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Abstract
Wegive a short proof of a strongversionof the short-time asymptotic expansionof heat kernels
associated with Laplace-type operators acting on sections of vector bundles over compact
Riemannian manifolds, including exponential decay of the difference of the approximate
heat kernel and the true heat kernel. We use this to show that repeated convolution of the
approximate heat kernels can be used to approximate the heat kernel on all of M , which is
related to expressing the heat kernel as a path integral. This scheme is then applied to obtain
a short-time asymptotic expansion of the heat kernel at the cut locus.

Keywords Heat kernel · Laplace operator · Manifold · Asymptotic expansion · Heat
equation · Wave equation · Transmutation formula

1 Introduction andmain results

Let M be a compact Riemannian manifold of dimension n and let L be a Laplace-type
operator, acting on sections of a vector bundle V over M . For t > 0, the heat kernel pLt
of L is a smooth section of the bundle V � V∗ over M × M (the vector bundle with fiber
Hom(Vy, Vx ) over the point (x, y) ∈ M × M). It is well known that for x, y ∈ M close, the
heat kernel has an asymptotic expansion of the form

pLt (x, y) ∼ et (x, y)
∞∑

j=0

t j
� j (x, y)

j ! , (1.1)

where

et (x, y) = e−d(x,y)2/4t

(4π t)n/2 (1.2)

is the Euclidean heat kernel. (The name comes from the fact that et (x, y) is the heat kernel
in case that M = R

n and L = �, the usual Laplace operator.) In (1.1), the “correction
terms” � j (x, y) are certain smooth sections of the bundle V � V∗ over M �� M , where
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M �� M = M × M\{cut points} is the set of points (x, y) ∈ M × M such that there is
a unique minimizing geodesic connecting x and y (compare, e.g., [7, Section 2.5]). In this
paper, we will prove that the asymptotic relation (1.1) can be made precise as follows.

Theorem 1.1 (Strong heat kernel asymptotics) Let L be a Laplace-type operator, acting on
sections of a vector bundle V over a compact Riemannian manifold M. Then for any compact
subset K of M �� M, any T > 0 and any numbers ν, k, l,m ∈ N0, there exists a constant
C > 0 such that

∣∣∣∣∣∣
∂k

∂tk
∇l
x∇m

y

⎧
⎨

⎩
pLt (x, y)

et (x, y)
−

ν∑

j=0

t j
� j (x, y)

j !

⎫
⎬

⎭

∣∣∣∣∣∣
≤ Ctν+1−k (1.3)

for all (x, y) ∈ K, whenever 0 < t ≤ T . Here � j (x, y) are the heat kernel coefficients as
discussed above.

In the theorem,∇x and∇y denote the covariant derivativewith respect to the x (respectively
y) variable, where we use any metric connection on the bundle V (changing the connection
only alters the constant C on the right-hand side).

Corollary 1.2 We have the complete asymptotic expansion

pLt (x, y)

et (x, y)
∼

∞∑

j=0

t j
� j (x, y)

j !
in the sense of topological vector spaces, in the Fréchet topology of C∞(M �� M,V � V).

Usually, the asymptotic relation (1.1) is interpreted to say that for any ν ∈ N0,
∣∣∣∣∣∣
pLt (x, y) − et (x, y)

ν∑

j=0

t j
� j (x, y)

j !

∣∣∣∣∣∣
≤ Ctν+1 (1.4)

uniformly for (x, y) over compact subsets of M �� M . This statement is much weaker than
Thm. 1.1 (even in the case that k = l = m = 0), since the latter implies that the right-hand side
of (1.4) can be replaced by Ctν+1et (x, y), which decays exponentially when d(x, y) > 0.
Proofs for the weaker statement can be found in various places in the literature (see [7,
Thm. 2.30], [30, Thm. 7.15], [31, 3.2], [5, III.E] just to name a few1). The stronger result of
Thm. 1.1 seems to be somewhat folklore, but to the author’s knowledge, no easily accessible
proof exists in the literature outside either the theory of pseudo-differential operators, where
one usually proves more general statements using a somewhat huge machinery (see, e.g.,
[17,24]), or the realm of stochastic analysis (e.g., [2,3,26]).

To illustrate the power of these results, we note that an easy corollary is the following
result on the symmetry of heat kernel coefficients (compare Corollary 3.3), which is not at all
obvious from the defining equations of the� j and was previously proved using substantially
more involved arguments (see Remark 3.4).

Theorem 1.3 The heat kernel coefficients satisfy the symmetry relation

� j (x, y) = (
�∗

j (y, x)
)∗

,

where �∗
j are the heat kernel coefficients for the heat kernel p∗

t of the formally adjoint
operator L∗ and (�∗

j (y, x))
∗ denotes the fiberwise metric adjoint of �∗

j (y, x).

1 Moreover, Chavel [10, p. 154] claims to prove a version of the strong statement, but his proof is based on
the wrong Lemma 1 on p. 152, which is incorrectly cited from [5].
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The first goal of this paper is to give an easy proof of Thm. 1.1 using the so-called trans-
mutation formula, which relates the heat equation to the wave equation, and the Hadamard
expansion of the wave kernel. This approach goes back to an older paper of Kannai [22],
who proves a variant of Thm. 1.1 in the scalar case (compare also [34]).

Thm. 1.1 can be generalized to general complete manifolds. However, this is a somewhat
intricatematter, as general Laplace-type operators need not have closed extensions generating
operator semigroups. For formally self-adjoint Laplace-type operators L , we prove that they
have at most one such self-adjoint extension and that if they do, a version of Thm. 1.1 holds
for the corresponding heat kernel.

The asymptotic expansion (1.1) suggests to define approximate heat kernels eν
t (x, y) by

eν
t (x, y) := χ

(
d(x, y)

)
et (x, y)

ν∑

j=0

t j
� j (x, y)

j ! , (1.5)

where χ : [0,∞) −→ [0, 1] is a smooth function with χ(r) = 1 near zero and support
contained in [0, inj(M)) (with inj(M) denoting the injectivity radius of M). If for general
smooth kernels k, � ∈ C∞(M × M,V � V∗), we define their convolution k ∗ � by

(k ∗ �)(x, y) :=
∫

M
k(x, z)�(z, y)dz,

it turns out that the heat kernel pLt (x, y) can be approximated by repeated convolutions of
the kernel eν

t (x, y). More precisely, we have the following result.

Theorem 1.4 (Approximation by convolution) Let L be a formally self-adjoint Laplace-
type operator, acting on sections of a metric vector bundle V over a compact Riemannian
manifold M. Then for any δ > 0 with

δ <

(
inj(M)

diam(M)

)2

, (1.6)

any ν ∈ N0 and each T > 0, there exists a constant C > 0 such that
∣∣∣pLt (x, y) − (

eν
�1τ

∗ · · · ∗ eν
�N τ

)
(x, y)

∣∣∣ ≤ C p�
t (x, y) |τ |ν t (1.7)

for all x, y ∈ M and for any partition τ = {0 = τ0 < τ1 < · · · < τN = t ≤ T } of an
interval [0, t] with |τ | ≤ δt , where p�

t is the heat kernel of the Laplace–Beltrami operator
on M. Here we used the notations � jτ := τ j − τ j−1 and |τ | := max1≤ j≤N � jτ for the
increment, respectively the mesh of a partition τ .

This approximation result can be used in different regimes: If one fixes t > 0, one can
make the Ck difference in between pLt and eν

�1τ
∗ · · · ∗ eν

�N τ smaller than any given ε > 0,
by choosing a partition τ fine enough. On the other hand, by choosing ν large enough, this
error can be made uniform in t .

The estimate from Thm. 1.4 is an a posteriori estimate, in the sense that the error depends
on p�

t (x, y), which itself is the (a priori unknown) solution to a differential equation. One
can obtain an a priori estimate by using the Gaussian estimate from above [20, Thm. 5.3.4],
p�
t (x, y) ≤ Ct−n/2+1/2et (x, y), which holds on compact Riemannian manifolds: One gets

that one can replace the result of Thm. 1.4 by the estimate
∣∣∣pLt (x, y) − (

eν
�1τ

∗ · · · ∗ eν
�N τ

)
(x, y)

∣∣∣ ≤ C et (x, y) |τ |ν t3/2+ν−n/2. (1.8)
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This is a weaker statement, however, since, for example, if (x, y) ∈ M �� M , one even has
p�
t (x, y) ≤ Cet (x, y) for all 0 < t ≤ T , so in this case, the additional factor of t−n/2 can

be dropped on the right-hand side of (1.8) (with the constant being uniform over compact
subsets of M �� M in this case).

Similar approximation schemes and their relation to finite-dimensional approximation of
path integrals have also been considered by Fine and Sawin, who use these to give a “path
integral proof” of the Atiyah–Singer index theorem, see [14–16].

In this paper, we use Thm. 1.1 to analyze the short-time asymptotics of the heat kernel at
the cut locus. We show that if the set of minimizing geodesics between x and y is a disjoint
union of k submanifolds of the space of finite energy paths connecting x and y, having
dimensions d1, . . . , dk (see Def. 5.1), then under a natural non-degeneracy condition, the
heat kernel has an asymptotic expansion of the form

pLt (x, y)

et (x, y)
∼

k∑

l=1

(4π t)−dl/2
∞∑

j=0

t j
� j,l(x, y)

j ! ,

as t → 0. In order to derive this result, we show that the convolution product eν
�1τ

∗· · ·∗eν
�N τ

can be written as an integral over a certain space of piecewise geodesics paths, which can then
be evaluated with Laplace’s method. See, e.g., [21,26,29], we obtain similar results using
methods from stochastic analysis.

This paper is organized as follows. First we summarize some facts about the solution
theory of the wave equation and introduce the transformation formula, which relates it to
the heat equation. Here we also highlight some conditions for the Laplace-type operator that
suffice to have the transmutation formula valid on completemanifolds andwe use the formula
to prove some results on essential self-adjointness. Subsequently, in Sect. 3, we introduce the
Hadamard expansion of the solution operator to the heat equation and combine it with the
transmutation formula to prove Thm. 1.1. We also briefly demonstrate how the well-known
Gaussian estimates from above and below are derived using this technique. In the next section,
we give a proof of Theorem. 1.4. In a final section, we reformulate this convolution product
as a path integral, which is then analyzed to obtain an asymptotic expansion of the heat kernel
pLt (x, y) also in the case that x and y lie in each other’s cut locus. In “Appendix,” we prove
a general version of Laplace’s method, which is needed in our considerations.

2 The wave equation and the transmutation formula

LetM be a complete Riemannianmanifold of dimension n and letV be ametric vector bundle
over M . A Laplace-type operator L on V is a second-order differential operator acting on
sections of V , which in local coordinates is given by

L = −idV gi j
∂2

∂xi∂x j
+ lower-order terms,

where idV is the identity endomorphism on the vector bundleV and (gi j ) is the inverse matrix
of the matrix (gi j ) describing the metric in the local coordinates. Any such operator can be
written as L = ∇∗∇ +V for a unique metric connection ∇ and a self-adjoint endomorphism
field V [7, Section 2.1]. For example, if L is acting on functions (i.e., sections of the trivial
line bundle), we could have L = � + v with � the Laplace–Beltrami operator and v some
potential function. Considered as an unbounded operator on L2(M,V), a natural domain for
L is the space D(M,V) := C∞

c (M,V), the space of smooth, compactly supported sections
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of the bundle V (which, when necessary, is endowed with the usual test function topology).
We say that L is formally self-adjoint if it is symmetric on this domain.

Given such a Laplace-type operator L , one can consider the wave equation

(∂t t + L)ut = 0. (2.1)

A fundamental feature of the wave equation is the energy estimate, which states that for any
compact set K ⊆ M , any m ∈ R and any T > 0, there exists a constant α ∈ R such that for
all smooth solutions u of the wave equation with supp u0 ⊆ K , one has

‖ut‖2Hm + ‖u′
t‖2Hm−1 ≤ eα(t−s)(‖us‖2Hm + ‖u′

s‖2Hm−1

)
(2.2)

whenever −T ≤ s ≤ t ≤ T (see, e.g., [9, Thm. 8]).
From the theory of wave equations follows that there is a family of solution operators

Gt : D(M,V) −→ D(M,V) such that for ψ ∈ D(M,V), ut := Gtψ solves the wave
equation (2.1) with initial conditions u0 = 0, u′

0 = ψ . We also have its derivative G ′
s , which

has the property that ut := G ′
tψ solves the wave equation with initial condition u0 = ψ ,

u′
0 = 0 (see, e.g., Corollary 14 in [9]).
Instead of the wave equation, we can also consider the heat equation

(∂t + L)ut = 0. (2.3)

Here we only need to specify an initial condition ψ at time zero to have a unique (bounded)
solution. This leads to a solution operator e−t L , mapping the initial conditionψ to the solution
ut . The heat equation is related to the wave equation as follows.

Theorem 2.1 (Transmutation formula) Let M be a complete Riemannian manifold and let L
be a Laplace-type operator, acting on sections of a metric vector bundle V over M. Suppose
that thewave operators Gt and G ′

t defined onD(M,V) extend to strongly continuous families
of operators on L2(M,V) satisfying the norm bound

‖Gt‖, ‖G ′
t‖ ≤ Ceα|t | (2.4)

for some C > 0, α ∈ R. Then setting

e−t Lu =
∫ ∞

−∞
γt (s)G

′
su ds, with γt (s) := (4π t)−1/2e−s2/4t (2.5)

for u ∈ L2(M,V) defines a strongly continuous semigroup of operators, the infinitesimal
generator of which is an extension of L with dom(L) = D(M,V).

Remark 2.2 Of course, the continuous extensions of Gt respectively G ′
t , if they exist, are

unique, since D(M,V) is dense in L2(M,V).

Remark 2.3 The same result is true when L2(M,V) is replaced by any Banach space E of
distributions containing D(M,V) as a dense subset and such that the inclusion of E into
D ′(M,V) is continuous.

Proof Define for u ∈ L2(M,V)

Ptu :=
∫ ∞

−∞
γt (s)G

′
suds.
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By the norm bound on G ′
t , the integral on the right-hand (2.5) converges absolutely for each

t > 0, and Pt is a locally uniformly bounded family of operators. We now verify that Pt is a
strongly continuous semigroup. First, because γt integrates to one over the line, we have

‖Ptu − u‖L2 =
∥∥∥∥
∫ ∞

−∞
γt (s)

(
G ′

su − u
)
ds

∥∥∥∥
L2

≤
∫ ∞

−∞
γt (s)‖G ′

su − u‖L2 .

for all u ∈ L2(M,V). Because G ′
s is strongly continuous by assumption and G ′

0u = u, the
function ‖G ′

su−u‖L2 is continuous in s and vanishes at zero. Now ‖Ptu−u‖L2 → 0 follows
from the well-known fact that γt → δ0 as t → 0.

To verify the semigroup property, we use that for any s, t ∈ R and ψ ∈ D(M,V), we
have the “trigonometric formula”

G ′
sG

′
tψ = G ′

s+tψ − GsGt Lψ,

which can easily be verified by fixing s and noticing that both sides satisfy the wave equation
with respect to the variable t and with the same initial conditions. The energy estimate (2.2)
implies then that their difference must be zero. Now

(ϕ, Ps Ptψ)L2 =
∫ ∞

−∞

∫ ∞

−∞
γt (u)γs(v)

(
ϕ,G ′

uG
′
vψ

)
L2 dvdu

=
∫ ∞

−∞

∫ ∞

−∞
γt (u)γs(v)

((
ϕ,G ′

u+vψ
)
L2 − (

ϕ,GuGvLψ
)
L2

)
dvdu,

where the integral over each individual term is absolutely convergent by the bound (2.4) on
Gu and G ′

u . Because Gu is an odd function of u, the term involving GuGvLψ integrates to
zero. Therefore,

(ϕ, Ps Ptψ)L2 =
∫ ∞

−∞

∫ ∞

−∞
γt (u)γs(v)

(
ϕ,G ′

u+vψ
)
L2dvdu

=
∫ ∞

−∞

(∫ ∞

−∞
γt (r − v)γs(v)dv

) (
ϕ,G ′

rψ
)
L2dr

=
∫ ∞

−∞
γs+t (r)

(
ϕ,G ′

rψ
)
L2dr = (ϕ, Pt+sψ)L2 .

Hence, Ps Pt = Pt+s on the dense subset D(M,V) ⊂ L2(M,V) and by boundedness also
on all of L2(M,V). This shows that Pt is a strongly continuous semigroup of operators.

To seewhat the infinitesimal generator of Pt is, notice that forψ ∈ D(M,V), the estimates
on Gt and G ′

t justify the calculation

P ′
t ψ =

∫ ∞

−∞
γ ′
t (s)G

′
sψ ds =

∫ ∞

−∞
∂2

∂s2
γt (s)G

′
sψ ds

=
∫ ∞

−∞
∂

∂s
γt (s)GsLψ ds = −

∫ ∞

−∞
γt (s)G

′
s Lψ ds = −LPtψ.

This shows that the infinitesimal generator L (which is always closed for a strongly continuous
semigroup) is an extension of the operator L with dom(L) = D(M,V). ��

In particular, the result is applicable to the compact setting:

Lemma 2.4 For any Laplace-type operator acting on sections of a metric vector bundle over
a compact Riemannian manifold, the assumptions of Thm. 2.1 are satisfied.
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Proof The bound (2.4) follows directly from the energy estimate (2.2) in this case, since one
can take K = M and it is also clear that one can take the same α for each T . ��

Furthermore, it is well known that on a compact manifold, any Laplace-type operator L
has a unique closed extension that is the generator of a strongly continuous semigroup (this
follows, e.g., from Lemma 2.16 in [7]).

A consequence of Thm. 2.1 is the following.

Theorem 2.5 Let L be a formally self-adjoint Laplace-type operator, acting on sections of
a metric vector bundle over a complete Riemannian manifold. Considered as an unbounded
symmetric operator with domain D(M,V), L admits at most one self-adjoint extension L
that generates a strongly continuous semigroup of operators. If there is such an extension,
then the assumptions of Thm. 2.1 are satisfied.

Proof Let L be a self-adjoint extension of L that generates a strongly continuous semigroup
of operators. By the Hille–Yosida theorem, there exists ω ∈ R such that the spectrum of L
is contained in [ω,∞), and e−t L is given in terms of spectral calculus via the absolutely
convergent integral

(u, e−t Lv)L2 =
∫ ∞

−∞
e−tλd(u, Eλv)L2 ,

for u, v ∈ L2(M,V), where Eλ is the spectral measure associated with L . Consider the entire
function

gs(λ) :=
∞∑

k=0

s2k+1λk

(2k + 1)!
For λ > 0, we have gs(λ) = sin(s

√
λ)/

√
λ and gs(−λ) = sinh(s

√
λ)/

√
λ, while g′

s(λ) =
cos(s

√
λ) and g′

s(−λ) = cosh(s
√

λ). Hence, we obtain that
∥∥gs |[ω,∞)

∥∥∞ ≤ esω,
∥∥g′

s |[ω,∞)

∥∥∞ ≤ esω.

By standard properties of the functional calculus, one obtains the estimates ‖gs(L)‖ ≤ esω,
‖g′

s(L)‖ ≤ esω on the operator norms.
We now claim that the wave operator Gs on D(M,V) is given by Gs = gs(L)|D (M,V).

To see this, notice that for any ψ ∈ D(M,V), gs(L)ψ satisfies the wave equation (2.1) with
initial conditions g0(L)ψ = 0, g′

0(L)ψ = ψ . Hence, us := Gsψ − gs(L)ψ satisfies the
wave equation with initial conditions u0 = 0, u′

0 = 0, which implies us ≡ 0 by the energy
estimate (2.2). The same argument shows that G ′

s = g′
s(L)|D (M,V).

By the above, Gs and G ′
s satisfy the norm bound (2.4). To see that Gs and G ′

s are strongly
continuous, we argue as follows: By Lebesgue’s theorem of dominated convergence, one
obtains that for all u, v ∈ L2(M,V), one has (u,Gsv)L2 → (u,Gtv)L2 as s → t , i.e.,
Gsv → Gtv weakly. Similarly, ‖Gsv‖L2 = (v,G2

sv)L2 −→ (v,G2
t v)L2 = ‖Gtv‖L2 . Now

it is well known that in Hilbert spaces, weak convergence plus convergence of norms implies
convergence in norm, so we obtain Gsv → Gtv in L2(M,V). This shows that Gs is strongly
continuous and the argument for G ′

s is the same.
Now by Thm. 2.1, there is some extension L2 of L with domain containing D(M,V) that

generates a strongly continuous semigroup of operators given by the transmutation formula
(2.5). However, by Fubini’s theorem,

∫ ∞

−∞
γt (s)(u,G ′

sv)L2ds =
∫ ∞

−∞

(∫ ∞

−∞
γt (s)gs(λ)ds

)
d(u, Eλv)L2 ,
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where the interior integral is easily found to equal e−tλ, e.g., by expanding gs(λ) into its
power series and using standard formulas for the moments of a one-dimensional Gaussian
measure (see, e.g., Lemma 2.12 in [7]). Therefore, the semigroup generated by L2 equals the
semigroup generated by L .

These arguments show that self-adjoint extension of L generating a strongly continuous
semigroup of operators, this semigroup is given by the transmutation formula (3.1). However,
this formula does not depend on the self-adjoint extension (because the operatorGs doesn’t),
so any two strongly continuous operator semigroups generated by self-adjoint extensions of
L must coincide. But this implies that also the self-adjoint extensions coincide, because the
infinitesimal generator of an operator semigroup is unique. ��

Example 2.6 For example, if L = ∇∗∇ + V for some connection ∇ on V and a symmetric
endomorphism field V that is bounded from below (meaning that there existsω ∈ R such that
〈w, Vw〉 > ω for all w ∈ V), then L has a self-adjoint extension that generates a strongly
continuous semigroup. Namely, because for u ∈ L2(M,V),

(u, Lu)L2 = ‖∇u‖L2 + (u, Vu)L2 ≥ ω‖u‖L2 ,

the operator L is semi-bounded and it is well known that it has a self-adjoint extension, called
Friedrich extension (see, e.g., [35, VII.2.11]), which satisfies the same bound and therefore
generates an operator semigroup by functional calculus. We obtain that in this setting, the
Friedrichs extension is the only self-adjoint extension that is the generator of a strongly
continuous semigroup.

In particular, this applies to� = d∗d , the Laplace–Beltrami operator acting on functions.

Example 2.7 The Hodge Laplacian L = (d+d∗)2 on differential forms is a positive operator
and hence has a self-adjoint extension generating a strongly continuous semigroup by the
same argument. By Thm. 2.5, this is the only self-adjoint extension generating a strongly
continuous semigroup of operators. In fact, it is the only self-adjoint extension, by Thm. 2.4
in [33]. For the same reason, for any self-adjoint Dirac-type operator D, the corresponding
Laplacian D2 has a unique self-adjoint extension generating a strongly continuous semigroup
of operators. Also in this case, it is known that D and D2 are even essentially self-adjoint
(i.e., they have unique self-adjoint extensions), compare [36].

Example 2.8 In contrast, there are formally self-adjoint Laplace-type operators that do not
admit any self-adjoint extension. For example, the operator L = −� − x4 on M = R

does not admit a self-adjoint extension (see Ex. 3 on p. 86 in [8]). There are also essentially
self-adjoint Laplace-type operators which do not generate a strongly continuous family of
operators, see, e.g., [32].

Remark 2.9 Our observations show that matters can be quite subtle on general complete
manifolds: A formally self-adjoint Laplace-type operator need not have a self-adjoint exten-
sion, nor need it be unique. Furthermore, not all self-adjoint extensions generate a strongly
continuous semigroup of operators. (They do if and only if the spectrum is bounded from
below.) However, there is at most one self-adjoint extension that generates a strongly con-
tinuous semigroup of operators. We do not know of an example of a formally self-adjoint
Laplace-type operator that admits two different self-adjoint extensions, one of which gener-
ates a strongly continuous semigroup and the other doesn’t. (By Thm. 2.5, not both of them
can generate a strongly continuous semigroup of operators.)
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3 Heat kernel asymptotics

In this section, we prove the following more general version of Thm. 1.1.

Theorem 3.1 (Strong heat kernel asymptotics) Let L be a Laplace-type operator, acting on
sections of a vector bundle V over a complete Riemannian manifold M. Suppose that the
assumptions of Thm. 2.1 are satisfied (e.g., when M is compact or L is formally self-adjoint
and semi-bounded). Then for any compact subset K of M �� M, any T > 0 and any numbers
ν, k, l,m ∈ N0, there exists a constant C > 0 such that

∣∣∣∣∣∣
∂k

∂tk
∇l
x∇m

y

⎧
⎨

⎩
pLt (x, y)

et (x, y)
−

ν∑

j=0

t j
� j (x, y)

j !

⎫
⎬

⎭

∣∣∣∣∣∣
≤ Ctν+1−k

for all (x, y) ∈ K, whenever 0 < t ≤ T . Here � j (x, y) are certain smooth sections of the
bundle V � V∗ over M �� M.

The proof will use the transmutation formula (3.1), which in terms of integral kernels
translates into

pLt (x, y) :=
∫ ∞

−∞
γt (s)G

′(s, x, y) ds, (3.1)

where G ′(s, x, y) is the Schwartz kernel of the operator Gs . This integral is meant as a
distributional integral, i.e., for test functions ϕ ∈ D(M,V∗), ψ ∈ D(M,V), we set

pLt [ϕ ⊗ ψ] :=
∫ ∞

−∞
γt (s)G

′
s[ϕ ⊗ ψ] ds (3.2)

Let us verify that this indeed defines a distribution on M × M for each t > 0, provided that
the assumptions of Thm. 2.1 hold. Namely, by the estimate on G ′

s , we have
∣∣G ′

s[ϕ ⊗ ψ]∣∣ = ∣∣(ϕ,Gsψ)L2

∣∣ ≤ Ceα|s|‖ϕ‖L2‖ψ‖L2 , (3.3)

which shows that the integral (3.1) is absolutely convergent. We furthermore have

∣∣pLt [ϕ ⊗ ψ]∣∣ ≤
(
C
∫ ∞

−∞
γt (s)e

α|s|ds
)

‖ϕ‖L2‖ψ‖L2

for all ϕ ∈ D(M,V∗), ψ ∈ D(M,V), which shows that pLt is indeed a well-defined distri-
bution.

The wave kernelG(t, x, y) has an asymptotic expansion, the Hadamard expansion, which
describes its singularity structure. To state the result, we introduce the Riesz distributions
R(α; t, x, y) ∈ D(M �� M). Namely, for Re(α) > n + 1, we set

R(α; t, x, y) := C(α) sign(t)
(
t2 − d(x, y)2

) α−n−1
2+ , C(α) := 21−απ

1−n
2

�
(

α
2

)
�
(

α−n+1
2

) ,

where (t2 − d(x, y)2)+ denotes the positive part. Hence, R(α; t, x, y) is zero whenever
|t | ≤ d(x, y) (the constant C(α) here equals the constant C(α, n + 1) in Def. 1.2.1 of [6]
because our space time R× M is n + 1-dimensional. The distributions R(α) discussed here
are related to the distributions R±(α) in Section 1.4 of [6] by R(α) = R+(α) − R−(α)). For
Re(α) > n + 1, the R(α; t, x, y) are then continuous functions on R × M �� M and one
can show that they define a holomorphic family of distributions on {Re(α) > n + 1} that

123



380 Annals of Global Analysis and Geometry (2019) 55:371–394

has a holomorphic extension to all of C [6, Lemma 1.2.2 (4)]. This defines R(α; t, x, y) ∈
D ′(R × M �� M) for all α ∈ C.

Now on M �� M , the distribution G(t, x, y) has the asymptotic expansion [6, Ch. 2]

G(t, x, y) ∼
∞∑

j=0

� j (x, y)R(2 + 2 j; t, x, y), (3.4)

where the� j (x, y) ∈ C∞(M �� M,V�V∗) are coefficients determined by certain transport
equations. The asymptotic expansion (3.4) is meant in the sense that the difference

δν(t, x, y) := G(t, x, y) −
ν∑

j=0

� j (x, y)R(2 + 2 j; t, x, y) (3.5)

can be made arbitrarily smooth by increasing the number ν of correction terms; in fact,
δν ∈ Ck(R× M �� M,V � V∗) whenever ν ≥ (n + 1)/2+ k [6, Prop. 2.5.1]. Furthermore,
the fact that the wave equation has finite propagation speed (i.e.,G(t, x, y) ≡ 0 on the region
where |t | < d(x, y)) implies that when ν is so large that δν is Ck , one has the estimate

∣∣∣∣
∂ j

∂t j
∇l
x∇m

y δν(t, x, y)

∣∣∣∣ ≤ C
(
t2 − d(x, y)2

)(k− j−l−m)/2
+ (3.6)

uniformly over compact subsets of M �� M and t ≤ T , whenever k ≥ l + m (compare [6,
Thm. 2.5.2]).

Lemma 3.2 For all j ∈ N0, t > 0 and all (x, y) ∈ M �� M, we have

1

2t

∫ ∞

−∞
γt (s)R(2 + 2 j; s, x, y) s ds = et (x, y)

t j

j ! , (3.7)

where et (x, y) is the Euclidean heat kernel, defined in (1.2). In particular, the distributional
integral on the left-hand side actually yields a smooth function.

Proof For Re(α) > n + 1, consider the absolutely convergent integral

1

2t

∫ ∞

−∞
γt (s)R(α; s, x, y) s ds = C(α)

2t

∫ ∞

−∞
γt (s)

(
s2 − d(x, y)2

) α−n−1
2+ |s| ds

= C(α)

t

∫ ∞

0
γt (s)

(
s2 − d(x, y)2

) α−n−1
2+ s ds

= C(α)

t

∫ ∞

d(x,y)
γt (s)

(
s2 − d(x, y)2

) α−n−1
2 s ds

Performing the substitution u2 = s2 − d(x, y)2 which transforms the interval (d(x, y),∞)

into the interval (0,∞), we have sds = udu. Therefore, we obtain
∫ ∞

d(x,y)
γt (s)

(
s2 − d(x, y)2

) α−n−1
2 s ds = γt

(
d(x, y)

) ∫ ∞

0
e−u2/4t uα−n du.

Now, substituting u2/4t = r , the integral can be brought into the form of a gamma-integral,
giving
∫ ∞

0
e−u2/4t uα−n du = t1/2(4t)

α−n
2

∫ ∞

0
e−r r

α−n−1
2 dr = t1/2(4t)

α−n
2 �

(
α − n + 1

2

)
.
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Put together, we arrive at

1

2t

∫ ∞

−∞
γt (s)R(α; s, x, y) s ds = γt

(
d(x, y)

)C(α)

t
t1/2(4t)

α−n
2 �

(
α − n + 1

2

)

= et (x, y)
t

α−2
2

�(α/2)
.

(3.8)

Until now, we have restricted ourselves to the case Re α > n + 1. However, for both sides
of the last equation, if we pair them with a test function ϕ ∈ D(M �� M), the result will
be an entire holomorphic function in α. Because they coincide for Re α > n + 1, they must
coincide everywhere, by the identity theorem for holomorphic functions.

The statement of the lemma is the particular result for α = 2 + 2 j , j ∈ N0. ��
Proof (of Thm. 3.1) Integrating by parts in (3.1), which is justified by the estimate (2.4), we
obtain

pLt (x, y) =
∫ ∞

−∞
γt (s)G

′(s, x, y) ds

=
∫ ∞

−∞
γt (s)G(s, x, y)

s

2t
ds

(3.9)

where the identity is to be interpreted in the distributional sense. Now for any ν ∈ N, we
have

pLt (x, y) =
ν∑

j=0

� j (x, y)

2t

∫ ∞

−∞
γt (s)R(2 + 2 j; s, x, y) s ds + 1

2t

∫ ∞

−∞
γt (s)δ

ν(s, x, y) s ds,

where δν(t, x, y) is inCk whenever ν ≥ (n+1)/2+k. By Lemma 3.2, the first term evaluates
to

ν∑

j=0

� j (x, y)

2t

∫ ∞

−∞
γt (s)R(2 + 2 j; s, x, y) s ds = et (x, y)

ν∑

j=0

t j
� j (x, y)

j ! .

It remains to estimate the error term. Because Gt = −G−t and the Riesz distributions are
odd in t , the remainder term δν(t, x, y) is an odd function in the t variable. We conclude

rν(t, x, y) := 1

2t

∫ ∞

−∞
γt (s)δ

ν(s, x, y) s ds = 1

t

∫ ∞

d(x,y)
γt (s)δ

ν(s, x, y) s ds,

as δν(s, x, y) = 0 if s < d(x, y), because of (3.6). Substituting s = √
u2 + d(x, y)2 as

before, one obtains

rν(t, x, y) = γt
(
d(x, y)

)

t

∫ ∞

0
e− u2

4t δν(

√
u2 + d(x, y)2, x, y) u du.

Setting δ̃ν(u, x, y) := δν(
√
u2 + d(x, y)2, x, y) one has that δ̃ν is Ck whenever δν is Ck ,

and from (3.6) follows the estimate
∣∣∣

∂ i

∂ui
∇l
x∇m

y δ̃ν(u, x, y)
∣∣∣ ≤ Cuk−i−l−m . (3.10)

which is valid whenever k ≥ i + l +m and uniform over x, y in compact subsets of M �� M
and u ≤ T . Now the function e−u2/4t satisfies

−2t

u

∂

∂u
e−u2/4t = e−u2/4t ,
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hence for any r , l,m ∈ N0, one obtains

∇l
x∇m

y

{rν(t, x, y)

et (x, y)

}
= (2t)r

t

∫ ∞

0
γt (u)

∂

∂u

( 1
u

∂

∂u

)r−1∇l
x∇m

y δ̃ν(u, x, y)du.

if ν is large enough, depending on l andm. The estimate (3.10) shows that thesemanipulations
make sense when ν is large enough, i.e., in this case, the integral is absolutely convergent and
uniformly bounded independent of t . Therefore, for any ν, one can find ν̃ ≥ ν large enough
so that

∣∣∣∣∣∣
∂ i

∂t i
∇l
x∇m

y

⎧
⎨

⎩
pLt (x, y)

et (x, y)
−

ν̃∑

j=0

t j
� j (x, y)

j !

⎫
⎬

⎭

∣∣∣∣∣∣
≤ Ctν+1−i ,

where the estimate is uniform for (x, y) in compact subsets of M �� M and t ≤ T . However,
the calculation

∣∣∣∣∣∣
∂ i

∂t i
∇l
x∇m

y

⎧
⎨

⎩
pt (x, y)

et (x, y)
−

ν∑

j=0

t j
� j (x, y)

j !

⎫
⎬

⎭

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
∂ i

∂t i
∇l
x∇m

y

⎧
⎨

⎩
pt (x, y)

et (x, y)
−

ν̃∑

j=0

t j
� j (x, y)

j !

⎫
⎬

⎭

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∂ i

∂t i

ν∑

j=ν+i

t j
∇l
x∇m

y � j (x, y)

j !

∣∣∣∣∣∣

≤ C ′tν+1−i

shows that in fact ν̃ = ν suffices. ��
Corollary 3.3 The heat kernel coefficients satisfy the symmetry relation

� j (x, y) = (
�∗

j (y, x)
)∗

,

where �∗
j are the heat kernel coefficients for the heat kernel p∗

t of the formally adjoint
operator L∗ and (�∗

j (y, x))
∗ denotes the fiberwise metric adjoint of �∗

j (y, x).

Proof By Theorem 1.1, this follows from the fact that the heat kernel itself satisfies the same
symmetry relation by Prop. 2.17 (2) in [7]. Note that this argument does not work if one only
knows (1.4). ��
Remark 3.4 Corollary 3.3 is not at all obvious from the defining transport equations for the
� j . The result was previously proved in the scalar case by Moretti [27,28] for the heat
equation and the Hadamard coefficients by approximating the given metric by real analytic
metrics. However, for the heat kernel coefficients, this comes out directly from Thm. 1.1.

In the remainder of this section, we demonstrate how to obtain Gaussian estimates on pLt
using our techniques.

Theorem 3.5 (Gaussian upper bound) Let L be a formally self-adjoint Laplace-type operator
acting on sections of a vector bundle V over a compact manifold M and let pt be its heat
kernel. Then for any T > 0, there exists a constant C > 0 such that

∣∣∣
∂ j

∂t j
∇m
x ∇l

y pt (x, y)
∣∣∣ ≤ Ct−(n+2 j+m+l+1)e− d(x,y)2

4t

for all x, y ∈ M, whenever t ≤ T .
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Remark 3.6 In fact, the upper bound can be improved to have a pre-factor of t−n+1/2 instead
of t−n−1 in the case j = m = l = 0 [20, Thm. 5.3.4]. This result is then sharp, as seen,
e.g., by the example of two antipodal points of a sphere [20, Example 5.3.3]. Of course, if
(x, y) ∈ M �� M , then the correct exponent is t−n/2 near (x, y), by Thm. 1.1.

Proof (sketch) The Schwartz kernel G ′(t, x, y) of G ′
t as a distribution on R × M × M has

order at most n + 1, i.e., it is a sum of (n + 1)-st distributional derivatives of continuous
functions. This follows from the asymptotic expansion (3.4) and the fact that the Riesz
distribution R(2 + 2 j) has distributional order at most n + 1 − 2 j for 0 ≤ 2 j < n + 1 and
is continuous if 2 j ≥ n + 1 [6, Section 1.2]. The wavefront set of G ′(t, x, y) is contained in
the characteristics of the wave operator ∂t t + L , (i.e., the “light cone”) which are transversal
to the submanifolds R × {(x, y)} ⊂ R × M × M . Therefore, one can restrict G ′ to these
submanifolds, so that for (x, y) ∈ M × M fixed, G ′(t, x, y) is a distribution on R of order at
most n + 1 in the variable t . Similarly, ∂ j

∂t j
∇k
x∇l

yG
′(t, x, y) is a distribution of order at most

k := n + 1 + m + l + j on R. This means that

∂ j

∂t j
∇m
x ∇l

yG
′(t, x, y) = ∂k

∂tk
f (t, x, y) (3.11)

in the sense of distributions for some L1 function f (s, x, y). Using the transmutation formula
(3.1) and integration by parts, we obtain

∇m
x ∇l

y pt (x, y) = (−1)k
∫ ∞

−∞
∂k

∂sk
γt (s) f (s, x, y)ds,

which gives a pre-factor of order −k in t . Here, the integration by parts is justified by
standard energy estimates. Differentiating j times by t gives another pre-factor of order−2 j
in t .

The result now follows from the fact that G ′(s, x, y) and hence also f (s, x, y) is equal to
zero for |s| < d(x, y), by finite propagation speed of the wave equation. ��
Remark 3.7 If n is even, R(2 + 2 j) is in fact of order n − 2 j . This improves the estimate of
Thm. 3.5 to a pre-factor of t−(n+2 j+m+l) on the right-hand side in even dimensions.

Theorem 3.8 (Gaussian lower bound) Let M be a compact Riemannian manifold and let L
be a scalar Laplace-type operator L, i.e., a Laplace-type operator acting on functions on M.
Then for any T > 0, there exists a constant C > 0 such that

et (x, y) ≤ CpLt (x, y)

for all x, y ∈ M, whenever t ≤ T .

Proof (sketch) For some ν ≥ 1, let eν
t (x, y) be the approximate heat kernel of L defined in

(1.5). Because of Thm. 1.1, there exists C > 0 such that for any N ∈ N, we have
(
eν
t/N ∗ · · · ∗ eν

t/N︸ ︷︷ ︸
N times

)
(x, y) ≤ (

CpLt/N ∗ · · · ∗ Cpt/N
)
(x, y) = CN pLt (x, y)

On the other hand, by Lemma 5.72, the convolution product eν
t/N ∗ · · · ∗ eν

t/N can be written
as an integral over the manifold Hxy;τ (M) of piecewise geodesics (introduced in Sect. 5),

2 In order to not raise the impression that our arguments are circular, we emphasize here that Lemma 5.7 used
here does not depend on Thm. 3.8 or any material in between; it is a purely elementary calculation.
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where τ := {0 < 1
N < 2

N < · · · < N−1
N < 1} denotes the equidistant partition of the interval

[0, 1]. More specifically,

(
et/N ∗ · · · ∗ eν

t/N

)
(x, y) = (4π t)−nN/2

∫

Hxy;τ (M)

e−E(γ )/2tϒτ,ν(t, γ )dγ,

where E is the energy functional (5.1) andϒτ,ν(t, γ ) is some smooth function on Hxy;τ (M),
depending polynomially on t . An investigation of the integral using Laplace’s method (see
“Appendix 1”) shows that for N large,

(
et/N ∗ · · · ∗ eν

t/N

)
(x, y)

et (x, y)
≥ ε,

where ε > 0 is independent of x and y, where one uses that ϒτ,ν(0, γ ) > 0 for all minimal
geodesics γ connecting x and y, if N is large enough. ��

Remark 3.9 There is a rich literature containing Gaussian bounds for the Laplace–Beltrami
operator. In the stochastic literature, two-sided estimates can be found, e.g., in [26], [20,
Thm. 5.3.4] and [4]. Using analytic methods, the Gaussian estimate from above is derived,
e.g., in [12], [18, Thm. 15.14] and [11].

4 Convolution approximation

In this section, we prove Thm. 1.4. Throughout, M is a compact Riemannian manifold and
L is a Laplace-type operator, acting on sections of a metric vector bundle V over M .

The proof relies the following lemma.

Lemma 4.1 For any 0 < ε < 1 and all R, T > 0, there exist constants C, δ > 0 such that
for all x, y ∈ M, we have
∫

d(z0,z1)≥R
p�
s0(x, z0)p

�
s1−s0(z0, z1)p

�
t−s1(z1, y) d(z0, z1) < Ce

−(1−ε) R2
4(s1−s0) p�

t (x, y)

whenever 0 ≤ s0 < s1 ≤ t ≤ T and s1 − s0 ≤ tδ. Here p�
t denotes the heat kernel of the

Laplace–Beltrami operator on M.

Proof Set

I := 1

p�
t (x, y)

∫

d(z0,z1)≥R
p�
s0(x, z0)p

�
s1−s0(z0, z1)p

�
t−s1(z1, y) d(z0, z1)

and put

ϕ(r) =
{
0 r < R

1 r ≥ R.

By Thms. 3.5 and 3.8, there exist constants C1,C2 > 0 such that for all 0 < t ≤ T and all
x, y ∈ M , we have

C1t
−n/2e− d(x,y)2

4t ≤ p�
t (x, y) ≤ C2t

−n−1e− d(x,y)2

4t . (4.1)
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Using this, we obtain

I ≤ C2(s1 − s0)−n−1

p�
t (x, y)

∫

M

∫

M
e
− d(z0,z1)2

4(s1−s0) p�
s0(x, z0)p

�
t−s1(z1, y)ϕ

(
d(z0, z1)

)
dz0dz1.

Now set for any ε′ with 0 < ε′ < ε

δ := ε′ R2

diam(M)2
. (4.2)

Then on the set where ϕ(d(z0, z1)) �= 0, i.e., d(z0, z1) ≥ R, we have whenever s1 − s0 ≤ tδ
the estimate

d(z0, z1)2

4(s1 − s0)
− d(x, y)2

4t
≥ R2

4(s1 − s0)
− d(x, y)2δ

4(s1 − s0)
= R2

4(s1 − s0)
− ε′ R2d(x, y)2

4(s1 − s0)diam(M)2

≥ (
1 − ε′) R2

4(s1 − s0)
.

Hence, under this restriction on s1 − s0 and using that the function p�
t (x,−) integrates to

one for each x ∈ M , as well as (4.1), we have for each 0 < t ≤ T that

I ≤ C2(s1 − s0)−n−1

p�
t (x, y)

e
−(1−ε′) R2

4(s1−s0)
− d(x,y)2

4t

∫

M

∫

M
p�
s0(x, z0)p

�
t−s1(z1, y)dz0dz1

≤ C2(s1 − s0)
−n−1e

−(1−ε′) R2
4(s1−s0) T n/2 t

−n/2e− d(x,y)2

4t

p�
t (x, y)

≤ C3(s1 − s0)
−n−1e

−(1−ε′) R2
4(s1−s0) < C4e

−(1−ε) R2
4(s1−s0) ,

if the constants C3, C4 are chosen appropriately. ��

Remark 4.2 The proof above shows that one can choose δ as in Thm. 1.4 in order that the
statement of Lemma 4.1 holds.

We can now prove Thm. 1.4.

Proof (of Thm. 1.4) Throughout the proof, write� j := � jτ for abbreviation. By theMarkov
property of the heat kernel, we have pLt = pLs ∗ pLt−s for all 0 < s < t . We obtain that

pLt − eν
�1

∗ · · · ∗ eν
�N

=
N∑

j=1

pLτ j−1
∗ · · · ∗ pL� j−1

∗ (
pL� j

− eν
� j

) ∗ eν
� j+1

∗ · · · ∗ eν
�N

,

since the sum on the right-hand side telescopes. By the Hess–Schrader–Uhlenbrock estimate
[19], we have |pLt | ≤ eαt p�

t for some constant α ∈ R, where p�
t denotes the heat kernel of

the Laplace–Beltrami operator (here we use self-adjointness of the operator L). Similarly,
∣∣eν

t (x, y)
∣∣≤ ∣∣pLt (x, y)

∣∣+∣∣eν
t (x, y) − χ

(
d(x, y)

)
pLt (x, y)

∣∣≤eαt p�
t (x, y) + Ctν+1et (x, y)

≤ eα′t p�
t (x, y)

for some α′ > 0, where we used Thm. 1.1 and the Gaussian estimate from below, Thm. 3.8.
Here, χ is a smooth function with χ(r) = 1 near zero and support contained in [0, inj(M)),
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with inj(M) the injectivity radius. Therefore,

∣∣pLt − eν
�1

∗ · · · ∗ eν
�N

∣∣ ≤
N∑

j=1

|pLτ j−1
| ∗ ∣∣pL� j

− eν
� j

∣∣ ∗ |eν
� j+1

| ∗ · · · ∗ |eν
�N

|

≤
N∑

j=1

eτ j−1α p�
τ j−1

∗ ∣∣pL� j
− eν

� j

∣∣ ∗ eα� j+1 p�
� j+1

∗ · · · ∗ eα�N p�
�N

≤ eαt
N∑

j=1

p�
τ j−1

∗ ∣∣pL� j
− eν

� j

∣∣ ∗ p�
t−τ j

.

Now, by Thm. 1.1 and the Gaussian estimate from below,
∣∣pLt (x, y) − eν

t (x, y)
∣∣

≤
∣∣∣
(
1 − χ

(
d(x, y)

))
pLt (x, y)

∣∣∣ +
∣∣∣∣∣∣
χ
(
d(x, y)

)
⎛

⎝pLt (x, y) − et (x, y)
ν∑

j=0

t j
� j (x, y)

j !

⎞

⎠

∣∣∣∣∣∣

≤ etα
(
1 − χ

(
d(x, y)

))
p�
t (x, y) + C1t

ν+1 p�
t (x, y)

Therefore,
∣∣pLt (x, y) − (

eν
�1

∗ · · · ∗ eν
�N

)
(x, y)

∣∣

≤ eαt
N∑

j=1

C1�
ν+1
j p�

t (x, y)

︸ ︷︷ ︸
(1)

+eαt
N∑

j=1

∫

d(z0,z1)≥R
p�
τ j−1

(x, z0)p
�
� j

(z0, z1)pt−τ j (z1, y) d(z0, z1)

︸ ︷︷ ︸
(2)

,

where R is such that χ(r) = 1 for 0 ≤ r ≤ R. The first term can be estimated by

(1) ≤ C1|τ |ν
N∑

j=1

� j p
�
t (x, y) = C1t |τ |ν p�

t (x, y).

By Lemma 4.1, whenever |τ | ≤ δt , the second term can be estimated by

(2) ≤ C2

N∑

j=1

e−ε/� j p�
t (x, y) ≤ C3e

−ε′/|τ | p�
t (x, y) ≤ C4t |τ |ν p�

t (x, y),

with ε, ε′ > 0. This finishes the proof. ��

5 Heat kernel asymptotics at the cut locus

In this section, we use the convolution approximation from Thm. 1.4 to obtain short-time
asymptotic expansions of the heat kernel also in the case that x, y ∈ M lie in each other’s cut
locus. As we will see, the form of such an asymptotic expansion depends on the behavior of
the energy functional near its critical points on the space of paths between x and y.

For an absolutely continuous path γ : [0, 1] −→ M , consider the energy functional

E(γ ) = 1

2

∫ 1

0

∣∣γ̇ (s)
∣∣2ds. (5.1)
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Set

Hxy(M) := {
γ | γ is absolutely continuous with E(γ ) < ∞}

.

This is an infinite-dimensional manifold modeled on the Hilbert space H1([0, 1],Rn). For
details on the manifold structure on Hxy(M), see, e.g., Section 2.3 in [23]).

Let �min
xy ⊂ Hxy(M) denote the set of length minimizing geodesics between the points

x, y ∈ M . It is well known that for each γ ∈ �min
xy , we have E(γ ) = d(x, y)2/2, and

conversely, the set �min
xy is exactly the set of global minima of E on Hxy(M). Moreover, �min

xy
is compact in Hxy(M) [23, Prop. 2.4.11].

Definition 5.1 Let x, y ∈ M . We say that �min
xy is a non-degenerate submanifold, if it is a

submanifold of Hxy(M), and if furthermore for each γ ∈ �min
xy , the Hessian of E is non-

degenerate when restricted to a complementary subspace to the tangent space Tγ �min
xy .

This is just the well-known Morse–Bott condition on the energy function near the sub-
manifold �min

xy .

Theorem 5.2 (Short-time asymptotics, cut locus) Let M be a compact manifold and let L be
a self-adjoint Laplace-type operator, acting on sections of a metric vector bundle V over M.
For x, y ∈ M, assume that the set �min

xy is a disjoint union of k non-degenerate submanifolds
of dimensions d1, . . . , dk. Then the heat kernel has the complete asymptotic expansion

pLt (x, y)

et (x, y)
∼

k∑

l=1

(4π t)−dl/2
∞∑

j=0

t j
� j,l(x, y)

j !
as t → 0.

Remark 5.3 In particular, if (x, y) ∈ M �� M so that �min
xy = {γ } with γ the unique

minimizing geodesic between x and y, then we recover the asymptotic expansion from
before, Thm. 1.1.

Remark 5.4 The Hessian of the energy at an element γ ∈ �min
xy can be explicitly calculated

and is closely related to the Jacobi equation, see, e.g., [25, Section 13].

Remark 5.5 Thm. 5.2 can be generalized to the case that �min
xy is a degenerate submanifold

of Hxy(M). In this case, the explicit form of the asymptotic expansion depends on the type
of degeneracy of E . In general, it can become quite complicated; for example it may contain
logarithmic terms. For a discussion of this, see [26, pp. 20–24].

Example 5.6 A prototypical example where �min
xy is a non-degenerate submanifold of dimen-

sion greater than zero is when x and y are antipodal points on a sphere. In this case,
dim �min

xy = n − 1. For an explicit calculation of �0(x, y) in this case, see [20, Exam-
ple 5.3.3].

The convolution approximation from Thm. 1.4 is connected to the energy functional as
follows. For x, y ∈ M fixed, set

M (N−1) := {
(x1, . . . , xN−1) ∈ MN−1 | (x j−1, x j ) ∈ M �� M for j = 1, . . . , N

}
,

with the convention x0 := x , xN := y. For any partition τ = {0 = τ0 < τ1 < · · · < τN =
1} of the interval [0, 1], the manifold M (N−1) is diffeomorphic to the finite-dimensional
submanifold

Hxy;τ (M) := {
γ ∈ Hxy(M) | γ |[τ j−1,τ j ] is a unique minimizing geodesic for each j

}
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of Hxy(M). (By the condition that the paths γ by unique minimizing, we want to express
that we require (γ (τ j−1), γ (τ j )) ∈ M �� M .) Namely, the evaluation map

evτ : Hxy;τ (M) −→ M (N−1), γ �−→ (
γ (τ1), . . . , γ (τN−1)

)

is a diffeomorphism between the two. For our purpose, it doesn’t matter which Riemannian
metric (or volume) we put on Hxy;τ (M); for simplicity we take the one that makes evτ an
isometry.

Lemma 5.7 The heat convolution product from Thm. 1.4 can be written as an integral over
Hxy;τ (M). More specifically, for a partition τ = {0 = τ0 < τ1 < · · · < τN = t}, denote by
τ̃ the corresponding partition of the interval [0, 1], given by τ̃ j = τ j/t . Then we have

(
eν
�1τ

∗ · · · ∗ eν
�N τ

)
(x, y) = (4π t)−nN/2

∫

Hxy;τ̃ (M)

e−E(γ )/2t ϒτ̃,ν(t, γ ) dγ, (5.2)

where the integrand ϒτ̃,ν(t, γ ) is a certain smooth and compactly supported function on
Hxy;τ (M) with values in Hom(Vy,Vx ) that depends polynomially on t.

Proof Notice that for the path γ ∈ Hxy;τ (M) with γ (τ j ) = x j , we have

E(γ ) = 1

2

N∑

j=1

d(x j−1, x j )2

� jτ
.

Now because the approximate heat kernel eν
t is supported in M �� M (by choice of the cutoff

function present in its definition), the convolution eν
�1τ

∗ · · · ∗ eν
�N τ can be written as an

integral over M (N−1),
(
eν
�1τ

∗ · · · ∗ eν
�N τ

)
(x, y)

=
∫

M(N−1)
exp

⎛

⎝− 1

4t

N∑

j=1

d(x j−1, x j )
2

⎞

⎠ ·

·
N∏

j=1

[
χ
(
d(x j−1, x j )

)

(4π� jτ)n/2

ν∑

i=1

(� jτ) j
�i (x j−1, x j )

i !

]
dx1 · · · dxN−1.

We obtain formula (5.2), where

ϒτ̃,ν(t, γ ) =
N∏

j=1

[
(� j τ̃ )−n/2χ

(
d(γ (τ̃ j−1), γ (τ̃ j )

) ν∑

i=1

(t� j τ̃ ) j
�i

(
γ (τ̃ j−1), γ (τ̃ j )

)

i !

]
.

(5.3)

This finishes the proof. ��
The explicit formula forϒτ̃,ν is entirely unimportant for our purposes; we only take from it

thatϒτ̃,ν is a smooth, compactly supported function on Hxy;τ (M) that depends polynomially
on t .

Below, we will always write τ instead of τ̃ for a partition of the interval [0, 1].
Proof (of Thm. 5.2) We will use Laplace’s method on the path integral (5.2). In order to do
this, we have to bring it into the form of Thm. A.1 first, which is achieved by dividing by
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et (x, y) and setting φ(γ ) := E(γ ) − d(x, y)/2. Then by Lemma 5.7, we obtain
(
eν
t�1τ

∗ · · · ∗ eν
t�N τ

)
(x, y)

et (x, y)
= (4π t)−n(N−1)/2

∫

Hxy;τ (M)

e−φ(γ )/2t ϒτ,ν(t, γ ) dγ,

which has the form (A.1) since dim(Hxy;τ (M)) = n(N − 1).
It is clear that whenever the partition τ = {0 = τ0 < τ1 < · · · < τN = 1} is fine

enough, we have�min
xy ⊂ Hxy;τ (M). By assumption,�min

xy is the direct sum of non-degenerate
submanifolds �1, . . . , �k of dimension d1, . . . , dk . Therefore, by Thm. A.1 we obtain the
asymptotic expansion

(
eν
t�1τ

∗ · · · ∗ eν
t�N τ

)
(x, y)

et (x, y)
∼

k∑

l=1

(4π t)−dl/2
∞∑

j=0

t j
�

τ,ν
j,l (x, y)

j ! , (5.4)

where

�
τ,ν
j,l (x, y) =

j∑

i=0

1

i !( j − i)!
∫

�l

P j−iϒτ,ν(i)(0, γ )

det
(∇2E |Nγ �l

)1/2 dγ (5.5)

for some second-order differential operator P on Hxy;τ (M). Here, det(∇2E |Nγ �l )
1/2 denotes

the determinant of ∇2E |γ , restricted to the normal space Nγ �l of Tγ �l in Tγ Hxy;τ (M). In
particular, if we set d := max1≤l≤k dl , there exists a constant C0 > 0 such that

∣∣∣∣∣

(
eν
t�1τ

∗ · · · ∗ eν
t�N τ

)
(x, y)

et (x, y)

∣∣∣∣∣ ≤ C0t
−d/2 (5.6)

for all 0 < t ≤ T .
By Thm. 1.4, for each T > 0 and each ν ∈ N0, there exist constants C1, δ > 0 such that

∣∣∣∣∣
pLt (x, y)

et (x, y)
−

(
eν
t�1τ

∗ · · · ∗ eν
t�N τ

)
(x, y)

et (x, y)

∣∣∣∣∣ ≤ C1t
1+ν |τ |ν p�

t (x, y)

et (x, y)
, (5.7)

for any partition τ of the interval [0, 1] with |τ | ≤ δ. By the Gaussian estimate from above
(Thm. 3.5) follows p�

t (x, y) ≤ C2t−n/2−1et (x, y). Therefore, (5.7) yields
∣∣∣∣∣
pLt (x, y)

et (x, y)
−

(
eν
t�1τ

∗ · · · ∗ eν
t�N τ

)
(x, y)

et (x, y)

∣∣∣∣∣ ≤ C3t
ν−n/2|τ |ν . (5.8)

Using (5.8) and (5.6) for L = �, the Laplace–Beltrami operator on M , some ν ≥ n/2 −
k/2 − 1 and |τ | ≤ δ, we get

p�
t (x, y)

et (x, y)
≤

∣∣∣∣∣
p�
t (x, y)

et (x, y)
−

(
eν
t�1τ

∗ · · · ∗ eν
t�N τ

)
(x, y)

et (x, y)

∣∣∣∣∣ +
∣∣∣∣∣

(
eν
�1τ

∗ · · · ∗ eν
�N τ

)
(x, y)

et (x, y)

∣∣∣∣∣

≤ C4t
ν−n/2|τ |ν + C5t

−d/2 ≤ (C4δ
ν + C5)t

−d/2 =: C6t
−d/2.

Therefore, (5.7) improves to
∣∣∣∣∣
pLt (x, y)

et (x, y)
−

(
eν
t�1τ

∗ · · · ∗ eν
t�N τ

)
(x, y)

et (x, y)

∣∣∣∣∣ ≤ C1t
1+ν |τ |ν · C6t

−d/2 ≤ C7t
1+ν−d/2

From this follows that the heat kernel has an asymptotic expansion up to the order tν−d/2,
the coefficients of which must coincide with the asymptotic expansion (5.4) of eν

t�1τ
∗ · · · ∗

123



390 Annals of Global Analysis and Geometry (2019) 55:371–394

eν
t�N τ up to that order. Because asymptotic expansions are unique, this also shows that the
coefficients �

τ,ν
j,l (x, y) from (5.4) must stabilize for ν large enough and τ fine enough. More

precisely, if j ≤ ν, ν′ and |τ |, |τ ′| ≤ δ, we have

�
τ,ν
j,l (x, y) = �

τ ′,ν′
j,l (x, y).

Therefore,

� j,l(x, y) := �
τ,ν
j,l (x, y)

for any choice of ν ≥ j and |τ | ≤ δ is well defined.
Because ν was arbitrary, we obtain that pLt (x, y)/et (x, y) has a complete asymptotic

expansion of the claimed form, with the coefficients � j,l(x, y) given by the formula (5.5)
for ν large enough and |τ | small enough. ��
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A Laplace’s method

Laplace’s method is a way to calculate asymptotic expansions as t → 0 from above for
integrals of the form

I (t, a) := (4π t)− dim(�)/2
∫

�

e−φ(x)/2t a(t, x) dx . (A.1)

Here, t > 0, � is a Riemannian manifold, φ ∈ C∞(�) is a nonnegative function and a(t, x)
is smooth and compactly supported with respect to the x variable and depends smoothly on
t . The following result is very well known; however, it seems that it is nowhere to be found in
quite the form needed, so for convenience of the reader, we give a proof in this “Appendix”.

Theorem A.1 (Laplace expansion)
Assume that φ is nonnegative and that � := φ−1(0) is a disjoint union of submanifolds

�1, . . . , �k of dimensions d1, . . . , dk. Suppose that for each l = 1, . . . , k, and each x ∈ �l ,
the Hessian∇2φ|x is non-degenerate when restricted to the normal space Nx�l in Tx�. Then
I (t, a) has a complete asymptotic expansion as t goes to zero from above. More explicitly,
there exists a second-order differential operator P such that we have

I (t, a) ∼
k∑

l=1

(4π t)−dl/2
∞∑

j=0

t j
j∑

i=0

1

i !( j − i)!
∫

�l

P j−i a(i)(0, x)

det
(∇2φ|Nx�l

)1/2 dx (A.2)

where a(i)(0, x) denotes the i th derivative of a with respect to t at t = 0.

Remark A.2 The Laplace expansion of an integral of the form I (t, a) is closely related to
the method of stationary phase, which calculates asymptotic expansions of the integral t �→
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I (i t, a). Laplace’s method is simpler in the sense that here, only critical points which are
minima contribute to the asymptotic expansion, while for integrals with imaginary exponent,
all critical points contribute. Compare, e.g., [1] or [13, Section 1.2].

Lemma A.3 Under the assumptions of Thm. A.1, suppose that a(t, x) = 0 for all x in a
neighborhood of � and all 0 ≤ t ≤ δ, for some δ > 0. Then there exist constants T ,C, ε > 0
such that for all t ≤ T , we have I (t, a) ≤ Ce−ε/t .

Proof Let N := dim(�). Set

A := closure of
⋃

0≤t≤δ

supp a(t,−) (A.3)

(which is compact) and set

ε′ := min
x∈A

φ(x).

Notice that ε′ > 0 because A ∩ � = ∅. Therefore,
I (t, a) ≤ (4π t)−N/2e−ε′/2t

∫

�

a(t, x)dx ≤ (4π t)−N/2e−ε′/2t‖a(t,−)‖L1 ≤ Ce−ε/t ,

if we choose 0 < ε < ε′ and C > 0 appropriately. ��
Proof (of Thm. A.1) We may write the integral over � as a sum of integrals over open
subsets �1, . . . , �k such that the union of the �l is dense in �, and such that �l ⊂ �l for
each l = 1, . . . , k. The asymptotic expansion of the integral over � will then the be sum of
the asymptotic expansions of the integrals over the manifolds�l . Therefore, we may assume
that k = 1, i.e., � is a non-degenerate submanifold of dimension d .

Let N := dim(�) and let A as in (A.3). Since A is compact, we may without loss
of generality assume that also � and hence � is compact. Otherwise embed some open
neighborhood of A isometrically into a compact manifold �′, transplant φ and a there and
replace � by �′ in the definition of I (t, a). This does not alter the value of I (t, a).

Let N� ⊆ T� be the normal bundle of �. Then there is an open neighborhood V of the
zero section in N� and an open neighborhood U of � in � together with a diffeomorphism
κ : V −→ U such that

(
φ ◦ κ

)
(x, v) = ∇2φ|x [v, v], (x, v) ∈ V .

This can be proved using the implicit function theorem, compare, e.g., Lemma 1.2.2 in [13].
Clearly, we have dκ|(x,0) = idx .

Furthermore, we may assume that A ⊂ U . Namely otherwise, we can choose a cutoff
function χ ∈ C∞

c (U ) that is equal to one on a neighborhood of � and split I (t, a) =
I (t, χa)+ I (t, (1−χ)a), where the second summand does not contribute to the asymptotic
expansion because of Lemma A.3.

We now may use the transformation formula to obtain

I (t, a) = (4π t)−N/2
∫

U
e−φ(x)/2t a(t, x) dx

= (4π t)−N/2
∫

�

∫

Vx
e−〈v,Q(x)v〉/4t a

(
t, κ(x, v)

)∣∣det
(
dκ|(x,v)

)∣∣dvdx,
(A.4)

where we wrote Q(x) := ∇2φ|Nx� and Vx := V ∩ Nx�. It is well known that for any
(N − d)-dimensional Euclidean vector space W , any positive definite endomorphism Q of
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W and any continuous function f = f (t, x) on R × W which is bounded in the x variable
and depends smoothly on t , one has

lim
t→0

(4π t)−(N−d)/2
∫

W
e−〈v,Qv〉/4t f (t, v)dv = det(Q)−1/2 f (0, 0).

Furthermore, for all t , we have
∣∣∣∣(4π t)

−(N−d)/2
∫

W
e−〈v,Qv〉/4t f (t, v)dv

∣∣∣∣ ≤ ‖ f (t,−)‖∞.

Therefore, since � is compact, we may exchange integration over � and the limit t → 0 in
(A.4) to conclude

lim
t→0

(4π t)d/2 I (t, a) =
∫

�

a
(
0, κ(x, 0)

)

det
(
Q(x)

)1/2
∣∣det

(
dκ|(x,0)

)∣∣dx =
∫

�

a(0, x)

det
(∇2φ|Nx�

)1/2 dx

(A.5)

Now on the vector spaces Nx�, define the Q-Laplacian �Q by the formula

�Q f (v) = − 〈
Q(x)−1, D2 f |v

〉
.

This patches together to a smooth differential operator on N� satisfying
( ∂

∂t
+ �Q

){
(4π t)−(N−d)/2e−〈v,Q(x)v〉/4t} = 0.

Therefore, integrating by parts, we obtain

∂

∂t

{
(4π t)d/2 I

(
t, a

)} − (4π t)d/2 I
(
t, ȧ

)

= −(4π t)−(N−d)/2
∫

�

∫

Vx

e−〈v,Q(x)v〉/4t�Q

{
a
(
t, κ(x, v)

)∣∣det
(
dκ|(x,v)

)∣∣
}
dvdx

= (4π t)−(N−d)/2
∫

U
e−φ(x)/2t Pa(t, x)dx = (4π t)d/2 I (t, Pa),

where for f ∈ C∞(U ), we set

(P f )(y) = −�Q
{
f (v)

∣∣det
(
dκ|(x,v)

)∣∣}∣∣
(x,v)=κ−1(y)

∣∣det
(
dκ−1|y

)∣∣,

so that P is some second-order differential operator. Let J (t, a) := (4π t)d/2 I (t, a). Then
by Taylor’s formula and the Leibnitz rule, for all ε > 0 and ν ∈ N,

J (t, a) =
ν∑

j=0

1

j !
∂ j

∂ε j

{
J (ε, a)

}
(t − ε) j +

∫ t

ε

(t − s)ν

ν!
∂ν+1

∂sν+1

{
J (s, a)

}
ds

=
ν∑

j=0

1

j !
j∑

i=0

(
j

i

)
J
(
ε, P j−i a(i))(t − ε) j + Rν(ε, t),

where

Rν(ε, t) =
ν+1∑

i=0

(
ν + 1

i

)∫ t

ε

(t − s)ν

ν! J
(
s, Pν+1−i a(i))ds. (A.6)
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Because of (A.5), we may take the limit ε → 0 to obtain

lim
ε→0

J
(
ε, P j−i a(i)) =

∫

�

P j−i a(i)(0, x)

det
(∇2φ|Nx�

)1/2 dx .

Therefore,

J (t, a) =
ν∑

j=0

t j
j∑

i=0

1

( j − i)!i !
∫

�

P j−i a(i)(0, x)

det
(∇2φ|Nx�

)1/2 dx + Rν(0, t),

for any ν ∈ N0, where the remainder term is of order tν+1. This finishes the proof. ��
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