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Abstract Due to the frequently occurring disasters in the world, emergency management
is an attractive research area aiming to stabilize the disasters and reduce the potential dam-
age to human, facility and environment. The timely and effective emergency management
is highly relied on the utilization of observable information and the integration of avail-
able resources. Computational intelligence is one of the fastest growing areas in the field
of computer technology. Nowadays, big data has brought ever-increasing impact and chal-
lenge to effective data processing and intelligent decision-making. Computation intelligence
technologies play a vital role during the lifecycle of emergency management in the context
of big data. This review provides a comprehensive survey of state-of-the-art computation
intelligence technologies widely applied in the emergency management, and summarizes the
present-day emergency management systems in diverse industries. Finally, some promising
future research directions and challenges are indicated.
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1 Introduction to emergency management

In the contemporary society, a variety of disasters take place more and more frequently.
Inevitably, a considerable number of emergency events have posed a devastating threat to
human life, environmental protection, social stability, and even political relationship of all
countries around the world. The negative effects of disasters highlight the need to improve
the emergency management capability and strengthen the security for all countries in the
world.

Emergency management (EM) is served as a new discipline and there does not exist a
unified definition (Ji et al. 2007). Some representative definitions in the literature are as
follows:

• Defined by the Federal Emergency Management Agency (FEMA) of USA, emergency
management is the process of preparing for, mitigating, responding to, and recovering
from an emergency when a disaster happens (Federal Emergency Management Agency
1999).

• Emergency management disposes the disastrous events by implementing a serious of
activities, including detection, preparation, planning, mitigation, response, and recovery
(George et al. 2007).

• Modern emergency management is a process to apply modern technologies and manage-
ment methods to effectively monitor, response to, control, and process the emergency
events, by integrating various social resources and analyzing scientifically the cause,
development process and negative impact of events (Chen et al. 2009).

In short, emergencymanagement is a complex andmultifaceted task that involves a variety
of management activities from managers and stakeholders, so as to prevent the occurrence
of unexpected events, to control the social damages, and to eliminate the impacts caused by
emergency events.

The frequent occurrence of natural and man-made disasters prompted all countries to
continuously improve the emergency management process and mechanism. In the USA
(Department of Homeland Security of USA 2017), congress approved Emergency Banking
Act in 1933, which marked the beginning of emergency management. In 1967, the nation
promoted the construction of emergency system. In 1979, FEMAwas established as a federal
emergency management organization. Later, the 911 terrorist attack and hurricane Katrina
urged the US to issue the notable National Incident Management System (NIMS) in 2008.

Japan is one of the countries with massive disasters, especially earthquake, in the world. It
has been equippedwith specialized emergencymanagement mechanism based on the science
and technology in hazardmitigation. In 1993, the InternationalEmergencyManagement Soci-
ety (IEMS) was published (Rego 2001). In 1990s, the government designed an assessment
system to evaluate the emergency management capability of government and provincials.
Nowadays, Japan has built a multi-angle, multi-domain and multi-level coordination system
from prime minister’s office to various levels of power.

Emergency management in China started lately compared with the developed countries
(Chen et al. 2009). In the aftermath of the SARS in 2003, China initiated the development
of emergency management to cope with all types of disasters, ranging from natural hazards,
industrial accidents, epidemics, to terrorist attack. In 2007, China promulgated the Law of
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Emergency Response, which is the first overall and standardized document of emergency
management. Afterwards, more and more special emergency plans have been introduced to
meet the practical requirements. In 2015, the Anti-Terrorism Law was issued as a milestone
of emergency management for China.

Over the years, unconventional emergency management (Chen et al. 2009) has gradually
evolved as a focus of research. Unconventional emergencymanagement is aimed to deal with
the unexpected, unconventional emergencies (disasters, incidents, hazards) that happened
frequently in the world. Unconventional emergency management is characterized by (1)
no established rules; (2) a variety of constraints on time, information, and decision; (3)
intangible and conflicting criteria. These properties pose significant challenges to intelligent
data analysis and decision-support in emergency response. The objective of unconventional
emergency decision-making is to make fast and effective decisions with the partial and
incomplete information during the emergency response.

The evolution of an incident is composed of three stages in general, namely pre-incident,
during-incident, andpost-incident.Accordingly, emergencymanagement refers to the process
of three phases: (1) detect the early warning signs and predict the occurrence of potential
incidents; (2) response to, control, and process the emergency events for the purpose of
reducing the negative impact; (3) evaluate the loss caused by incidents and the execution of
response, and recover from an emergency. In Chen et al. (2009), emergency management
is described as a ‘4R’ process, namely reduction, readiness, response and recovery, where
reduction is referred to pre-incident phase, readiness and response are referred to during-
incident phase, and recovery is referred to post-incident phase. In each phase, the outcome
of decision-making impacts significantly the evolution of incidents and the effectiveness of
emergency management.

With the popularity of Internet, big data has become a challenging problem in the world
and therefore brought ever-increasing impact with both benefits and negatives in a wide range
of industries (Chen et al. 2012; McAfee and Brynjolfsson 2012). Big data is characterized
by ‘4V’s (i.e., volume, variety, velocity, and veracity) that have brought great difficulties and
challenges to traditional data understanding and analysis. Within the present-day emergency
management systems, the immediate and accurate decision-making more and more relies on
the capability of data analysis and processing especially in the face of big data. Therefore,
there is an urgent need to enhance the computational intelligence functionality of emer-
gency management, such as, to develop scalable and real-time algorithms for time-sensitive
decisions, to integrate structured, unstructured, and semi-structured data, to deal with the
imprecise and uncertain information, to extract dynamic patterns and outline the evolution
of these patterns, to work in distributed environment, and to present the multi-scale, multi-
level and multi-dimensional patterns through various visualization approaches (Amaye et al.
2016).

With the overwhelming increase of data, computational intelligence is regarded as a vital
decision-supporting technique in many popular emergency management systems. So far,
although both computational intelligence and emergency management have attracted con-
siderable attention in their research areas, little effort Chen and Chen (2009) was devoted
to the systemic literature review of computational intelligence technology application in
emergency management. There is an urgent necessity to review the development of current
emergency management systems from the computational intelligence view and identify the
gap between computational intelligence and emergency management. Our work is deemed
for this task contributing to the literature in the following issues. (1) It provides an extensive
review of existing computational intelligence technologies broadly applied in emergency
management. (2) It demonstrates the roles and functionalities of decision-supporting com-
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ponents embedded in real-world emergency management systems with the consideration of
industrial specificity. (3) It analyzes the challenges to computational intelligence in the big
data era when establishing an effective and applicable emergency management system, and
provides some caveats and guidelines for future research.

The rest of the paper is organized as follows. Section 2 reviews state-of-the-art com-
putational intelligence and related technologies, including decision tree, artificial neural
networks, support vector machines, evolutionary computation algorithms, approximate
reasoning approaches, association rule mining, case-based reasoning, clustering and visual-
ization. Section 3 discusses the major topics in emergencymanagement with the emphasis on
the contribution of computational intelligence. The potential of computational intelligence
is extensively addressed in different tasks of emergency management, including risk assess-
ment and early warning evaluation, emergency service facility location, emergency supply
allocation and route programming, crowd evacuation in emergencies, emergency response
planning, emergencydata preprocessing andvisualization. InSect. 4,wepropose amulti-level
framework of intelligent emergency management system integrating a variety of sources and
functionalities. Some real-world emergency management systems categorized by industries
are introduced mainly focusing on the functionalities of computational intelligence tech-
nologies. Section 5 concludes the paper and highlights some interesting directions for future
research.

2 Literature of computational intelligence technologies

Computational intelligence (CI) is a sub-discipline of artificial intelligence (AI), usually
defined as a set of computational methodologies and approaches designed to solve a specific
task. The concept of computational intelligence was proposed for the first time in Bezdek
(1992) and later the 1st World Congress on Computational Intelligence (WCCI) was held in
1994. Nowadays, computational intelligence has become a hot and ongoing research sub-
ject of computer science and has a wide range of applications in real world. Computational
intelligence has potential advantages over traditional modeling methods to address the diffi-
cult real-world problems which are characterized by complexity, uncertainty and stochastic
process in nature. As an interdisciplinary subject, themethodologies and principles of compu-
tational intelligence come frommultiple subjects including physics, chemistry, mathematics,
biology, psychology, physiology, neuroscience, computer science, etc.

Conventional computing mostly involves the methods implemented manually by a set
of programs and data structures, such as databases, word processors, and spreadsheet anal-
ysis. In contrast, computational intelligence involves the iterative learning from empirical
data and eventually emulating an intelligent response to users. From the perspective of data,
the learning can be categorized into supervised learning, unsupervised learning, and semi-
supervised learning. Supervised learning is the machine learning task which analyzes the
labeled data with desired input and output, and infers a mapping function that can be used on
new data. Typical examples of supervised learning include face recognition, medical diag-
nosis, fault detection, generally producing a prediction in response to a query. The widely
studied supervised learning problems are binary classification, multi-class classification,
multi-label classification, ranking problems, and real-valued prediction (Jordan andMitchell
2015). Unsupervised learning intends to discover the hidden patterns under specific assump-
tions about the structural properties of unlabeled data. A diverse array of clustering methods
have been developed to detect the structure of clusters embedded in data. In addition, semi-
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supervised learning that falls between supervised learning and unsupervised learning makes
use of unlabeled data along with labeled data in the context of supervised learning.

From a general perspective, computational intelligence tools mainly comprise neural
computing, fuzzy logic computing, evolutionary computation, and other related intelligent
computing methods. Neural computing typically refers to artificial neural network algo-
rithms which simulate the human intelligence by a network structure of artificial neurons.
Fuzzy logic computing imitates the imprecise concepts of human language and thought.
Evolutionary computation algorithms that simulate the wisdom of nature include genetic
algorithm, swarm intelligence algorithms (ant colony optimization algorithm, particle swarm
optimization algorithm, etc.), immune algorithm, simulated annealing algorithm, Tabu search
algorithm, and so forth. In addition, some other intelligent computing methods (such as deci-
sion tree, association rule mining, clustering and visualization) also have extensive utilization
in emergency management. In this article, our efforts are directed to the application of these
technologies in different emergency management tasks that cover the lifecycle of emergency
and the corresponding management.

2.1 Decision trees

Classification is one of the most important tasks in emergency management, dealing with
the likelihood of an incident’s occurrence, quantitative rating of the damage, assessment of
emergency actions, and recognition of affected objects. Classification is typically a supervised
learning process which learns the patterns that best fit the relation between independent
features and target feature (i.e., class label) given a training data set, and then predicts the class
of new datawhose label is unknown.Among all different classificationmethods, decision tree
(DT) is one of the fastest and easily interpreted algorithms. Decision tree infers a tree-shape
structure in which the internal nodes define a test on the value of independent attributes,
and the leaf nodes indicate the class of associated instances. It is constructed by recursively
selecting the best feature and value that split the data into subsets (corresponding to the tree
branches) until the stopping criterion is met. So far, different decision tree algorithms such as
ID3, C4.5, CART, Random Forest, ADTree have been proposed differing in feature selection,
tree pruning, and data structure to improve the generalization capability and scalability of
decision trees. In a post-earthquake emergency building inspection system, an assessment
model based on C4.5 decision tree was designed to evaluate the damage and usability of
affected buildings (Gerbesioti et al. 2001). Decision trees have some advantages: (1) The
learning process of decision trees is non-parametric without the requirement of other domain
knowledge. (2) Decision trees can deal with both discrete and continuous data. (3) Decision
trees have comparable accuracy with neural networks, but the computational cost is much
lower. (4) The hierarchical tree model is simple and easily interpreted. Once the tree is
constructed, the classification of new samples is operated by a series of test on the independent
features. A set of classification rules can be easily derived by combining the tests along the
path from the tree root to the leaf nodes. (5) Decision trees are able to discover the dominant
variables that determine the target class. For example, Revillaromero et al. (2014) used
random forest decision tree to recognize the potential factors that affected the remote sensing
signal of Global Flood Detection System on the analysis of 322 river measurement locations
in Africa, Asia, Europe, North America and South America.
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2.2 Artificial neural networks

Artificial neural network (ANN) is an information processing paradigm inspired from the
biological system to deal with nonlinear complex problems that are difficult for conventional
computations. It is composed of a set of highly interconnected processing elements (i.e.,
artificial neurons) working in parallel for data computation through an adaptive learning
approach. Artificial neural networks have different architectures accordingly used in various
emergency management tasks. Generally, the ANN family consists of many variants includ-
ing multi-layer perceptron (MLP), self-organizing map (SOM), learning vector quantization
(LVQ) among others.

MLP where the connections between neurons do not form a direct circle is aimed to opti-
mize the connectionweights by back-propagation (BP) algorithm thatminimizes the outcome
error. MLP has remarkable ability to approximate any nonlinear relationship embedded in
the real-world data. The prediction models based on ANNs usually demonstrate high accu-
racy and robustness to noise data. However, artificial neural networks suffer from some
weaknesses, such as, explanation difficulty as a black-box algorithm, high computational
cost, sensitivity to parameters, convergence to local minima, overfitting to the training data,
handling only continuous data. MLP neural network has a wide range of applications in
emergency management mostly focusing on prediction and evaluation tasks, such as the
risk of incidents, vulnerability of facilities, and effectiveness of emergency response. It was
ever used to evaluate the validity of electric power emergency management system (Zhang
et al. 2010), city emergency management system (Jiang and Li 2012), and coal mine safety
emergency management (Wen et al. 2013).

SOM where the neurons are set along a grid and connected through a neighborhood
function is learned in an unsupervised manner. SOM is able to reduce the amount of data
and simultaneously project the data onto a lower dimensional array, so that it is usually used
for data clustering and visualization while dealing with big data. SOM was used to discover
and visualize the spatial and temporal anomalies from the large amount of emergency calls
in the Czech Republic (Klement and Snase 2010).

LVQ is a supervised variant of SOM designed for data classification. In Abpeykar and
Ghatee (2014), a decision support system was implemented based on both unsupervised
learning (including SOM, K-means, and hierarchical clustering) and supervised learning
(including LVQ, SVM, and CART decision tree) for intelligent incident management in
Tehran Niayesh tunnel.

2.3 Support vector machines

Support vector machines (SVMs) are supervised learning models that define a kernel func-
tion able to transform the data to a high-dimensional feature space where the data can be
separated by linear models. SVMs search for an optimal hyper-plane that separates the differ-
ent class samples with the maximal margin. The points closest to the hyper-plane (decision
boundary) are called support vectors which in fact are the most difficultly classified samples.
SVMs are typically categorized as a type of ANN in the sense they share the same form of
model, whilst they differ in the selection of activation function and regularization. SVMs have
demonstrated significant generalization performance when the underlying data is nonlinear
and non-stationary, and therefore gained wide popularity in solving both regression and clas-
sification tasks. SVMs are designed for binary classification in nature, but they can also solve
the multi-class classification problems through one-against-one or one-against-all strategy.
SVMs were found effective in Emergency Rescue Evacuation Support System (ERESS) to
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detect the occurrence of a sudden incidence and generate an appropriate evacuation route so
as to decrease the human damage in panic-type disasters (Higuchi et al. 2014; Mori et al.
2012).

2.4 Evolutionary computation algorithms

It is well known thatmany decision-making problems, such as the allocation optimization and
route scheduling of emergency supplies, emergency facility location, and crowd evacuation,
can be defined as an optimization solving problem. Evolutionary computation algorithms
and recently emerged swarm intelligence methods are the widely employed strategies to
solve optimization problems. Themost commonly used evolutionary computation algorithms
consist of genetic algorithm, Tabu search, simulated annealing, swarm intelligence.

The genetic algorithm (GA), proposed by Holland in the 1970, simulates the evolutionary
process of natural selection to find the global solution to an optimization problem. It represents
the solution in the formof chromosome string coded in a properway. The evolutionary process
starts from an initial population of solutions, and iteratively improves the solutions to achieve
better fitness by selection, crossover andmutation operators. GA has promising advantages of
self-organization, self-adaption, self-learning, fault tolerance, and implicit parallelization. It
was proved an effective approach to solve the location and allocation optimization problems
of emergency facilities (Chuan-Feng and Chao 2009; Donmez 2015).

Tabu search is a meta-heuristic random search method for mathematical optimization
problems. It starts from an initial solution, and searches the neighbors for an improved
solution (local search) with some relaxed rules. During the search process, a Tabu table
which records the previously visited solutions is employed to avoid the convergence of local
optimal solution. In Ren et al. (2012), a Tabu search heuristic algorithm was developed to
solve the dynamic scheduling optimization problem for emergency rescue. In a similar way,
simulated annealing (SA) is an improved local search algorithm based on the principle that a
bad solution can be accepted with a certain probability so that the search has the opportunity
to jump out the local optimal solutions and finally reach the global optimal solution. SA
was used in a dynamic optimization model to calculate the optimal allocation of available
resources to different operational areas (Fiedrich et al. 2000).

Swarm intelligence algorithms inspired by the swarm behavior of insects, birds, and other
animals, attempt to find the optimal solution through the collective intelligence of the swarm.
Swarm intelligence algorithms are remarkable in robustness, self-organization, distribution,
simplicity, scalability, and especially appropriate for solving complex optimization problems
in large data environment. In the implementation of multi-agent systems, swarm intelligence
algorithms have shown the notable potential in improving the robustness, flexibility and
adaptability of systems (Duan 2012). At present, the commonly applied swarm intelligence
algorithms are ant colony algorithm (ACO), particle swarm optimization (PSO), bacterial
foraging optimization (BFO), frog leading algorithm (FLA), artificial bee colony algorithm
(ABC). The swarm intelligence algorithms are usually applied in stand-alone manner to
optimization problems or combined with the prediction models to improve the prediction
accuracy. In many studies, swarm intelligence algorithms are proved particularly practical
to solve the multi-objective optimization problems involved in various emergency tasks. Ibri
et al. (2010) combinedACOwith Tabu search heuristic algorithm in the hope of improving the
dispatching and covering optimization for emergency vehicle fleet management system.Wen
et al. (2013) proposed an ACO algorithm to solve the resource location-allocation problem
and route planning problem. Zhang et al. (2015) used PSO to simulate the individual and
crowd movement in a fire and designed the best evacuation mechanism.
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2.5 Approximate reasoning approaches

Unconventional emergency management decision making problems are usually character-
ized by insufficient risk identification, incomplete and inaccurate information, and uncertain
decision-making environment to which the classic determinate decisionmodels are no longer
feasible (Sun et al. 2013). Fuzzy logic, rough set, and Bayesian theory belong to the soft com-
puting and approximate reasoning approaches capable to address the imprecise, inconsistent,
incomplete information and knowledge.

Fuzzy sets were introduced by Zadeh in 1965 as an extension of crisp sets. Different
from crisp sets where an element belongs to a set definitely, fuzzy sets define an indefinite
boundary that elements have a membership degree to the set by a real number between 0 and
1. Application of fuzzy logic can be found in many disciplines, such as computer science,
control engineering, decision theory, expert systems. Fuzzy logic is of extreme interest in
dealing with the uncertain problems, in particular the intricate process of inter-organizational
problem solving. In emergencymanagement, Fuzzy logic can assist decisionmakers to handle
the complex decision making problems in uncertain environments in the form of linguistic
concepts and rules (Guo et al. 2014). Dellorco has embedded the fuzzy perception and anxiety
reasoning in a microscopic model of crowd evacuation able to depict the collective behavior
of the crowd (Dellorco 2007). To evaluate the physical effects of non-lethal weapons, a fuzzy
logic-based crowd injury model was proposed by using linguistic rules properly designed by
the problem domain experts (Kugu et al. 2014).

Rough set approximates the imprecise concepts with a number of precise concepts. Given
an imprecise concept A, the rough set is based on two approximation operators: lower approx-
imation operator indicates the precise concepts contained in A, and upper approximation
operator indicates the precise concepts whose intersection with A is non-empty. Rough set
has potential in dealing with uncertain concepts, without the necessity to define the member-
ship function as it was in fuzzy logic. The research on rough set theory is mainly focused on
feature reduction, rule acquisition, and hybrid prediction model. Sun et al. (2013) developed
a fuzzy rough set model (Dai and Tian 2013) to predict the emergency material demand
and applied with success in earthquake emergency material demand forecasting. Xi and Sun
implemented an urban emergency early warning system by the use of rough set theory to
improve the prediction accuracy (Xi and Sun 2013). Fuzzy logic and rough set are usually
combined with some modeling approaches (for example, a soft CBR model that combined
fuzzy logic with case-based reasoning Krupka et al. 2009) to handle the vagueness and
uncertainty during the knowledge description in emergency management.

Bayesian decision theory is a probability decision paradigmunder incomplete information,
by estimating the unknown state with subjective probability, modifying the probability by
Bayesian rules, andmaking optimal decisionswith respect to the expected value and corrected
probability. A Bayesian decision framework for hurricane forecast is intended to address the
complex decision making problems (mandatory evacuation, evacuation supplies location,
etc.) with respect to an observed tropical cyclone with a tradeoff between the efficiency
and accuracy (Taskin and Lodree 2011). Bayesian theory has notable benefit to describe the
uncertainty of the relationship among decision makers, decision and decision alternatives. It
was recently used to derive decision rules with the consideration of dynamic changes of the
relation among the three factors. The effectiveness of the decision model was verified in a
flood disaster emergency case (Wang and Luo 2015).
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2.6 Association rule mining

Association rule (AR) mining is intended to discover the interesting correlation among vari-
ables in large databases. It was initially introduced to discover the relation among products
(items) from the purchase data (transactions) of supermarkets and has extended to various
types of databases and application areas. The present-day AR mining algorithms are able
to discover binary association rules, quantitative association rules, multi-level association
rules, and sequence rules. The strength of an association rule is measured in terms of support
and confidence. The former indicates the possibility of the items (item sets) occurring in the
transaction. The latter indicates the conditional possibility of some items (referred to the right
part of rule) occurring in the transaction in the presence of other items (referred to the left part
of rule) in the same transaction. In generally, AR mining consists of two steps: it firstly finds
all large item sets which satisfy the support threshold, and then generates the association rules
meeting the confidence threshold. In emergency management, AR mining is usually used in
risk assessment of a particular incident or exploring the implicit relationship in emergency
event analysis (Harms et al. 2004). It was applied to explore the spatial relationship between
emergency locations and surrounding objects that contribute to emergency resource planning
(Fan and Luo 2013), as well as the inner relationship of related parameters about drilling
accidents (Yue and Xiao 2013).

2.7 Case-based reasoning

Case-based reasoning (CBR) is a popular and well researched method based on the concept
that previous experience is able to provide suggestions to new problems by recalling the
similar historical events and scenarios. The kernel of CBR is K-nearest neighbors (KNN)
principle which measures the similarity of a new instance with the past samples using a
properly-defined kernel function. CBR system is a ‘4R’ process: (1) Retrieval step searches
the case base for the similar past samples; (2) Reuse step adapts the similar samples to the
new situation and generates the solution; (3) Revise step validates the effectiveness of new
solution in terms of some criteria; (4) Retain step adds the new sample and its solution to the
case base if the validation is accepted. Despite the disadvantages (e.g., sensitivity to kernel
function, high computational cost, andmaintenance overhead of the case base) comparedwith
the rule-based learning paradigm, CBR avoids the complicated model training phase and is
applicable to a variety of data types. In emergency management, CBR is the most commonly
used approach to generate the emergency response plan under the support of a well-managed
plan database. An emergency response plan starts from the risk assessment that identifies the
potential emergency scenario, then understands the resource requirements, and finally creates
a response plan for all the facilities involved with the full use of available resources. A CBR-
based model was realized to offer the rescue recommendations to the commander of a fire
protection unit (Krupka et al. 2009). The decision is made based on previous cases, namely
the guidelines in the fire protection manual, and modified with respect to the real situation
and constraints. Later, Huang et al. (2012) applied natural language process technique that
generates imperfect cases from raw information to a practical CBR system for incident
reaction and treatment of emergency engineering. In Ma et al. (2014), CBR was introduced
to automatically generate the traffic incident response plan. In this approach, Bayesian theory
was adopted to predict the unknown values in order to enhance the accuracy of case retrieval.
CBR was also embedded in a decision support system to generate the response and recovery
measures to nuclear emergencies (Moehrle and Raskob 2015). However, the application of
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CBR in emergencymanagement ismostly limited to specific disaster types like fire, hurricane,
flood, where the domain knowledge could be easily obtained and structured.

2.8 Clustering and visualization

Clustering analysis is an unsupervised process to group the data into a number of homo-
geneous clusters that have maximal intra-class similarity and minimal inter-class similarity.
The intrinsic similarity or distance measure is defined with respect to the data type and inves-
tigated problem. Clustering is a very useful approach when there is no pre-classified data.
It is usually carried out in the pre-processing phase to generate compressed representatives
of raw data so that the deep data analysis becomes easier especially for large, complex data
set with many variables and a lot of internal structures. The use of clustering in emergency
management mainly focuses on the high quality information acquisition from a mass of raw
data with redundancy and noise. There are multiple approaches to clustering, including par-
titional clustering, hierarchical clustering, density-based clustering, grid clustering, concept
clustering, self-organizing map and so on. In additional to the traditional data, social media
(such as Twitter, Flickr and YouTube) has become a vital part with increasing popularity in
emergency management. Sakai and Tamura (2014) utilized geotagged tweets to identify the
bursty areas of emergency topics using a density-based spatiotemporal clustering algorithm.
Clustering was used to generate the situational summaries by making use of the image and
video streams from social media and recognize the sub-events that are valuable to emergency
management response (Pohl et al. 2016).

Visualization offers a visual and interactive representation for users to understand the
data. Visualization plays an important role in emergency management, such as to detect the
distribution and property of the incident, facility and environment, to monitor the evolution
of incidents and the process of emergency response, and to provide a user-friendly interface
to emergency experts (Lu et al. 2013; Wu et al. 2013). When the data is in low dimension
(< 3), the commonly used visualization techniques include histogram, box plot, scatter plot,
dendrogram, heatmap, plot matrix, hyperbolic tree, parallel coordinates, tree mapping, cob-
web, etc. For high dimensional data that are unable to be visualized in a straightforward way,
dimensional reduction is an indispensable technique not only for data visualization but also
for the subsequent classification or clustering. From the perspective of reduction strategy,
dimension reduction can be divided into feature selection and feature construction. The for-
mer selects an optimal sub-set from original features by the use of embedding, packaging,
or filtering approaches. The latter transforms the high-dimensional original data through a
linear or nonlinear projection to a low-dimensional space where the new features are the
composition of original ones. The well-known linear data projection methods include princi-
pal component analysis (PCA), linear discriminant analysis (LDA), independent component
analysis (ICA), singular value decomposition (SVD). Linear methods are able to preserve the
linear relation embedded in the data through a simple, fast transformation, but inapplicable
to data with complicated and nonlinear structures. Nonlinear methods overcome the linear
assumption of data structures and hence effectively explore the real embedded structures
and reduce the generalization error of classification. The commonly used nonlinear meth-
ods include multidimensional scaling analysis (MDS), kernel mapping, non-negative matrix
factorization, manifold learning. Wang et al. (2016) adopted a kernel mapping dimension
reduction method in the pre-processing of big data for emergency management of power
system.
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3 Emergency management tasks

As a branch of artificial intelligence, computational intelligence technologies have the
outstanding advantages of self-learning, self-organization, and self-adaptation, along with
simpleness, generality and robustness. These technologies can greatly improve the ability
and effectiveness of emergency management. Successful emergency management requires
comprehensive emergency planning, preparedness, effective response and recovery. A variety
of tasks are involved during the lifecycle of emergency management.

• Risk analysis and warning helps the possibly-influenced area and people to defend,
evacuate, and eliminate the disaster.

• Resource management provides the shelter, food, water, relief, and other technical equip-
ment.

• Emergency training and exercising refers to the basic skill of people when they are facing
the disaster, incident, hurt, and other mishap suddenness.

• Debris removal focuses on the polluted residues that are harmful to the environment and
resident.

• Temporary housing provides the temporary houses and ancillary facilities for the victims
of the hazard.

• Emergency service facility location aims to set up a reliable and responsive emergency
service network able to satisfy the service demand of the victims.

• Supply distribution and route programming concern on the distribution planning and
vehicle route programming of diverse emergency materials to the disaster area.

• Evacuation planning studies the human behavior and logical patterns, crowd evacuation
animation model and decision making after the occurrence of hazard.

• Emergency planning management is responsible for implementing the effective planning
of emergency response.

• Life-support system restoration refers to the recovery and restoration throughout the
lifecycle of the disaster.

In this section, we will illustrate some emergency management tasks that are studied
extensively in modern emergency management and closely related to intelligent comput-
ing and decision making, with the emphasis on the computational intelligence technologies
commonly used in each task.

3.1 Risk assessment and early warning evaluation

In emergency management, evaluation is one of critical and complex tasks. From the time
dimension of view, emergency evaluation can be categorized into three types (Chen and
Chen 2012): pre-disaster assessment, in-disaster assessment, and post-disaster assessment
as shown in Fig. 1. Particularly the pre-disaster assessment serves as the basis of disaster
prevention andmitigation,mainly to predict the occurrence and severity of potential disasters,
dispatch the early warning signs, evaluate the vulnerability of affected facilities, and assess
the capacity of emergency management. Among them, risk assessment is an independent
and scientific process, generally consisting of three typical steps: (1) hazard identification to
recognize what can be likely to go wrong and result in casualties and damage; (2) exposure
assessment to describe the likelihood that hazards occur in a qualitative and / or quantitative
way; (3) consequence estimation to predict what might be the consequence caused by the
hazards and their severity (Jacxsens et al. 2016).
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Pre-disaster In-disaster Post-disaster

- risk assessment 

- early warning  

- vulnerability assessment 

- EM capacity assessment 

etc. 

- mi�gabilit assessment 

- rescuability assessment 

- fast recoverability 

assessment 

- emergency material  

demand assessment 

etc. 

- loss assessment 

- recoverability assessment 

- performance evalua�on 

- social influence evalua�on 

etc. 

Tasks: Time 

Fig. 1 Evaluation tasks during the lifecycle of emergency management

Emergency risk refers to the likelihood that an event could occur to a particular community
or a society within a given time and inflict the loss of life and property (Chiou and Chen
2015). Reasonable assessment of risk and response is critical to suppress the deterioration of
emergency. Huang (2013) provided some measurements of risk analysis and crisis response
based on the information collected from Internet. According to different criteria, risks can
be divided into various categories as showed in Table 1.

According to risk severity, risks can be divided into five levels: extremely high, high,
moderate, low and very low risks (Gao 2016). The category is based on the risk value but
varies with the applied domains and the assessment methods. Take Chiou’s approach (Chiou
and Chen 2015) as an example, the risk value depends on four parameters, namelymitigation,
hazard, exposure, and resistance (MHER): Risk = (1 − M) × H × E × (1 − R), where
the values of all parameters are normalized to [0, 1]. The risk severity is then defined as:
“Extremelyhigh” (Risk ≥ 0.7), “High” (0.7 > Risk ≥ 0.5), “Moderate” (0.5 > Risk ≥ 0.3),
“Low” (0.3 > Risk ≥ 0.2), and “Very low” (Risk < 0.2). The assessment results lay
foundations for further risk early warning. In other approaches, the warning degree was
divided into red, yellow and blue warning (Liu et al. 2017) (or red, orange and yellow
warning Zhang et al. 2014), representing the severity of risk from the high to low level.

The process of emergency assessment methods can be performed in a qualitative or quan-
titative way depending on the data available and the application. The qualitative assessment
methods include Checklist, Delphi, Brain storm, Fault tree, Risk-matrix and so forth. This
review focuses on the computational intelligence related assessment methods that typically
belong to the quantitative scope. The broadly used assessment methods include decision tree,
neural network, support vector machines, Bayesian theory, association rule mining, and so
forth.

3.2 Emergency service facility location

Generally, a city is split up into several administrative districts, where a number of emergency
service facilities (e.g., ambulances, fire engines, police patrol vehicles) are constructed in
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Table 1 Categories of emergency risks (Chiou and Chen 2015)

Classification criteria Risk categories Characteristics

Nature of risk Pure risks Cause loss only

Speculative risks Be likely to cause loss, but meanwhile
possible to bring benefit

Impact scope of risk Fundamental risks Affect the whole society or most people;

Universality;

Large influence scope;

Examples: wars, natural disasters, etc.

Particular risks Affect only some specific units (e.g.,
individual or a company);

No universality;

Small influence scope;

Examples: Bank robbing, house firing

Emergency type Natural disaster risks Earthquake, tsunami, hurricane, flood, etc.

Accidental disaster risks Terrorist attack, transportation accident, fire,
etc.

Public health risks Infectious disease, etc.

Social security risks Chemical leak, even exposure, etc.

Risk severity Extremely high risks Risk value depended on specific risk
assessment method

High risks

Moderate risks

Low risks

Very low risks

order to provide rescue materials to event scene. It should be noted that the emergency
service facilities would be taken into operation for a long term once they were built, and the
operation cost is highly relevant to the facility location. For the sake of utilitymaximization, it
is of great value to design and optimize the distribution of emergency service facilities, which
will directly affect whether the supply of emergency resources may achieve the maximum
and optimal effect. Emergency service facility location can be identified as an optimization
problem (Mahmud and Indriasari 2009) under the consideration of some requirements.

• Time urgency: arrive at the affected spot within a given time;
• Space full coverage: cover the entire area without rescue blind-spot;
• Cost minimization: avoid the redundant sites and reduce the construction investment and

operation cost;
• Service difference: set up different emergency service sites concerning the diversity in

disaster type and intensity;
• Coordination efficiency: enhance the coordination among sites and undertake the rescue

mission reasonably.

However, these requirements (normally called objectives) are hardly met simultaneously
and even conflictwith each other in reality. Therefore, only someobjectiveswill be considered
in real-world optimization problems.Among them, two optimization problems are commonly
investigated: single-objective location-related decision-making problem and multi-objective

123



2144 N. Chen et al.

Table 2 Four emergency service facility location models

Models Objective Advantages Disadvantages

PMP Minimize the total (or
average) distance

Take the cost into account Rescue point can acquire
emergency services on the
condition that the distance
between facility site and
demand place is less than a
certain value

PCP Minimize the furthest
distance

The furthest rescue point can
acquire emergency services
in the shortest time

Be likely to cause resource
waste

LSCP Optimize the number of
facilities with the constraint
of the response time less
than a given value

Cover all rescue points Be likely to make the cost too
high without the
consideration of
requirement scale and
weight

MCLP Maximize the services for
demand with limited
resources

Make the full use of resources No consideration of
requirement scale and no
explicit explanation on
uncovered demand places

location-related decision-making problem. In last decades, a lot of efforts have been devoted
to constructing optimization models of emergency service facility location. There are four
classical location models, namely P-median problem (PMP), P-center problem (PCP), loca-
tion set covering problem (LSCP), and maximal covering location problem (MCLP). Table 2
compares the four problems in the terms of objective, advantages and disadvantages.

Emergency service facility location is characterized by an optimization problem in nature
regardless of the format of models. At present, there are various types of optimization algo-
rithms including linear programming and dynamic programming, local search algorithm,
and computational intelligence techniques. Given a location problem, the optimization algo-
rithm is determined concerning the complexity of problem, expected solution effectiveness,
processing time limitation, data size and other considerations (Mahmud and Indriasari 2009).

Genetic algorithm (GA) is an optimal heuristic method which simulates the biological
evolution process in nature. In Guan et al. (2013), GA algorithm was designed to solve
the location-allocation models which satisfy the large-scale emergency requirement. Other
applications of GA include subway emergency service facility location problem (Li et al.
2011) and risk-based optimization of emergency rescue facility locations (Zhao and Chen
2015). Genetic-simulated annealing algorithm (GA-SA) enriches the searching behavior in
optimization process, and has strong capability of exploration in large search space (Ma et al.
2012). In this algorithm, GA algorithm controls the search direction, while SA algorithm
makes contribution to local optimum convergence. Case study showed that the algorithm had
strong practicability not only calculating the optimal location results, but also getting the
possible affected points that are covered by the selected facilities (Li and Yeh 2005; Murray
and Church 2004).

Swarm intelligence algorithms referring to a collective behavior of decentralized, self-
organized systems, consist of a population of simple agents. There exist interactive activities
between agent and agent, and between agents and their environments (Hinchey et al. 2007;
Rubio-Largo et al. 2012). Different swarm intelligence algorithms, such as ant colony opti-
mization, particle swarm optimization, artificial bee colony algorithm, bacterial foraging
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optimization algorithm, glowworm swarm optimization, have been extensively applied to
emergency service facility location problem (Aydin and Murat 2013; Xu and Xu 2014).

3.3 Emergency supply allocation and route programming

In the process of emergencymanagement, appropriate emergency supply allocation (or distri-
bution) is an important and challenging task due to the dispersity of supply sources, limitation
of transportation capacity, and uncertainty of supply-and-demand. To decrease the disasters’
related casualties and financial losses, a mass of emergency supplies and timely delivery
are needed. However, in reality although all kinds of official and unofficial organizations
have reserved an amount of relief materials, emergency supplies are usually insufficient. The
study of emergency logistics, particularly the supply distribution and route programming, is
always one of the most popular research fields in emergency management (Anaya-Arenas
et al. 2014). Likewise, Holguín-Veras et al. (2012) focused on designing the relief distribution
network such as the knowledge of demand, the periodicity of logistic activities and support-
ing system. Some studies frommore concreted perspectives analyzed available supplies after
disasters (Davis et al. 2013) or solved a practical transportation problem encountered by
crisis managers in dealing with emergency situations (Berkoune et al. 2012). Vitoriano et al.
(2015) proposed two intelligent decision aid models for humanitarian logistics to provide
emergency relief.

Emergency supply distribution is intended to allocate all kinds of emergency supplies
including food, clothes, tents, medical materials and specialized rescue equipment, to dis-
tribution centers in disaster-affected areas (Ozdamar et al. 2004; Yi and Ozdamar 2007).
In emergency logistics, emergency supply distribution and routing programming are two
continuous or inter-sectional activities. When the emergency alert is given, the authorities
need to allocate all available resources, determine specific vehicles, and program the vehi-
cle route to the destination. The objectives of emergency supply distribution and routing
programming always concern the following restrictions: (1) cost minimization; (2) cover-
ing maximization; (3) minimization of transportation time between the supply centers and
demand centers. Qiang proposed a vehicle schedulingmodel alongwith hill climbingmethod
for better route selection and shorter allocation time in emergency logistics (Qiang 2012).
A hybrid simulated annealing (HSA) with a Tabu list that converges fast to reasonable solu-
tions was developed to solve theHP-hard location and routing scheduling problems (Mousavi
and Tavakkoli-Moghaddam 2013). Particle swarm optimization and ant colony optimization
algorithm have demonstrated the remarkable capacity in emergency supply distribution and
route programming (Tian et al. 2011; Zhang et al. 2014).

3.4 Crowd evacuation in emergencies

When disasters occur, one of the urgent tasks is to organize the evacuation of a large number of
population in the affected areas. Without a doubt, it is of practical significance to research on
crowd evacuation under emergency conditions. A large quantity of researchers from various
fields have investigated crowd evacuation in emergencies and recognized the factors hindering
the evacuation (Gu et al. 2016; Jafer and Lawler 2016). These studies can be categorized into
three types: crowd emergency evacuation theory, evacuation risk assessment and evacuation
modeling, evacuation decision-making and simulation.

Crowd emergency evacuation theory basically concerns on the parameters associated
with pedestrians’ movement, crowd behaviors and pedestrians’ behavior rules in evacuation.
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Compared with the pedestrians’ behaviors under normal conditions, their behaviors under
emergency circumstances are much more chaotic and disordered (Haghani and Sarvi 2016).

Evacuation risks are mainly originated from the crowd risk and traffic evacuation risk.
When a large crowd is gathered, stampedes are easily caused which bring high risk for crowd
safety evacuation. Crowd-gathering risk aims to identify the reason that incidents occur in
crowd by analyzing the crowd movement behaviors and individual psychological characters
(Haghani and Sarvi 2016). Meantime, the road capacity and the number of pedestrians two
are critical factors that influence the evacuation effect. For this problem, a cluster model
was applied to evacuation risk assessment within the evacuation areas (Chen et al. 2009). In
Chen et al. (2012), the researchers developed a critical cluster model (CCM) that integrated
both pre-disaster factors (e.g., the vulnerability and accessibility of the road network) and
post-disaster factors (e.g. the impact of disaster and evacuees’ behaviors) for evacuation risk
assessment and visualization . A large quantity of literature focused on egress and evacua-
tion modeling. Jafer and Lawler divided the evacuation models into five categories, namely
randommovement models, optimal movement models, directional movement models, patrol
movement models, and herd movement models from the perspective of the movement and
behavior property of crowd (Jafer and Lawler 2016). In another way, evacuation models was
partitioned into mathematics models, human behavior and decision making models, soft-
ware simulation models, integrated virtual crowd simulation models, and human-centered
sensing models (Gonzalez et al. 2014). The mathematics-based models aim to derive quan-
titative crowd evacuation rules in emergencies so as to predict the crowd movement state
and improve the evacuation strategies. These models can be categorized into micro-models
(e.g., social force model, cellular automate) and macro-models (e.g., queue network model,
fluid dynamic model). The commonly used optimization algorithms have shown the superi-
ority in constructing optimal micro- and macro- evacuation models. The swarm intelligence
algorithms were applied to improve the quality of emergency crowd evacuation (Chen and
Lin 2009; Forcael et al. 2014). Also, simulated annealing algorithm was used as an optimal
solution in crowd evacuation especially for predictable crisis (Afandizadeh et al. 2013; Sutliff
et al. 2011).

Emergency crowd evacuation is typically a process that performs the movement of crowd
from affected area to safe places. Accordingly, evacuation decision-making includes evac-
uation path choice, evacuation number allocation and resource allocation. Evacuation path
choice is somewhat similar to routing programming that selects the optimal path which usu-
ally takes as objective the shortest distance, the shortest time or themost number of evacuation
individuals. Once the evacuation paths have been decided, how many individuals should be
allocated in every path is the next problem. What’s more, resources (relief staff, emergency
evacuation vehicles, etc.) are important guarantee for smooth evacuation. A dynamic model
was built by coordinating the logistics and evacuation operations for commodity dispatch
and crowd evacuation in disaster response activities (Yi and Ozdamar 2007).

3.5 Emergency planning management

Although the disasters cannot be absolutely avoided no matter how advanced risk predic-
tion models are used, there are many approaches to mitigate the consequence of disasters.
Among them, emergency planning is of practical significance to avoid the blind and disor-
der response when the disasters actually occur. Emergency plan is an important preparation
that helps government officials to make prompt and efficient emergency response (Wang
et al. 2010). Emergency planning management is responsible for implementing the planning
effectively in terms of clear objectives, comprehensive content, multi-level balance, coordi-
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nation among various departments, unified and standardized lead tools (Zhou et al. 2010).
A complete emergency planning consists of four elements: risk scenarios, emergency host
organization, emergency resource, and emergency activity (Pilone et al. 2016). In China,
since General Emergency Plan for National Public Emergency was generated in 2006, a
number of emergency plans have been applied in different incidents. In this perspective,
emergency plans can be partitioned into general emergency plans and specific plans. General
emergency plans provide general procedures, principles and foundation for government in
dealing with emergencies, determine the departments or individuals responsible for emer-
gency disposal and define their responsibilities, and ensure the emergency resources. Specific
emergency plans further determine the departments and individuals that participant in emer-
gency disposal, as well as the resources required under the framework of general emergency
plan. However, it’s worth to notice that emergency plan doesn’t provide the concrete action
tasks for real operations because emergency circumstance is usually uncertain (Tian and Li
2012). There exists a gap between the generation and operation of an emergency plan so that
applying an emergency plan would be more challenging than formulating it (Sun et al. 2014).

During the process of developing emergency plans, the typical and major events in history
are helpful to generate a more comprehensive emergency plan. Nowadays, CBR is the mostly
used approach for generating emergency planning. CBR is a reasoning approach to present
solution based on the experience of solving similar problems in the past. Solution of a new
problem can be generated by duplicating andmodifying similar and successful case solutions
existing in the case base. CBR is usually integrated with other modeling methods to achieve
a better solution. For example, Li et al. (2013) utilized a rule-based reasoning (RBR) to boost
the nearest neighborhood matching of CBR when generating a new emergency plan.

3.6 Emergency data preprocessing and visualization

In the emergency context, the preprocessing and visualization of data have an important effect
on emergency management by well understanding the patterns of emergencies and related
data (Amaye et al. 2016). Emergency data has various sources from social media, remote
sensing, and geographical systems. Generally, they can be divided into six types:

• Basic data: all kinds of social, economic and population data related to emergency
management, regional dangerous sources, emergency refuge, emergency organizations,
distribution of emergency supplies, emergency rescue force, etc.

• Spatial information data: physical geographic data (e.g., landforms, rivers, vegetation,
mountains lakes), basic geographic units (e.g., residential areas, traffic network, bound-
ary, landmark buildings, airports, docks, stations), etc.

• Reported data: monitoring and warning data, loss evaluation data, etc.
• Models: risk prediction models, early alerting models, facility location models, route

programming models, supply allocation models, crowd evacuation models, etc.
• Emergency management knowledge: relevant concepts, theories and experience, etc.
• Cases: emergency plans, etc.

The quality of real emergency data is usually not highwith an amount of dirty data originat-
ing from multiple and disparate data sources (Jia et al. 2016). Moreover, there are inevitably
redundant, missing, noisy, inconsistent and uncertain data. In order to avoid decision-making
faults caused possibly by these data, it’s extremely necessary to preprocess the data before
decision-making, including data cleaning, data transformation, data integration to disposal
the missing value, delete the mutation data and combine the multi-source data.
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Data visualization aims to present data in a graphical present pictorial way so as to depict
the relationship embedded in the data intuitively and visually (Brigham 2016). The afore-
mentioned data clustering and visualization techniques introduced in Sect. 2.8 are commonly
used approaches to obtain more compact and accurate information from the raw data that
contribute to the subsequent in-depth data analysis. Image recognition is another well-known
technique to discover the potential disasters (e.g., the landslide disasters along railway by
using SVMWei 2013), or affected individuals (e.g., face-image classification by using FNN
Dai et al. 2015) from the images not only saving a lot of human efforts but also improving
the recognition accuracy.

In conclusion, computational intelligence has become one of the crucial decision-making
techniques in emergency management. In Table 3, the advanced computational intelligence
technologies adopted in different emergency management tasks are summarized from the
aspect of principle, advantages, and limitations.

4 Intelligence emergency management systems

Emergency management aims at maintaining the social stability, strengthening the national
security and resilience for the threats that pose risk to life and property. Accordingly, the
evolution of the emergency management system (EMS) determines the national emergency
response capacity and efficiency. Emergency management systems with different functions
have been proposed and applied with success in coping with devastating incidents. Emer-
gency management relates to the whole spectrum of incidents, also known as a kind of
system engineering. Hence, a complete emergency management system plays a vital role
in improving efficiency and effectiveness of emergency management (Lee et al. 2012). The
modern emergency management system is an intelligent decision support system, able to
assist managers in making timely and effective response to emergencies.

Emergency management develops earlier and more mature in America compared with
other countries. Department of Homeland Security (DHS) released the National Incident
Management System to implement all-hazard emergency management which is applicable
at all jurisdictional levels, including preparedness, communication and information system,
resource management, command and management, ongoing management and maintenance
(Department of Homeland Security of USA 2017). All the time, emergency management
system has attracted the researches’ attention due to its robustness to cope with complex
emergencies. Over the several decades, emergency management systems have become more
and more mature in various aspects as shown in Table 4. In this table, ‘Early’ refers to ‘before
the big data era’ where the level of technologies and productivity was still underdeveloped.
‘Modern’ refers to ‘in the big data Era’, where cloud computing, big data and mobile Internet
are three major themes with the development of Internet and computational intelligence
technologies in the recent decades.

A variety of advanced techniques have been implemented within the emergency manage-
ment systems. The 3S technologies, namely Remote sensing (RS), Geography information
systems (GIS), and Global positioning systems (GPS), possess the function of collecting,
processing and updating the spatial information and environmental information rapidly, accu-
rately and reliably. They have been applied in the emergency management, such as disaster
rescue management system (Yotsukura and Takahashi 2009), forest fire protection (Kal-
abokidis et al. 2012), environmental risk source management (Ma et al. 2013), and recovery
analysis of damaged highway in earthquake (Liu et al. 2015). Some other soft technologies
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Table 4 Development of emergency management systems

Early emergency management
systems

Modern emergency management systems

Country Several developed countries, such as
US, Switzerland, Canada, Europe,
Japan, Korea

Both developed and developing countries,
such as Greece, China, India, Mexico,
Italian, Turkey, etc.

Industry Limited industries including
environment, transportation,
earthquake, nuclear

A variety of industries including
environmental, transportation, earthquake,
nuclear, flood, fire, hurricane, food, electric
power, construction, medicine and health,
etc.

Complexity Single industry, department and
region;

Cross-industry, inter-department and
cross-region;

Limited functionality; Multi-functionality;

Provide simple patterns Provide multi-scale, multi-level, and
multi-dimensional patterns

Platform Access, Foxpro MySQL, Berkeley, Solid, SQLite, Hadoop,
Spark, Java, etc.

Data source (volume
and data type)

Small amount of data; Big data in data warehouse;

Numeric, discrete, spatial and
relational data

Structured, semi-structured, unstructured,
spatial, and relational data

Decision-support
functions

Collect information in small
database;

Collect and organize information
continuously;

Single region response; Real-time track temporal development;

Response simulation Humanized interactive interface

Decision-making
technologies

Neural network, Data assimilation,
vision-based incident detection,
Decision tree, Genetic algorithm

CBR, GA, ANN, PSO, Fuzzy logic,
Bayesian theory, GA-SA, SVM, Decision
tree, Clustering, Visualization, Petri net,
3S, RFID, Wireless sensor, Cloud
Computing, Web-GIS, Internet of Things,
etc.

have been used in specific industries. Radio Frequency Identification (RFID) technology is
used in intelligent inventory management system to real-time trace (Ozguven and Ozbay
2015). It can utilize management techniques to keep track of real-time commodities in the
aftermath of a disaster. Furthermore, sensor network attracts the interest of both academic
research and government, such as information communication technology, wireless sensor
network, and internet of things (Quan and Zhu 2012; Zambrano et al. 2016).

In the era of big data, computational intelligence technologies are more and more consid-
ered vital in a wide range of domains. Inevitably, there is massive unstructured information
during the process of emergency handling. Lee et al. (2012) presented an unstructured infor-
mation management system (UIMS) to organize useful knowledge quickly and accurately.
The UIMS can be implemented as a city emergency management system (CEMS), in which
dynamic clustering was used to process the unstructured information. In recent years, cloud
computing is provided as a service over the Internet. Palmieri presented a hybrid cloud archi-
tecture to compute and storage resources (Palmieria et al. 2016). Balis proposed modern
environmental monitoring and decision support systems incorporating IT and cloud comput-
ing (Balis et al. 2016). How to introduce the newly-emerging technologies into the lifecycle
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of emergency management and realize emergency management system intelligent, real-time
and interactive is still an urgent and on-going issue to both academic researchers and industrial
practitioners.

4.1 A general framework of emergency management systems

Various emergency management systems and tools have been developed in different indus-
tries. Despite the specificity due to the industrial characteristics, they have some generalities.
According to the requirement analysis of emergency management and core components
of specific emergency management systems, we propose a general framework of intelli-
gent emergency management system in Fig. 2. It should be noted the real-world emergency
management systems may be designed with some components and limited capabilities. The
framework consists of data layer, networkmiddleware, application layer and interaction layer.
Semantic Web technologies are adopted to harmonize heterogeneous data from databases
in data layer via data access and network middleware. Then, the heterogeneous data are
processed in application layer. And finally, emergency management decision results are
presented through interaction platform. In brief, the framework outlines the procedure of
emergency management: data collection (data-layer), data analysis (network middleware
and application-layer), and data dissemination (interaction-layer).

• The data-layer is in charge of collecting and installing information from sensor devices
located in various regions. During the disposing emergency events, information acqui-
sition can determine the effectiveness of intelligent decision-making. For this purpose,
the framework has the function of static information storage and dynamic information
searching (Chen and Chen 2016; Sedighi 2008).

• The network middleware is a channel of achieving application-layer communication
usually composed of wireless sensor networks and local area networks.

• The application-layer comprises eight sub-systems, which is the platform for decision
support system to analyze, dispose emergency information and make decisions. Among
them, prevention and preparation system is responsible for training commanders, mak-
ing plans, public education and emergency drilling in day-to-day operations. Recover
and reconstruction system is in charge of constructing lifeline engineering and providing
psychological assistance for affected people after disasters. Legal guarantee systemman-
ages the laws, regulations and standards. Decision support system as the heart of an EMS,
processes the emergency information to generate decisions for emergency commanders.
Incident command system contains multi-agent coordination and resource management
system.

• The interaction-layer presents a variety of information under the help of visualization
technologies. The social media and Web-based platform can communicate the real-time
information to the public, and provide decision-making alternatives to the emergency
commanders.

4.2 Fire emergency management systems

Among all kinds of natural disasters, fire is one of the most frequent and widespread hazards
that threaten major ecosystem and social development. Effective and ideal fire warning is
an important task which can discover the potential risks and avoid the occurrence of some
events.
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Fig. 2 The general framework of intelligent emergency management system

In the past, most countries focused on fire suppression, such as Spain in the 1980s and
1990s of the last century (Munoz 2007). For example, CBR was applied widely in fire rescue
service (Krupka et al. 2009) and knowledge management of fire response (Baisakhi et al.
2010). Kostas et al. (2012) developed a decision support system (DSS) using 3S technologies.
Zheng et al. (2014) applied particle swarm optimization algorithm to classify population in
fire evacuation. Zia et al. (2014) proposed a fire emergency management system in the
Web-of-Objects (WoO) infrastructure through sensors and actuators. Generally, the existing
fire management systems have ability of reviewing fuel behavior and weather conditions.
Involving economic analysis in fire management will be a future research direction with
practical significance (Robert et al. 2013).

4.3 Earthquake emergency management systems

Earthquake is sharp shocking of the earth’s crust within several seconds, which can lead to
tremendous losses to lives andproperty. This disaster has abruptness characteristic andusually
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results in a chain of evolutional disasters, such as quake aftershocks and tsunami threats (Li
and Li 2012). The formulation and implementation of emergency plan is indubitably an
effective way to deal with the earthquake (Hou and Li 2008).

In some developed countries, earthquake early warning systems are applied in view of the
time difference between receiving S and P waves (Zollo and Lancieri 2007). Tomohiro et al.
(2011) designed an earthquake early warning system (EEWS) and real-time strong motion
monitoring system (PSMS) for high-rise buildings.Kangi (2015) applied clustering technique
to prepare the rescue and relief operations in earthquake damage system. A multi-objective
stochastic programming model was constructed using particle swarm optimization algorithm
for developing earthquake response plan (Mohammadi et al. 2016). Munib et al. (2016)
designed prediction and warning systems using Wireless Sensor Networks and Information
Communication Technologies (ICT). However, the effectiveness of warnings highly depends
on the location of person and whether he (or she) can escape to a safe area. Despite the
supporting systems, improving the emergency awareness and response capacity of the public
is still an important prerequisite for successful earthquake rescue.

4.4 Environment emergency management systems

Environmental emergency refers to natural or man-made accidents that suddenly take place
and cause serious environmental damage, such as water pollution, heavy metal pollution,
ecological damage and species crisis. Such events usually occur suddenly and release a
considerable number of contaminants within a short period of time.

It has been demonstrated that computational intelligence technologies have a great poten-
tial in environmental EMS. The application of CBR is mature in environment management
(Chen et al. 2008). However, CBR-based systems suffered from the deficiency of cases and
difficulty of case adaptation, therefore they were usually integrated with GA (Kerstin et al.
2013) and BP-ANN (Kostas and Stamoulis 2007; Liao et al. 2012) to achieve a better per-
formance. Ma et al. (2013) developed an environmental risk source management system on
GIS platform. Later, Chen et al. (2014) developed an environmental risk analysis system for
petrochemical industry based on a browser/server model and Web-GIS technology. More
recently, a two-stage optimization model was presented to identify the material warehouse
locations and emergency material reserve schemes in pre-incident stage (Liu et al. 2016).

4.5 Transportation emergency management systems

Nowadays, the increasing number of vehicles poses great threats on traffic safety, such as
the traffic congestion and illegal driving. Some developed countries have established stable
traffic emergency management system and mechanism, such as, Freeway Incident Manage-
ment System by US (Deng 2000), Vehicle Information and Communication System (VICS)
by Japan (Rego 2001), and Traffic Incident Assistance System (TIAS) by Germany (Feng
2006). These systems greatly enhance the traffic safety and achieve abundant experience in
transportation emergency management.

Some computational intelligence algorithms, including neural networks (Srinivasan et al.
2004), fuzzy logic (Kong andXue 2006),wavelet analysis (Samant andAdeli 2000), Bayesian
network (Zhang and Taylor 2006), hybridization algorithms of ANN and GA (Lee 2010),
have shown their advantages on high detection accuracy and computational efficiency in
transportation emergencymanagement. Regarding the problemof heterogeneous information
processing and environmental interaction in traffic accidents, Wang et al. (2012) developed a
Cyber-Physical System (CPS) based on perceptual control theory. Alvear et al. (2013) applied
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decision tree to estimate the rescue and evacuation time of the traffic accidents occurred in
road tunnels.

4.6 Flood emergency management systems

Flood is a common natural disaster with increasing frequency in the world and usually
accompanied by destructive damage. It is of critical importance to establish an efficient
flood emergency management system which is scientifically sound and technologically
rigorous.

A Web heterogeneous node meta-mode (Chen et al. 2014) called Petrochemical Indus-
try Environmental Risk Source Management System (PIERSMS) was developed to evaluate
the environmental risk of the petrochemical industry in China. A Web-based decision sup-
port system (www.flire-dss.eu) Giorgos et al. (2016) was developed by Greece researchers
for dynamic flood monitoring and warning. A chaotic PSO algorithm was designed to
flood control operation (He et al. 2014). In order to protect against flood in built-up
areas, Magdalena et al. (2015) developed a decision support system for emergency flood
embankment stability. A flood controlling system was developed in combination of vari-
ous algorithms including PSO, fuzzy logic, and GA (Hamed et al. 2016). In addition to
flood controlling, the study of flood emergency has mostly focused on computer simulation
(Liu et al. 2012), decision support (Horita et al. 2015) and flood vulnerability evaluation
(Louis et al. 2016).

4.7 Nuclear emergency management systems

Nuclear accidents are caused by large nuclear facilities, which may result in radiation dam-
age and radioactive contamination, even pollute the surrounding environment over a long
period of time. For instance, the Chernobyl disaster in 1986 has been lingering until today.
Radiological accidents are considered a major threat that requires effective prevention and
rapid reaction (Benamrane and Boustras 2015).

An interactive computer support in decision conferencing was an early attempt for quick
response to offsite emergency (Jyri et al. 2007). Later, a nuclear radiation release prediction
system was implemented in nuclear emergency management (Benamrane et al. 2013). CBR
was extensively applied in nuclear emergency management for creating response plan (Farah
et al. 2011; Stella and Wolfgang 2015). Zhang et al. (2014) applied GA-SA algorithm to
source term inversion of nuclear accident. Zhao et al. (2014) analyzed the accident scenarios
by accident diagnosis model based on BP-ANN. Recently, Xie et al. (2016) developed a
framework of the cross-domain integration processes using Space Mapping and Semantic
Web. For Fukushima accident shocking nuclear management, Mahdi andMohammad (2016)
proposed a modern Accident Management Support Tool (AMST) that adopted ANN, fuzzy
logic, heuristic methods and expert system.

4.8 Hurricane emergency management systems

Hurricanes are deep tropical cyclones, generally accompanied by strong wind and heavy
rain. Timely forecast and evacuations before hurricane are fundamental to reduce the dam-
age. Some representative hurricane emergency management systems have emerged in the
past. Selda and Emmett (2010) presented inventory decisions for emergency supplies based
on hurricane prediction. Yin et al. (2014) developed an agent-based modeling system for
travel demand simulation. Taramelli et al. (2015) proposed a GIS-based approach for hur-
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ricane hazard and vulnerability assessment, able to judge the hazard (type, magnitude),
identify the risk elements (type, location, data features), and assess the vulnerability. Gu
et al. (2010) forecasted the tropical cyclone intensity based on PSO in conjunction with
SVM. Dong and Pi (2014) established hurricane trajectory prediction model by association
rules.

4.9 Integrated emergency management systems

The integrated emergency management systems are characterized by multi-agency, multi-
objective, multi-layer and comprehensive aspects. They are usually designed as inter-
departmental, cross-regional and cross-industrial taking into consideration the connection
among disasters and coordination among departments. The most typical system is National
Integrated Management System of USA, which can take response to both natural and
man-made disasters coordinating individuals and federal government. The city emergency
response systems aim to integrate the public security, transportation, communications, electric
power, water conservancy, earthquake, civil air defense, municipal administration and other
governmental departments into a unified operation system in order to achieve cross-regional,
inter-departmental, and cross-industrialmanagement to disasters. In China, a number of cities
(e.g., Beijing, Shanghai, Nanning, Chongqing, Weihai, Liuzhou) have established the city
emergency response systemswhich provide the guarantee for the public safety of the city (Pei
et al. 2010; Wan and Song 2012). In Australia, some scholars have put forward a mobile-
based emergency response system for intelligent m-government services with the attempt
to enhance the interaction between multiple agencies in emergency situations (Amailef and
Lu 2011). In United States, many cities such as San Francisco, Portland and Seattle have
built comprehensive public security geographic information systems and emergency resource
systems to achieve scientific allocation of personnel, equipment, supplies (Zhong 2011). In
Japan, a cross-department and comprehensive urban crisis management institution has been
established under the leadership of the mayor. For example, Tokyo set up a comprehensive
disaster prevention department against various types of crisis in 2003 (Jin 2015). In England,
a city risk management system based on the comprehensive risk registration was established
in London, and a syndromic surveillance system was used to detect a bioterrorism attack in
Scotland (Meyer et al. 2008).

In conclusion, computational intelligence technologies can discover the potential value
of data by realizing the intelligent disposal of unexpected events. It is commonly
believed that the CI-based emergency management can systematically help the comman-
ders to identify the risk sources and provide response measures, especially under the
circumstance of limited time, enormous pressure and information asymmetry. Table 5
summarizes the representative emergency management systems in specific industries
with the focus on the adopted computational intelligence technologies and primary
functions.
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5 Conclusions and future remarks

Emergency management has become a major and growing discipline in the world. As an
important innovation and development element in the global society, big data has a signifi-
cant influence on emergencymanagement (Wu et al. 2016). Under the background of big data
era, the acquired data should be well utilized to meet the requirement of the timely and effec-
tive emergency management. Computational intelligence technologies able to deal with big
data are intended to make the full use of all acquired data, construct more accurate models, so
as to take the timely and effective emergency response, and eventually decrease the damage
and stabilize the incidents. Over the recent years, it has been observed an increasing interest
of integrating a diversity of computational intelligence technologies in emergency manage-
ment for diverse tasks and industries. However, effective decision support still requires the
in-depth integration of newly-emerging computational intelligence techniques. This paper
presents a comprehensive survey of the state-of-the-art computational intelligence techniques
commonly applied in the literature of emergency management considering the challenges of
big data. In this research survey, we reviewed more than 170 papers published in scientific
referred journals and related international conferences putting the emphasis on the computa-
tion intelligence technologies integrated in emergency management theory and systems. The
computational intelligence techniques are discussed from the perspective of emergency man-
agement tasks and industries. It can be revealed that computational intelligence has become
one of the critical aspects to develop an intelligent emergencymanagement system especially
in big data era.

There are some critical open issues necessary to be addressed. (1) The growth of unconven-
tional incidents today highlights the ability to handle incomplete information, incompatible
criteria under pressures and uncertainties. Although the importance of emergency manage-
ment has been broadly recognized, applicablemethods in the emergencymanagement process
still cannot fill the requirements. The research of unconventional emergency decision-making
is ongoing to bring computational intelligence technologies and other related disciplines
together. (2) The explosive growth of acquirable information provides a rich repository for
evidence-based decision-making, whilst at the same time makes the decision-making more
difficult and complicated. The traditional methods usually become infeasible when dealing
with large-scale, high-dimensional, sparse, and incomplete data. The applicable techniques
able to process the big data are of strong and urgent necessity for providing critical decision
support in emergency management. For example, the scalability of decision-making algo-
rithms is in particular important when the real-time response is of great value. The recently
emerged research techniques designed for big data analysis (such as deep learning algorithms
characterized by semi-supervised feature learning, and transfer of learning algorithms that
utilize the knowledge learned in one context to another similar context) and the adaptation
of these techniques specifically for emergency management are considered crucial issues
in future research. One major concern of this research review is to promote the theoretical
results of computational intelligence being applied to practical emergency management. On
the other hand, computational intelligence is still a young and rapidly expanding field with
new invented methods over the past two decades. Emergencymanagement undoubtedly has a
substantial impact on the development of computational intelligence driven by some practical
problems across a range of emergency industries. (3) Emergency management is an active
and developing research area due to the fact that it has broad applications closely related to the
human safety. Although a variety of industry-oriented emergency management systems have
been developed continuously, they share some general characteristics, such as themechanism
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of incidents. A framework to describe the inherent mechanisms of different harmful incidents
and clarify the universality and particularity of the evolving logic is required for successful
approaches to emergencymanagement. (4) It was found that a disaster may derive other types
of disaster making the response more complicated and difficult. It is necessary to investigate
the relation among disasters, and integrate all emergency sources in disaster responding. In
this sense, the integrated emergency management system is a research direction of practical
value for both academic and industry.

Acknowledgements This work was supported by the National Social Science Foundation of China (Contact
No. 16FGL001) and Scientific Research Foundation of Henan Polytechnic University (No. Y2017-1).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Abpeykar S, Ghatee M (2014) Supervised and unsupervised learning DSS for incident management in intel-
ligent tunnel: a case study in Tehran Niayesh tunnel. Tunn Undergr Space Technol 42(11):293–306

Afandizadeh S, Jahangiri A, Kalantari N (2013) Identifying the optimal configuration of one-way and two-way
streets for contraflow operation during an emergency evacuation. Nat Hazards 69(3):1315–1133

Alvear D, Abreu O, Cuesta A et al (2013) Decision support system for emergency management: road tunnels.
Tunnel Undergr Space Technol 34:13–21

Amailef K, Lu J (2011) A mobile-based emergency response system for intelligent M-government services.
J Enterpr Inf Manag 24(4):338–358

Amaye A, Neville K, Pope A (2016) BigPromises: using organisational mindfulness to integrate big data in
emergency management decision making. J Decis Syst 25(Suppl 1):76–84

Anaya-Arenas AM, Renaud J, Ruiz A (2014) Relief distribution networks: a systematic review. Ann Oper Res
223(1):53–79

Aydin N, Murat A (2013) A swarm intelligence based sample average approximation algorithm for the capac-
itated reliable facility location problem. Int J Prod Econ 145(1):173–183

Baisakhi C, Ghosh D,Maji RK et al (2010) Knowledge management with case-based reasoning applied on fire
emergency handling. IEEE international conference on industrial informatics. IEEE Press, pp 708–713

Balis B, Brzoza R, Bubak M et al (2016) Holistic approach to management of IT infrastructure for envi-
ronmental monitoring and decision support systems with urgent computing capabilities. Future Gener
Comput Syst. https://doi.org/10.1016/j.future.2016.08.007

Basu S, Sharma M, Ghosh PS (2015) Metaheuristic applications on discrete facility location problems: a
survey. Opsearch 52(3):530–561

BenamraneY,BoustrasG (2015)Atmospheric dispersion and impactmodeling systems: howare theyperceived
as support tools for nuclear crises management? Saf Sci 71:48–55

Benamrane Y, Wybo JL, Armand P (2013) Chernobyl and Fukushima nuclear accidents: what has changed in
the use of atmospheric dispersion modeling? J Environ Radioact 126:239–252

Berkoune D, Renaud J, Rekik M, Ruiz A (2012) Transportation in disaster response operations. Socio-Econ
Plan Sci 46(1):23–32

Bezdek JC (1992) On the relationship between neural networks, pattern recognition and intelligence. Int J
Approx Reason 6(2):85–107

Brigham TJ (2016) Feast for the eyes: an introduction to data visualization. AlexisMed Ref Serv Q 35(2):215–
223

Chen N, Chen A (2012) Emergency evaluation model and method: a perspective overview. J Saf Crisis Manag
2(1):11–23

Chen L, Chen A (2016) Improve the efficiency of improvisation decision of emergency management-analysis
on the explosion event of hazardous chemical products in Tianjin. Theor Explor 1:80–84

Chen Y, Lin Y (2009) Controlling the movement of crowds in computer graphics by using the mechanism of
particle swarm optimization. Appl Soft Comput 9:1170–1176

Chen SH, Jakeman AJ, Norton JP (2008) Artificial intelligence techniques: an introduction to their use for
modelling environmental systems. Math Comput Simul 78:379–400

123

https://doi.org/10.1016/j.future.2016.08.007


Application of computational intelligence. . . 2163

Chen A, Chen N, Ni H (2009) Modern emergency management theory and method. Science Press, Beijing,
pp 1–6

Chen Q, Chen X, Tang Q et al (2009) An evacuation risk assessment model for emergency traffic with
consideration of urban hazard installations. Chin Sci Bull 54:1000–1006

Chen H, Chiang R, Storey VC (2012) Business intelligence and analytics: from big data to big impact. MIS
Q 36(4):1165–1188

Chen X, Kwan MP, Li Q (2012) A model for evacuation risk assessment with consideration of pre- and
post-disaster factors. Comput Environ Urban Syst 36(3):207–217

Chen NC, Wang K, Xiao CJ et al (2014) A heterogeneous sensor Web node meta-model for the management
of a flood monitoring system. Environ Model Softw 54:222–237

Chen Q, Jia Q, Yuan ZW et al (2014) Environmental risk source management system for the petrochemical
industry. Process Saf Environ Prot 92:251–260

ChenN, ChenA (2009) The role of datamining techniques in emergencymanagement. In: Proceedings of 11th
international conference on enterprise information systems (ICEIS09), 6–10 May 2009, Milan, Italy, pp
118–123

Chiou I, Chen C et al (2015) Methodology of disaster risk assessment for debris flows in a river basin. Stoch
Env Res Risk Assess 29:775–792

Chuan-Feng H, Chao Z (2009) Genetic algorithm for solving problems in emergency management. In: Inter-
national conference on natural computation, pp 259–264

Dai J, Tian H (2013) Fuzzy rough set model for set-valued data. Fuzzy Sets Syst 229:54–68
Dai K, Zhao J, Cao F (2015) A novel algorithm of extended neural networks for image recognition. Eng Appl

Artif Intell 42:57–66
Davis LB, Samanlioglu F, Qu X, Root S (2013) Inventory planning and coordination in disaster relief efforts.

Int J Prod Econ 141:561–573
Dellorco M (2007) Competitive egress behaviour: a fuzzy logic-inspired microscopic model. Int J Crit Infras-

truct 3:408–429
Deng ZY (2000) The new trend of American highway traffic safety. J Foreign Highw 1:9–13
Department of Homeland Security of USA (2017) National IncidentManagement System, Federal Emergency

Management System. https://www.dhs.gov/. Accessed 17 Oct 2017
Dong X, Pi D (2014) Hurricane trajectory prediction method with pattern matching. J Chin Comput Syst

35(5):983–988
Donmez S (2015) A genetic algorithm based approach to provide solutions for emergency aid stations location
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