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Abstract
Piecewise homogeneousMarkovfluidmodels are composedbyhomogeneous intervalswhere
the model is governed by an interval dependent pair of generators and the model behaviour
changes at the boundaries. The main difficulty of the transient analysis of piecewise homoge-
neous Markov fluid models is the appropriate description of the various boundary cases. The
paper proposes an analytical approach to handle the wide variety of the possible boundary
cases in a relatively simple to describe and implement manner.

Keywords Piecewise homogeneous Markov fluid models · Transient solution · Laplace
transform · Numerical analysis

1 Introduction

Markov fluid models (MFMs) gained significant popularity in modeling telecommunication
systems in the 1980’s (Anick et al. 1982). The first methodology to analyze the behaviour of
such systems was based on spectral decomposition (Kulkarni 1997). In 1999, Ramaswami
initiated a research line to analyze stochastic fluid models via matrix analytic methods
(Ramaswami 1999), while Akar and Sohraby recommended the use of purely numerical
matrix iterative methods (Akar and Sohraby 2004). Both methods provide numerically sta-
ble analysis, e.g., for the stationary distribution of the fluid level, but the approach based on
matrix analytic methods gained more popularity due to the fact that it provides a stochastic
interpretation of the considered performance measures.
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In a series of consecutive papers the stationary (Ahn et al. 2005; da Silva Soares and
Latouche 2006) and the transient (Ahn and Ramaswami 2004, 2005, 2006) analysis of
homogeneous (finite and infinite) MFMs has been investigated. At the same time, the ingre-
dients of the computational methods for various performance measures of fluid models has
also been enhanced (Remiche 2005; Bean et al. 2009). Especially, the combination of two
matrix exponential terms for describing the behaviour of finite buffer homogeneous fluid
models got established.

Motivated by several practical examples, e.g. (Mandjes et al. 2003), the analysis of homo-
geneous MFMs has been extended to the analysis of piecewise homogeneous models, where
the characterizing matrices of the model are constant in a region of the fluid level, but they
might differ region by region. The terminology used to describe this set of models is rather
diverse: “level dependent evolution” (da Silva Soares and Latouche 2009), “multi-layer”
(Bean and O’Reilly 2008), “multi-regime” (Kankaya and Akar 2008), etc. We refer to such
modes as piecewise homogeneous Markov fluid models (PHMFMs) and their homogeneous
intervals as regions.

The main difficulty in the evaluation of PHMFMs comes from the potential sign change
of the fluid rate at the region boundaries. As a result probability mass can develop at region
boundaries (the fluid rate is positive below the boundary and negative above) and there might
be cases when the evolution of the fluid process is not uniquely defined by the fluid rate (the
fluid rate is positive above the boundary and negative below). These cases are also covered
with awide range of terminologies. Just tomention some, those subset of states are referred to
as “absorbing” and “insulating” in (Gribaudo and Telek 2008), “absorbing” and “repulsive”
in (Kankaya and Akar 2008), “sticky” and “repellent” in (da Silva Soares and Latouche
2009), “isolating” and “emitting” in (Chen et al. 2002).

There are several approaches to specify the boundary behaviour at internal boundaries. (da
Silva Soares and Latouche 2009) assumed that the continuous region above a boundary deter-
mines the behaviour of the boundary in repulsive states, additional to the generator and fluid
rate matrices describing the behaviour inside a region, (Kankaya and Akar 2008) introduces
generator and fluid rate matrices associated with the boundaries. More general boundary
behaviours are introduced and analyzed in Bean and O’Reilly (2008) with the introduction
of appropriately defined additional probability matrices characterizing the evolution of the
fluid process at the environments of the boundaries. To keep the complexity of the analysis
reasonably simple, we adopt the terminology and the boundary behaviour used in Kankaya
and Akar (2008).

The stationary analysis of PHMFMs is based onperformance analysis of individual regions
and the solution of a linear system of equations, which can be described by a large coefficient
matrix, e.g., (da Silva Soares and Latouche 2009), page 1048 and (Gribaudo and Telek 2008),
Fig. 4 , and can be solved at once or by an iterative approach region by region.

Our Laplace transform domain transient analysis of PHMFMs follows a similar structure.
The performance measures of the analysis of individual regions are available, e.g. from (Ahn
et al. 2007; Bean et al. 2009). Based on that, an initial and final fluid level dependent counter-
part of the stationary analysis is needed, since the stationary distribution is an initial condition
independent measure, while the transient distribution depends also on the initial condition.
The analysis approaches available for homogeneous (with infinite (Ahn and Ramaswami
2005) and finite (Ahn et al. 2005) buffer) MFMs describe the transient behaviour on the level
of matrix blocks in Laplace transform domain using explicit expressions. The extension of
this approach for PHMFMs gets prohibitively cumbersome because the proper description
of the boundary behaviour at internal boundaries requires the consideration of all possible
cases of sign changes separately. As an important contribution of this paper, to overcome the
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limitations of the explicit approach, we apply an equation systems based implicit descrip-
tion of the required performance measures, whose analytical description and implementation
remain feasible due to easy to describe matrix block operations (see Theorems 1–3).

This paper focuses on the Laplace transform domain transient analysis of PHMFMs.
Based on the Laplace transform domain transient description we calculate the time domain
results using the concentrated matrix exponential (CME) based numerical inverse Laplace
transform method (Horváth et al. 2019). We note that different transient analysis approaches
are also considered in the literature. Chen et al. proposes a time domain numerical differential
equation solution approach based on the finite difference method in (Chen et al. 2002), which
discretizes the continuous fluid axis and its accuracy depends on discretization step. In Akar
et al. (2020), Akar et al. adopts the approximate analysis approach of (Houdt and Blondia
2005) for computing the transient behaviour of PHMFMs based on the stationary analysis
of an appropriately extended fluid model. While (Akar et al. 2020) builds on a stochastic
interpretation based approximation approach, the current work is based on a exact Laplace
transform domain analytical description.

The rest of the paper is organized as follows. Section 2 summarizes the basics of MFMs
and provides the performance measures which are used later on. Section 3 introduces the
considered class of PHMFMs with finite buffer and presents its transient analysis in Laplace
transform domain. Section 4 discusses the model variant of PHMFMs with infinite buffer.
Implementation details are provided in Sect. 5 and numerical examples in Sect. 6. The paper
is concluded in Sect. 7.

2 Markov fluidmodels

MFMsare hybrid stochasticmodels composed of a continuous stochastic process X(t) ∈ R+,
commonly referred to as fluid level, and a discrete stochastic process J (t) ∈ S◦, com-
monly referred to as the state of the modulating Markov chain. Let us consider the MFM
{X(t), J (t), t ≥ 0} defined by the generator of its background CTMC Q and the diagonal
matrix of the fluid ratesR. The subset of states with positive, negative and zero fluid rates are
denoted by S+, S− and S0, while the set of states and the subset of states with non-zero fluid
rates is denoted by S◦ and S•, respectively. That is S• = S+ ∪ S− and S◦ = S• ∪ S0. The
cardinality of the set Sa , a ∈ {◦, •,+,−, 0}, is denoted by |Sa |. To order the states accord-
ing to the sign of the fluid rates we introduce the permutation matrix Z with the following
properties

ZT Q Z = Q, Q = Z Q ZT , (1)

ZT R Z = R, R = Z R ZT , (2)

where subset specific matrix blocks of Q and R are

Q =
⎡
⎣
Q++ Q+− Q+0

Q−+ Q−− Q−0

Q0+ Q0− Q00

⎤
⎦ =

⎡
⎢⎢⎣
Q•+ Q•− Q•0

Q0+ Q0− Q00

⎤
⎥⎥⎦ =

⎡
⎣

Q+• Q+0

Q−• Q−0

Q0• Q00

⎤
⎦ , (3)

R =
⎡
⎣
R+ 0 0
0 −R− 0
0 0 0

⎤
⎦ , (4)
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with bothR+ andR− containing only positive diagonal elements. Matrix Z contains a single
non-zero element in each row and each column which equals to one. That is, throughout the
paper the underlined matrices refer to the original state ordering and the matrices without
underline refer to the fluid rate specific ordering of the states.

We are interested in the transient density and the transient boundary probability defined
by

Ṽi j (t, x, y) = d

dy
Pr(X(t) < y, J (t) = j |X(0) = x, J (0) = i), (5)

P̃i j (t, x, y) = Pr(X(t) = y, J (t) = j |X(0) = x, J (0) = i), (6)

The corresponding matrices and Laplace transforms are Ṽ(t, x, y) = [Ṽi j (t, x, y)],
P̃(t, x, y) = [P̃i j (t, x, y)] and V(s, x, y) = ∫ ∞

t=0 e
−st Ṽ(t, x, y)dt , P(s, x, y) = ∫ ∞

t=0
e−st P̃(t, x, y)dt .

2.1 Characterizingmatrices of infinite buffer MFMs

For i ∈ S+ and j ∈ S−, the state dependent measure of returning to level zero is defined as

Ψ̃ (t)i, j = d

dt
Pr(γ (0) < t, J (γ (0)) = j |J (0) = i, X(0) = 0), (7)

where γ (x) is the first time when fluid process reaches level x , i.e., γ (x) = min{t : X(t) =
x, t > 0}. The Laplace transform of Ψ̃ (t)i, j is defined as

Ψ (s)i, j =
∫ ∞

t=0
e−st Ψ̃i, j (t)dt

= E(e−sγ (0)I{J (γ (0))= j}|J (0) = i, X(0) = 0), (8)

where I{event} is the indicator of event that equals to one when the event is true and otherwise
it equals to zero. The matrix of size S+ × S−, composed by the Ψ (s)i, j elements is Ψ (s).
In the sequel we define the measures of interest directly in transform domain, as in (8), and
avoid the time domain definition as in (7).

The return measure Ψ (s) satisfies the non-symmetric algebraic Riccati equation (NARE)
(Bean et al. 2008)

0 = Q++(s)Ψ (s) + Ψ (s)Q−−(s) + Ψ (s)Q−+(s)Ψ (s) + Q+−(s), (9)

with

Q++(s) = R−1+ (Q++ − sI + Q+0(sI − Q00)
−1Q0+), (10)

Q+−(s) = R−1+ (Q+− + Q+0(sI − Q00)
−1Q0−), (11)

Q−+(s) = R−1− (Q−+ + Q−0(sI − Q00)
−1Q0+), (12)

Q−−(s) = R−1− (Q−− − sI + Q−0(sI − Q00)
−1Q0−). (13)

There are efficient numerical solution methods to compute Ψ (s) (Bean et al. 2018).
The matrices characterizing the fluid increase and fluid decrease process can be obtained

from Ψ (s) as follows (Ahn and Ramaswami 2006)

K(s) = Q++(s) + Ψ (s)Q−+(s), (14)

H(s) = Q−−(s) + Q−+(s)Ψ (s). (15)
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The spatial inverse of the fluid process is obtained by reverting the sign of the fluid rate in
all states. The associated characterizing matrices areQ and −R. The characterizing matrices
of the spatial inverse process, that is the matrices computed from theQ and −R matrices are

denoted by Ψ̂ (s), K̂(s), Ĥ(s).

2.2 Characterizingmatrices of the fluid process between boundaries

To characterize the evolution of the fluid process between two boundary fluid levels, 0 and
b, we define the following state dependent hitting measures

U(b)
•−(s, x)i, j = E(e−sγ (0)I{J (γ (0))= j}I{γ (0)<γ (b)}|J (0) = i, X(0) = x),

U(b)
•+(s, x)i, j = E(e−sγ (b)I{J (γ (0))= j}I{γ (b)<γ (0)}|J (0) = i, X(0) = x).

The special cases when the initial fluid level is one of the boundaries are

U(b)
+−(s)i, j = E(e−sγ (0)I{J (γ (0))= j}I{γ (0)<γ (b)}|J (0) = i, X(0) = 0),

U(b)
++(s)i, j = E(e−sγ (b)I{J (γ (b))= j}I{γ (b)<γ (0)}|J (0) = i, X(0) = 0),

U(b)
−+(s)i, j = E(e−sγ (b)I{J (γ (b))= j}I{γ (b)<γ (0)}|J (0) = i, X(0) = b),

U(b)
−−(s)i, j = E(e−sγ (0)I{J (γ (0))= j}I{γ (0)<γ (b)}|J (0) = i, X(0) = b).

According to da Silva Soares and Latouche (2006); Bean et al. (2009), the matrix composed
by these hitting measures can be computed as

[
U(b)

++(s) U(b)
+−(s)

U(b)
−+(s) U(b)

−−(s)

]
=

[
eĤ(s)b Ψ (s)
Ψ̂ (s) eH(s)b

]
·
[

I Ψ (s)eH(s)b

Ψ̂ (s)eĤ(s)b I

]−1

, (16)

and

⎡
⎣U(b)

•+(s, x) U(b)
•−(s, x)

⎤
⎦

=
[

I Ψ (s)
Ψ̂ (s) I

]
·
[
eĤ(s)(b−x)

eH(s)x

]
·
[

I Ψ (s)eH(s)b

Ψ̂ (s)eĤ(s)b I

]−1

. (17)

Similarly, the fluid density between two boundary levels, 0 and b, before reaching any of
the boundaries are defined as

F̃ (b)
+• (t, y)i j = d

dy
Pr(X(t) < y, J (t) = j, γ (0) > t, γ (b) > t |X(0) = 0, J (0) = i),

˜̂F (b)
−• (t, y)i j = d

dy
Pr(X(t) < y, J (t) = j, γ (0) > t, γ (b) > t |X(0) = b, J (0) = i),
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and their matrix Laplace transforms are F(b)
+•(s, y) = ∫ ∞

t=0 e
−st F̃(b)

+•(t, y)dt and F̂
(b)
−•(s, y) =

∫ ∞
t=0 e

−st ˜̂F
(b)

−•(t, y)dt . F
(b)
+•(s, y) and F̂

(b)
−•(s, y) satisfy (da Silva Soares and Latouche 2006)

[
F(b)

+•(s, y)
F̂(b)

−•(s, y)

]

=
[

I eK(s)bΨ (s)

eK̂(s)bΨ̂ (s) I

]−1 [
eK(s)y

eK̂(s)(b−y)

][
I Ψ (s)

Ψ̂ (s) I

] [
R+

R−

]−1

. (18)

Themain advantage of (17) and (18) is that theymakes thematrix exponential dependence on
the fluid level explicit. As one of the consequences, the integral of F(b)

+•(s, y) and F̂
(b)
−•(s, y),

which we denote by C(b)
+•(s, y) and Ĉ

(b)
−•(s, y), can also be computed explicitly as follow

[
C(b)

+•(s, y)
Ĉ (b)

−•(s, y)

]
=

∫ y

τ=0

[
F(b)

+•(s, τ )

F̂(b)
−•(s, τ )

]
dτ =

[
I eK(s)bΨ (s)

eK̂(s)bΨ̂ (s) I

]−1

·
[
K(s)−1(eK(s)y−I)

K̂(s)−1(eK̂(s)b−eK̂(s)(b−y))

][
I Ψ (s)

Ψ̂ (s) I

] [
R+

R−

]−1

. (19)

3 Finite buffer piecewise homogeneousMarkov fluidmodels

There are many variants of PHMFM considered in the literature differing mainly in the
behaviour of the stochastic process at the boundaries. Here we consider the PHMFM variant
from (Kankaya and Akar 2008), whose infinite buffer version is discussed in Sect. 4. The
size of the buffer of the MFM is B and it is composed of K regions with region boundaries
T0 = 0 < T1 < . . . < TK = B. That is, for k ∈ {1, . . . , K }, region k is (Tk−1, Tk), where
the generator and the fluid rate matrices of theMFM areQ(k) andR(k). At region borders, we

assume that the generators and the fluid rate matrices are Q̃
(k)

and R̃
(k)

, for k ∈ {0, . . . , K }.
For k ∈ {1, . . . , K }, S(k)

+ , S(k)
− and S(k)

0 denote the set of states where the fluid level

increases, decreases and remains constant inside region k, that is, state i ∈ S(k)
+ iff R(k)

i i > 0.
To separate the states where the fluid level is changing from the ones where it is constant, we
introduce S(k)• = S(k)

+ ∪ S(k)
− . Similarly, for k ∈ {0, . . . , K }, S(k)

↗ , S(k)
↘ and S(k)→ denote the

set of states where the fluid level increases, decreases and remains constant at boundary Tk ,

that is, state i ∈ S(k)
↗ iff R̃

(k)
i i > 0.

Condition 1 To avoid undefined stochastic behaviour we impose the following natural
requirements on these sets

– S(0)
↘ = ∅,

– S(k)
↘ ⊆ S(k)

− for k ∈ {1, . . . , K },
– S(k)

↗ ⊆ S(k+1)
+ for k ∈ {0, . . . , K − 1},

– S(K )
↗ = ∅.

These requirements mean that the fluid level cannot decrease below 0 and cannot increase
above B and the fluid level can increase above (decrease below) boundary Tk only if the fluid
rate is positive above (negative below) the boundary.
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We introduce the region and boundary specific permutation matrices with the following
properties

Z(k)TQ(k)Z(k) =
⎡
⎢⎣
Q(k)

++ Q(k)
+− Q(k)

+0

Q(k)
−+ Q(k)

−− Q(k)
−0

Q(k)
0+ Q(k)

0− Q(k)
00

⎤
⎥⎦ , Z(k)TR(k)Z(k) =

⎡
⎣
R(k)

+ 0 0
0 −R(k)

− 0
0 0 0

⎤
⎦ , (20)

Z̃(k)T Q̃
(k)

Z̃(k) =
⎡
⎢⎣
Q̃(k)

↗↗ Q̃(k)
↗↘ Q̃(k)

↗→
Q̃(k)

↘↗ Q̃(k)
↘↘ Q̃(k)

↘→
Q̃(k)

→↗ Q̃(k)
→↘ Q̃(k)→→

⎤
⎥⎦ , Z̃(k)T R̃

(k)
Z̃(k) =

⎡
⎢⎣
R̃(k)

↗ 0 0

0 R̃(k)
↘ 0

0 0 0

⎤
⎥⎦ , (21)

where underlined quantities refer to the original state ordering and quantities without under-
line refer to the region or boundary specific ordering of the states. Based on (20)–(21), we
assume the availability of the required matrices in any convenient state ordering.

The {X(t), J (t)} process can have probability mass only at X(t) = Tk and J (t) ∈ S(k)→
for k ∈ {0, . . . , K }, that is, Pi j (s, x, y) = 0 and is neglected in the sequel in any other
cases. Due to potential rate change at boundary, Vi j (s, x, y) might be discontinuous at Tk for
k ∈ {1, . . . , K − 1}. We apply the following density definition at the region borders

Vi j (s, x, Tk) =
{
Vi j (s, x, T

−
k ), if j ∈ S(k)

↘ ,

Vi j (s, x, T
+
k ), if j ∈ S(k)

↗ .

Whenever the fluid level reaches boundary Tk from below it migh be in a state of S(k)
↗

or in S(k)→ . In the former case the fluid level keeps increasing at Tk , while in the latter case
it remains Tk for a positive amount of time. Similar behaviours apply when the fluid level
reaches boundary Tk from above. To separate these two behaviours we refine the subset
classification as follows

S(k)
↗+ = S(k)

+ ∩ S(k)
↗ , S(k)→+ = S(k)

+ ∩ S(k)→ ,

S(k)
−↘ = S(k+1)

− ∩ S(k)
↘ , S(k)

−→ = S(k+1)
− ∩ S(k)→ .

We also introduce the subset specific filtering and reordering matrices

Q(k)
ab = Z(k)

a
T
Q(k)

ab
Z(k)
b = Z(k)

a
T
Q(k)Z(k)

b , Q(k)
ab

= Z(k)
a Q(k)

ab Z
(k)
b

T
, (22)

where a, b ∈ {+,−, 0, •, ◦,↗,↘,→, ↗+ , →+ , −↘, −→}, Q(k), Q(k)
ab

, Q(k)
ab and Z(k)

a are of size

|S◦| × |S◦|, |Sa | × |Sb|, |S(k)
a | × |S(k)

b | and |S◦| × |S(k)
a |, respectively. E.g., Q(k)

+− =
Z(k)

+
T
Q(k)Z(k)

− , Q(k)
+− = Z(k)

+ Q(k)
+−Z

(k)
−

T
. Any matrix Z(k)

a contains at most a single non-
zero element in each row and column which equals to one. To keep the description simple we
are going to present subset indexes for matrix blocks in the sequel. Behind these notations
we assume the appropriate use of the related filtering and reordering matrices. We exemplify
the use of the filtering and reordering matrices and their implementation in Sect. 5.

The following subsections describe the main steps of the proposed transient analysis
approach in the order of their execution in the implemented algorithm.
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3.1 Characteristic matrices of region k

For k ∈ {1, . . . , K }, we compute Ψ (k)(s), K(k)(s), H(k)(s) from Q(k) and R(k) according to

(9), (14), (15), as well as their spatial inverses Ψ̂
(k)

(s), K̂(k)(s), Ĥ(k)(s) fromQ(k) and−R(k).

Furthermore, we compute U(k)(s) from (16) assuming b = Tk − Tk−1, Ψ (s) = Ψ (k)(s),

Ψ̂ (s) = Ψ̂
(k)

(s), H(s) = H(k)(s) and so on.
The necessity of computing F(k)(s, y), F̂(k)(s, y), C(k)(s, y), Ĉ(k)(s, y) and U(k)(s, x)

depends on the initial and final fluid levels of the transient analysis. If needed, they are
computed from (18), (19) and (17) assuming b = Tk − Tk−1, Ψ (s) = Ψ (k)(s) and so on.
In some special cases (c.f. Sect. 3.6), we need to compute U(s, x), F(s, x) and F̂(s, x) for
region k such that b is different from Tk − Tk−1. In these cases, we explicitly indicate the
interval size, i.e., U(k,z)(s, x) is obtained from (17) by assuming b = z, Ψ (s) = (k)(s) and
so on.

3.2 Returnmeasures of boundary k

For k ∈ {0, . . . , K − 1}, i ∈ S(k+1)
+ , j ∈ S(k+1)

− we define the upward return measure of
boundary Tk as

Y(k)(s)i, j = E(e−sγ (Tk )I{J (γ (Tk ))= j}|J (0) = i, X(0) = Tk), (23)

similarly, for k ∈ {1, . . . , K }, i ∈ S(k)
− , j ∈ S(k)

+ we define the downward return measure of
boundary Tk as

Ŷ(k)(s)i, j = E(e−sγ (Tk )I{J (γ (Tk ))= j}|J (0) = i, X(0) = Tk). (24)

3.2.1 External boundaries

For the following boundaries, the return measures are computed based on Bean and O’Reilly
(2008)

Ŷ(1)(s) = U(1)
−+(s)

+ U(1)
−−(s)

(
sI − Q̃(0)→→ − Q̃(0)

→↗U(1)
↗−(s)

)−1
Q̃(0)

→↗(s)U(1)
↗+(s),

Y(K−1)(s) = U(K )
+−(s)

+ U(K )
++(s)

(
sI − Q̃(K )→→ − Q̃(K )

→↘U(K )
↘+(s)

)−1
Q̃(K )

→↘U(K )
↘−(s).

The expression to compute Ŷ(1)(s) containsmatrices associatedwith the boundary T0 (e.g.
Q̃(0)→→) and also matrices associated with the (T0, T1) region (e.g. U(1)

−−(s)). Since the sign
of the fluid rate might be different at T0 and in the (T0, T1) region, the dimensional validity
of the expression raises notational problems. The notations we used in the expressions are
sloppy. We applied a notation which would like to emphasize, on the one hand, that the
matrices are associatedwith different boundary/region, on the other hand, that the expressions
are dimensionally valid. We found this notational approach to be reasonable compact and
expressive on the one hand and reasonable accurate on the other hand. The feasibility of the
matrix operations are always ensured by Condition 1, that is S(0)

↗ ⊂ S(1)
+ in this case. The

same notational solution appears also in the sequel.
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3.2.2 Internal boundaries

The return measures of the remaining boundaries are also discussed in Bean and O’Reilly
(2008) using an explicit approach which results in analytically complex expressions to evalu-
ate. Herewe adopt an implicit descriptionwhich results in an easier to describe and implement
analysis approach. This approach is based on the definition of appropriate auxiliary matrices.
Using this approach the analytical complexity of the required measures is hidden by the
matrix inverse operation. This implicit approach is applied also in the consecutive steps of
the analysis.

For computing the return measures at the remaining boundaries we define the transition
measure to move one boundary down and up. For i, j ∈ S◦,

B(k+1)(s)i, j = E(e−sγ (Tk )I{J (γ (Tk ))= j}|J (0) = i, X(0) = Tk+1),

B̂(k−1)(s)i, j = E(e−sγ (Tk )I{J (γ (Tk ))= j}|J (0) = i, X(0) = Tk−1).

By definition, B(k+1)(s)i, j = 0 for j ∈ S(k)
+ ∪ S(k)

0 and B̂(k−1)(s)i, j = 0 for j ∈ S(k−1)
− ∪

S(k−1)
0 . The potentially non-zero matrices, B(k+1)(s) of size |S◦| × |S(k)

− | and B̂(k−1)(s) of

size |S◦| × |S(k−1)
+ |, are provided by the following theorems.

Theorem 1 For k ∈ {0, . . . , K − 2}, B(k+1)
◦− (s) satisfies

B(k+1)
◦− (s) =

(
I − B(k+1)(s)

)−1
U(k+1)(s), (25)

where

U(k+1)(s) =
⎡
⎣

0
U(k+1)

↘− (s)
0

⎤
⎦ , B(k+1)(s) =

⎡
⎢⎢⎣

0 Y(k+1)
↗−↘ (s) Y(k+1)

↗−→ (s)

U(k+1)
↘↗+ (s) 0 U(k+1)

↘→+ (s)

M(k+1)
→↗ (s) M(k+1)

→↘ (s) 0

⎤
⎥⎥⎦ ,

and, for a ∈ {↗,↘,→} and k ∈ {0, . . . , K }

M(k)→a(s) =

⎧⎪⎨
⎪⎩

(
sI − Q̃(k)→→

)−1
, if a =→,(

sI − Q̃(k)→→
)−1

Q̃(k)→a, otherwise.

Proof Based on the intuitive stochastic meaning of introduced matrices we have

B(k+1)
↗− (s) =Y(k+1)

↗−↘ (s)B(k+1)
−↘− (s) + Y(k+1)

↗−→ (s)B(k+1)
−→− (s), (26)

B(k+1)
↘− (s) =U(k+1)

↘− (s) + U(k+1)
↘↗+ (s)B(k+1)

↗+ − (s) + U(k+1)
↘→+ (s)B(k+1)→+ − (s), (27)

B(k+1)
→− (s) =M(k+1)

→↗ (s)B(k+1)
↗− (s) + M(k+1)

→↘ (s)B(k+1)
↘− (s). (28)

The matrix form of (26)–(28) is,

B(k+1)(s) = U(k+1)(s) + B(k+1)(s)B(k+1)(s), (29)

whose solution is (25). ��
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Theorem 2 Similarly, for k ∈ {2, . . . , K },
B̂(k−1)(s) =

(
I − B̂(k)(s)

)−1
Û(k)(s), (30)

with

Û(k)(s) =
⎡
⎣
U(k)

↗+(s)
0
0

⎤
⎦ , B̂(k)(s) =

⎡
⎢⎢⎣

0 U(k)
↗−↘(s) U(k)

↗−→(s)

Ŷ(k−1)
↘↗+ (s) 0 Ŷ(k−1)

↘→+ (s)

M(k−1)
→↗ (s) M(k−1)

→↘ (s) 0

⎤
⎥⎥⎦ .

Proof Using the state partitioning at Tk−1, we have

B̂(k−1)
↗ (s) = U(k)

↗+(s) + U(k)
↗−↘(s)B̂(k−1)

−↘ (s) + U(k)
↗−→(s)B̂(k−1)

−→ (s),

B̂(k−1)
↘ (s) = Ŷ(k−1)

↘↗+ (s)B̂(k−1)
↗+ (s) + Ŷ(k−1)

↘→+ (s)B̂(k−1)→+ (s),

B̂(k−1)→ (s) = M(k−1)
→↗ (s)B̂(k−1)

↗ (s) + M(k−1)
→↘ (s)B̂(k−1)

↘ (s).

That is,

B̂(k−1)(s) = Û(k)(s) + B̂(k)(s)B̂(k−1)(s), (31)

whose solution is (30). ��
If S(k)→ = ∅ for an internal boundary, then the third block row and column vanishes in the

expressions above. Since S(0)
↘ = ∅ and S(K )

↗ = ∅ the second block row and column vanish
for k = 0, and the third block row and column vanish for k = K .

Based on the boundary transition measures, B(k)(s) and B̂(k)(s), the return measures of
the internal boundaries can be computed as follows.

Corollary 1 For k ∈ {0, . . . , K − 2}, using the state partitioning at Tk+1, we have

Y(k)(s) =U(k+1)
+− (s) + U(k+1)

+,↗+ (s)B(k+1)
↗+ − (s) + U(k+1)

+,→+ (s)B(k+1)→+ − (s) (32)

and for k ∈ {2, . . . , K }, using the state partitioning at Tk−1, we have

Ŷ(k)(s) =U(k)
−+(s) + U(k)

−−↘(s)B̂(k−1)
−↘+ (s) + U(k)

−−→(s)B̂(k−1)
−→+ (s). (33)

3.3 Starting and ending at boundaries

We start the Laplace transform domain description of the transient behaviour with the case
when the initial and the final fluid levels are boundary values.

3.3.1 Starting and ending at the same boundary

First we consider the case when the initial and final levels are the same boundary level.

Theorem 3 Using the S(k)
↗ ,S(k)

↘ ,S(k)→ division of the states, for boundary Tk, k ∈ {0, . . . , K },
we have

P◦→(s, Tk, Tk) =
(
I − Y(k)(s)

)−1

⎡
⎣

0
0

M(k)→→(s)

⎤
⎦, (34)
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and

V(s, Tk, Tk) =
(
I − Y(k)(s)

)−1
R(k)(s), (35)

with

Y(k)(s) =⎡
⎢⎢⎣

0 Y(k)
↗−↘(s) Y(k)

↗−→(s)

Ŷ(k)
↘↗+ (s) 0 Ŷ(k)

↘→+ (s)

M(k)
→↗(s) M(k)

→↘(s) 0

⎤
⎥⎥⎦ ,

R(k)(s) =⎡
⎢⎢⎣
R(k+1)

↗
−1

0 Y(k)
↗−→(s)R(k+1)

−→
−1

0 R(k)
↘

−1
Ŷ(k)

↘→+ (s)R(k)→+
−1

0 0 0

⎤
⎥⎥⎦ .

Proof Using the return measures of boundary Tk and the Markov generator characterizing
the evolution at boundary Tk , for the blocks of P◦→(s, Tk, Tk) we have

P↗→(s, Tk, Tk) = Y(k)
↗−↘(s)P↘→(s, Tk, Tk) + Y(k)

↗−→(s)P→→(s, Tk, Tk),

P↘→(s, Tk, Tk) = Ŷ(k)
↘↗+ (s)P↗→(s, Tk, Tk) + Ŷ(k)

↘→+ (s)P→→(s, Tk, Tk),

P→→(s, Tk, Tk)

= M(k)
→↗(s)P↗→(s, Tk, Tk) + M(k)

→↘(s)P↘→(s, Tk, Tk) + M(k)→→(s),

whose matrix form is

P◦→(s, Tk, Tk) =
⎡
⎣

0
0

M(k)→→(s)

⎤
⎦+ Y(k)(s)P◦→(s, Tk, Tk). (36)

The solution of (36) is (34).
Similar block-wise equations apply for V(s, Tk , Tk).

V↗↗(s, Tk, Tk) = R(k+1)
↗

−1+Y(k)
↗−↘(s)V↘↗(s, Tk, Tk)+Y(k)

↗−→(s)V→↗(s, Tk, Tk),

V↘↗(s, Tk, Tk) = Ŷ(k)
↘↗+ (s)V↗↗(s, Tk, Tk) + Ŷ(k)

↘→+ (s)V→↗(s, Tk, Tk),

V→↗(s, Tk, Tk) =M(k)
→↗(s)V↗↗(s, Tk, Tk) + M(k)

→↘(s)V↘↗(s, Tk, Tk),

V↗↘(s, Tk, Tk) = Y(k)
↗−↘(s)V↘↘(s, Tk, Tk) + Y(k)

↗−→(s)V→↘(s, Tk, Tk),

V↘↘(s, Tk, Tk) = R(k)
↘

−1+Ŷ(k)
↘↗+ (s)V↗↘(s, Tk, Tk)+Ŷ(k)

↘→+ (s)V→↘(s, Tk, Tk),

V→↘(s, Tk, Tk) = M(k)
→↗(s)V↗↘(s, Tk, Tk) + M(k)

→↘(s)V↘↘(s, Tk, Tk),

V↗→(s, Tk, Tk) = Y(k)
↗−→(s)R(k+1)

−→
−1

+ Y(k)
↗−↘(s)V↘→(s, Tk, Tk) + Y(k)

↗−→(s)V→→(s, Tk, Tk),

V↘→(s, Tk, Tk)

= Ŷ(k)
↘→+ (s)R(k)→+

−1

+ Ŷ(k)
↘↗+ (s)V↗→(s, Tk, Tk) + Ŷ(k)

↘→+ (s)V→→(s, Tk, Tk),

V→→(s, Tk, Tk) = M(k)
→↗(s)V↗→(s, Tk, Tk) + M(k)

→↘(s)V↘→(s, Tk, Tk),
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whose matrix form is

V(s, Tk , Tk) = R(k)(s) + Y(k)(s)V(s, Tk , Tk). (37)

The first term inV↗↗(s, Tk, Tk) represents the fact that starting from level Tk results in a unit
impulse in the fluid density at level Tk at t = 0. A similar term appears in V↘↘(s, Tk, Tk).
The solution of (37) is (35). ��

3.3.2 Starting and ending at different boundaries

For k ∈ {1, . . . , K }, and k ≤ � we have

P(s, Tk−1, T�) = B̂(k−1)
◦+ (s)P+◦(s, Tk, T�) (38)

V(s, Tk−1, T�) = B̂(k−1)
◦+ (s)V+◦(s, Tk, T�) (39)

and for k ∈ {1, . . . , K }, and k > � we have

P(s, Tk, T�) = B(k)
◦−(s)P−◦(s, Tk−1, T�) (40)

V(s, Tk, T�) = B(k)
◦−(s)V−◦(s, Tk−1, T�) (41)

3.4 Starting from boundary and ending between boundaries

For T�−1 < y < T�, we have

V◦•(s, Tk, y)

= V◦+(s, Tk, T�−1)R
(�)
+ F(�)

+•(s, y − T�−1) + V◦−(s, Tk, T�)R
(�)
− F̂(�)

−•(s, y − T�−1). (42)

The first term of (42) represents the cases when the last boundary visited before reaching
y is T�−1 and the second term represents the cases when it is T�. To compute the CDF of
the fluid level the integral of V◦•(s, Tk, y) is needed. It can be obtained using C(�)(s, y) and
Ĉ(�)(s, y) as follows

∫ y

τ=T�−1

V◦•(s, Tk, τ )dτ

= V◦+(s, Tk, T�−1)R
(�)
+ C(�)

+•(s, y − T�−1) + V◦−(s, Tk, T�)R
(�)
− Ĉ(�)

−•(s, y − T�−1).

(43)

3.5 Starting between boundaries and ending at boundary

For Tk−1 < x < Tk , we have

V•◦(s, x, T�) =U(k)
•−(s, x − Tk−1)V−◦(s, Tk−1, T�)

+ U(k)
•+(s, x − Tk−1)V+◦(s, Tk, T�)

and

P•◦(s, x, T�) = U(k)
•−(s, x − Tk−1)P−◦(s, Tk−1, T�)

+ U(k)
•+(s, x − Tk−1)P+◦(s, Tk, T�)
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3.6 Starting and ending between boundaries

For Tk−1 < x < Tk and T�−1 < y < T� and k �= � we condition on the first visited boundary
and write

V••(s, x, y) = U(k)
•−(s, x − Tk−1)V−•(s, Tk−1, y)

+ U(k)
•+(s, x − Tk−1)V+•(s, Tk, y).

The integral of V••(s, x, y) can be computed from

∫ y

τ=T�−1

V••(s, x, τ )dτ = U(k)
•−(s, x − Tk−1)

∫ y

τ=T�−1

V−•(s, Tk−1, τ )dτ

+ U(k)
•+(s, x − Tk−1)

∫ y

τ=T�−1

V+•(s, Tk, τ )dτ,

where the integrals of the right hand side are provided in (43).
For Tk−1 < x, y < Tk we have three cases: x = y, x < y and x > y. For x = y, we write

V+•(s, x, x) =[
R(k)

+
−1

0
]

+ U(k,Tk−x)
+− (s)V−•(s, x, x) + U(k,Tk−x)

++ (s)V+•(s, Tk, x)

V−•(s, x, x) =[
0 R(k)

−
−1

]
+ U(k,x−Tk−1)−+ (s)V+•(s, x, x) + U(k,x−Tk−1)−− (s)V−•(s, Tk−1, x),

for x < y, we condition on the last occasion when the process visits the border of the (x, Tk)
interval before reaching level y

V••(s, x, y) = V•+(s, x, x)R(k)
+ F(k,Tk−x)

+• (s, y − x)

+ V•−(s, x, Tk)R
(k)
− F̂(k,Tk−x)

−• (s, y − x), (44)

and for x > y, we condition on the last occasion when the process visits the border of the
(Tk−1, x) interval before reaching level y

V••(s, x, y) = V•+(s, x, Tk−1)R
(k)
+ F(k,x−Tk−1)+• (s, y − Tk−1)

+ V•−(s, x, x)R(k)
− F̂(k,x−Tk−1)−• (s, y − Tk−1). (45)

The integral of (44) form x to Tk and the integral of (45) form Tk−1 to x can also be computed
as in (43).

3.7 Starting from and going toS0

For Tk−1 < x < Tk

P0◦(s, x, T�) =
(
sI − Q(k)

00

)−1
Q(k)

0• P•◦(s, x, T�), (46)

V0◦(s, x, T�) =
(
sI − Q(k)

00

)−1
Q(k)

0• V•◦(s, x, T�). (47)
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For Tk−1 < x < Tk and T�−1 < y < T�

V•0(s, x, y) = V••(s, x, y)Q(�)
•0

(
sI − Q(�)

00

)−1
, (48)

V0•(s, x, y) =
(
sI − Q(k)

00

)−1
Q(k)

0• V••(s, x, y), (49)

and for Tk−1 < x < Tk , T�−1 < y < T� and x �= y

V00(s, x, y) =
(
sI − Q(k)

00

)−1
Q(k)

0• V•0(s, x, y). (50)

The case of Tk−1 < x = y < Tk and J (0) ∈ S(k)
0 , results in a probability mass between

boundaries which we avoid considering directly. Our analysis approach can handle this case
by introducing an additional boundary at x and using Theorem 3.

4 Infinite buffer case

The case when the buffer is infinite can be defined and analysed as follows. The buffer is
composed of K regions with region boundaries T0 = 0 < T1 < . . . < TK−1 < TK = ∞.
That is, for k ∈ {1, . . . , K }, region k is (Tk−1, Tk), where the generator and the fluid rate
matrices of the MFM are Q(k) and R(k). Since we are interested in transient analysis, the

last region, characterized by Q(K ) and R(K ), might have positive drift as well. At region

borders, we assume that the generators and the fluid rate matrices are Q̃
(k)

and R̃
(k)

, for

k ∈ {0, . . . , K − 1}. Q̃(K )
and R̃

(K )
are irrelevant since TK = ∞ is never reached in finite

time starting from a finite initial fluid level.
With this model definition we only need to modify the analysis of the last region compared

to the finite buffer case. The rest of the section collects the elements of the analysis, which
needs to be modified when the buffer is infinite.

Condition 2 For having a consistent model the following requirements need to be satisfied.

– S(0)
↘ = ∅,

– S(k)
↘ ⊂ S(k)

− for k ∈ {1, . . . , K },
– S(k)

↗ ⊂ S(k+1)
+ for k ∈ {0, . . . , K − 1}.

For region k ∈ {1, . . . , K − 1} we compute the characteristic matrices as in Sect. 3.1.

For region K , we compute Ψ (K )(s), K(K )(s), H(K )(s), Ψ̂
(K )

(s), K̂(K )(s) and Ĥ(K )(s) from
Q(K ) and R(K ) according to (9), (14), (15).

With respect to Sect. 3.2 the return measures (Y(k)(s) and Ŷ(k)(s)) are computed only for
boundaries k ∈ {0, . . . , K − 1} and

Y(K−1)(s) = Ψ (K )(s).

Similarly, B̂(K−1)(s) is irrelevant, when the buffer is infinite.
Since we assume finite initial and final fluid levels, in the infinite buffer case, we neglect

all quantities of Sect. 3.3 which starts or ends at the upper bound of the buffer, TK .
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The analysis of region K , in Sects. 3.4, 3.5 and 3.6 simplifies as follows. For k ∈
{0, . . . , K − 1} and TK−1 < y,

V◦•(s, Tk, y) =
V◦+(s, Tk, TK−1)R

(K )
+ eK

(K )(s)(y−TK−1)
[
R(K )

+
−1

Ψ (K )(s)R(K )
−

−1
]
,

for TK−1 < x and � ∈ {0, . . . , K − 1},

V•◦(s, x, T�) =
[
Ψ (K )(s)

I

]
eH

(K )(s)(x−TK−1)V−◦(s, TK−1, T�),

P•◦(s, x, T�) =
[
Ψ (K )(s)

I

]
eH

(K )(s)(x−TK−1)P−◦(s, TK−1, T�).

for TK−1 < x and T�−1 < y < T� with � ∈ {1, . . . , K − 1} ,

V••(s, x, y) =
[
Ψ (K )(s)

I

]
eH

(K )(s)(x−TK−1)V−•(s, TK−1, y),

for T�−1 < x < T� with � ∈ {1, . . . , K − 1} and TK−1 < y,

V••(s, x, y) =
V•+(s, x, TK−1)R

(K )
+ eK

(K )(s)(y−TK−1)
[
R(K )

+
−1

Ψ (K )(s)R(K )
−

−1
]
,

and its integral is

∫ y

τ=TK−1

V••(s, x, τ )dτ = V•+(s, x, TK−1)R
(K )
+

· K(K )(s)
−1

(eK
(K )(s)(y−TK−1)−I)

[
R(K )

+
−1

Ψ (K )(s)R(K )
−

−1
]
.

Finally, the cases when both, the initial and the final levels are above TK−1 can be handled
are follows. For TK−1 < x = y,

V+•(s, x, x) =
[
R(K )

+
−1

0
]

+ Ψ (K )(s)V−•(s, x, x),

V−•(s, x, x) =
[
0 R(K )

−
−1

]
+ U(K ,x−TK−1)−+ (s)V+•(s, x, x)

+ U(K ,x−TK−1)−− (s)V−•(s, TK−1, x),

for TK−1 < x < y,

V••(s, x, y) = V•+(s, x, x)R(K )
+ eK

(K )(s)(y−x)
[
R(K )

+
−1

Ψ (K )(s)R(K )
−

−1
]
,

∫ y

τ=x
V••(s, x, τ )dτ = V•+(s, x, x)R(K )

+

· K(K )(s)
−1

(eK
(K )(s)(y−x)−I)

[
R(K )

+
−1

Ψ (K )(s)R(K )
−

−1
]
.
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and for TK−1 < y < x ,

V••(s, x, y) =V•+(s, x, TK−1)R
(K )
+ F(K ,x−TK−1)+• (s, y − TK−1)

+ V•−(s, x, x)R(K )
− F̂(K ,x−TK−1)−• (s, y − TK−1),∫ y

τ=TK−1

V••(s, x, TK−1)dτV••(s, x, y)

=V•+(s, x, TK−1)R
(K )
+ C(K ,x−TK−1)+• (s, y − TK−1)

+ V•−(s, x, x)R(K )
− Ĉ(K ,x−TK−1)−• (s, y − TK−1).

5 Implementation notes

The above explained numerical procedure for the transient analysis of PHMFMs is imple-
mented in Mathematica and available at webspn.hit.bme.hu/˜telek/tools.htm.
In this section, we summarize some interesting features of the implementation.

5.1 Model description

To simply the model definition it is also possible to generate a model description based only
on the region descriptions,Q(k) and R(k) for k ∈ {1, . . . , K }, and defining if the upper or the
lower regions dominate at boundaries. If the upper regions dominate at boundaries (as in da
Silva Soares and Latouche (2009)) then

Q̃
(k−1) = Q(k), for k ∈ {1, . . . , K } and Q̃(K ) = Q(K ),

R̃
(k)
i i =

⎧⎪⎨
⎪⎩

1 if i ∈ S(k)
↗ ,

−1 if i ∈ S(k)
↘ ,

0 if i ∈ S(k)→ ,

for k ∈ {0, . . . , K },

where

S(0)
↗ = S(1)

+ , S(0)
↘ = ∅, S(0)→ = S(1)

− ∪ S(1)
0 ,

S(K )
↗ = ∅, S(K )

↘ = S(K )
− , S(K )→ = S(K )

0 ∪ S(K )
+ ,

and for the internal boundaries, k ∈ {1, . . . , K − 1},
S(k)

↗ = S(k+1)
+ , S(k)

↘ = S(k)
− ∩ S(k+1)

− ,

S(k)→ = S(k+1)
0 ∪

(
S(k+1)

− ∩ (S(k)
+ ∪ S(k)

0 )
)

.
(51)

The case when the lower regions dominate at boundaries can be defined as its spatial inverse.
Our code checks the input data according to Conditions 1 in case of finite buffer or Condition
2 in case of finite buffer. The region based boundary definition characterized by (51) satisfies
Conditions 1 and 2.

5.2 Index list basedmatrix operations

Our implementation makes use of the index list based matrix definition available in many
programming environments (includingMatlab andMathematica). During the model descrip-
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tion phase the program calculates the S(k)
a sets for k ∈ {1, . . . , K } and a ∈ {+,−, 0, •, ◦,↗

,↘,→, ↗+ , →+ , −↘, −→}. These sets contains the associated state numbers according to the orig-
inal state numbering. With the help of these lists the required matrix blocks can be easily
obtained. E.g., Q(k)

+− = Q(k)[S(k)
+ ,S(k)

− ], where ”[” and ”]” denote the indexing operator.

5.3 Computational complexity

Each of the matrices introduces in Sect. 3.1 are at most of size |S◦| × |S◦|, and the computa-
tional complexity of obtaining one of such matrices is O(|S◦|3). In Sects. 3.1–3.2, O(K ) of
such matrices are computed, while in Sect. 3.3, O(K 2) matrices are computed. The remain-
ing computations, in Sects. 3.4–3.6, have lower order computational complexity, hence the
overall computational complexity of the procedure is O(K 2|S◦|3).

The memory complexity of the procedure is dominated by storing theO(K 2) P(s, Tk, T�)

matrices, which results in a memory complexity of O(K 2|S◦|2).

6 Numerical experiment

As the homogeneous finite and infinite MFMs are special cases of PHMFMs, we can verify
our numerical procedure against some of the transient results available in the literature. Addi-
tionally, in case of finite and stable infinite PHMFMs we can compare the t → ∞ limiting
behaviour of the transient analysis with the stationary results available in the literature.

The set of transient results we evaluated with our implementation includes Example 1
of Ahn et al. (2007), which was also considered in Akar and Sohraby (2004). The results
reported in (Ahn et al. 2007), Table 3 (based on an unspecified order numerical inverse
Laplace transformation method) are identical to our results (which are based on the CME
numerical inverse Laplace transformation method of Horváth et al. (2019) with N = 21) up
to 4 digits.

A multi regime PHMFM example was introduced in Mandjes et al. (2003), which models
the behaviour of a network access protocol with finite buffer and congestion control. The
same example was considered in Bean and O’Reilly (2008). The stationary measures of this
example (e.g., the probability of full buffer) are evaluated in Mandjes et al. (2003) and some
transient measures (e.g., the return time distribution of the internal boundary) are provided
in Bean and O’Reilly (2008). This example is investigated in the rest of the section.

The state space of the model is defined as S◦ = {0, 1, . . . , 10}, and the buffer is of size 5
with fluid boundaries T0 = 0, T1 = 2, T2 = 5. The characterising matrices of region 1 and
2 are

Q(1)
i j

=

⎧⎪⎪⎨
⎪⎪⎩

−(30 + 5i), j = i,
30 − 3i, j = i + 1,
8i, j = i − 1,
0, otherwise;

R(1)
i j =

{−11 + 4i, j = i,
0, otherwise;

Q(2)
i j

=

⎧⎪⎪⎨
⎪⎪⎩

−(30 + i), j = i,
30 − 3i, j = i + 1,
4i, j = i − 1,
0, otherwise;

R(2)
i j =

{−11 + 2i, j = i,
0, otherwise.
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X(0) = 0, J(0) = 0 (negative fluid rate)

t 0.1

t 1
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1 2 3 4 5
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0.2

0.4

0.6

0.8

1.0

CDF

X(0) = 0, J(0) = 10 (positive fluid rate)

Fig. 1 The CDF of the fluid level at time t = 0.1, 1, 10 starting from empty buffer

The boundary behaviour at T0, T1, T2 is characterized by

Q̃
(0)

i j
= Q(1)

i j
; R̃

(0)
i j = max(R(1)

i j , 0);

Q̃
(1)

i j
= R̃

(1)
i j =⎧⎪⎪⎨

⎪⎪⎩

−(52 − 3i), j = i, i ∈ {3, 4, 5},
30 − 3i, j = i + 1, i ∈ {3, 4, 5},
22, j = i − 1, i ∈ {3, 4, 5},
0, otherwise;

⎧⎨
⎩
1, j = i, i ∈ {6, 7, 8, 9, 10},
−1, j = i, i ∈ {0, 1, 2},
0, otherwise;

Q̃
(2)

i j
= Q(2)

i j
; R̃

(2)
i j = min(R(2)

i j , 0).

These characterizing matrices result in the following set definitions for region 1 and 2, and
for boundaries T0, T1, T2:

S(1)
+ = {3, 4, . . . , 10},S(1)

− = {0, 1, 2},S(1)
0 = ∅,

S(2)
+ = {6, 7, . . . , 10},S(2)

− = {0, 1, . . . , 5},S(2)
0 = ∅,

S(0)
↗ = {6, 7, . . . , 10},S(0)

↘ = ∅,S(0)→ = {0, 1, . . . , 5},
S(1)

↗ = {6, 7, . . . , 10},S(1)
↘ = {0, 1, 2},S(1)→ = {3, 4, 5},

S(2)
↗ = ∅,S(2)

↘ = {0, 1, . . . , 5},S(2)→ = {6, 7, . . . , 10}.
These set definitions satisfy Conditions 1.

Figures 1 and 2 depict the CDF of the fluid level distribution at time t = 0.1, 1, 10 starting
from state 0 (with negative fluid rate) and state 10 (with positive fluid rate) and from level
0 (empty buffer) and level 5 (full buffer). The figures indicate that at time t = 10 the fluid
model reaches its steady state and the fluid level distribution starting from the different initial
conditions converge to the same stationary distribution.

The results for t = 10 also indicate that the t → ∞ limit of the probability of full buffer
computed by our tool, converge to the limit reported in Mandjes et al. (2003) (2.01 · 10−4)
in all evaluated cases if the initial states and fluid levels.

While the primary performance measure of the current paper is the transient behaviour
according to (5) and (6), the performance measures introduced in course of the compu-
tations include the distribution of the return times of the boundaries, according to (23)
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Fig. 2 The CDF of the fluid level at time t = 0.1, 1, 10 starting from full buffer

Fig. 3 Initial state dependent
return time distribution of
boundary T1
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PDF

and (24). The initial state dependent mean return time of the internal barrier (T1 = 2),
computed from−dY(1)(s)/ds|s=0, are 0.2172, 0.4006, 0.5119, 0.6881, 0.8161 starting from
state 6, 7, 8, 9, 10 and the associated probability density functions are depicted in Fig. 3.

7 Conclusions

The paper presents an analysis approach for Laplace transform description of the transient
behaviour of PHMFMs with arbitrary fluid rate changes at the barriers. Due to the large
number of possible boundary behaviours the proposed approach replaces the previously
applied direct descriptionswith an equation systembased indirect one. The obtained relatively
simple analytical description keeps also the implementation of the method at a feasible level
of complexity.

The explicit matrix exponential description of the transient fluid density based on (18)
allows a closed form computation of the cumulated density as well as the moments of the
fluid distribution. The earlier is discussed in the paper, the later is neglected, but follows a
similar pattern.

Our Mathematica implementation, containing also the model descriptions of all presented
examples, is available at webspn.hit.bme.hu/˜telek/tools.htm. We also com-
pared this implementation (in Mathematica) with the publicly available implementation of
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the method presented in Akar et al. (2020) (in Matlab). In all evaluated cases, we obtained
practically identical results.
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