 In most of these papers, the boundaries of |d; — d;| for i = 1, 2 were calculated by
means of the Lyapunov function. In the present study, the boundaries are estimated using the
general solution formulae of ordinary differential equations with constant coefficients.

Theorem 1  Under Assumption 1, consider the observers (2) and (3) for the system (1).
Ve > 0, there exist two sufficiently large numbers T; > 0 (i =1, 2) such that

\d; — di| < e+ k&, (4)

whenever t > T; (i =1, 2).

Proof Differentiating d; and dy in observers (2) and (3) with respect to time ¢ and sub-
stituting the system (1) into them by %7 and s, respectively, give

d; = —kid; + kid; (5)

for i« = 1,2. It follows that

di —d; = —ki(d; — d;) — d;.
By using the general solution formulae for ordinary differential equations with constant coeffi-
cients, we get

t
d; — d; = e "1 (d(tg) — di(to)) — / e K= d;(7)dr,

to

and it goes to

t
|di — dl| = e_ki(t_to)l(di(to) — di(to)” +/ e_ki(t_‘r)ldi(T”dT

to

< e B0 (i) — di(to))| + k& ©)

Note that ~
lim efki(t7t°)|(di(to) —d;i(to))| = 0.

t——+o0

Thus, Ve > 0, there exist two sufficiently large numbers T; > 0 (i = 1, 2) such that Eq. (4)
holds. This completes the proof.

According to Eq. (5), the designs of the observers (2) and (3) are similar to those of the
first-order low-pass filters. The boundaries in Theorem 1 are also the maximum errors of the
first-order low-pass filters.

Moreover, from Eq. (5), one has

di = —kid; + kid;.

Then, it follows that

. . t
\d;| gefki(tfto)|di(t0)| +/€i/ e*ki(tf‘l')|di(7—)|d7—

to

< e_ki(t_t0)|&\i(t0)| +(1- e—ki(t—to))gi'
Thus, one has

|d;| < kie R 71| (t0)] + (2k; — ke Fe(=t0))g,. (7)
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Hence, d; is bounded for the system (1) and observers (2) and (3) under Assumption 1. Similarly,
one can prove that the jth derivative gl(-J ) is also bounded for 7=1,2,---,n. In the following,

the estimated value of c/l\g, denoted by vs, is introduced by a traditional differentiator,

S o~

da(s), (®)

:’ys—|—1 2

v2(8)

where v is a small positive number. The state equation corresponding to the transfer
function (8) is

oalt) %@(t) (1)),
1 1- )

where p(t) is an intermediate variable. The estimated error vy — dy is given by the theorem
below.

Theorem 2  With the differentiator (8) or (9), the estimated error of ds has the following
estimation. Ye > 0, there exists a sufficiently large T5 > 0 such that

|v2 — da| < € + 27vkato,
whenever t > Tj.
Proof From Eq. (8) or Eq.(9), one has
Yoy = —vg + daft), (10)

which is equivalent to

~

. PN 1 ~
Vg — dg = —;(’Ug — dg(t)) —dg.

Again, by using the general solution formulae of ordinary differential equations with constant
coefficients, and taking the absolute value on both sides, one has

. . t .
Ivz——dzl<e‘%“‘“’wQ@o)—t&(hﬂl+l/’e_%“_TnixrﬂdT-

to

Note that

t _
[ teneengr - (L) enew ety
Y

to
together with Eq. (7), and one obtains
~ ~ 1 -1 ~
2= o < 3 un(to) = dalto)| + o (5 ko) (€7 eI o)

+ 27k2&. (12)

2|
—~
=

|
-

[=]
N

N

This theorem holds true, because e~ 7 %) vy (o) — da (t0) |+ ko (% —ky) 1 (e kalt—to) _¢—3

|da(to)] — 0 as t — +oo.
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3.2 Robust nonlinear control
Let uq be the known and desired membrane potential for us to track. Then, from the
system (1), the error variable us — uq satisfies

{Oz—udez(umwz)'f‘k(W—U1)+d2—@d, 13)
U = fl(ul,wl) + k(ul — UQ) +di + I(t).

The main idea in the control design is to decompose the right hand side of the first equation of
the system (13) into two parts, i.e., the stable term and the rest term. It is required to design
an appropriate controller to make the rest term tend to 0 as far as possible, by using the second
equation of the system (13). The details are given below.

The first equation of the system (13) can be rewritten as

Uy — g = —ay(uz — uq) + a1(uz — uq) + fa(ug, wa) + k(uz — ur) + do — g,

where a; > 0 is a number to be determined. Let z = k=1 (a; (u2 — uq) + f2(uz, w2) + kug + da —
tq) = k7 1((a1 + k)ug + fao(uz, ws) + da — ajug — iq). Then, one has

Uy — g = —a1(ug —uqg) + k(z — up).

Due to the existence of the unknown term ds in z, only the observed value of C/l\g is available in
the control design. Thus, one has

1.1,2 — fl,d = —al(u2 — ud) + k(g — ul) + d2 — 6/1\27

where z = k~((a1 + k)ua + fa(ug, we) + C/i\g — ajuq — Uq). Combining the second equation of
the system (13), one has

é—’lll:é—fl(ul,wl)—k(ul—UQ)—dl—I(t). (14)
Because d; and dy are uncertain, the precise value of
. 0z 0z 15 . ..
Z = ——(fa(uz,ws) + k(uz — u1) + do) + —g2(uz, w2) + k™" (d2 — arita — iia)
Oug ow,
cannot be obtained, where wo = (wd, w3, -+, wi)T, afT = (66?2, %57 T, a(%b)a and go (uz, wo)
2 2 2
= ay. Note that
- 0z ~ 0z _ . ..
2= —(faluz, w2) + k(uz — u1) + da) + =—5g2(uz, ws) + k Yy — artig — iiq)-
Oug ow,
Thus, Eq. (14) becomes
P 0z ~ 1 = -
Z— Uy = 8—11,2(d2 - dg) + E(d2 — ’UQ) +z— fl(ul,wl) - k(ul - u2) - dl - I(t) (15)

When I(t) = 2 — f1(ur,w1) — k(ug — ug) — c/l\l — Iy, where I is to be designed, one has
.. 0z ~ 1 =~ ~
zZ— U = 8—11,2(d2 — dg) + E(dg — ’UQ) —+ (dl — dl) =+ I().

In this way, the system (1) (or equivalently the system (13)) changes to
Up — Ug = —ai(ug — uq) + k(Z —u1) + do — da,

.. 0z ~ 1 = ~
zZ—1u = 3—M(d2_d2)+E(d2_U2)+(dl —dy) + Iy
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with the following controller:

I(t) = ZT— fl(ul,wl) — k(ul — u2) —(/i\l —IQ,

5= 2z, wa) + b(uz — un) + ) + o (uz, wa) + k= (v — avita — iia) 1
= Duy 2(U2, W2 2 1 2 8w'2fg2 2, W2 2 1Ud d)s
where Z, vg, c?l, and 572 are as mentioned above.
Furthermore, Iy can be designed as follows:
oz
Io(t)z—(‘a—;}ﬂ‘f'ﬁ)sa(é_ul)u (18)

where 1 and 3 are positive numbers and satisfy 1 > |dy — da| and 3 > |%(c/l\2 — o)+ (dy — dy)].
This is reasonable according to Subsection 3.1. s4(-) denotes the saturation function, which is
defined as

where a > 0.

The emphasis should be placed on the saturation function in the proposed controller. In the
theory of sliding mode control, the saturation function can be replaced by the sign function, and
a better result than that in Theorem 2 can be obtained. However, the sign function generates a
chattering phenomenon caused by time delay, small disturbance and so on, when the trajectory
is close to the objective trajectory. Although a small chattering phenomenon may not have
great effects on the control effect, high-frequency chattering near the objective trajectory has a
negative effect on the controller, and the controller will switch at a high frequency with a large
amplitude. Thus, it is unreasonable to use the sign function in stimulating a neuron using the
high-frequency potential with the large amplitude in practice.

Theorem 3  For the system (16) under the controller defined by Eq.(18), that is, the
system (13) (or the system (1)) under the controller defined by Eqs. (17)—(18), it holds that
(I) there exists a number Ty > to such that

|Z —u] < « (19)

fort =Ty,
(IT) for ax > 0 and Ve > 0, there exists a sufficiently large positive number Ts > Ty such
that

lug — ua| < €+ a7 (Jklo + k3 &), (20)

whenever t > Ts.

Proof (I) First, it is necessary to prove that there exists Ty > o such that
|2(Ty) — w1 (Ty)] < . (21)

Assume by contradiction that the statement of Eq.(21) is not true. Then, z — u; > « or
Z—u; < —a for all t > ty. It is only necessary to prove the first case because the rest case
can be proved with the same method. Z — u; > « holds for all ¢ > tg. Then, from the second
expression of the system (16), one has

0z

. ~ 1 = ~ 0z
Z—U = 8—11,2(d2 —d2)+ E(dg —’Ug) + (dl —dl) - (‘8—;}[14—6) =p <0, (22)
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and sup p(t) < 0. It follows that
t>to

Y

¢

— = (k) — wi(to) + [ p(r)dr < 3lto) ~ws(to) + (¢~ to) supplt) — —c (23)
to 0

as t — 4oo. This is a contradiction for the hypothesis that Z — u; > « holds for all ¢ > tg.

That is to say, the inequality (21) is true.

Secondly, it is necessary to prove that Eq.(19) is true. Assume by contradiction that the
statement of Eq. (19) is not true. Then, there exists T, > T, such that z(T}) — u1(T}) > « or
Z(Ty) — u1(Ty) < —a. For the first case, there exists a T satisfying Ty < T < T} such that
Z(T)—u1(T) = o and Z(t) —u1(t) > « for ¢t € (T,Ty). Thus, by the mean value theorem, there
exists at least one 77 € (T,T}) such that z(T’) — 4, (T") > 0. However, by Eq.(22), one has
z—1y < 0forall t € (T, T}). This is a contradiction. The second case can also be proved to be
contradictory in a similar manner. Thus, Eq. (19) is true.

(IT) From the proof of (i), one can conclude that

(i) if |2(to) —u1(to)| > «, then z —uy < |2(to) —u(to)| for ¢ € [tg, Ty), which can be deduced
with the same method as used for Eq. (23) and the result of (I);

(i) if |2(to) — u1(to)| < «, then Eq. (19) holds for ¢ € [tg, +00).

In this proof, we only consider the first case (the case (i)); the other case can be proved
with the same method. According to the general solution formulae, the first expression of the
system (16) can be rewritten as

up — ug = e~ ) (uy(tg) — uq(to))

+ / =T ((2(7) — us (7)) + da(r) — do())dr. (24)

to

Note that with Eq. (6), for ¢ > Ty, one has

Juz — ua| <e™* 71| (up(to) — ua(to))] + / e~ I (R|(2(7) = wa (7))] + |da(7) — da(7) )dr

to

t

Ty
<ol o) ~ gt + [ eIk e(r) (e + [ e

to Ty

t

|Ell(z(7) = wa(7))|d7 +/ e ) (e R (T | (dy (to) — da(to))| + ky "&o)dr
to

e 071 |(ug(to) — walto))| + ay *[k]|Z(to) — wr (to)| (e~ 7 T) — emea(t7to))

+ (a1 — ko) M (e R — om0 (dy (1) — da(to))| + ay " (Kla+ Ky o).

Thus, Eq. (20) is true, because e~ =40 |(ug(to) —ua(to))|+aj k| |Z(to) — u1 (to)| (e~ (= T0)

—ema1(t=t0)) 4 (qq — ky) =1 (e F2(t=t0) — e=ar(t=t0))|(dy(to) — da(t))| — O as t — +oo.
4 Simulation

As an application of the proposed control, the tracking control of the uncertain FHN model
with one stimulus, described as
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Uy —C(U1+w1——)+k(ul—u2)+d1+1()

3
W = — —(’U,l —a—l—bwl)
¢ (25)
U2 _C(Uz + wg — ?) + k(ug —uy) + da,
1
Wo = — E(UQ — a+bw2),

is studied, where (a, b, c) = (0.7,0.8,3), the uncertain terms dy and dy are dy = 0.1 sin(25t) and

do =—-12-0.3 sin(?,,—gt), and k£ = 0.1. To be more practical, the tracking signal is generated
from the following modified ML model:

V=1 - g(L)(V ~ E(L) — g(K)u(V ~ E(K)) — g(Ca)mac(V)(V — E(Ca)),
i = MV)(weo(V) — w), (26)
@ = 0.005(0.2+ V),

where I = —u, mo (V) = (1 + tanh V‘_,Qvl ), oo (V) = 4 (1 + tanh V;4V3), V) = % cosh Y15
and (V1, Vs, V3, V4, E(L), E(Ca), g(L), g(K), g(Ca)) = (—0.01,0.15,0.1,0.05, 05,1,05,2,1 2)
Two classical bursters for the desired action potential are tracked. The two bursters are
called the “fold/Hopf” burster (see the blue solid lines in Fig.2 with F(K) = —400) and
“fold /homoclinic” burster (see the blue solid lines in Fig. 3 with E(K) = —0.7) according to the
geometric bifurcation theory®/. To classify the bursters, there are two important bifurcations
involved, i.e., bifurcation from a quiescent state to repetitive spiking, and bifurcation from a
spiking attractor to a quiescent state. A “fold/Hopf (homoclinic)” burster means that a fold
bifurcation causes a neuron to change from a quiescent state to repetitive spiking, and a Hopf
(homoclinic) bifurcation causes a neuron to change from a spiking attractor to a quiescent
state. Usually, the two bifurcations can be analyzed by nullclines of fast subsystems and phase
planes?®. Our goal is to make uy — V(i=1uq) — 0 as t — +00, as far as possible.

As shown in Egs. (5) and (10), the observed values and the differentiated value only have

)

connection with uncertainties dy, ds, and 32, and they have no connection with the state vari-
ables in the neuron model. Thus, we only give the case in the “fold/Hopf” burster. In the
application of the control strategy proposed in Section 3, the parameter values are fixed,
(k1, k2,7, 1, 3, a,a1) = (10,10,0.1,2,2,0.5,10). Figures 2 and 3 show that the “fold/Hopf”
burster and “fold/homoclinic” burster generated by the ML model (26) (see the blue solid
lines) have been tracked well and quickly by the second neuron in the FHN model (25) (see the
red dotted lines). As shown in Figs. 4-6, the errors of estimation of the two observers and the
differentiator are very small after a period of time. However, at the start, the error of estimation
is relatively large. This is connected with the selection of initial values of the systems (2), (3),
and (9).

Ug
-0.2 r‘.‘.'.‘.m"'u\?r’# w‘\M’ ‘I\ l\\»w’ M | I"Hh{ ‘n‘{“ﬂl\l ’Ilw‘l‘n\"f" ‘:" uz
/ /
SN -/’ \ —()(3() \ pd
5 04 F TN |V
s 7 \ _—
~06 —-0.35 T
2T ) ) ) 0 5 I1() 15 20
0 100 200 300 400 500 600

t

Fig. 2 Tracking the “fold/Hopf” burster (color online)
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0.4
0.2
0.0

-0.2

-0.4 R —uy

-0.6 . 0 I 2 3 .45 | [ Y

0 100 200 300 400 500 600
t

Ugy Uy

Fig. 3 Tracking the “fold/homoclinic” burster (color online)

0.10

/ \ —a
0.05 | 4
< 0.00 b2
= o005k \ .01 r , \ /
o0 , L0 5 10
0 500 60

0 100 200 3 400 0

Fig. 4 The uncertainty d; and its observed value dy in the “fold/Hopf” burster (color online)

-10}F
<12
= .
-14
13
_16 0 1 1 2 1 3 1 1 1
0 100 200 300 400 500 600

t
—dy, ---d,

Fig. 6 dg, vo and &\2 in the “fold/Hopf” burster (color online)

5 Conclusions

This study investigates the track control of the membrane potential of a neuron by stimulat-
ing an adjacent coupled neuron. Owing to the presence of uncertainties from model parameters
and external disturbances, estimations of the uncertain terms are presented in terms of observers
and a differentiator constructed using measured signals. The observers and differentiator are
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primarily first-order low-pass filters, and the errors of their estimations depend on the char-
acteristics of the uncertain terms only. In addition, a robust observer-based controller with a
saturation function is presented for tracking the desired membrane potential, and it is robust
against uncertainties. It is expected that the proposed controller might help in understanding
the mechanism of neuronal control with a simple model, and more complex cases are left for
future investigation.
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