CrossMark

CORRECTION

Correction to: The heat flow for the full bosonic string

Volker Branding¹

Published online: 12 February 2018

© The Author(s) 2018. This article is published with open access at Springerlink.com

Abstract We clarify several items in the original paper.

Correction to: Ann Glob Anal Geom (2016) 50:347–365 https://doi.org/10.1007/s10455-016-9514-4

As noted by Xuangzhi Cao and Qun Chen the term $|d\phi_t(e_1) \wedge d\phi_t(e_2)|^2$ was written as $|d\phi_t|^4$ at several places in [1], which we will correct below.

Regarding [1, Lemma 4.5], the corrected version looks like:

Lemma Let ϕ_t : $M \times [0, T_{\text{max}}) \to N$ be a smooth solution of (4.1) in [1] and $V \in C^2(N)$. Assume that N has negative sectional curvature. Then for all $t \in [0, T_{\text{max}})$ the following inequalities hold:

$$\frac{\partial}{\partial t} \frac{1}{2} |\mathrm{d}\phi_t|^2 \le \Delta \frac{1}{2} |\mathrm{d}\phi_t|^2 + c_1 |\mathrm{d}\phi_t|^2 + \left(\frac{1}{2} |Z|_{L^{\infty}}^2 - 2\kappa_N\right) |\mathrm{d}\phi_t(e_1) \wedge \mathrm{d}\phi_t(e_2)|^2 \qquad (0.1)$$

and

$$\frac{\partial}{\partial t} \frac{1}{2} \left| \frac{\partial \phi_t}{\partial t} \right|^2 \le \Delta \frac{1}{2} \left| \frac{\partial \phi_t}{\partial t} \right|^2 + \left(|\nabla Z|_{L^{\infty}} + \frac{1}{4} |Z|_{L^{\infty}}^2 \right) |\mathrm{d}\phi_t|^2 \left| \frac{\partial \phi_t}{\partial t} \right|^2 + c_2 \left| \frac{\partial \phi_t}{\partial t} \right|^2 \tag{0.2}$$

with $c_1 := |\operatorname{Ric}^{\mathbf{M}}|_{L^{\infty}} + |R|_{L^{\infty}}|\operatorname{Hess} V|_{L^{\infty}}$, $c_2 := |R|_{L^{\infty}}|\operatorname{Hess} V|_{L^{\infty}}$ and the positive number κ_N denotes an upper bound on the absolute value of the sectional curvature of N.

The original article can be found online at https://doi.org/10.1007/s10455-016-9514-4.

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

 [∨]olker Branding volker@geometrie.tuwien.ac.at

Proof We have the following Bochner formula (formula (4.3) in [1])

$$\begin{split} \frac{\partial}{\partial t} \frac{1}{2} |\mathrm{d}\phi_t|^2 &= \Delta \frac{1}{2} |\mathrm{d}\phi_t|^2 - |\nabla \mathrm{d}\phi_t|^2 + \langle R^N(\mathrm{d}\phi_t(e_\alpha), \mathrm{d}\phi_t(e_\beta)) \mathrm{d}\phi_t(e_\alpha), \mathrm{d}\phi_t(e_\beta) \rangle \\ &- \langle \mathrm{d}\phi_t(Ric^M(e_\alpha)), \mathrm{d}\phi_t(e_\alpha) \rangle + \langle Z(\mathrm{d}\phi_t(e_1) \wedge \mathrm{d}\phi_t(e_2)), \tau(\phi_t) \rangle \\ &- R \operatorname{Hess} V(\mathrm{d}\phi_t, \mathrm{d}\phi_t). \end{split}$$

First, we estimate

$$|\langle Z(\mathrm{d}\phi_t(e_1) \wedge \mathrm{d}\phi_t(e_2)), \tau(\phi_t) \rangle| \leq \sqrt{2} |Z|_{L^{\infty}} |\mathrm{d}\phi_t(e_1) \wedge \mathrm{d}\phi_t(e_2)| |\nabla \mathrm{d}\phi_t|,$$

which yields

$$\langle Z(\mathrm{d}\phi_t(e_1) \wedge \mathrm{d}\phi_t(e_2)), \tau(\phi_t) \rangle - |\nabla \mathrm{d}\phi_t|^2 \leq \frac{1}{2} |Z|_{L^{\infty}}^2 |\mathrm{d}\phi_t(e_1) \wedge \mathrm{d}\phi_t(e_2)|^2.$$

Furthermore, we find (see also [2, Lemma 3.1])

$$\begin{split} \left\langle R^{N}(\mathrm{d}\phi_{t}(e_{\alpha}), \mathrm{d}\phi_{t}(e_{\beta})) \mathrm{d}\phi_{t}(e_{\alpha}), \mathrm{d}\phi_{t}(e_{\beta}) \right\rangle &= 2 \left\langle R^{N}(\mathrm{d}\phi_{t}(e_{1}), \mathrm{d}\phi_{t}(e_{2})) \mathrm{d}\phi_{t}(e_{1}), \mathrm{d}\phi_{t}(e_{2}) \right\rangle \\ &= 2 \left\langle Q^{N}(\mathrm{d}\phi_{t}(e_{1}) \wedge \mathrm{d}\phi_{t}(e_{2})), \mathrm{d}\phi_{t}(e_{1}) \wedge \mathrm{d}\phi_{t}(e_{2}) \right\rangle \\ &< -2\kappa^{N} |\mathrm{d}\phi_{t}(e_{1}) \wedge \mathrm{d}\phi_{t}(e_{2})|^{2}. \end{split}$$

Here, Q^N denotes the curvature operator on N. By assumption N is compact and we can estimate the Hessian of the potential $V(\phi)$ by its maximum yielding the first claim.

Regarding the second statement, we want to mention that the original proof is correct. \Box

Via the maximum principle we thus obtain the following (which is Corollary 4.6 in [1] with adjusted constants).

Corollary If $\frac{1}{2}|Z|_{L^{\infty}}^2 \le \kappa^N$ then for all $t \in [0, T_{\text{max}})$ the following estimates hold:

$$|d\phi_t|^2 \le |d\phi_0|^2 e^{2c_1 t},\tag{0.3}$$

$$\left|\frac{\partial \phi_t}{\partial t}\right|^2 \le \left|\frac{\partial \phi_0}{\partial t}\right|^2 e^{\frac{\left(|\nabla Z|_{L^{\infty}} + \frac{1}{4}|Z|_{L^{\infty}}^2\right)|\mathrm{d}\phi_0|^2}{c_1}} e^{2c_1t} + c_2t}.$$
(0.4)

We also correct a typo in the proof of [1, Lemma 4.8]. The equation on lines 5 and 6 on page 358 should be

$$\begin{split} \frac{\partial h}{\partial t} &= \Delta h - |\mathrm{d} u - \mathrm{d} v|^2 - \langle \mathbf{I}_u(\mathrm{d} u, \mathrm{d} u) - \mathbf{I}_v(\mathrm{d} v, \mathrm{d} v), u - v \rangle \\ &- \langle Z_u(\mathrm{d} u(e_1) \wedge \mathrm{d} u(e_2)) - Z_v(\mathrm{d} v(e_1) \wedge \mathrm{d} v(e_2)), u - v \rangle \\ &- R \langle \nabla V(u) - \nabla V(v), u - v \rangle. \end{split}$$

We also want to point out that one needs the following statement in the proofs of Lemma 4.15 and Lemma 4.16, which was not explicitly given in [1].

Lemma Let ϕ_t : $M \times [0, T_{\text{max}}) \to N$ be a smooth solution of (4.1) in [1] with $V \in C^2(N)$ and $\nabla Z = 0$. Assume that N has negative sectional curvature. If $\frac{1}{2}|Z|_{L^{\infty}}^2 \leq \kappa^N$ then for all $t \in [0, T_{\text{max}})$ the following inequality holds

$$\frac{\partial}{\partial t} \frac{1}{2} \left| \frac{\partial \phi_t}{\partial t} \right|^2 \le \Delta \frac{1}{2} \left| \frac{\partial \phi_t}{\partial t} \right|^2 - \frac{1}{2} \left| \nabla \frac{\partial \phi_t}{\partial t} \right|^2 - R \operatorname{Hess} V \left(\frac{\partial \phi_t}{\partial t}, \frac{\partial \phi_t}{\partial t} \right). \tag{0.5}$$

Proof Here, we make use of the following Bochner formula ((4.4) in [1])

$$\begin{split} \frac{\partial}{\partial t} \frac{1}{2} \left| \frac{\partial \phi_t}{\partial t} \right|^2 &= \Delta \frac{1}{2} \left| \frac{\partial \phi_t}{\partial t} \right|^2 - \left| \nabla \frac{\partial \phi_t}{\partial t} \right|^2 + \left\langle R^N \left(\mathrm{d}\phi_t(e_\alpha), \left(\frac{\partial \phi_t}{\partial t} \right) \mathrm{d}\phi_t(e_\alpha) \right), \frac{\partial \phi_t}{\partial t} \right\rangle \\ &- \left\langle \frac{\nabla}{\partial t} Z (\mathrm{d}\phi_t(e_1) \wedge \mathrm{d}\phi_t(e_2)), \frac{\partial \phi_t}{\partial t} \right\rangle - R \operatorname{Hess} V \left(\frac{\partial \phi_t}{\partial t}, \frac{\partial \phi_t}{\partial t} \right). \end{split}$$

We calculate

$$\frac{\nabla}{\partial t} Z(\mathrm{d}\phi_t(e_1) \wedge \mathrm{d}\phi_t(e_2)) = Z\left(\frac{\nabla}{\partial t} \mathrm{d}\phi_t(e_1) \wedge \mathrm{d}\phi_t(e_2)\right) + Z\left(\mathrm{d}\phi_t(e_1) \wedge \frac{\nabla}{\partial t} \mathrm{d}\phi_t(e_2)\right),$$

which allows us to estimate

$$\left\langle \frac{\nabla}{\partial t} Z(\mathrm{d}\phi_t(e_1) \wedge \mathrm{d}\phi_t(e_2)), \frac{\partial \phi_t}{\partial t} \right\rangle \leq |Z|_{L^{\infty}} \left| \frac{\nabla}{\partial t} \mathrm{d}\phi_t \right| \left| \mathrm{d}\phi_t \wedge \frac{\partial \phi_t}{\partial t} \right|,$$

$$\left\langle R^N(\mathrm{d}\phi_t(e_{\alpha}), \left(\frac{\partial \phi_t}{\partial t} \right) \mathrm{d}\phi_t(e_{\alpha}), \frac{\partial \phi_t}{\partial t} \right\rangle \leq -\kappa^N \left| \mathrm{d}\phi_t \wedge \frac{\partial \phi_t}{\partial t} \right|^2.$$

The result follows by applying Young's inequality.

We also correct several typos in [1, Lemma 4.21]. The inequality given at the bottom should be

$$\begin{split} E(\phi_1) - E(\phi_2) &= \int_0^1 \mathrm{d}\sigma \int_0^\sigma \left(\left| \nabla \frac{\partial \Phi}{\partial s} \right|^2 - \left\langle R^N \left(\mathrm{d}\Phi, \frac{\partial \Phi}{\partial s} \right) \mathrm{d}\Phi, \frac{\partial \Phi}{\partial s} \right\rangle \right. \\ &\quad + \left\langle \frac{\partial \Phi}{\partial s}, Z \left(\frac{\nabla}{\partial s} \mathrm{d}\Phi(e_1) \wedge \mathrm{d}\Phi(e_2) \right) \right\rangle \\ &\quad + \left\langle \frac{\partial \Phi}{\partial s}, Z \left(\mathrm{d}\Phi(e_1) \wedge \frac{\nabla}{\partial s} \mathrm{d}\Phi(e_2) \right) \right\rangle + R \operatorname{Hess} V \left(\frac{\partial \Phi}{\partial s}, \frac{\partial \Phi}{\partial s} \right) \right) \mathrm{d}s \\ &\quad \geq \int_0^1 \mathrm{d}\sigma \int_0^\sigma \left(\left| \nabla \frac{\partial \Phi}{\partial s} \right|^2 + \kappa_N \left| \mathrm{d}\Phi \wedge \frac{\partial \Phi}{\partial s} \right|^2 - |Z|_{L^\infty} \left| \mathrm{d}\Phi \wedge \frac{\partial \Phi}{\partial s} \right| \left| \nabla \frac{\partial \Phi}{\partial s} \right| \\ &\quad + R \operatorname{Hess} V \left(\frac{\partial \Phi}{\partial s}, \frac{\partial \Phi}{\partial s} \right) \right) \mathrm{d}s \\ &\quad \geq \int_0^1 \mathrm{d}\sigma \int_0^\sigma \left(\frac{1}{2} \left| \nabla \frac{\partial \Phi}{\partial s} \right|^2 + \left(\kappa^N - \frac{1}{2} |Z|_{L^\infty}^2 \right) \left| \mathrm{d}\Phi \wedge \frac{\partial \Phi}{\partial s} \right|^2 \\ &\quad + R \operatorname{Hess} V \left(\frac{\partial \Phi}{\partial s}, \frac{\partial \Phi}{\partial s} \right) \right) \mathrm{d}s \\ &\quad > 0. \end{split}$$

Acknowledgements The author gratefully acknowledges the support of the Austrian Science Fund (FWF) through the Project P 30749-N35 "Geometric variational problems from string theory".

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Branding, V.: The heat flow for the full bosonic string. Ann. Glob. Anal. Geom. **50**(4), 347–365 (2016)
- Toda, M.: Existence and non-existence results of H-surfaces into 3-dimensional Riemannian manifolds. Commun. Anal. Geom. 4(1-2), 161-178 (1996)

