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Abstract An adaptive mesh refinement algorithm based on a continuous adjoint ap-
proach is developed. Both the primal equation and the adjoint equation are approximated
with the discontinuous Galerkin (DG) method. The proposed adaptive algorithm is used
in compressible Euler equations. Numerical tests are made to show the superiority of the
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1 Introduction

In lots of applications, e.g., engineering analysis and design, engineers are interested in not
only the whole solution but also its certain values, i.e., output functionals. For example, in
computational aerodynamics, lift and drag are usually more important than the whole solution
in the entire space[1]. In such computations, engineers are interested in the accuracy of these
output functionals. Considering the finite computational resources, the adaptive approach is an
efficient way to improve the calculation precision of these functionals. The adaptive approach
usually uses local error indicators to guide the mesh refinement. The indicators derived based
on the solution features such as the large gradient in flow variables and flow discontinuities
have been widely used in adaptive algorithms. Although the feature-based adaptation has
had some successes, it is liable to overrefine the regions that have little effect on the output
functionals[2–3].

In order to derive reliable and efficient adaptive algorithms to produce the desired increase in
the accuracy of the output functionals, adjoint-based adaptive methods have been widely devel-
oped and studied[4–13]. Becker and Rannacher[4–5] proposed the dual weighted residual method
based on the property of Galerkin orthogonality of the finite element method. Venditti[6] and
Venditti and Darmofal[7] derived the adaptive procedure by the local error indicators con-
structed from both the primal solution and the adjoint solution in the standard finite volume
discretization. Hartmann and Honston[8–9] and Hartmann[10] made extensive studies on the
adaptive discontinuous Galerkin (DG) method based on an adjoint approach for aerodynamic
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flows. Wang and Mavriplis[11] developed the h-p adaptation approach for compressible Euler
equations. Fidkowski[12] developed anisotropic and adjoint-based mesh adaptation for the DG
discretization and cut-cell meshing. However, all these studies need output-based adjoint solu-
tions as the weight in order to represent the sensitivity of the output functionals to the local
primal residuals.

In shape optimization designs, the adjoint problems can be derived by two ways, i.e., the
continuous approach and the discrete approach. Both of these approaches have made some suc-
cesses. However, up to now, most of the adjoint-based adaptive algorithms have been developed
only from the discrete adjoint approach[3–15]. In the discrete adjoint approach, discretization is
made for the primal equations firstly, and then the adjoint equations are obtained by linearizing
the discrete primal problems. In this procedure, a full Jacobian matrix is needed. Therefore,
if we can get it from the primal flow solver, the implementation of the adjoint equation will be
much easier. However, if not, the calculation of the full Jacobian matrix will be very compli-
cated. Moreover, in the continuous adjoint approach, the adjoint partial differential equations
(PDEs) are derived from the primal PDEs directly, and then these equations are discretized
by the numerical schemes which may be different from the primal problem and may be inde-
pendent of the code structure of the primal problem. More importantly, we can enforce the
boundary conditions more rigorously in the continuous adjoint approach. Fidkowski and Roe[16]

proposed an entropy adjoint approach, and used the continuous adjoint approach to derive the
error indicators. Li et al.[17] developed an adaptive mesh refinement algorithm, and showed the
promising results based on the continuous adjoint approach in the spectral difference frame-
work. In this paper, we will provide an approach to construct the adaptive error indicator
based on the continuous adjoint approach in the DG method, and show its efficiency for the
error estimation.

The paper is organized as follows. In Section 2, we introduce the primal equations and
the DG discretization used in this work. In Section 3, we introduce the derivation of the
continuous adjoint equations and construct the adjoint-based error indicator. In Section 4, we
use the continuous adjoint-based error to estimate the two-dimensional (2D) Euler equations.
In Section 5, we describe the numerical implementation of our work. In Section 6, we discuss
the numerical experiments to highlight the superiority of the proposed algorithm.

2 Primal equations and discretization

2.1 Governing equations
Let Ω be the computational domain in R

2. Then, the 2D steady-state Euler equations can
be written as follows:

∇ · F(u) = 0 in Ω, (1)

where u = (ρ, ρu, ρv, ρE)T is the solution vector consisting of the density ρ, V = (u, v)T is the
velocity, and E is the total energy per unit mass. The flux functional F(u) is defined by

F(u) =
(
f1(u),f2(u)

)
=

⎛
⎜⎜⎝

ρu ρv

ρu2 + p ρuv

ρuv ρv2 + p

(ρE + p)u (ρE + p)v

⎞
⎟⎟⎠ , (2)

where p is the pressure. The system is closed by

p = (γ − 1)
(
ρE − ρ

u2 + v2

2

)
, (3)

where γ is the heat capacity ratio, which is 1.4 for the diatomic gas.
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2.2 Standard DG discretization
Denote Th = {k} the subdivision of the domain Ω. Then, the standard DG discretization of

Eq. (1) can be given as follows: find uh ∈ Vh,p such that

R(uh,ϕ) =
∑
k∈Th

(
−

∫
k

∇ϕT · F(uh)dx+
∫

∂κ\∂Ω

ϕTH(u+
h ,u

−
h ,n)ds

+
∫

∂k∩∂Ω

ϕTHb(u+
h ,u

−
h (u+

h ),n)ds
)

= 0, ∀ϕ ∈ Vh,p, (4)

where

Vh,p = {u ∈ [L2(Ω)]d : u|K ∈ [Pp]d, ∀k ∈ Th}.

In the above equations, d is the dimension of u, Pp is the polynomial with the degree p, and
(·)+ and (·)− are the interior trace and the outer trace on ∂k, respectively. H(u+

h ,u
−
h ,n) and

Hb(u+
h ,u

−
h (u+

h ),n) are the numerical flux functionals depending on the interior and ∂Ω meeting
the physical boundary conditions, respectively.

3 Adjoint-based error estimation

3.1 Continuous adjoint equations
Consider the following primal problem arising from Eq. (1):

∇ · F(u) = 0 in Ω, (5)

Bu = 0 on Γ, (6)

where B is a boundary operator, Γ = ∂Ω, u ∈ V , and V is the functional space of the analytical
solution. Then, the output functional which we are interested can be defined by

I(u) =
∫

Ω

iΩ(u)dx +
∫

Γ

iΓ(u)ds, (7)

where iΩ(·) and iΓ(·) are the operators which may be nonlinear. Let uh be the numerical
approximation of u in the space Vh,p ⊂ V . Then, we denote the error between u and uh by ũ,
i.e.,

u = uh + ũ.

For the analytical solution u ∈ V and ψ ∈ V , the residual

R(u,ψ) = 0.

Therefore, we can add the residual to the output functional I(u) without changing its value,
i.e.,

I(u) = I(u) =
∫

Ω

iΩ(u)dx+
∫

Γ

iΓ(u)ds−R(u,ψ). (8)

In this way,

I(uh) =
∫

Ω

iΩ(uh)dx +
∫

Γ

iΓ(uh)ds−R(uh,ψ). (9)

Therefore, the error of I(u) can be given by

I(u) − I(uh) =
∫

Ω

(
iΩ(u) − iΩ(uh)

)
dx+

∫
Γ

(
iΓ(u) − iΓ(uh)

)
ds

− (R(u,ψ) −R(uh,ψ)). (10)



1422 Huiqiang YUE, Tiegang LIU, and V. SHAYDUROV

Then, we linearize the right-hand side of Eq. (10) to get the first-order approximations as follows:∫
Ω

(
iΩ(u) − iΩ(uh)

)
dx =

∫
Ω

iΩ
′[u](ũ)dx,

∫
Γ

(
iΓ(u) − iΓ(uh)

)
ds =

∫
Ω

i′Γ[u](ũ)ds,

R(u,ψ) −R(uh,ψ) = R′[u](ũ,ψ),

where the prime on (·)′ means the Fréchet derivative linearized at the term in the square
brackets. Thus, we have

I(u) − I(uh) =
∫

Ω

i′Ω[u](ũ)dx+
∫

Ω

i′Γ[u](ũ)ds−R′[u](ũ,ψ). (11)

In order to make I(u) − I(uh) be independent of ũ, in other words, to find a suitable ψ such
that the error ũ has no influence on I(u)− I(uh), we consider the following problem: ∀ũ ∈ V ,
find ψ such that

I(u) − I(uh) = 0. (12)

Therefore, ψ should satisfy∫
Ω

i′Ω[u](ũ)dx +
∫

Ω

i′Γ[u](ũ)ds = R′[u](ũ,ψ). (13)

Substituting
R′[u](ũ,ψ) = (∇ · F ′[u](ũ),ψ)Ω

into Eq. (13), we get

(∇ · F ′[u](ũ),ψ)Ω = (i′Ω[u], ũ)Ω + (i′Γ[u], ũ)Γ. (14)

Integrating the left-hand side of the above equation by parts, we get

(∇ · F ′[u](ũ),ψ)Ω = (n · F ′[u](ũ),ψ)Γ − (F ′[u](ũ),∇ψ)Ω

= (ũ, (n · F ′[u])∗ψ)Γ − (ũ, (F ′[u])∗∇ψ)Ω, (15)

where the superscript ∗ denotes the adjoint operation. Considering the right-hand side of
Eq. (14), we can rewrite the continuous adjoint equations of Eq. (5) as follows:

− (F ′[u])∗∇ψ = i′Ω[u] in Ω, (16)

(n · F
′
[u])∗ψ = i′Γ[u] on Γ. (17)

3.2 Error estimation
In engineering calculation, we hope to get the best possible approximation of the output

functionals with the smallest computing resources. An error estimate based on the computed
values is required to evaluate how accurate these output functionals are approximated. From
prior experience, it is very hard to estimate the error. Using the adjoint problem, we can obtain
the general result.

Theorem 3.1 Let u be the analytical solution and uh be the numerical solution of the
primal equation (5). Let ψ denote the analytical solution of the adjoint equation (16). Then,
the error between I(u) and I(uh) can be estimated by

I(u) − I(uh) =
∑
k∈Th

ηk, (18)
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where

ηk = −
∫

k

ψT(∇ · F(uh))dx+
∫

∂k

ψT
(
n · F(u+

h ) −H(u+
h ,u

−
h ,n)

)
ds. (19)

Proof I(u) − I(uh)

(8)
= I(u) − I(uh)

(12)
= I(uh) − I(uh)

= −R(uh,ψ)

(4)
=

∑
k∈Th

(∫
k

∇ψT · F(uh)dx−
∫

∂k

ψTH(u+
h ,u

−
h ,n)ds

)

=
∑
k∈Th

(
−

∫
k

ψT(∇ · F(uh))dx+
∫

∂k

ψT
(
n · F(u+

h ) −H(u+
h ,u

−
h ,n)

)
ds

)

=
∑
k∈Th

ηk.

From this theorem, we can conclude that the primal residual can be related to the output
functional error via the adjoint variable as a weight. Then, we take the absolute value of ηk to
construct the local error indicator for adaptive algorithms, namely,

ηind
k = |ηk|. (20)

4 Application on Euler equations

4.1 Some basic notations and output functionals
In this section, firstly, we define the flux Jacobian matrix as follows:

Ai =
∂f i

∂u
, i = 1, 2.

Secondly, we define the boundary flux as follows:

fb = n · F(u) = f1n1 + f2n2 = un(ρ ρu ρv ρE)T + p(0 n1 n2 un)T,

where n = (n1, n2) is the normal vector of the boundary, and un is the normal velocity, i.e.,
un = un1 + vn2. The pressure induced force coefficients, such as the drag coefficient, are the
most important output functionals in inviscid compressible flows. Here, the drag coefficient is
given by

I(u) =
∫

Γ

iΓ(u)ds =
1
C∞

∫
ΓW

pn ·ϕds, (21)

where Γ = ∂Ω, and ΓW is the solid wall of Γ. C∞ = 1
2ρ∞|V ∞|2l, where l is the reference

length. ϕ = (cos(θ), sin(θ))T, where θ denotes the angle of attack. The subscript ∞ means the
far-field quantity.
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4.2 Adjoint equation and boundary conditions
In this section, based on the drag coefficient, we introduce how to derive the continuous ad-

joint Euler equations and its boundary conditions. The approaches for other output functionals
are similar. From Eq. (21), we note that the drag coefficient does not depend on the domain
terms, i.e., iΩ(u) = 0 in Eq. (7). Therefore, the adjoint equation (16) can be given by

−(AT
1 , A

T
2 ) · ∇ψ = 0 in Ω, (22)

where ψ = (ψ1, ψ2, ψ3, ψ4) is the adjoint solution vector.
In inviscid compressible flows, on the solid wall ΓW, the boundary condition imposes un = 0.

Therefore, n · F(u) = p(0, n1, n2, 0)T on ΓW. Recalling the general functional of the boundary
condition (17), the adjoint boundary condition on ΓW under this output functional can be given
by

p′[u](0, n1, n2, 0)ψ =
1
C∞

p′[u]n · ϕ, (23)

i.e.,

ψ2n1 + ψ3n2 =
1
C∞

n ·ϕ on ΓW. (24)

On a far-field boundary ∂Ω∞, recall the definition of the drag coefficient (21). We notice
that the value of this output functional does not depend on the far-field. Therefore, simply, we
set

ψ = 0 on ∂Ω∞. (25)

Finally, we obtain the adjoint problem as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− (AT
1 , A

T
2 ) · ∇ψ = 0 in Ω,

ψ2n1 + ψ3n2 =
1
C∞

n · ϕ on ΓW,

ψ = 0 on ∂Ω∞.

(26)

5 Numerical implementation

5.1 Solving primal equations
Firstly, we add a pseudo time term to Eq. (1), i.e., we rewrite the steady-state Euler equations

as follows:
∂u

∂t
+ ∇ · F(u) = 0. (27)

The spatial discretization by the DG method leads to a system of ordinary differential equations
as follows:

M∂uh

∂t
= −R(uh), (28)

where M is the mass matrix, and R is the right-hand residual. In this work, we are interested
in stationary problems. Therefore, the backward Euler scheme is used in the temporal dis-
cretization. After temporal discretization and linearizing Eq. (28) in time, we can get a system
of linear equations as follows: (M

Δt
+
∂R

∂u

∣∣∣
un

h

)
Δun

h = −R(un
h), (29)

where Δt is the time increment, and

Δun
h = un+1

h − un
h.

Then, the linear system can be solved by the generalized minimal residual (GMRES) method
with ILU0 preconditioning.
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5.2 Solving adjoint equations
In Eq. (19), the error indicator involves the analytical adjoint solution ψ which is unknown.

Therefore, we need to make an approximation to it. Let ψh denote the approximation. We
note that ψh must not be approximated by the same finite element space V h,p. Otherwise,
the error indicator will be identically equal to zero due to the Galerkin orthogonality. There
are several approaches to compute the numerical approximation ψh

[14–15]. In this work, the
adjoint equations are approximated on the same mesh employed for the primal equations, but
the order of the finite element space is increased from p to p+ 1.

The numerical implementation of the adjoint equations is a little different from the primal
equations. From Eq. (26), we notice that (AT

1 , A
T
2 ) is independent of the adjoint variable ψ.

Therefore, the adjoint equations are linear. Therefore, we can solve this problem by iteration
or the direct linear system solver directly after spatial discretization.

We should remark that there are two main differences between the DG discretization of the
primal problem and the DG discretization of the adjoin problem. The first one is the difference
between the numerical fluxes. Here, we write Eq. (1) in the following quasi-linear form:

∂f1
∂u

∂u

∂x
+
∂f2
∂u

∂u

∂y
= 0 in Ω,

i.e., (A1, A2) · ∇u = 0 in Ω. We note that Eq. (22) and the above equation have the same
eigenvalues. Therefore, the local Lax-Friedrichs numerical flux for the adjoint equation can be
given by

Hadj(ψ+
h ,ψ

−
h ,n) =

1
2
(
− (AT

1 , A
T
2 ) · nψ+

h − (AT
1 , A

T
2 ) · nψ−

h + α(ψ+
h −ψ−

h )
)
, (30)

where α is the largest eigenvalue which can be calculated from the primal problem directly.
The second difference lies in the boundary conditions. As we have discussed in Section 4 on
the far-field boundary ∂Ω∞, we simply set ψ−

h = 0. On the solid wall boundary, there are a set
of boundary values of ψh satisfying the boundary conditions in Eq. (26). Here, we enforce the
solid wall boundary condition as follows:

ψ−
1 = ψ+

1 , (31)

ψ−
2 = ψ+

2 + 2n1

( 1
C∞

n · ϕ− n1ψ
+
2 − n2ψ

+
3

)
, (32)

ψ−
3 = ψ+

3 + 2n2

( 1
C∞

n · ϕ− n1ψ
+
2 − n2ψ

+
3

)
, (33)

ψ−
4 = ψ+

4 , (34)

which guarantees the average value

ψh =
1
2
(ψ+

h +ψ−
h )

satisfying the adjoint solid wall boundary condition, i.e., ψ2n1 + ψ3n2 = 1
C∞
n · ϕ.

5.3 Adjoint-based adaptive mesh refinement algorithm
Utilize the local error indicator (20) by an adaptive mesh refinement algorithm shown in

Fig. 1. In each refinement cycle, the cells with a large local error indicator ηind
k will be refined,

and the cells with small ηind
k will be coarsened. Following the process, we will get a mesh on

which the local error indicator ηind
k is equidistribution. For more details of the mesh adaptation

strategies, we refer readers to Ref. [8].
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Fig. 1 Adjoint-based adaptive mesh refinement algorithm

6 Numerical results

We show some numerical tests to discuss the advantages of our adaptive mesh refinement
algorithm, comparing with the traditional algorithms based on the feature-based or residual-
based error indicators. Here, firstly, let us introduce the feature-based error indicator ηfeature

k =
lg(1 + |∇ρk|) and the residual-based error indicator[18]

ηresidual
k = ‖hR(uh)‖L2(k) + ‖h 1

2 r(uh)‖L2(∂k),

where ∇ρk is the gradient of the density, and

R(uh)
∣∣
k

= −∇ · F (uh), r(uh)
∣∣
k

= F (uh) · n−H(u+
h ,u

−
h ,n), k ∈ Th.

In the following numerical tests, the primal problem will be approximated in Vh,1, and the
adjoint problem will be approximated in Vh,2.
6.1 NACA-0012 airfoil

In the first numerical experiment, we consider an NACA-0012 airfoil in an inviscid com-
pressible flow with Ma∞ = 0.4 and θ = 0. The output functional considered here is the drag
coefficient. Therefore, the theoretical value of the output functional is zero.

Figure 2 shows the initial mesh of this test. The meshes obtained by use of both the adjoint
error indicator and the feature-based error indicator are shown in Fig. 3. From these figures,
we can see that most of the refinement is enforced near the leading and trailing edges of the
airfoil. Furthermore, we find that the mesh obtained by our adjoint-based error indicator is
also refined around the surfaces of the airfoil.

Figure 4 shows the output functional error convergence under different refinement ap-
proaches. From these results, we can see that the error of the output functional estimated
on the mesh obtained by use of the adjoint-based error indicator is the smallest for a given
number of cells. In addition, we can observe that, at a given error, the number of the mesh cells
needed by the adjoint-based adaptive approach is an order of magnitude less than the uniform
refinement approach.

Figure 5 shows the distribution of the adjoint-based error indicator during the refinement
cycle. We find that the errors are larger around the surfaces of the airfoil on the initial mesh.
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Fig. 2 Initial mesh, 924 cells

Fig. 3 Meshes obtained by utilizing feature-based and adjoint-based error indicators

Fig. 4 Convergence of drag coefficient utilizing different error indicators

The cells with larger errors are refined, which explains why the cells near the airfoil surfaces
are refined. Also, we notice that with the repetition of the mesh refinement, the errors in all
cells are decreasing. Consequently, using our adaptive algorithm, we can get a mesh, on which
the error is equally distributed.
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Fig. 5 Distributions of ηind
k

6.2 Smooth bump
In the second numerical experiment, we consider the inviscid flow over a smooth bump. The

computational domain is given by Ω = {(x, y) ∈ [−1.5, 1.5] × [0, 0.8], y > 0.062 5 e−25x2}. At
the inlet, Ma∞ = 0.5, and θ = 0. There should be no entropy production because the flow is
smooth enough. Therefore, we construct the following output functional:

I(u) =
∫

Ω

(p/ργ − p∞/ρ
γ
∞

p∞/ρ
γ
∞

)2

dx,

where p is the pressure, ρ is the density, and the subscript ∞ means the freestream value. At
the left- and right-sides, we apply the subsonic inflow boundary condition and the subsonic
outflow boundary condition, respectively. At the top and the bottom, the slip wall conditions
are applied. The theoretical value of this output functional is zero.

Figure 6 shows the initial mesh for this problem, and Fig. 7 shows the pressure contour of
the primal Euler equations. We can see that the solution is axisymmetric. From Fig. 8, we
can see that most of the refinements are near the bump. Both of the two adaptive approaches
construct almost the same meshes, except that the refinement is denser around the bump in
the adjoint-based approach.

In Fig. 9, we show the convergence of the output functional error. Some observation can
be made. Firstly, both the adjoint-based and residual-based adaptive approaches show better
convergence than the uniform refinement. Indeed, after several refinements, the error computed
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Fig. 6 Initial mesh, 56 cells Fig. 7 Pressure contour of primal Euler equa-
tions

Fig. 8 Meshes obtained by utilizing residual-based and adjoint-based error indicators

on the subsequent adaptive mesh is at least two orders of magnitude smaller comparing with
the error computed on the uniform refinement mesh. Secondly, the adjoint-based refinement
gives a better accuracy than the residual-based refinement for a given number of cells.

Fig. 9 Convergence of output error utilizing different error indicators

7 Conclusions

We have introduced an adjoint-based adaptive mesh refinement algorithm for inviscid com-
pressible flows. Firstly, we show the derivation of a continuous adjoint problem for the Euler
equations. Secondly, we introduce the error estimation for the given output functionals. Thirdly,
we discuss the numerical implementation of the DG method for an adjoint problem. Then, we
develop an adaptive mesh refinement algorithm based on the continuous adjoint approach. The
numerical tests show that the meshes constructed by this adaptive algorithm are much more eco-
nomical for computing the values of the output functionals than the meshes constructed by the
traditional error indicators. We conclude that the adaptive approach presented in this paper is
very promising in improving the accuracy of the output functionals within given computational
resources.
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