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Abstract
This paper analyzes the valuation and pricing of physical electricity delivery contracts from
the viewpoint of a producer with given capacities for production and fuel-storage. Using
stochastic optimization problems in discrete time with general state space, the dual problems
of production problems are used to derive no-arbitrage conditions for fuel and electricity
prices as well as superhedging values and prices of bilaterally traded electricity delivery con-
tracts. In particular we take the perspective of an electricity producer, who serves contractual
deliveries but avoids unacceptable losses. The resulting no-arbitrage conditions, stochastic
discount factors and superhedging prices account for typical frictions like limitation of stor-
age and production capacity and for the fact that it is possible to produce electricity from
fuel, but not to produce fuel from electricity. Similarities, but also substantial differences to
purely financial results can be demonstrated in this way. Furthermore, using acceptability
measures, we analyze capital requirements and acceptability prices for delivery contracts,
when the producer accepts some risk.

Keywords Electricity production · Arbitrage · Stochastic discount factor · Duality theory

1 Introduction

This work aims at the analysis of valuation and pricing for electricity delivery contracts,
bilaterally traded between a producer and a consumer of delivered electrical energy. On the
one hand valuation and pricing of contracts is a typical problem from finance, and therefore
many authors apply classical financial results in a direct way to pricing and valuation of
electricity contracts, see e.g. most chapters and cited literature in Eydeland and Wolyniec
(2003). Clearly this is also an important option for practical applications. On the other hand,
electricity markets showmany frictions, not present at financial or other commodity markets.
From this point of view, one should be careful about applying well known results from other
markets to electricity markets.
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In this paper we use an alternative approach and consider pricing and valuation as decision
problems closely related to production decisions of an electricity producer. The producer is
able to generate electricity from fuel (within certain physical constraints) and faces random
spot prices for electricity and fuel. When entering into a contract for delivering some load
pattern of power consumption, the producer has to fix a delivery price (or a value for a
contract with given delivery price) and later on takes further decisions on power production
and buying and/or selling fuel and electricity at the markets. The aim here is to meet all
contractual obligations and to end up with an acceptable wealth (asset value) at the end.

We analyze a number of stochastic optimization formulations in discrete time but possi-
bly continuous state space. Similar problems have already been treated numerically in e.g.
Vayanos et al. (2011) and Kovacevic and Paraschiv (2014). However, in the present paper
we want to give a deeper theoretical analysis of the properties of prices and values obtained
in such a way. The main results are derived from the Lagrange duals of the underlying pro-
duction problems. In particular it turns out that—based on this dualization—similarities and
distinctions between classical financial results and prices obtained from production problems
can be analyzed in a convenient way.

1.1 Some financial background

The notions of arbitrage and market completeness—cornerstones of modern finance—are
relevant also in our context. A market is arbitrage free if riskless profits are possible and it
is complete if any relevant payoff can be replicated from the underlying securities, contracts
or commodities, traded at this market. Essentially, a financial market is arbitrage free if and
only if there exists an equivalent (local) martingale measure Q, such that all underlying
securities can be priced correctly by taking expectation under the equivalent measure, i.e. the
underlying’s price St fulfills St = E

Q
t
[
er(T−t)ST

]
. An arbitrage freemarket is complete if and

only if there is a unique equivalent martingale measure. See e.g. Delbaen and Schachermayer
(1994, 1998) for more detailed statements and proofs. In complete markets, every contingent
claim is attainable by hedging portfolios, andfinancial derivatives can be priced by calculating
the expected discounted value of the derivatives payoff w.r.t. the unique martingale measure.
Briefly sketched, in the situation of a complete market (and constant interest rate), at time t
the value pt (·) of a claim receivable at time T , can be calculated as the expectation

pt (H) = E
Q
t

[
er(T−t)H(XT )

]
, (1)

whereQ denotes the uniquemartingalemeasure related to the process Xt . The same value can
also be expressed in terms of the physical measure P by using a (likewise unique) stochastic
discount factor ξT closely related to the risk neutral measure Q, i.e.

pt (H) = EP
t [ξT H(XT )] . (2)

On incomplete markets, not every contingent claim can be attained by hedging with
traded assets. Still, under no-arbitrage there exist equivalent martingale measures (respec-
tively stochastic discount factor processes) and at least one of them, Q∗ (respectively ξ∗)
fulfills (1) [respectively (2)]. Although, Q∗ is not known in advance (there is no unique
martingale measure) and the value pt therefore cannot be calculated just from (1) or (2), it is
possible to calculate the minimal and the maximal discounted expectation under all expec-
tations w.r.t. any equivalent martingale measure, the lower and upper arbitrage bounds. If
the analyzed security is traded at an exchange, one can try to estimate the market price of
risk, which leads to a price within the arbitrage bounds. For bilaterally traded contracts this
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is not possible because data are not easily available. Because the interval defined by arbi-
trage bounds can be quite large, several methods for finding reasonable bounds on prices for
incomplete markets have been developed. Classical financial approaches are discussed e.g. in
Hao (2008). Important alternatives are good deal bounds (Cochrane and Saá-Roquejo 2000),
local risk minimization (Pansera 2012) or convex hedging (Rudloff 2007). Such methods
search for stochastic discount factors with restricted or minimal risk, where the exact notion
of risk is different for each approach. Basically this leads to optimization of the expectation
(1) or (2) with respect to the measureQ or the discount factor ξT , whereQ or ξT are restricted
to ensure absence of arbitrage.

1.2 From finance to energymarkets

In the present paper we leave the sphere of purely financial markets and analyze bilaterally
traded electricity delivery contracts from the viewpoint of an electricity producer. Electricity
markets nowadays are very liquid and in many regards comparable with financial markets.
Therefore, absence of arbitrage seems to be reasonable. On the other hand it is well known
that electricity markets are incomplete with unique frictions, not existent on financial markets
(or on other commodity markets). In particular, electricity is produced from fuels but cannot
be converted back to fuels. Moreover, electricity cannot be stored in large quantities (as
would be possible commodities like e.g. oil or gas). Therefore produced and used electric
power has to be balanced immediately in an electrical network, because differences between
demanded and produced power may lead to damaged equipment or even breakdown of the
net. Furthermore, all kinds of restrictions on physical fuel storage and generation capacity are
relevant for the production process. Some sub-markets for electricity (in particular futures
markets) are organized as financial markets, but even in this case the delivery profiles of
traded futures [although hedging by futures contracts is an important approach in practice,
see e.g. Deng et al. (2001)] cannot fully replicate typical bilaterally-traded delivery profile.

We start our analysis with a study of arbitrage and ask the question: Given the above
frictions, how can we characterize arbitrage in a simple market model with electricity pro-
duced from fuel? In particular we search for analogues to equivalent martingale measures and
the related stochastic discount factors in the context of fuel and electricity prices. Later on,
absence of arbitrage (respectively its characterization) is also used as a technical condition
for strong duality, on which most of the pricing and valuation results are based.

Based on our analysis of arbitrage we proceed to valuation and pricing of electricity
delivery contracts, which is our main goal. Due to incompleteness and the frictions discussed
above it is not possible to calculate a uniquemarket price fromobservable data. Itmaynot even
be possible to observe market prices for certain bilaterally traded contracts. In this situation
we take the viewpoint of an electricity producer and analyze several types of valuation and
pricing principles.

When a producer aims at finding a price or a value of a delivery contract, he has to
account for his production possibilities. This may comprise e.g. the used generators and their
characteristics and the size and costs of fuel storage. Moreover, all price/value decisions
should be takenwith the optimal use of the equipment in view. Therefore the pricing/valuation
problems in this paper (their primal formulation) are similar to typical planning problems for
electricity production.

Optimization for electricity production has been discussed in literature over a long time
and is used as a practical planning tool by generating companies. While deterministic opti-
mization is still an important option, in view of the random nature of energy prices, stochastic
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optimization models are increasingly used. Without by any means claiming to be exhaus-
tive, we mention Takriti et al. (1996), Gollmer et al. (2000), Philpott and Schultz (2006), Sen
et al. (2006), Sagastizabal (2012), Kovacevic and Paraschiv (2014) and Zephyr and Anderson
(2018), the overview Wallace and Fleten (2003) and the collections Bertocchi et al. (2011)
and Kovacevic et al. (2013). A multitude of numerical solution approaches has been applied
in the cited paper, e.g. tree based stochastic programming, Lagrange decomposition methods
and approximate dynamic programming. In the present paper we aim at analytical results
in a very general setup and use the related duality theory as our main tool. However, in the
last section we sketch the implementation and numerical results for an illustrative valuation
example, using tree based stochastic programming.

When valuating a specified contract with a stochastic process of deliveries and a fixed
delivery price, it is reasonable for the producer to look at the smallest value or up-front
payment such that all contractual obligations can be satisfied at the given delivery price,
and the asset value (consisting of cash and the value of fuel) at the end of the planning
horizon is for sure not negative. In this way the producer is able to find the smallest up-front
payment at which he is able to contract a delivery pattern at a given price without the risk
of a loss. This approach resembles what is called superhedging in finance and therefore we
call the resulting value the superhedging value. The method can also be applied to pricing
by searching for the smallest delivery price such that, starting with an asset value of zero,
all contractual obligations can be fulfilled with a nonnegative end value. Here the producer
finds the smallest delivery price at which he is able to contract a given pattern without any
upfront payment. Still there will be no risk of any loss. The resulting price is the superhedging
price of the contract. Superhedging prices are not market prices (as superhedging values are
not market values) but mark an important boundary: if delivery is agreed at a smaller price
(or the producer starts with cash reserve smaller than the superhedging value), the producer
definitely has to take some risk.

Superhedging values and superhedging prices depend on the production equipment but do
not depend on the preferences of the producer. They are very loose boundaries for feasible
upfront payments (cash reserves) or delivery prices, because if a payment or pricewithin these
boundaries is contracted, any risk of a negative end value is eliminated. In practical situations
however, producers usually are willing to take some risk in order to achieve potentially higher
profit. We therefore also analyze the smallest upfront payment leading to an acceptable
distribution of the end value as well as the smallest delivery price that leads to an acceptable
distribution of the end valuewhen starting at zero capital. In the first case (following Pennanen
2012) we speak of the capital requirement. The delivery price in the second case will be
called the acceptability price. In the present paper we measure acceptability by concave
acceptability functionals, see e.g. Pflug and Römisch (2007) [and Kovacevic (2012) for
conditional versions] , which are (up to sign) closely related to coherent risk measures,
Artzner et al. (1999).

Again, capital requirements and acceptability prices are not market figures. They depend
on the production equipment and preferences with respect to risk of the producer and define
another boundary: if the delivery price is agreed below, the producer will either not enter the
contract or has to accept a less acceptable outcome than originally intended. In a competitive
situation this means that producers with lower efficiency might be driven out of the market
by participants with higher efficiency, because the latter are able to deliver at small prices
and still keep acceptable outcome distributions.
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1.3 Back to finance?

We formulate these production-based valuation and pricing problems in terms of stochastic
optimization in discrete time with general state space.

Subsequently, we use duality theory for cone constraint optimization in Banach spaces
to derive Lagrange dual problems. This allows for analyzing further the properties of super-
hedging prices and values, as well as of capital requirements and acceptability prices. The
approach is consistent with basic financial principles: similar methods have been applied to
purely financial problems e.g. in King (2002) and Flåm (2008), where it was shown that
classical results on no-arbitrage pricing can be replicated in a discrete time, discrete state
space stochastic optimization framework. In particular dual formulations can be used to char-
acterize no-arbitrage and to derive the classical risk-free pricing results and arbitrage bounds.
Pennanen (2011a, b) analyzes superhedging in a very general framework. In addition, Penna-
nen (2012) derives basic facts of capital requirements and acceptability pricing (in particular
indifference pricing, see Remark 3.3 below) in the context of convex analysis. Again both
papers are aim at a purely financial context.

Superhedging on (incomplete) electricity markets has been applied from a modeling per-
spective andwith numerical results inVayanos et al. (2011), which however does not consider
production and storage. Numerical superhedging for delivery contracts with electricity pro-
duction and storage was applied in Kovacevic and Paraschiv (2014).

Concrete no-arbitrage conditions and pricing principles are derived in the complex situa-
tion with storage and production restrictions (e.g. random outages of generators), asymmetric
production possibilities between fuel and electricity, and non-storability of electricity. These
results allow comparisons with the purely financial situation. In particular it turns out that
it is still meaningful to speak about arbitrage, stochastic discount factors and equivalent
measures and some of the results can be interpreted in a generalized context of good deal
bounds. However the concrete formulation, in particular the requirements for discount factors
or equivalent measures deviate severely from classical financial results.

The details are worked out in the following sections as follows: Sect. 2 uses a basic
optimization problem to derive and analyze no-arbitrage conditions for a model with spot
prices for fuel and electricity, when electricity can be produced with given efficiency. In
the main part, Sect. 3, the optimization problem of a minimum up-front payment for a
delivery contract is used to derive valuation formulas in terms of stochastic discount factors
and equivalent measures. As a second application we analyze the smallest feasible delivery
price. In both cases we aim at almost surely nonnegative end value. Finally we relax this
requirement and consider the minimum capital requirement and the acceptability price. In
Sect. 4 we give a numerical example, analyzing the superhedging value and its sensitivity to
parameter changes in the context of a stylized vector-autoregressive price model. Section 5
concludes the paper.

2 No-arbitrage conditions

In the following all relevant risk factors (in particular prices) and the related deci-
sions are considered as stochastic processes, defined on a filtered probability space
Y = (Ω,F,F = {Ft }t≥0 , P

)
in discrete time t = 0, 1, . . . , T . For simplicityweuse constant

time increments, e.g. hours, days or weeks. However, all statements can easily be adapted
to more general time models. Time zero represents here and now and the related σ -algebra
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F0 is the trivial σ -algebra F0 = {∅,Ω}. Time T denotes the end of the planning horizon.
In order to simplify notation we use the sets T = {0, 1, . . . , T }, T0 = {0, 1, . . . , T − 1},
T1 = {1, . . . , T } and T T−1

1 = {1, . . . , T − 1}.
As the basic stochastic risk factors, we consider fuel prices and electricity prices at some

power exchange (implicitly assuming that market participants are price takers with little
market power). Prices observed at points in time t and represented by real valued stochastic
processes X f

t (ω) for fuel and Xe
t (ω) for electricity, both adapted to the filtration F. Fuel

prices are assumed to be almost surely nonnegative, whereas electricity prices may also
take negative values with positive probability. Both prices are given in currency units per
MWh. Note that it is not assumed that the filtration F is necessarily generated by the price
processes X f

t and Xe
t : additional information like e.g. prices of further fuels, weather, or

general business activity may play a role.
The producer is able to generate electrical energy from fuel with efficiency η > 0. For

simplicity we measure quantities of electric energy and quantities of fuel (the related energy
content) both in MWh. At time t , immediately before taking all decisions, the producer owns
a cash position ct with a fixed interest rate r ≥ 0 (per period) and an amount of fuel st
[MWh]. We will also use the notation R = (1+ r). The producer then (still at time t) makes
his decisions. First he decides the amount zt [MWh] of fuel traded at the fuel market at price
X f
t [currency units per MWh]. This trade happens at (or immediately after) time t . Positive

values of zt indicate that an amount of fuel is bought, negative values indicate a selling of
fuel. Then the amount yt [MWh] of electricity produced over the period [t, t + 1] decided.
It is sold at time t + 1 at price Xe

t+1, immediately before observing the new cash position.
The amount of fuel burned for electricity production then is given by η−1yt [MWh].

The decision processes yt and zt as well as the decision processes ct and st are considered
as real valued random processes defined onY and adapted to the filtration F. This means that
decisions at time t have to rely on information available at time t . Other specifications may
be possible, but as sketched above in the present paper we assume that fuel zt is bought at
time t at a known fuel price X f

t . On the other hand we assume that electricity production over
the period [t, t + 1] is planned in advance at time t but the electricity price Xe

t+1(currency
units per MWh) at which the planned amount is sold is revealed only at the end, t + 1, of the
period. Keep in mind that c0, s0, y0, z0 are deterministic, as F0 is assumed to be the trivial
σ -algebra.

In the following, all equations involving random variables are understood in the sense of
holding almost surely. Furthermore, all inequalities are considered as inequalitieswith respect
to the cone of almost surely nonnegative random variables. Fuel prices and electricity prices
are assumed to be essentially bounded and all decision variables are considered as integrable.
More precisely, we assume X f

t , Xe
t ∈ L∞ (Ω,Ft , P) and yt , zt , ct , st ∈ L1 (Ω,Ft , P)

with state space Ω , σ -algebra Ft and probability measure P as discussed above. Here
L1 (Ω,Ft , P) denotes the space of integrable random variables, defined on the probabil-
ity space (Ω,Ft , P). This means that yt (ω), zt (ω), ct (ω), st (ω) are defined for ω ∈ Ω, are
measurable with respect toFt , and their expectations under themeasureP is finite.Moreover,
L∞ (Ω,Ft , P) denotes the space of essentially bounded random variables, defined on the
probability space (Ω,Ft , P). If a random variable Y belongs to the space L∞ (Ω,Ft , P),
then it is Ft -measurable and there exists a bounded Ft -measurable random variable Z , such
that Y and Z may take different values only on a set with P-probability zero.

With this specification the left hand side of all equations and inequalities in this paper (when
brought into standard form g(yt , zt , ct , st ) ≤ 0) take values in L1(Ω,Ft , P). Therefore it is
possible to apply arguments from optimization in vector (Banach) spaces and related duality
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arguments to the production-based valuation problems discussed later, see e.g. Luenberger
(1969) and Bot et al. (2009) for the theoretical background. In particular, when duality
arguments are applied, the Lagrange multipliers are chosen from L∞ (Ω,Ft , P), which can
be identified with the dual space of L1 (Ω,Ft , P).

For physical reasons, electricity production yt and fuel storage st are almost surely
restricted to nonnegative values. We do not use storage for electrical energy, see the dis-
cussion on frictions at electricity market above.

This basic setup will be extended later, when we consider the full production problem
and contractual deliveries and delivery prices are introduced. In particular, then it will be
necessary to account for upper bounds on production and storage. For the moment however,
we use it as it is to derive no-arbitrage conditions. Extending the usual Definitions (see e.g.
Björk (2009) Definitions 2.14, 2.15 in a financial context, and Vayanos et al. (2011) on
electricity markets, but still without fuel storage) we now define self financing strategies and
arbitrage. Self financing strategies basically are strategies without external in- or outflows of
money and (in our case) fuel: storage is changed only by buying from the market and burning
fuel for production and the cash position is changed by paying for fuel, selling electricity to
the market and interest on cash.

Definition 1 In the basic model, a strategy {yt , zt }t≥0 with cash position ct and fuel storage
st , where yt ≥ 0 and st ≥ 0, is self financing if the following conditions hold almost surely
for all t ∈ T1:

ct =
(
ct−1 − zt−1X

f
t−1

)
R + yt−1X

e
t , (3)

st = st−1 − yt−1η
−1 + zt−1. (4)

At any time t the asset value of a strategy is given by

V η
t = ct + X f

t · st
Remark 1 Slightly abusing common usage, we use the term asset value for the sum of the
cash position and the storage value (mark to market) and exclude the (fixed) value of the
generator.

A market allows arbitrage, if there exists a strategy with riskless profit, in particular if there
is a strategy that starts at a nonpositive value but leads to a nonnegative end value with
probability one which is even positive with positive probability. In case of electricity markets
the possibility of arbitrage depends on the available technology (efficiency) and can be
formulated as follows:

Definition 2 An η-arbitrage for a market
{
Xe
t , X

f
t

}
is a self financing strategy {yt , zt }t≥0

with

V η
0 ≤ 0, (5)

P
(
V η
T ≥ 0

) = 1. (6)

P
(
V η
T > 0

)
> 0. (7)

We call a market
{
Xe
t , X

f
t

}
η-arbitrage free, if no η-arbitrage exists. A market

{
Xe
t , X

f
t

}

is arbitrage free if it is η-arbitrage free for any 0 ≤ η ≤ ηmax , where ηmax denotes the
maximum efficiency available to the producers.

Remark 2 Clearly an η-arbitrage free market is η′-arbitrage free for any η′ ≤ η.

123



428 Annals of Operations Research (2019) 275:421–460

Based on the previous definitions and assumptions, the following optimization problem
can be used to detect the existence of an arbitrage strategy.

max
y,z,c,s

EP
[
cT + X f

T sT
]

subject to:

(t ∈ T1) : ct =
(
ct−1 − zt−1X

f
t−1

)
R + yt−1X

e
t

(t ∈ T1) : st = st−1 − yt−1η
−1 + zt−1

c0 + X f
0 s0 ≤ 0

cT + X f
T sT ≥ 0

(t ∈ T ) : st ≥ 0

(t ∈ T0) : yt ≥ 0 (8)

Remark 3 In order to avoid too much numbering, we refer to parts of the constraint sets as
“constraint groups”. As an example, the first line of constraints in (8) will be referred to as
“constraint group 1”.

Remark 4 The set of feasible solutions is not empty for problem (8), because setting all
decision variables to zero is feasible. This also implies that the feasible set is a pointed cone.

It might sound strange that test problem (8) is formulated without upper bounds on storage
and production. However, because of positive homogeneity, a strategy which leads to a
positive end value with positive probability can be scaled in a way such that either the scaled
solution leads to an infinite expectation without upper bounds or such that all upper bounds
are observed and at least one upper bound is reached with positive probability at some point
in time. Therefore for a pure test of η-arbitrage the upper bounds are not relevant.

The following observation is a key to characterizing η-arbitrage.

Lemma 1 An η-arbitrage for a market
{
Xe
t , X

f
t

}
exists if and only if (8) is unbounded.

Proof The first two constraints of (8) correspond to Conditions (3) and (4) for a self financing
portfolio. The third and fourth constraints enforce Conditions (5) and (6). The last two con-
straints are the nonnegativity constraints on electricity production and fuel storage. Because

of (6) ,EP
[
cT + X f

t sT
]

> 0 if and only if cT + X f
T sT > 0 on a set with positive probability.

Furthermore, because the objective function and the constraints are positively homogeneous
in the decision variables {yt , zt , ct , st }, the optimal value is unbounded if and only if a positive
expectation can be fulfilled by a feasible strategy. Hence Conditions (5)–(7) can be achieved
by a self financing strategy if and only if problem (8) is unbounded. 	

We can now apply duality theory to problem (8) in order to characterize arbitrage further.

Lemma 2 A market
{
Xe
t , X

f
t

}
is η-arbitrage free in the described setup if and only if there

exist adapted stochastic processes {ξt , λt } with the following properties:

A1: For each t ∈ T1 the random variables ξt , λt ∈ L∞(Ω,Ft , P).
A2: ξT > 0 and λT ≥ X f

T · ξT

A3: R EP
[
ξt+1|Ft

] = ξt for t ∈ T T−1
1 , and R EP [ξ1] = 1

123



Annals of Operations Research (2019) 275:421–460 429

A4: EP
[
ξt+1Xe

t+1|Ft
] ≤ η−1X f

t ξt for t ∈ T0
A5: EP

[
λt+1|Ft

] = X f
t ξt for t ∈ T0

A6: EP
[
λt+1|Ft

] ≤ λt for t ∈ T T−1
1

Proof The Lagrangian of (8) is given by

L(y, z, c, s; ξ, λ, ζ, γ ) = EP
[
cT + X f

T sT
]

+ EP
[
ζ
(
cT + X f

T sT
)]

+
T∑

t=1

EP
[
ξt

(
Rct−1 − ct + Xe

t yt−1 − R X f
t−1zt−1

)]

+
T∑

t=1

EP
[
λt
(
st−1 − st − yt−1η

−1 + zt−1
)]

− γ
(
c0 + X f

0 s0
)

, (9)

where γ ≥ 0 is a real number, ζ ≥ 0 a FT -measurable essentially bounded random variable,
ξt and λt are Ft -measurable and essentially bounded, i.e. ζ ∈ L∞(Ω,FT , P) and ξt , λt ∈
L∞(Ω,Ft , P).

After some reordering, (9) can be rearranged as follows:

L(y, z, c, s; ξ, λ, ζ, γ ) = EP [cT (1 + ζ − ξT )] + EP
[
sT
(
X f
T (1 + ζ ) − λT

)]

+ c0
(
EP [ξ1] R − γ

)
+ s0

(
EP [λ1] − γ X f

0

)

+ y0E
P
[
ξ1X

e
1 − λ1η

−1]+ z0E
P
[
λ1 − R ξ1X

f
0

]

+
T−1∑

t=1

EP
[
ct (R ξt+1 − ξt )

]+
T−1∑

t=1

EP
[
st (λt+1 − λt )

]

+
T−1∑

t=1

EP
[
yt
(
ξt+1X

e
t+1 − η−1λt+1

)]

+
T−1∑

t=1

EP
[
zt
(
λt+1 − R ξt+1X

f
t

)]
(10)

Using (10), the tower property of conditional expectation and keeping in mind yt , st ≥ 0,
the dual function

max
y≥0,z,c,s≥0

L(y, z, c, s; ξ, λ, ζ, γ ), (11)

is bounded (in fact zero almost surely) if and only if the following conditions hold:
ζ ≥ 0 (12)

ξT = 1 + ζ (13)

λT ≥ (1 + ζ ) X f
T (14)

γ ≥ 0 (15)

EP [ξ1] R = γ (16)
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EP [λ1] ≤ γ X f
0 (17)

EP
[
ξ1X

e
1

] ≤ η−1EP [λ1] (18)

EP [λ1] = R EP [ξ1] X
f
0 (19)

REP
[
ξt+1|Ft

] = ξt for t ∈ T T−1
1 (20)

EP
[
λt+1|Ft

] ≤ λt for t ∈ T T−1
1 (21)

EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1EP
[
λt+1|Ft

]
for t ∈ T T−1

1 (22)

EP
[
λt+1|Ft

] = R EP
[
ξt+1|Ft

]
X f
t for t ∈ T T−1

1 . (23)

Hence, the dual problem is a feasibility problem and (by weak duality) it follows that the
original problem is unbounded if and only if conditions (12)-(23) hold.

Equations (18) and (22), respectively (19) and (23) can be consolidated to

EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1EP
[
λt+1|Ft

]
for t ∈ T0 (24)

EP
[
λt+1|Ft

] = R EP
[
ξt+1|Ft

]
X f
t = X f

t ξt for t ∈ T0, (25)

if the fact that F0 is the trivial σ -algebra is taken into account.
From (12) and (13) we can infer ξT ≥ 1 > 0. Applying (20) recursively and keeping in

mind R > 0, it follows that

ξt > 0 (26)

for t ∈ T1. Immediately we get

γ > 0 (27)

from (16).
Therefore it is possible to divide inequalities by γ without changing their direction. It

follows that processes ξ ′ and λ′ fulfill the system (12)–(23) if and only if the processes

ξt = ξ ′
t

γ
and λt = λ′

t
γ
fulfill the modified system

ζ ≥ 0 (28)

ξT = 1 + ζ

γ
(29)

λT ≥ (1 + ζ )

γ
X f
T (30)

1 ≥ 0 (31)

EP [ξ1] R = 1 (32)

EP [λ1] ≤ X f
0 (33)

EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1EP
[
λt+1|Ft

]
for t ∈ T0 (34)

EP
[
λt+1|Ft

] = X f
t ξt for t ∈ T0 (35)

R EP
[
ξt+1|Ft

] = ξt for t ∈ T T−1
1 (36)

EP
[
λt+1|Ft

] ≤ λt for t ∈ T T−1
1 . (37)

(31) is superfluous. Clearly, from (29) and (30) we have λT ≥ ξt X
f
t . Furthermore, (28)

and (27) are equivalent to ξT > 0. Together this gives property A2 of the Lemma. Equations
(32) and (36) lead to property A3 and (37) is property A6.

123



Annals of Operations Research (2019) 275:421–460 431

It turns out that (33) is automatically fulfilled and can therefore be omitted: Using (35) it
is possible to replace EP [λ1] by EP [ξ1] X

f
0 in (33). Furthermore

EP [ξ1] = 1

R
(38)

can be inferred from (36). Together this leads to

X f
0 ≤ RX f

0 ,

which is a tautology, given that R ≥ 1 and X f
0 are nonnegative.

Finally, we see that property A4 and (34) are equivalent if (35) holds (and A3 is applied).
Hence all properties, A1–A6, of the Lemma can be derived from the Lagrangian of the test
problem.

Note also that

λt ≥ 0 (39)

holds for t = 0, . . . , T − 1 (and λT > 0) because of X f
t ≥ 0 and A2, A6. 	


So farwehave characterized arbitrage in termsof (rescaled) shadowprices ξt andλt .However,
this representation can also be used to derive no-arbitrage conditions in terms of equivalent
martingalemeasures. In the financial context arbitrage is not possible, if equivalentmartingale
measures exist. For electricity and fuel the no-arbitrage conditions are more complicated.

Proposition 1 A market
{
Xe
t , X

f
t

}
is η-arbitrage free if and only if there exist an equivalent

measure Q and a process λt ∈ L∞(Ω,Ft , P) with the following properties:

B1: 1
REQ

[
Xe
t+1|Ft

] ≤ η−1X f
t for t ∈ T0.

B2: λT ≥ X f
T

B3: 1
REQ

[
λt+1|Ft

] ≤ λt for t ∈ T T−1
1

B4: 1
REQ

[
λt+1|Ft

] = X f
t for t ∈ T0

Proof Assume that the market is η-arbitrage free. Hence there exist processes ξ ′, λ′ fulfilling
conditions A1–A6 of Lemma 2. From A2 and A3 we have that ξ ′

t > 0. Define now

ξt = ξ ′
t

EP
[
ξ ′
t
] and λt = λ′

t

ξ ′
t
. (40)

Furthermore note that from property A3 we can infer EP
[
ξ ′
t

] = 1
Rt by recursively applying

property A3 and taking expectation. It follows immediately that

EP [ξt ] = 1.

In particular, ξT is almost surely positive and EP [ξt ] = 1. This allows to define a measure
Q (equivalent to the original measure P) such that

∫

A
dQ(ω) =

∫

A
ξT dP(ω)

for any A ∈ FT . Hence the Radon–Nikodym derivative of Q with respect to P is given by

dQ

dP
= ξT . (41)
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From λ′
T ≥ X f

T · ξ ′
T (property A2 of Lemma 2) it is possible to conclude λT ≥ X f

T , i.e.
B2.

By the above definition of ξ the inequality

EP
[
ξ ′
t+1X

e
t+1|Ft

] ≤ η−1X f
t ξ ′

t ,

property A4 of Lemma 2, is equivalent to

1

R
EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1X f
t ξt . (42)

Properties A2, A3 also imply that ξt is a positive martingale, in particular

E [ξT |Ft ] = ξt .

Hence accounting for

E
[
ξt+1X

e
t+1|Ft

] = EP
[
E
[
ξT |Ft+1

]
Xe
t+1|Ft

] = EP
[
E
[
ξT X

e
t+1|Ft+1

] |Ft
] = EP

[
ξT X

e
t+1|Ft

]

we get

1

R
EP
[
ξT X

e
t+1|Ft

] ≤ η−1X f
t E [ξT |Ft ]

from (42). Finally [using (41) and applying the abstract Bayes rule, see e.g. Björk (2009),
Proposition B.41] this reduces to

1

R
EQ
[
Xe
t+1|Ft

] ≤ η−1X f
t ,

which is B1.
In similar manner, starting with EP

[
λ′
t+1|Ft

] = X f
t ξ ′

t (property A5 of Lemma 2) we get

1

R
EP
[
λt+1ξT |Ft

] = E [ξT |Ft ] · X f
t

and therefore

1

R
EQ
[
λt+1|Ft

] = X f
t .

which is property B4 of the Proposition.
Finally, property A6 of Lemma 2, EP

[
λ′
t+1|Ft

] ≤ λ′
t is equivalent to

1

R
EP
[
λt+1ξt+1|Ft

] ≤ λtξt .

and hence (again by Bayes’s rule)

1

R
EQ
[
λt+1|Ft

] ≤ λt ,

which is property B3.
For the converse start with a measure Q and a process λ fulfilling conditions B1–B4 of

the Proposition. Then use the density of Q w.r.t. P, see (41), to define a random variable ξT
and the positive martingale

ξt = E
[
ξt+1|Ft

]

as well as the processes
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ξ ′
t = ξt

Rt
and λ′

t = λtξ
′
t

Using the same equivalent transformation as above one can show that ξ ′, λ′ fulfills 1–6 of
Lemma 2 if ξ, λ fulfills B1–B4 of the Proposition. 	

ConditionB1 can be interpreted as a consistency condition between fuel and electricity prices:
under the equivalent measure Q the expected proceeds of selling one MWh of electricity at
the end of the period must be less or equal to the compounded costs R η−1X f

t for producing
one MWh electricity over the time period. Comparison of the spark spread (the difference
between contemporaneous efficiency-corrected electricity prices and fuel prices) can be seen
as a rule of thumb related to B1. Properties B2–B4 can be restated as λt ≥ X f

t together with
B4: under the measure Q the discounted expectation of λ equals the fuel price and at each
point in time λ is not less than the fuel price.

Moreover, conditions B2–B4 can be used to derive further properties of fuel prices under
the measure Q:

Corollary 1 If a market
{
Xe
t , X

f
t

}
is η-arbitrage free then there exists an equivalent measure

such that B1 holds together with

1

R
EQ
[
X f
t+1|Ft

]
≤ X f

t for t ∈ T0. (43)

Proof From B3, B4 one can infer X f
t ≤ λt for t ∈ T0. Taking expectation and using B4 a

second time leads to

1

R
EQ
[
X f
t+1|Ft

]
≤ 1

R
EQ
[
λt+1|Ft

] = X f
t (44)

for t ∈ T0.
In similar manner (43) can be derived from B2 and B4. 	


The necessary condition (43) states that under the no-arbitrage assumption the discounted
fuel price must be a supermartingale under any feasible Q. This ensures that the expected
revenue from storing fuel and selling it later does not exceed the proceeds from immediately
selling the fuel, if interest is taken into account.

The equivalent systems A1–A6 of Lemma 2 and B1–B4 of Proposition 1 include inequal-
ities. Depending on the processes X f

t and Xe
t , those systems will not in general lead to a

unique process ξt respectively a unique measure Q. Moreover, keep in mind that Proposition
1 does not require Q to be a martingale measure, like in purely financial models: neither the
(discounted) fuel price, nor the electricity price are necessarily martingales under a feasible
measure Q. Nevertheless it can be shown that the existence of a martingale measure for the
fuel price process together with consistency between fuel and electricity price is sufficient
for the exclusion of arbitrage.

Corollary 2 If there exists an equivalent measure Q such that B1 holds together with

1

R
EQ
[
X f
t+1|Ft

]
= X f

t , (45)

then the market is η-arbitrage free.

Proof B1 holds by assumption. Set λt = X f
t for all t . This choice fulfills B2. Substituting

λt+1 for X
f
t+1 at the left side of (45) leads to B4. Finally, using the same substitution on both

sides, and observing r > 0 leads to B3. 	
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Remark 5 We note that Lemma 2 and Proposition 1 can be generalized, if several production
units i ∈ {1, . . . , K } with different efficiencies are introduced. If yit denotes the energy
produced by unit i and ηi denotes the efficiency of unit i it is possible to reformulate the
basic accounting Eqs. (3) and (4) as

ct =
(
ct−1 − zt−1X

f
t−1

)
R +

K∑

i=1

yit−1X
e
t , (46)

st = st−1 −
K∑

i=1

yit−1η
−1
i + zt−1, (47)

which leads to a corresponding reformulation of the test problem (8). Let ηmax denote the
largest efficiency. Analyzing the related dual formulation then shows that the market is η-
arbitrage free for any ηi ≤ ηmax if and only if conditions A1–A6 (respectively B1–B4) hold
for η = ηmax .

3 Contract pricing and valuation

Consider now a delivery contract for electrical energy, agreed between a producer and a
customer and specified in the following way: the producer has the obligation to deliver
amounts Dt [MWh] of electric energy at a price of K currency units per MWh over each
period [t, t + 1], t ∈ T0. The demand Dt is a stochastic process adapted to the filtration {Ft }
while K is a fixed price, agreed in advance. This is a quite general setup, Dt might be just a
constant delivery or may depend in any measurable way on some {Ft }-adapted process, in
particular on the price processes.

Such contracts have to be distinguished from contracts like swing options, where the
demand can be optimized by the contract buyer as a reaction to the delivery price. For swing
option pricing by dynamic stochastic optimization see e.g. Haarbrücker and Kuhn (2009)
and Vayanos et al. (2011), for a method that accounts for the (multistage stochastic) bilevel
aspects of swing option valuation seeKovacevic and Pflug (2014) andGross and Pflug (2016),
further approaches can be found e.g. in Thompson (1995) and Carmona and Touzi (2008).

Two natural questions arise, when designing a contract:

(1) What is the value of the contract, when the delivery price K is given.
(2) What is an adequate delivery price?

Given the no-arbitrage conditions, derived above, in general there is no hope that a unique
arbitrage free price (or values) can be derived, even if themarket isη-arbitrage free. Therefore,
still taking into account the these arbitrage conditions, we analyze valuation and pricing
from the standpoint of a producer. As discussed in the introduction, a variant of the first
question then can be stated as: What is the minimum initial asset value or upfront-payment
V0 = c0 + s0X

f
0 such that the producer is able to fulfill all contractual obligations and the

distribution of the asset value at the end of the planning horizon, i.e. VT = cT + sT X
f
T , still

stays “acceptable”. The second question can be restated in similar manner: Given an asset
value of zero at the beginning, what is the minimum delivery price K such that the producer
is able to fulfill all contractual obligations and the distribution of the asset value at the end
of the planning horizon, i.e. VT = cT + sT X

f
T , still stays “acceptable”. Both, the minimum

upfront payment and the minimum delivery price are not market prices or market values.
However, when the delivery price has to be agreed below the firms minimum acceptable
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price (or value), then the producer will not enter the contract or at least has to take some
additional risk.

In the following we consider two approaches to acceptability. The first interpretation
requires that the asset value is almost surely not negative at the end. In finance this strict
approach is called superhedging. In the second case, the producer measures acceptability by
applying an acceptability functional to the end distribution and accepts the contract only if
the value of the functional, applied to the distribution of the end value exceeds some bound.
In what follows, we call this approach “acceptability pricing”.1

3.1 The superhedging value

The basic setup is the same as in the previous section. However, in contrast to the pure no-
arbitrage arguments, an individual producer cannot neglect that fuel storage and production
capacity is restricted. So S > 0 will denote the upper bound on storage and Pt is an {Ft }-
adapted process of upper bounds on the production of a generator with efficiency η. While
from a technical point of view the generator may have a fixed production capacity, the usage
of an (adapted) process Pt ≥ 0 of production capacities allows to consider the effects of
reserve-requirements or preferential demand, not related to the contract under consideration.
Furthermore, it is possible to handle (random) outages in this way. Again we assume that the
producer is a price-taker at both the fuel and the electricity market.

Because of the contractual obligations, only a part of the produced energy yt can be sold at
the electricity spot market after entering into the agreement. We therefore now have to make
a difference between produced energy and energy sold to the market. Moreover, in addition
to selling electricity at the market, it may also be useful for the producer to buy electricity
from the market in order to meet obligations, either because such trades are expected to be
cheaper than producing or because the deliverable amount exceeds the production boundary.
The amount wt of electricity sold at the market is an {Ft }-adapted stochastic process of
decisions that can take values in R. If wt is negative, an amount of energy is bought.

We start with the superhedging value V ∗
0 , the smallest up-front payment the producer

would accept for a contract with delivery Dt and delivery price K if he aims at an almost
surely nonnegative end value. The superhedging value can be calculated as the optimal value
of the following optimization problem for a producer with efficiency η, where the objective is
to minimize the asset value V ∗

0 = c0 + X f
0 s0 at the beginning (funded as an upfront payment

or as an initial reserve).

V ∗
0 (K , D, η) =

min
y,z,c,s

c0 + X f
0 s0

subject to

(t ∈ T1) : ct =
(
ct−1 − zt−1X

f
t−1

)
R + yt−1X

e
t − Dt−1X

e
t + K Dt−1

(t ∈ T1) : st = st−1 − yt−1η
−1 + zt−1

1 It must bementioned that in practice one often tries to estimate the value or price of a a contract by replicating
it as good as possible by electricity futures. While clearly it is possible to incorporate futures into the overall
approach of the current paper, we will leave this for future research. If we assume consistency between spot
and futures prices, our stylized model is still sufficient for valuation and pricing. Moreover, complete hedging
is not possible, because delivery patterns of futures are much more restricted than possible delivery patterns of
bilateral delivery contracts. So even if one sticks to hedging with futures, there will be some residual demand
that can be treated as demand Dt in the above terminology and valuated or priced by the proposed methods.

123



436 Annals of Operations Research (2019) 275:421–460

cT + X f
T sT ≥ 0

(t ∈ T ) : 0 ≤ st ≤ S

(t ∈ T0) : 0 ≤ yt ≤ Pt . (48)

About the prices Xe
t , X

f
t and the decision variables ct , yt , st , zt we make the same assump-

tions as in the previous section. In addition we assume that S is a real number and
Pt ∈ L∞(Ω,Ft , P) and Dt ∈ L1(Ω,Ft , P). This ensures again that in the following we can
use Lagrange multipliers from L∞(Ω,Ft , P), the dual space of L1(Ω,Ft , P).

The first group of constraints is an adapted self financing condition for the cash position,
taking into account that parts of the production are sold at the market. Note that under the
contractual obligations the cash position develops according to

ct =
(
ct−1 − zt−1X

f
t−1

)
R + wt−1X

e
t + K Dt−1. (49)

Here we assume that the delivery price K is payable at the end of each delivery period.
Produced energy splits into energy traded on the market and contractual energy delivery,
i.e. wt + Dt = yt . Therefore the first constraint of (48) follows by substituting yt − Dt for
wt in the basic cash Eq. (49). The second constraint group describes storage accounting. In
contrast to the no-arbitrage problem, now we have a restriction on the end value instead of a
restriction on the start value. Finally, constraint groups 4 and 5 specify the lower and upper
bounds on production and storage.

In order to analyze the superhedging problem (48) we use again the related dual problem.
The valuation problem (48) and the no-arbitrage test problem (8) look quite different at first
glance. However it turns out that the related dual problems have similar constraints as the
following Lemma shows.

Lemma 3 The Lagrange dual of the valuation problem (48) is given by

U∗
0 (K , D, η) = max

ξ,λ,μ,ν

T−1∑

t=0

EP
[
ξt+1

(
Xe
t+1 − K

)
Dt
]−

T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ]

subject to

ξT ≥ 0 and λT + νT ≥ X f
T · ξT

REP
[
ξt+1|Ft

] = ξt for t ∈ T T−1
1 and R EP [ξ1] = 1

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1X f
t ξt + μt

(t ∈ T0) : EP
[
λt+1|Ft

] = X f
t ξt

(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

] ≤ λt + νt

(t ∈ T ) : μt ≥ 0, νt ≥ 0, (50)

where ξt , λt , μt , νt ∈ L∞(Ω,Ft , P).
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Proof The Lagrangian of (48) can be written as

L(y, z, c, s; ξ, λ, ζ, μ, ν) = c0 + X f
0 s0

− EP
[
ζ
(
cT + X f

t sT
)]

−
T∑

t=1

EP
[
ξt

(
Rct−1 − ct + Xe

t yt−1 − Dt−1X
e
t − R X f

t−1zt−1 + K Dt−1

)]

−
T∑

t=1

EP
[
λt
(
st−1 − st − yt−1η

−1 + zt−1
)]

+
T−1∑

t=0

EP [μt (yt − Pt )] +
T∑

t=0

EP [νt (st − S)] , (51)

where ζ ≥ 0 is an essentially bounded FT -measurable random variable, and ξt , λt , μt ≥
0, νt ≥ 0 are chosen Ft -measurable and essentially bounded.

After reordering, (51) yields

L(y, z, c, s; ξ, λ, ζ, γ ) =
T−1∑

t=0

EP
[
ξt+1

(
Xe
t+1 − K

)
Dt
]−

T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ]

+ EP [cT (ξT − ζ )] + EP
[
sT
(
λT + νt − X f

T ζ
)]

+ c0
(
1 − EP [ξ1] R

)
+ s0

(
X f
0 + ν0 − EP [λ1]

)

+ y0E
P
[
λ1η

−1 + μ0 − ξ1X
e
1

]+ z0E
P
[
R ξ1X

f
0 − λ1

]

+
T−1∑

t=1

EP
[
ct (ξt − Rξt+1)

]+
T−1∑

t=1

EP
[
st (λt − λt+1)

]

+
T−1∑

t=1

EP
[
yt
(
η−1λt+1 + μt − ξt+1X

e
t+1

)]

+
T−1∑

t=1

EP
[
zt
(
ξt+1X

f
t R − λt+1

)]
. (52)

The dual problem then reads

max
ξ,λ,μ,ν

T−1∑

t=0

EP
[
ξt+1

(
Xe
t+1 − K

)
Dt
]−

T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ]

subject to

ξT = ζ and λT + νT ≥ X f
T · ζ

X f
0 + ν0 ≥ EP [λ1]

REP
[
ξt+1|Ft

] = ξt for t = 1, . . . , T − 1 and REP [ξ1] = 1

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ EP
[
λt+1|Ft

] · η−1 + μt

(t ∈ T0) : EP
[
λt+1|Ft

] = R EP
[
ξt+1|Ft

] · X f
t
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(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

] ≤ λt + νt

(t ∈ T ) : ζ ≥ 0, μt ≥ 0, νt ≥ 0, (53)

where the constraints ensure that theLagrange functionminy≥0,z,c,s≥0 L(y, z, c, s; ξ, λ, ζ, γ )

stays bounded.
Constraint groups 3–6 of (53) already coincide with the constraint groups 2–5 of

(50).Using ξT = ζ ≥ 0 the multiplier ζ can be eliminated, which [using the first line of
constraints in (50)] leads to ξT ≥ 0 and λT + νT ≥ X f

T · ξT . This resembles the first line of
constraints in (50). The second constraint of (53) can be reformulated as

X f
0 + ν0 ≥ EP [λ1] = R EP [ξ1] X

f
0 = X f

0 ,

and taking into account νt ≥ 0 shows that it is superfluous. 	


Absence of η-arbitrage ensures feasibility and the existence of inner solutions of (50),
which in turn leads to strong duality, i.e. the optimal value of the primal and the dual problems
coincide.

Proposition 2 If a market
{
Xe
t , X

f
t

}
is η-arbitrage free, then (48) has an optimal solution

and

V ∗
0 (K , D, η) = U∗

0 (K , D, η). (54)

Proof The constraints of Lemma 3 consist of (linear) equations and inequalities w.r.t. the
cone of nonnegative, essentially bounded random variables. The (linear) equations define
a convex set S of processes λ and ξ . Clearly the equations coincide with the equations in
A1-A6 of Lemma 2. Consequently, if the market is arbitrage free then S must be nonempty
because any arbitrage free ξ, λ together with μt = νt = 0 is feasible for (50).

Furthermore, if the market is arbitrage free, each λ, ξ in S also fulfills (by Lemma 2) the
inequalities

λT ≥ X f
T · ξT

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1X f
t ξt

(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

] ≤ λt ,

as well as ξt > 0. It follows that for such ξ, λ and any μ, ν with μt > 0,νt > 0 we have

λT + νT > X f
T · ξT

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

]
< η−1X f

t ξt + μt
(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

]
< λ + νt .

Summarizing, there exist processes ξ, λ, μ, ν in S such that the inequality constraints of 3
are strictly fulfilled.

Noting that the domain of the objective function imposes no relevant restriction, we see
that it is possible to apply the Slater condition for cone constrained vector optimization, see
e.g. Bot et al. (2009) p. 80. Theorem 3.2.9 of Bot et al. (2009) then implies strong duality
and the optimal values of (50) and its dual (48) coincide. Moreover, (48) has an optimal
solution. 	
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Proposition 2 shows that the shadow prices ξ related to the cash position, which occurs
in Lemma 3, can be interpreted as a process of stochastic discount factors applied to the
opportunity costs of delivering amounts Dt of electricity at price K instead of selling them
at the market at prices Xe

t . In particular Rtξt is a martingale and the relation

EP [ξt ] = 1

Rt
(55)

can be derived easily, which underpins this interpretation. The processes μ and ν can be
understood as special discount factors for available production and storage capacities (“value
of available capacity”). It is deducted from the opportunity costs, because larger production or
storage capacity increase the possibilities to produce and sell electricity when it is favorable.

On the other hand, the process λ (the shadow prices for storage accounting) does not
occur in the dual objective function and therefore cannot be interpreted as a process of
discount factors. However, it becomes apparent that λ is closely related to fuel prices. In
particular, constraint group 4 shows that the conditional expectation of λt+1 is equal to the
(stochastically) discounted fuel price at time t , i.e.EP

[
λt+1|Ft

] = X f
t ξt . Taking expectation

then implies

EP
[
λt+1

] = E

[
ξt X

f
t

]
= 1

Rt
EP
[
X f
t

]
+ Cov(ξt , X

f
t ),

which means that the expectation of λ equals the expected discounted fuel price plus a risk
loading, which is given by the covariance between the stochastic discount factor ξ and the
fuel price.

The idea of risk loadings can also be applied to the superhedging price as awhole.Given the
stochastic discount factors one can derive the following decomposition of the superhedging
price into expectations and covariances.

Corollary 3 If a market is η-arbitrage free, there exist stochastic discount factors ξ, λ, μ, ν

such that the superhedging value can be decomposed as follows:

U∗
0 (K , D, η) =

T−1∑

t=0

1

Rt+1 EP
[(
Xe
t+1 − K

)
Dt
]

−
T−1∑

t=0

EP [μt ]EP [Pt ] − S
T∑

t=0

EP [νt ]

+
T−1∑

t=0

CovP
[
ξt+1,

(
Xe
t+1 − K

)
Dt
]−

T−1∑

t=0

CovP [μt , Pt ] . (56)

Proof For η-arbitrage freemarket, it is possible to apply Proposition 2. The assertion then can
be obtained easily from the objective function of (50), by applying the relationCov(X , Y ) =
EP [XY ] − EP [X ]EP [Y ] and (55). 	

The first term at the right hand side of (56) is the expected present value of a pure trader,
fulfilling the contractual obligations by electricity bought on the market. Further expectation
terms correct for the risks of production outages and (limited) storage. The first covariance
term can be interpreted as a risk loading for a pure trader, while the second covariance term
is related to the effects of uncertain production capacities. Because the covariances may have
any sign and the effects of production and storage are subtracted from the expectation, all
kinds of contango and backwardation may arise.
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Corollary 4 If a market
{
Xe
t , X

f
t

}
is η-arbitrage free, then the optimal value function

V ∗
0 (K , D, η) is convex, both in K and in D.

Proof Let F denote the (convex) set of feasible ξ, λ, μ, ν for formulation (59) and define

δF (ξ, λ, μ, ν) =
{
0 (ξ, λ, μ, ν) ∈ F

∞ else.

We then have

U∗
0 (K , D, η) =

max
ξ,λ,μ,ν

{
T−1∑

t=0

EP
[
ξt+1

(
Xe
t+1 − K

)
Dt
]−

T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ]

+δF (ξ, λ, μ, ν)

}

(57)

which is equal to V ∗
0 (K , D, η) by Proposition 3. For fixed K the combined objective in (57)

is linear, hence convex in D. Therefore, U∗
0 (K , D, η) is obtained as a pointwise maximum

over an infinite set of convex functionals, which shows that U∗
0 (K , D, η) is convex in D. A

similar argument can be applied to show convexity in K . 	


An important difference between the constraints of (50) and the no-arbitrage conditions A1-
A6 is the fact that in the first case we have ξT ≥ 0, whereas in the second case the stricter
ξT > 0 is demanded. For η-arbitrage free markets the dual problem can be restated by using
equivalent measures in the following way:

Proposition 3 If the market
{
Xe
t , X

f
t

}
is η-arbitrage free, then the superhedging value

V ∗
0 (K , D, η) can be calculated as

V ∗
0 (K , D, η) = U∗

0 (K , D, η) = sup
Q,λ,μ,ν

EQ

[(
T−1∑

t=0

1

Rt+1

(
Xe
t+1 − K

)
Dt

)]

−
T−1∑

t=0

EQ 1

Rt
[μt Pt ] − S

T∑

t=0

1

Rt
EQ [νt ]

subject to

(t ∈ T0) : EQ
[
Xe
t+1|Ft

] ≤ Rη−1X f
t + μt

λT + νT ≥ X f
T(

t ∈ T T−1
1

)
: EQ

[
λt+1|Ft

] ≤ (λt + νt ) R

(t ∈ T0) : EQ
[
λt+1|Ft

] = RX f
t

P ∼ Q, (58)

where λt , μt , νt ∈ L∞(Ω,Ft , P)
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Proof Starting from (50) the dual problem can be reformulated as

U∗
0 (K , D, η) = sup

ξ,λ,μ,ν

T−1∑

t=0

EP
[
ξt+1

(
Xe
t+1 − K

)
Dt
]−

T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ]

(59)

subject to

ξT > 0 and λT + νT ≥ X f
T · ξT

(t ∈ T1) : REP
[
ξt+1|Ft

] = ξt and REP [ξ1] = 1

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ R EP
[
ξt+1|Ft

] · η−1X f
t + μt

(t ∈ T0) : EP
[
λt+1|Ft

] = R EP
[
ξt+1|Ft

] · X f
t(

t ∈ T T−1
1

)
: EP

[
λt+1|Ft

] ≤ λt + νt

(t ∈ T ) : μt ≥ 0, νt ≥ 0, (60)

If the market is η-arbitrage free then by Lemma 2 the feasible set of (59) is not empty. Let
ξ ′, λ′, μ′, ν′ be feasible for (59) and define again

ξt = ξ ′
t

EP
[
ξ ′
t
] and λt = λ′

t

ξ ′
t
. (61)

In addition, now set

μt = μ′

ξ ′ and νt = ν′
t

ξ ′
t
. (62)

Clearly we then have μt ≥ 0 νt ≥ 0. The arguments used in the proof of Proposition 1 can
be applied again to derive the following dual feasibility conditions for λ,μ, ν together with
and an equivalent measure Q with dQ

dP = ξT :

C1 : EQ
[
Xe
t+1|Ft

] ≤ R η−1X f
t + μt for t ∈ T0

C2 : λT + νT ≥ X f
T

C3 : EQ
[
λt+1|Ft

] ≤ (λt + νt ) R for t ∈ T T−1
1

C4 : EQ
[
λt+1|Ft

] = R X f
t for t ∈ T0

C5 : μt ≥ 0,νt ≥ 0 for t ∈ T

The second group of constraints in (50), i.e. REP
[
ξt+1|Ft

] = ξt is equivalent to ξt+1 =
RT−t−1EP

[
ξT |Ft+1

]
. Together with definitions (62) this fact can be used to reformulate the

dual objective function as

T−1∑

t=0

EP
[
ξ ′
t+1

(
Xe
t+1 − K

)
Dt
] = EP

[

ξ ′
T

T−1∑

t=0

RT−t−1 (Xe
t+1 − K

)
Dt

]

−
T−1∑

t=0

RT−tEP
[
ξ ′
Tμt Pt

]− S
T∑

t=0

RT−tEP
[
ξ ′
T νt
]
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Applying now (61) and the relation dQ
dP = ξT it is possible to reformulate the objective

function again and one gets the reformulated dual

sup
Q,λ,μ,ν

T−1∑

t=0

EQ

[
1

Rt+1

(
Xe
t+1 − K

)
Dt

]
−

T−1∑

t=0

1

Rt
EQ [μt Pt ] − S

T∑

t=0

1

Rt
EP [νt ]

s.t . C1 − C5

Q ∼ P.

If the market is η-arbitrage free we have V ∗
0 (K , D, η) = U∗

0 (K , D, η) by Proposition 2. 	


3.2 Superhedging prices

We keep the basic setup of a producer with bounded storage and production. As discussed
above superhedging prices ensure that - starting from an asset value of zero - all contractual
obligations are fulfilled and the asset value stays nonnegative at the end. In particular the
objective now is to minimize the delivery price, and the asset value starts at zero. This leads
to the following modification of (48)

K ∗(D, η) = min
y,z,c,s

K

subject to

(t ∈ T1) : ct =
(
ct−1 − zt−1X

f
t−1

)
R + yt−1X

e
t − Dt−1X

e
t + K Dt−1

(t ∈ T1) : st = st−1 − yt−1η
−1 + zt−1

c0 + X f
0 s0 = 0

cT + X f
T sT ≥ 0

(t ∈ T ) : 0 ≤ st ≤ S

(t ∈ T0) : 0 ≤ yt ≤ Pt . (63)

Again the dual problem of (63) reveals important properties of the superhedging price.

Proposition 4 The Lagrange dual of the pricing problem (63) is given by

G∗(D, η) = max
ξ,λ,μ,ν,γ

T−1∑

t=0

EP
[
ξt+1X

e
t+1Dt

]−
T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ] (64)

subject to

ξT ≥ 0 and λT + νT ≥ X f
T · ξT

REP
[
ξt+1|Ft

] = ξt for t ∈ T T−1
1 , and REP [ξ1] = γ

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1X f
t ξt + μt

(t ∈ T0) : EP
[
λt+1|Ft

] = X f
t ξt

(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

] ≤ λt + νt (65)

T−1∑

t=0

EP
[
ξt+1Dt

] = 1

(t ∈ T ) : μt ≥ 0, νt ≥ 0, (66)
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where for each t = 1, . . . , T the random variables ξt , λt , μt and νt are essentially bounded
and measurable w.r.t. Ft .

If the market is η-arbitrage free then

K ∗(D, η) = G∗(D, η).

Proof The Lagrangian of (64) is

L(y, z, c, s; ξ, λ, ζ, μ, ν) = K

− EP
[
ζ
(
cT + X f

t sT
)]

−
T∑

t=1

EP
[
ξt

(
Rct−1 − ct + Xe

t yt−1 − Dt−1X
e
t − R X f

t−1zt−1 + K Dt−1

)]

−
T∑

t=1

EP
[
λt
(
st−1 − st − yt−1η

−1 + zt−1
)]

+
T−1∑

t=0

EP [μt (yt − Pt )] +
T∑

t=0

EP [νt (st − S)] + γ
(
c0 + X f

0 s0
)

, (67)

where ζ ≥ 0 is an essentially bounded FT -measurable random variable, and ξt , λt , μt ≥
0, νt ≥ 0 are chosen Ft -measurable and essentially bounded.

After reordering (67) yields

L(y, z, c, s; ξ, λ, ζ, γ ) =
T−1∑

t=0

EP
[
ξt+1X

e
t+1Dt

]−
T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ]

+ EP [cT (ξT − ζ )] + EP
[
sT
(
λT + νt − X f

T ζ
)]

+ c0
(
γ − EP [ξ1] R

)
+ s0

(
γ X f

0 + ν0 − EP [λ1]
)

+ y0E
P
[
λ1η

−1 + μ0 − ξ1X
e
1

]+ z0E
P
[
R ξ1X

f
0 − λ1

]

+
T−1∑

t=1

EP
[
ct (ξt − Rξt+1)

]+
T−1∑

t=1

EP
[
st (λt − λt+1)

]

+
T−1∑

t=1

EP
[
yt
(
η−1λt+1 + μt − ξt+1X

e
t+1

)]

+
T−1∑

t=1

EP
[
zt
(
ξt+1X

f
t R − λt+1

)]

+ K

(

1 −
T−1∑

t=0

EP
[
ξt+1Dt

]
)

. (68)
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The Lagrange dual problem then can be written as

max
ξ,λ,μ,ν

T−1∑

t=0

EP
[
ξt+1X

e
t+1Dt

]−
T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ]

subject to

ξT = ζ and λT + νT ≥ X f
T · ζ

γ X f
0 + ν0 ≥ EP [λ1]

REP
[
ξt+1|Ft

] = ξt for t = 1, . . . , T − 1, and REP [ξ1] = γ

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ EP
[
λt+1|Ft

] · η−1 + μt for t = 0, . . . , T − 1

(t ∈ T0) : EP
[
λt+1|Ft

] = R EP
[
ξt+1|Ft

] · X f
t for t = 0, . . . , T − 1

(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

] ≤ λt + νt for t = 0, . . . , T − 1

T−1∑

t=0

EP
[
ξt+1Dt

] = 1

ζ ≥ 0 and μt ≥ 0, νt ≥ 0 for t ∈ T , (69)

where the constraints ensure that the Lagrange function

min
y≥0,z,c,s≥0

L(y, z, c, s; ξ, λ, ζ, γ ) (70)

stays bounded.
Constraint groups 3–6 of (69) already coincide with constraint groups 2–5 of (50). Using

ξT = ζ ≥ 0 we can eliminate ζ which leads to ξT ≥ 0 and λT + νT ≥ X f
T · ξT from the

first line of constraints of (64). This resembles the first line of constraints in (64). Finally, the
second constraint of (69) can be reformulated as

γ X f
0 + ν0 = R EP [ξ1] X

f
0 + ν0 ≥ EP [λ1] = R EP [ξ1] X

f
0 .

Taking into account νt ≥ 0 shows that this constraint is superfluous. Altogether we have the
dual (69).

Now, because of R > 0 and REP [ξ1] = γ the multiplicator γ must be nonnegative.
Moreover, the assumption γ = 0 would implyEP [ξ1] = 0 and hence ξ1 = 0with probability
one, which (using the second constraint and ξt ≥ 0) implies ξt = 0 a.s. for all t . This
contradicts

∑T−1
t=0 EP

[
ξt+1Dt

] = 1 and hence we can conclude γ > 0.
If now the market is η-arbitrage free, there exists a nonempty set of processes ξ ′, λ′

fulfilling conditions A1-A6. By multiplying all equations and inequalities by γ > 0, one
sees that the rescaled processes ξ = κξ ′and λ = κλ′ fulfill A1-A6 with the exception that
the equation REP [ξ1] = 1 is replaced by REP [ξ1] = γ . It is possible then to choose γ such
that

∑T−1
t=0 EP

[
ξt+1Dt

] = 1. Using these facts, the arguments of in the proof of Proposition
then can be used again, to show strong duality. 	

From the objective function of dual problem (64) one sees that, given strong duality, the
process of Lagrangemultipliers ξ can again be interpreted as some kind of stochastic discount
factor process. The superhedging price then can be regarded as the expected present value of
the costs of buying the contracted electricity delivery from themarket, corrected by the effects
of storage, production capacity and related risk loadings. There is also a decomposition into
expected present values and risk premia.
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Corollary 5 If a market
{
Xe
t , X

f
t

}
is η-arbitrage free, then there exist stochastic discount

factors ξ, λ, μ, ν and γ such that the superhedging price can be decomposed into

K ∗(D, η) =
T−1∑

t=0

1

Rt+1 EP
[
Xe
t+1Dt

]

−
T−1∑

t=0

EP [μt ]EP [Pt ] − S
T∑

t=0

EP [νt ]

+
T−1∑

t=0

CovP
[
ξt+1, X

e
t+1Dt

]−
T−1∑

t=0

CovP [μt , Pt ] .

Proof This is a straightforward application of the equation Cov(X , Y ) = EP [XY ] −
EP [X ]EP [Y ] to the objective of (69). 	


The interpretation of the stochastic discount factor ξ in Proposition 4 is quite different from
the interpretation of ξ in the case of superhedging, despite the fact that both processes can
be viewed as stochastic discount factors. While (55) holds for valuations, this is not true in
Proposition 4. Here ξ is normalized to ensure

∑T−1
t=0 EP

[
ξt+1Dt

] = 1, which means that
ξ must have dimensionality [1/MWh]. Nonetheless, it is possible to reformulate the dual
problem such that the stochastic discount factors can be interpreted in the same way as in
the previous subsection on valuation. However, this leads away from the linear objective
function in (64): the superhedging price then can be interpreted as expected (and adjusted)
present value of the opportunity costs divided by the expected discounted demand, where
both expectations use ξ as stochastic discount factors. In this formulation ξ is dimensionless
and (55) is valid.

Corollary 6 The dual problem (64) is equivalent to the fractional optimization problem

G∗(D, η) = max
ξ,λ,μ,ν,γ

∑T−1
t=0 EP

[
ξt+1Xe

t+1Dt
]−∑T−1

t=0 EP [μt Pt ] − S
∑T

t=0 EP [νt ]
∑T−1

t=0 EP
[
ξt+1Dt

]

subject to

ξT ≥ 0 and λT + νT ≥ X f
T · ξT

REP
[
ξt+1|Ft

] = ξt for t ∈ T T−1
1 , and REP [ξ1] = 1

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1X f
t ξt + μt

(t ∈ T0) : EP
[
λt+1|Ft

] = X f
t ξt

(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

] ≤ λt + νt

(t ∈ T ) : μt ≥ 0, νt ≥ 0, (71)

Proof Suppose ξ ′, λ′, μ′, ν′ and γ fulfill the constraints of the dual problem (64). As γ > 0,
define

ξt = ξ ′
t

γ
, λt = λ′

t

γ
and μt = μ′

t

γ
νt = ν′

t

γ
.
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Dividing all constraints of the dual (64) by γ and using the rescaled variables ξ, λ, μ, ν, one
gets the constraints of (71) plus the constraint

T−1∑

t=0

EP
[
ξt+1Dt

] = 1

γ
. (72)

On the other hand, the dual objective function can be rewritten with scaled multiplicators:

T−1∑

t=0

EP
[
ξ ′
t+1X

e
t+1Dt

]−
T−1∑

t=0

EP
[
μ′
t Pt
]− S

T∑

t=0

EP
[
ν′
t

]

= γ ·
(
T−1∑

t=0

EP
[
ξt+1Dt

]−
T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ]

)

. (73)

Substituting γ from (72) into (73) leads to the objective of (71). 	


3.3 Capital requirement and acceptability pricing

Superhedging-based approaches lead to price bounds for delivery contracts, comparable to
the rough no-arbitrage bounds for financial derivatives. The related strategy is riskless from
the producer’s perspective but usually contract cannot be sold at the superhedging price: the
smallest riskless price for the producer still may be expensive for the potential customers.
This problem intensifies for producers with smaller efficiency η. In order to offer the contract
at a reasonable price (or value) the producer definitely has to take some risk.

In the following we consider a producer who deviates from complete superhedging but
nevertheless wants to control the risk: instead of aiming at an almost surely nonnegative
asset value at the end, the producer accepts some risk but bounds the acceptability of the
final wealth distribution. In terms of optimization the third constraint group of the original
problem (48) [or the fourth of (63)] is replaced by the constraint

A
(
cT + X f

T sT
)

≥ α, (74)

where A denotes an acceptability functional which maps integrable random variables to the
real line, and α is a real number. In the following we analyze the two main issues, valuation
and pricing in this new context.

– (CR): Ifwe search for the smallest capital such that (74) holds togetherwith the production
and trading constraints of (48) (without constraint group four), this is the problem of
acceptability valuation (capital requirement). We denote this problem by (CR) and the
related optimal value by V ∗

0 (K , D, η).
– (AP): If we search instead for the minimum delivery price, using (74) within (63) (replac-

ing constraint group 4), then we call this an acceptability pricing problem, which we
denote by (AP). The related optimal value is K ∗

0 (D, η).

Acceptability valuation and pricing in the strict sense aims at the case α = 0. However,
α �= 0 may also be a sensible choice in certain situations. In particular, electricity producers
usually optimize their production and trading activities. Such producers therefore are able
to maximize the acceptability of their portfolio without the contract and then to calculate a
capital requirement or acceptability price for the new contract (keeping all existing production
and trading possibilities) with an acceptability not below the previously calculated optimal
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value. For the second step it is necessary to calculate a (CR) or (AP) problem with α different
from zero. This idea is often called indifference pricing (see Carmona 2009; Pennanen 2012
for the general idea, and Kovacevic and Paraschiv 2014; Analui and Kovacevic 2014 for
some applications to electricity production and trading).

Different notions of acceptability exist in literature. In the following we use acceptability
functionals (see e.g. Pflug and Römisch 2007), also known as monetary utility functions (e.g.
Jouini et al. 2008). Acceptability functionals are mappings A : Ξ ⊆ L1(Ω,F, P) → R

(where Ξ is a subspace), satisfying the following properties

– (MA1) Concavity. The functional Y �→ A(Y ) is concave.
– (MA2) Monotonicity. If X , Y ∈ L1(Ω,F, P) and X ≤ Y holds a.s., thenA(X) ≤ A(Y ).

– (MA3) Translation Equivariance. If X ∈ L1(Ω,F, P) and a ∈ R then A(X + a) =
A(X) + βa.

It should be kept in mind that—up to sign—such functionals are identical with convex risk
measures, e.g. Fritelli and Rosazza (2002). For simplicity we restrict the analysis to positive
homogeneous functionals centered at zero, i.e.

– (MA4) If X ∈ L1(Ω,F, P) and a ∈ R, a ≥ 0 then A(aX) = aA(X).
– (MA5) A(0) = 0

Recall that any positive homogeneous acceptability functional functional A on Ξ can be
rewritten in terms of the conjugate representation

A(X) = inf {E (ζ X) : ζ ∈ ΥA} , (75)

for some set ΥA ⊆ {ζ : Z ∈ Ξ∗and EP [ζ ] = β, ζ ≥ 0
}
where Ξ∗ is the dual space of Ξ .

In this formulation β can be interpreted as a (deterministic) discount factor. The infimum
is attained. See e.g. Pflug (2006) and Pflug and Römisch (2007), 2.22 for more details and
many examples of relevant functionals as well as Eichhorn et al. (2004) for a related class of
risk functionals used in electricity planning.

In the following we denote the set dual processes ξ, λ fulfilling the no-arbitrage require-
ments by

A = {(ξ, λ) : (ξ, λ) fulfills A1–A5} ,

which means that A is nonempty if the market is η-arbitrage free. In addition we will use
the specification Ξ = L1 (Ω,F, P) because our assumptions about the relevant processes
(integrable or essentially bounded as discussed before) implies that the end value is integrable.
The dual variable ζ then is in the space L∞ (Ω,F, P).

Based on the above setup, capital requirements calculated by acceptability valuation lead
to a slight modification of the superhedging results. The acceptability valuation problem
can be stated as the superhedging problem plus an additional constraint that states that the
discount factor ξT lies in the defining set ΥA of the used acceptability functional.

Proposition 5 Consider an acceptability valuation problem (CR) based on a positive homo-
geneous acceptability functional A with conjugate representation (75) and β = 1

RT . The
dual problem then is given by
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U∗
0 (K , D, η) =

max
ξ,λ,μ,ν

T−1∑

t=0

EP
[
ξt+1

(
Xe
t+1 − K

)
Dt
]−

T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ] + α

subject to

ξT ∈ ΥA and λT + νT ≥ X f
T · ξT

REP
[
ξt+1|Ft

] = ξt for t ∈ T T−1
1 , and R EP [ξ1] = 1

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1X f
t ξt + μt

(t ∈ T0) : EP
[
λt+1|Ft

] = X f
t ξt

(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

] ≤ λt + νt

(t ∈ T ) : μt ≥ 0, νt ≥ 0. (76)

If in addition the market
{
Xe
t , X

f
t

}
is arbitrage free and ΥA ∩ A �= ∅, then the capital

requirement equals the dual value, i.e.

V ∗
0 (K , D, η) = U∗

0 (K , D, η).

Proof Define the Lagrangian of (CR) by

L(y, z, c, s; ξ, λ, μ, ν, κ, ζ ) = c0 + X f
0 s0

− EP
[
ζ
(
cT + X f

t sT
)]

+ κα

−
T∑

t=1

EP
[
ξt

(
Rct−1 − ct + Xe

t yt−1 − Dt−1X
e
t − R X f

t−1zt−1 + K Dt−1

)]

−
T∑

t=1

EP
[
λt
(
st−1 − st − yt−1η

−1 + zt−1
)]

+
T−1∑

t=0

EP [μt (yt − Pt )] +
T∑

t=0

EP [νt (st − S)] , (77)

where κ ≥ 0 is a real number, ζ = κζ ′ for some ζ ′ ∈ ΥA, and the processes ξt , λt
, μt ≥ 0, νt ≥ 0 are adapted and essentially bounded. Recall that ζ ′ is the (attained)
minimizer in (75). Because of −inf {E (ζ X) : ζ ∈ ΥA} = sup {−E (ζ X) : ζ ∈ ΥA} the
optimal value V ∗

0 (K , D, η) of the acceptability pricing problem is V ∗
0 (K , D, η) =

min
y,z,c,s

max
ξ.λ,μ,ν,γ,ζ

L(y, z, c, s; ξ, λ, ζ, μ, ν, γ, ζ ) w.r.t. the above restrictions.

After reordering, (77) yields

L(y, z, c, s; ξ, λ, ζ, γ ) =
T−1∑

t=0

EP
[
ξt+1

(
Xe
t+1 − K

)
Dt
]−

T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ] + κα

+ EP [cT (ξT − ζ )] + EP
[
sT
(
λT + νt − X f

T ζ
)]

+ c0
(
1 − EP [ξ1] R

)
+ s0

(
X f
0 + ν0 − EP [λ1]

)

+ y0EP
[
λ1η

−1 + μ0 − ξ1X
e
1

]
+ z0EP

[
R ξ1X

f
0 − λ1

]
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+
T−1∑

t=1

EP
[
ct
(
ξt − Rξt+1

)]+
T−1∑

t=1

EP
[
st
(
λt − λt+1

)]

+
T−1∑

t=1

EP
[
yt
(
η−1λt+1 + μt − ξt+1X

e
t+1

)]

+
T−1∑

t=1

EP
[
zt
(
ξt+1X

f
t R − λt+1

)]
. (78)

Ensuring boundedness, the dual problem then is given by

max
ξ,ζ,κ,λ,μ,ν

T−1∑

t=0

EP
[
ξt+1

(
Xe
t+1 − K

)
Dt
]−

T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ] + κα

subject to

ξT = ζ, ζ = κζ ′ ζ ′ ∈ ΥA and λT + νT ≥ X f
T · ζ

X f
0 + ν0 ≥ EP [λ1]

REP
[
ξt+1|Ft

] = ξt for t = 1, . . . , T , and REP [ξ1] = 1

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ EP
[
λt+1|Ft

] · η−1 + μt

(t ∈ T0) : EP
[
λt+1|Ft

] = R EP
[
ξt+1|Ft

] · X f
t(

t ∈ T T−1
1

)
: EP

[
λt+1|Ft

] ≤ λt + νt

(t ∈ T ) : ζ ≥ 0, μt ≥ 0, νt ≥ 0. (79)

UsingEP
[
ζ ′] = 1

RT (which follows from translation equivariance ofA) andEP [ξt ] = 1
Rt ,

we can conclude κ 1
RT = κ · EP

[
ζ ′] = EP [ζ ] = EP [ξT ] = 1

RT , hence κ = 1 and therefore
ξT = ζ ∈ ΥA. The same arguments as at the end of the proof for Lemma 3 then lead to (76).

If ΥA ∩ A �= ∅, then the arguments of Proposition 2 can be used to show strong duality.
	


Interpreting Proposition 5, capital requirements (or acceptability valuation) can be considered
as an application of the idea of good deal bounds to energy markets. Good-deal bounds were
used in several papers for pricing of standard financial contracts, traded on incomplete mar-
kets. The upper bound is given by the maximum contract price using nonnegative stochastic
discount factors that price the basic assets (which leads to the no-arbitrage bound) and addi-
tionally fulfill some additional restrictions. A special case with a restriction on the variance
of discount factors was derived as the dual of minimizing the variance of discount factors that
correctly price a set of assets in Hansen and Jagannathan (1991). Cochrane and Saá-Roquejo
(2000) proposed good deal bounds as a general method for pricing in incomplete markets
and also coined the term. Different restrictions on the discount factors were proposed e.g.
in Bernardo and Ledoit (2000). In the present context of electricity markets with produc-
tion, the problem of acceptability valuation leads to a generalized good deal bound with the
appropriate no-arbitrage conditions and a restriction on the stochastic discount factor, namely
ξT ∈ ΥA, which comes from the used acceptability functional.

In the same manner a dual representation of the acceptability pricing problem (AP) can
be derived.
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Proposition 6 Consider an acceptability pricing problem based on a positive homogeneous
acceptability functionalAwith conjugate representation (75) andβ = 1

RT . The dual problem
is

G∗
0(D, η) =

max
ξ,λ,μ,ν

T−1∑

t=0

EP
[
ξt+1X

e
t+1Dt

]−
T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ] + αγ

subject to

ξT ∈ γ · ΥA and λT + νT ≥ X f
T · ξT

REP
[
ξt+1|Ft

] = ξt for t ∈ T T−1
1 , and R EP [ξ1] = γ

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1X f
t ξt + μt

(t ∈ T0) : EP
[
λt+1|Ft

] = X f
t ξt

(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

] ≤ λt + νt

T−1∑

t=0

EP
[
ξt+1Dt

] = 1

(t ∈ T ) : μt ≥ 0, νt ≥ 0. (80)

If ΥA ∩ A �= ∅, then the minimum upfront payment based on acceptability pricing equals
the optimal dual value, i.e.

K ∗
0 (D, η) = G∗

0(D, η).

Proof Defining the Lagrangian like in the proof of Proposition 5 leads to the dual problem

max
ξ,λ,μ,ν

T−1∑

t=0

EP
[
ξt+1X

e
t+1Dt

]−
T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ] + κα

subject to

ξT = ζ, ζ = κζ ′, ζ ′ ∈ ΥA and λT + νT ≥ X f
T · ζ

X f
0 + ν0 ≥ EP [λ1]

REP
[
ξt+1|Ft

] = ξt for t = 1, . . . , T , and REP [ξ1] = γ

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ EP
[
λt+1|Ft

] · η−1 + μt

(t ∈ T0) : EP
[
λt+1|Ft

] = X f
t ξt

(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

] ≤ λt + νt

T−1∑

t=0

EP
[
ξt+1Dt

] = 1

(t ∈ T ) : ζ ≥ 0, μt ≥ 0, νt ≥ 0.

Using EP [ξt ] = γ
Rt , we then can conclude

κ
1

RT
= κ · EP

[
ζ ′] = EP [ζ ] = EP [ξT ] = γ

RT
,
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hence κ = γ and therefore ξT = γ ζ ′.
The further arguments of the proofs for Propositions 5 and 6 then can be applied in a direct

way to derive (80) and the further statement of the current proposition. 	

Proposition 6 also implies a fractional representation. The proof repeats the arguments of
Corollary 6.

Corollary 7 The dual problem (80) is equivalent to the fractional optimization problem

G∗(D, η) = max
ξ,λ,μ,ν,γ

∑T−1
t=0 EP

[
ξt+1Xe

t+1Dt
]−∑T−1

t=0 EP [μt Pt ] − S
∑T

t=0 EP [νt ] + α
∑T−1

t=0 EP
[
ξt+1Dt

]

subject to

ξT ∈ ΥA and λT + νT ≥ X f
T · ξT

REP
[
ξt+1|Ft

] = ξt for t ∈ T T−1
1 , and REP [ξ1] = 1

(t ∈ T0) : EP
[
ξt+1X

e
t+1|Ft

] ≤ η−1X f
t ξt + μt

(t ∈ T0) : EP
[
λt+1|Ft

] = X f
t ξt

(
t ∈ T T−1

1

)
: EP

[
λt+1|Ft

] ≤ λt + νt

(t ∈ T ) : μt ≥ 0, νt ≥ 0. (81)

Proof Again, it can be shown that γ > 0. Assume that ξ ′, λ′, μ′, ν′ is feasible for (80) and
define rescaled variables ξt = ξ ′/γ , λt = λ′/γ , μt = μ′/γ , νt = ν′/γ , leads to a dual
objective function with scaled multiplicators

γ

(
T−1∑

t=0

EP
[
ξt+1X

e
t+1Dt

]−
T−1∑

t=0

EP [μt Pt ] − S
T∑

t=0

EP [νt ] + α

)

, (82)

and the first line of constraints reads ξT ∈ ΓA. Furthermore the rescaled variables fulfill
REP [ξ1] = 1 and

∑T−1
t=0 EP

[
ξt+1Dt

] = 1/γ . Solving for γ and plugging the result into
(82), leads to the objective function in (81). 	

Remark 6 Given the optimal stochastic discount processes ξ, μ, ν, λ capital requirements
can be decomposed according to Corollary 3 and acceptability prices can be decomposed
according to Corollary 5.

Remark 7 It is also possible to analyze valuation and pricing of delivery contracts if the
producer has available several generators. Using the setup of Remark 5, the constraints
of Lemma 3, Corollary 6 and Propositions 5, 6 have to be reformulated with η = ηmax .
Moreover, each expression

∑T−1
t=0 EP [μt Pt ] in the respective objective functions has to

be replaced with
∑K

i=1
∑T−1

t=0 EP
[
μi
t P

i
t

]
, where Pi

t denotes the production restriction of
generator i and μi is the related process of (essentially bounded) shadow prices.

4 An illustrative numerical example

As an example for a possible implementation of our results, we consider a producer who uses
a single gas turbine in order to produce electricity. The generator produces with a maximum
power capacity of 50MWand an efficiency of 0.43. Fuel can be stored up to an amount of 2800
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MWh. Storage starts empty. Interest is neglected, as often done in electricity applications,
i.e. we set R = 1.

We analyze the superhedging value of a contract that delivers 500 MWh for 10 days over
the time period 7:00–21:00 of a day, if the average electricity price of the previous day over
these hours is larger or equal to 40 Euro. If the average price of the previous day is smaller,
then no power is delivered.

In order to model the joint price process of gas and electricity we estimated a vector-
autoregressive model over the period 9/2017–11/2017 for the relative price differences
(returns) of GPL spot gas prices (daily, Bloomberg) and EEX Phelix electricity day ahead
spot prices (aggregated from hourly prices, Bloomberg). The model equation is given by

x f
t = a1 + b11x

f
t−1 + b12x

e
t−1 + ε

f
t

xet = a2 + b21x
f
t−1 + b22x

e
t−1 + εet , (83)

where xit = Xi
t−Xi

t−1

Xi
t−1

for i ∈ { f , e} denotes the relative price differences for fuel and

electricity,

B =
[
b11 b12
b21 b22

]

is the matrix of autoregressive parameters,

a =
(
a1
a2

)

is an intercept vector, and εt =
(
ε
f
t , εet

)′
are i.i.d. random vectors which are normally

N (0,Ω)-distributed with

Ω =
[

σ 2
f σ f σeρ

σ f σeρ σ 2
e

]
.

In the present paper we do not compete with the rich literature on electricity and gas price
forecasting (see e.g. Nowotarski and Weron (2018) for an overview of recent models). Our
aim for this example is just to use an easily tractable price model which leads to reasonable
price distributions. The model therefore does not include long term equilibrium effects (coin-
tegration of prices) amore complicated lag-structure (e.g. weekly dependencies) or important
exogenous variables like e.g. wind force.

Estimation (using the R-package vars, see Pfaff (2008)) of the model for our price data
led to the values

B̂ ≈

[−0.2343 −0.0155
0.2463 −0.2651

]
, â =

(
0.0046
0.0408

)

and

Ω̂ ≈

[
0.0015 0.0017
0.0017 0.0800

]
.

While the theoretical results of this paper are obtained for very general probability spaces,
in the following we use tree based multistage stochastic optimization in order to formulate
discretized versions of our valuation problems which leads to a reformulation on “tractable”
finite state spaces. In particular, scenario trees are used in order to model the discretized
processes as well as the information flow over time. We use the approach described in Pflug
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and Pichler (2014), 1.4. (for an alternative see e.g. Alonso-Ayuso et al. 2009), which can be
sketched as follows: the original time oriented formulation of (50), respectively (69), (76) or
(80), is replaced by a node oriented formulation. In our case this leads to an LP, which means
that standard software can be used in order to solve the approximating problem.

Consider a finite probability space Ω = (ω1, . . . , ωS) which contains S scenario paths.
Any stochastic process defined on this sample space can be represented as a finite tree with
node set N = {0, 1, . . . , N }. The levels of the tree correspond to the decision stages. Let
Nt be the set of nodes at level t , for t = 0, . . . , T . The last level NT contains the S leafs
of the tree which can be identified with the scenario paths. The tree structure represents the
filtration of the process and can be defined by stating the (unique) predecessor node n− for
each node n. There is a unique root node, by convention denoted with 0, which represents the
present. By construction there is a one to one relation between any node n and an assigned
pair (ω, t), which means that each node is related to the state of the system at time t in sample
path ω and vice versa.

The price processes Xe, X f are represented w.r.t. the nodes of the tree, i.e. we write
Xe
n, X

f
n instead of Xe

t (ω), X f
t (ω) if node n refers to scenario ω at time t . In similar manner

the decision processes x, c, s, z, y are related to the nodes: So far st (ω) denoted the random
amount of fuel stored at time t . In the discretized model, sn denotes the value of produced
energy planned at node n, which can be identified with a point in time t and a scenario ω.
Almost sure constraints are obtained by formulating the same constraint for all nodes of a
stage Nt . Moreover, constraints between points in time can be rewritten with node indices
instead of time indices, using the predecessor relation n−. As an example consider the cash
Eq. (3), which can be rewritten as

cn =
(
cn− − zn− X

f
n−
)
R + yn− X

e
n

in the node oriented formulation. The node structure defines the filtration in the discretized
model and the fact that all decision variables are dependent on nodes n ensures that decisions
are based on the information available in this node.

Finally, probabilities πn can be assigned to all leaf nodes n ∈ N (T), which also implies
probabilities πn for all other nodes. These probabilities then can be used to formulate the
expectations occurring in the objective functions of (50), respectively (69), (76) or (80): Let
X denote a random variable with values Xn in nodes n ∈ Nt for some stage t , then we
calculate

E (X) =
∑

n∈Nt

πn Xn

in the discretizedmodel.With known probabilities related to nodes, it easily possible to assign
conditional probabilities πnm for going to node m given that node n is reached. In fact these
conditional probabilities are used to formulate the dual constraints involving conditional
expectations: in the discretized model the conditional expectation E

[
Xt+1|Ft

]
for some

random variable Xt+1 (measurable with respect to Ft+1) is replaced by a random variable
Et that takes values En with probabilities πn in nodes n ∈ Nt such that

En =
∑

m: n=m−
πnm Xm .

Severalmethods have been proposed to construct approximating scenario trees (with given
tree structure) for stochastic processes, see e.g. Dupacova et al. (2003), Heitsch and Römisch
(2010), Kovacevic and Pichler (2015) and Pflug and Pichler (2015). In the following we
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use optimal quadratic quantization for modeling the discretized distribution of the (i.i.d.)
residuals εt in (83), from which the discretized conditional distribution of the price process
(X f

t , Xe
t ) can be derived. To this end consider a standard normally distributed random vector

Z =
(
Z1

Z2

)
, i.e. Z ∼ N (0, I2) where I2 denotes the 2 × 2 identity matrix. In a first step

we approximate this continuously distributed random variable by a discretely distributed

random variable Ẑ =
(
Ẑ1

Ẑ2

)
which may take finitely many values from the n−tupel z =

(z1, . . . , zn) = (

(
z11
z21

)
, . . . ,

(
z1n
z2n

)
). Optimal quadratic quantization chooses z such that

the quadratic distortion (or quantization error)

DZ
n (z) =

∫

R2
min
1≤i≤n

‖zi − u‖22 φ(u1)φ(u2) du1du2

(where u =
(
u1
u2

)
and φ denotes the density of the standard normal distribution) is mini-

mized. The approximating random variable Ẑ then can be described by the two dimensional
vectors zi and the related probabilities pi , which can be calculated as

pi =
∫

Ci (z)
φ(u1)φ(u2) du1du2,

where Ci (z) is the Voronoi tessel that contains zi , see e.g. Pagès and Printems (2003).
Our numerical example is based on a tree such that each node (except the leaf nodes) has

three successors, therefore we use a quantization of the two dimensional standard normal
distribution with n = 3. The related quantizers and probabilities have been calculated in
Pagès and Printems (2003) and can be downloaded at http://www.quantize.maths-fi.com:
the three quantizers (scenarios) are given by

z ≈

((
0.4355
−0.9397

)
,

(
0.5960
0.8492

)
,

(−1.0307
0.9235

))

and the related probabilities are p1 ≈ 0.3334, p2 ≈ 0.3330, p3 ≈ 0.3336. Given that z
represents three approximating scenarios for a two dimensional standard normal distribution,
we can obtain three approximating scenarios εq for the i.i.d. residuals εi with estimated
covariance matrix Ω̂ by using the Cholesky decomposition Ω̂ = LL ′ :

ε
q
i = Lzi .

Based on these considerations the i.i.d. random variables and their distribution εt can be
approximated by εq = (εq1 , ε

q
2 , ε

q
3

)
and the related probabilities p1, p2, p3. In particular we

can use this fact in order to construct a scenario tree for the discretized price process in the
following way: Given a node n, the related price values X f

n , Xe
n and returns

xn =

⎛

⎜⎜
⎝

X f
n −X f

n−
X f
n−

Xe
n−Xe

n−
Xe
n−

⎞

⎟⎟
⎠ ,
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price scenarios at three successor nodes s(n, i) such that s(n, i)− = n and i ∈ {1, 2, 3} are
obtained by

(
X f
s(n,i)

Xe
s(n,i)

)

= (e2 + a + Bxn + ε
q
i

) ◦
(
X f
n

Xe
n

)
,

e2 is the two dimensional vector of ones, ◦ denotes the component-wise multiplication
(Hadamard product) between vectors. The related probabilities p1, p2, p3 are then used
as conditional probabilities of going to node s(n, i) in the next step, given that node n is
reached. In our example we used the initial values (root node 0) X f

0 = 16.05, Xe
0 = 39.4

and x f
0 = 0.02578797, xe0 = 0.31791383.

In this way the scenario tree and the related prices can be constructed in an iterative way
and one can easily calculate unconditional probabilities for the nodes, in particular the leaf
nodes, from the conditional probabilities defined between the nodes. For the 10 days under
considerations, this leads to a tree structure with 88573 nodes and 59049 scenarios (leaf
nodes).

Based on the described setup and the concrete values used above, we implemented the dual
acceptability valuation problem (76). As the underlying acceptability functional we chose a
version of the average value at risk [see e.g. Pflug and Römisch (2007), 2.2.3] that allows
for correct discounting, namely the average value at risk of the discounted random variable
(“discounted average value at risk”) with parameter 0 ≤ θ ≤ 1, i.e.

AV@RRT
θ (X) = AV@Rθ

(
1

RT
X

)
= 1

RT
AV@Rθ (X).

In fact this is a trivial modification of the average value at risk. The only reason for defining
it separately, comes from the fact that (unlike the original average value at risk) it fulfills the
requirement of Propositions 5 and 6. From the conjugate representation of the average value
at risk (Pflug and Römisch 2007, Theorem 2.34) it can be easily derived that the conjugate
representation of the discounted value at risk is given by

AV@RRT
θ (X) = inf {E (ζ X) : ζ ∈ ΓA(θ)}

with

ΥA(θ) =
{
Z : E[Z ] = 1

RT
, 0 ≤ Z ≤ 1

RT θ

}
.

As a heritage from the average value at risk, the discounted average value at risk is a homo-
geneous acceptability measure and centered at zero. Moreover, for θ = 1 the discounted
average value at risk equals the discounted expectation of the random variable and for θ = 0
we get the essential supremum of the discounted values. Note that it is not needed to ensure
E[Z ] = 1

RT by a separate equation in (76), because this requirement is already implied by the

constraints REP
[
ξt+1|Ft

] = ξt for t = 1, . . . , T − 1, and REP [ξ1] = 1. Therefore only
the constraint 0 ≤ ξT ≤ 1

RT θ
has to be added in order to ensure ξT ∈ ΥA.

We choose α = 0 in (74) for defining the lower bound of acceptable outcomes. Then the
acceptability valuation includes the superhedging value as a special case. This is achieved
by setting θ = 0.

The described approaches for tree construction and optimization were implemented in
Matlab™, using YALMIP (see Lofberg 2005) for formulating the discretized dual valuation
problem (76) on the constructed tree. Here Gurobi™was used as linear optimization solver.
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We calculated the valuation problem for 101 (equidistant) values of the acceptability
parameter θ . While the capital requirement or acceptability value (which is the minimum
payment that the producer would accept for contracting) can also be calculated by using the
primal formulation, the dual problem allows to analyze the composition of the valuation,
based on Corollary (56), which is valid also in the acceptability context, compare remark 3.3.

The results are shown in Fig. 1. In the left diagram one can see the acceptability value
U∗(θ) (red line) and the sum of all expectations in the decomposition (56) (blue dashed line),

E(θ) =
T−1∑

t=0

1

Rt+1 EP
[(
Xe
t+1 − K

)
Dt
]− EPL(θ) − ESL(θ)

where

EPL(θ) =
T−1∑

t=0

EP [μt ]EP [Pt ]

EPS(θ) = S
T∑

t=0

EP [νt ]

are the effects of the turbine limits and the storage. Keep in mind that the processes μ and
ν are results of the optimization problem and depend on the acceptability parameter θ . The
difference between these two lines reveals the risk loading

C(θ) =
T−1∑

t=0

CovP
[
ξt+1,

(
Xe
t+1 − K

)
Dt
]
.

Note that the production capacity P is a deterministic constant in our example, therefore the
sum of covariances

∑T−1
t=0 CovP [μt , Pt ] vanishes.

The acceptability value goes down with increasing parameter θ . This is understandable,
because the constraint 0 ≤ ξT ≤ 1

RT θ
is more restrictive for larger values of θ, than for

smaller values, so the optimal value U∗(θ) must be smaller for larger values of θ . Moreover
it can be seen that the risk loading C(·) goes to zero when θ goes to 1: the acceptability
value with θ = 1 is exactly the the expectation part E(θ) and no risk loading is added at this
point. This comes from the fact that an agent with θ = 1 uses the expectation for measuring
acceptability and is therefore risk neutral. For θ = 0 the agent uses the essential infimum
as acceptability measure (which means that the acceptability value equals the superhedging
value as discussed above) and is therefore highly risk averse. However the risk loading does
not decrease monotonically in θ .

The right part of Fig. 1 shows (depending on θ ) the overall benefit of the equipment (solid
blue line) and decomposes the total effect into the partial effects for availability of the turbine
(production limit, dashed light blue) and for availability of storage (difference between the
solid blue and the dashed light blue line). In our example the effect of the available equipment
(production capacity and storage size) is large, because the efficiency of the generator is in
the upper range (for gas turbines) and the storage size allows to store the energy equivalent
of 500 MWh (the contract size) for roughly 2.4 days.

5 Conclusion

In the present paper we analyzed basic differences regarding the characterization of arbitrage
and the pricing of bilateral contracts between electricity markets and financial markets. Tools
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Fig. 1 Acceptability valuation with acceptability defined by AV@R
RT
θ . In the upper picture the acceptability

value and the related expected part E(θ) are plotted versus the parameter value θ . The lower picture shows the
decomposition of the equipment effect into the effect of the generator size (EPL) and the effect of the storage
size (ESL). (Color figure online)

from convex analysis and duality theory in a stochastic optimization framework were used
for this purpose. While keeping a fundamentally financial view, the models used account for
typical frictions like storage restrictions, production efficiency and asymmetric production
possibilities that are important for energy markets but not relevant for financial markets.
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Using this setup, arbitrage can be characterized by the feasibility of a system of equations
and inequalities, which ensures consistency between fuel and electricity prices and the pos-
sibilities of storage, cash accumulation and production. While the characterizing system can
be stated in terms of equivalent measures, the existence of equivalent martingale measures
are neither necessary nor sufficient like in the classical financial results.

If the market is arbitrage free, valuation and pricing problems can be restated in terms
of discount factors. The dual problems for superhedging pricing and valuation maximize
the expected present value of the respective opportunity costs, where the stochastic discount
factors are derived from the Lagrange multipliers and the costs account for the restrictions on
storage and production capacity. The dual feasible sets are a supersets of the no-arbitrage set.
Besides the stochastic discount factor process, the Lagrange multiplier for storage plays also
an important role: if rescaled properly, its expectation can be interpreted as a risk adjusted
version of the expected fuel price.

Finally, we considered capital requirements and acceptability prices, where the accept-
ability of the wealth distribution at the end was measured by concave, positive homogeneous
acceptability functionals. It shows that the dual representation of those quantities is quite
similar to the superhedging quantities, but that the set of feasible discount factors has to
be restricted even further, depending on the concrete acceptability functional. The results
show the similarities and dissimilarities between financial and energy markets quite well. In
particular, the dual problems follow the same principles as superhedging prices and good
deal bounds in finance, however the set of feasible discount factors is quite different from
the financial case (equivalent martingales).

Of course this paper restricts the analysis to a simple, stylized market model: further
frictions like storage costs, the usage of several fuels and production dependent efficiencies
may be considered in future research.
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