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Abstract Let (M, g0) a smooth compact Riemannian manifold with smooth boundary and
dimension n ≥ 3. We consider a minimization problem for the scalar curvature R after a
conformal change. In particular, we seek for minimizers of the || · ||∞ functional of R, within
a conformal class, under small energy assumptions and natural geometric constraints. We
prove that minimizers exist, and have locally constant scalar curvature, outside of a set �

with explicit description.
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1 Introduction: statement of the main result

Let (M, g0) a smooth compact Riemannian manifold of dimension n ≥ 3, having smooth
boundary, equipped with a smooth Riemannian metric g0 and corresponding scalar curvature
R0. If we let u : M → R be a smooth positive function, we may consider conformal changes
of the metric, having the form:

g = u2
∗−2g0, (1)

where 2∗ = 2n
n−2 is the critical exponent for the Sobolev embedding W 1,2 ↪→ L p . Recall

that the scalar curvature of g0 transforms under the law:

− cn�g0u + R0u = Rgu
2∗−1, (2)

(see [12] for example), where �g0 is the Laplace–Beltrami operator of g0, cn = 4(n−1)
(n−2) and

Rg is the scalar curvature of g.
Equation (2) has been the object of intense study in the past, beginning with Yamabe [20],

who claimed that solutions u exist, for Rg constant, on any closed manifold. Nevertheless,
Trudinger [19] found a gap in the proof and proved part of the original statement, with Aubin
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[1] and Schoen [16] completing the proof in the remaining cases. A unified approach for the
Yamabe problem can be found in [12]. Furthermore, similar results were obtained in the case
of manifolds with boundary, beginning with the work of Escobar [4,5], and continuing with
Marques [13,14].

Another related problem to that of Yamabe is that of prescribed scalar curvature, known
as the Nirenberg problem for surfaces. In that context, it is asked if a certain smooth function
can be the scalar curvature function of a Riemannian manifold, after a conformal change (see
[3,11] for example). We note that obstructions may exist, depending on the manifolds and
functions that are studied.

A different question, connected to the aforementioned results, was raised in [15]. In
particular, a minimization problem for a weighted variant of the Gaussian curvature, after a
conformal change, was studied, on a compact smooth surface (S, g1) with smooth boundary
∂S. If g2 is a metric conformal to g1, with g2 = e2 f g1 for a smooth function f , we have the
Gaussian curvature of g2, K , given by:

K = e−2 f (−�g1 f + Kg1), (3)

where�g1 is the Laplace–Beltrami operator of g1 and Kg1 is the scalar curvature of g1. After
the introduction of a smooth positive weight function k : S → R, the authors prove that the
functional:

E∞( f ) = ess sup
S

|K |
k

attains its infimum on a suitably defined set. This is valid, provided that certain bounds hold
on the energy of the minimizer, in the class of functions they study. Moreover, the Gaussian
curvature of the minimizer is locally constant, outside of a closed set �, providing a certain
connection to the prescribed Gaussian curvature problem.

Motivated by the aforementioned results from [15] in the surface case, we study a higher-
dimensional analogue of that problem. In particular, the question that we attempt to answer
is the following:

Is there a metric in the conformal class of g0, with scalar curvature R minimizing the L∞
norm?

Hence, we ask whether the following infimum is attained:

inf
g∈[g0]

||Rg||L∞(M),

where [g0] is the class of metrics pointwise conformally equivalent to g0. Since we are
considering a variational problem in a geometric setting, there is always the possibility of
the problem admitting a trivial solution. First, note that for any λ ∈ R, we can consider the
metric gλ = (λu)2

∗−2g0, with curvature Rλ given by:

Rλ = λ2−2∗
Rg.

Hence, because of this scaling property, the infimum we want to consider would be automat-
ically zero, or not attained. To avoid this, we fix the volume of our manifold with respect to
g. If μ0 is the measure corresponding to the metric g0, and μ that is corresponding to g, then
the relation μ = u2

∗
μ0 holds. Thus, we select a number c1 ∈ R, with 0 < c1, and require

that:
μ(M) = c1. (4)
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If h0 and hg are the mean curvature functions of ∂M for g and g0 respectively, after a
conformal change of the form (1), then the following equation holds:

n − 2

2
hgu

n
n−2 = n − 2

2
h0u + ∂u

∂ν0
, (5)

with ν0 standing for the outward unit normal to ∂M with respect to g0. Taking advantage of
the last formula, we select a number c2 ∈ R such that:∫

∂M
hgdσ =

∫
∂M

hgu
2(n−1)
n−2 dσ0 = c2. (6)

Here σ is the surface measure corresponding to g, and σ0 that corresponding to g0 as usual.
In that way we may avoid the possibility of the presence of a scalar-flat metric in a conformal
class, which follows from standard results of Escobar [4], extended by Marques in [13] and
[14]. Finally, we also prescribe u along the boundary, with:

u = u0 ∈ C∞(∂M), (7)

for a fixed positive function u0.
After having given the necessary constraints for our purposes, we can now proceed to

specifying some subsets of Sobolev spaces to work with. For n
2 < p < ∞, we define the

subset Ap(c1, c2, u0) of the Sobolev space W 2,p(M, g0) by:

Ap(c1, c2, u0) =
{
u ∈ W 2,p(M, g0),

∫
M
u2

∗
dμ0 = c1,

∫
∂M

hgdσ = c2, u = u0 on ∂M, u > 0

}
.

We also let A∞(c1, c2, u0) be the set of all u ∈ ⋂
p<∞ Ap(c1, c2, u0), with scalar curvature

R ∈ L∞(M, μ0). We will show that within A∞, there exists a minimizer for our problem,
as long as an upper bound on the infimum of the energy E(u) is satisfied.

In particular, with this notation in hand, our main result is as follows:

Theorem 1 Let (M, g0) a smooth compact Riemannian manifold with smooth boundary and
dimension n ≥ 3. Let u0 ∈ C∞(∂M), c1 > 0, c2 ∈ R, satisfy

inf
u∈A∞(c1,c2,u0)

E(u) <
cn

c2/n1 K 2
n

, (8)

with Kn being the best constant for the Euclidean Sobolev inequality and cn = 4(n−1)
n−2 . Then,

a minimizer u of E in A∞(c1, c2, u0) exists, with scalar curvature R satisfying |R| = E(u),
almost everywhere.Moreover, R is locally constant in M\�, where� is a closed set contained
in a countable union of embedded (n − 1)-dimensional C1,ρ submanifolds and a closed
(n − 2)-dimensional set.

This result is in line with the corresponding result in the case of surfaces in [15]. On the
other hand, since the transformation equation (2) involves a different kind of nonlinearity
compared to (5), different methods are needed to prove existence of a minimizer. In addition,
the Gauss–Bonnet Theorem, which holds in a generalized sense for n ≥ 3, does not restrict
our constraints directly, something characteristic of the surface case. Finally, we remark that
it is natural to impose some bounds on the infimum of E(u), with similar conditions having
been used in related problems, see [12] or [17] for example.
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An interesting phenomenon is that the set �, which is countably (n − 1) rectifiable, as
can be seen using standard results from [18] for example, has another representation. It is
the nodal set of the solution of a partial differential equation related to our minimization
problem. Remarking that we have:

E(u) = |R|,
almost everywhere for our minimizer u, we can see that we recover a metric with constant
scalar curvature, locally up to sign, outside of a set with μ0(�) = 0. Moreover, (6) still holds
for the minimizer over the boundary. Nevertheless, our constraints may prevent � from being
empty, as we have already stressed. In any case, the minimizing metric can be thought of as
the closest one to being flat in a fixed conformal class, since geodesic balls will deviate the
least from being Euclidean locally.

Remark 1 Theorem 1 may be suitably modified, so that we are able to get a connection with
the prescribed scalar curvature problem. In particular, consider a smooth positive function r
on M . Then, we may ask whether

inf
g∈[g0]

∣∣∣∣
∣∣∣∣ Rg

r

∣∣∣∣
∣∣∣∣
L∞(M)

is attained. It turns out that if we substitute condition (8) by:

inf
u∈A∞(c1,c2,u0)

∣∣∣∣
∣∣∣∣ Rg

r

∣∣∣∣
∣∣∣∣
L∞(M)

<
cn

c2/n1 K 2
n supM r

,

then our results are still valid in that context. Thus, in that case the minimizing metric will
have prescribed curvature of our choice outside of a set of Lebesguemeasure 0. Nevertheless,
for simplicity reasons, we only give a proof in the case r = 1, leaving theminormodifications
in the arguments to the reader.

Notation In what follows, we reserve C for various constants appearing throughout the text.
If further clarification is needed on the dependence of the constants on various quantities, we
state it explicitly.

2 A priori bounds

2.1 Lower bounds

We will prove Theorem 1 using an approximation scheme. In particular, since the space
L∞(M, μ0) is not reflexive, the Direct Method cannot be used to prove existence of a mini-
mizer. Nevertheless, we first establish existence of minimizers of:

(∫
M

1

μ(M)
|R|pu2∗

dμ0

)1/p

,

and then pass to the limit as p → ∞.
The approximation procedure that we follow, makes the existence of a-priori bounds for

solutions of (2) necessary, so that we get a bounded nonzero minimizer in the limit. Note
that one has to establish existence of both upper and lower bounds, contrary to the lower-
dimensional case in [15]. In that context, due to the exponential conformal factor and the
surface geometry, the presence of upper bounds only, was sufficient to pass to the limit.
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To prove existence of a lower bound, we take advantage of our boundary condition (7).
Since (8) holds, there are some natural bounds on the L p norms of the curvature functionals
after a conformal change, for the class of functions that we study. We exploit those two
properties, following an idea suggested by Moser (personal communication), along with
some applications of standard elliptic regularity estimates to deduce the following:

Proposition 1 Let E0, p > 0 and n ≥ 3, be such that p > n
2 . Then, there exists a

positive constant C2 = C2(c1, E0, g0, M, n, p, u0), such that for every positive solution
u ∈ Ap(c1, c2, u0) of the boundary value problem:

−cn�g0u + R0u = Ru2
∗−1, in M

u = u0 on ∂M,

with Ep(u) < E0, it holds that:

u > C2.

Proof We note that since u ∈ Ap(c1, c2, u0) and p > n
2 , the Sobolev Embedding Theorem

implies that u ∈ C0(M, g0). Thus, the set


 = {x ∈ M | u(x) < c0}
is open, for a fixed c0 > 0, independent of u and chosen sufficiently small later on, such that:

min
∂M

u0 > c0. (9)

If
 = ∅, there is nothing to prove, hence we assume that
 �= ∅ from now on. Moreover, we
set 
− = {x ∈ 
 | R(x) < 0}. We will estimate u from below in 
, by suitably constructed
solutions of certain equations.

Let v a solution of:

−cn�g0v + R+
0 v =

{
Ru2

∗−1, in 
−,

0, in M \ 
−,

v = c0 on ∂M, (10)

where R+
0 stands for R+

0 = max{R0, 0} as usual. The standard L p theory for elliptic equations
(see [7] for example), implies that v ∈ W 2,p(M, g0) exists. Furthermore, v ≤ c0 in M , from
the maximum principle and v ≤ u in M , by the comparison principle.

Now, let w a solution of:

cn�g0w − R+
0 w = 0 in M, (11)

w = c0 on ∂M.

Then, there exists a k > 0, independent of the boundary data, such that w > kc0 in M . In
addition, v := v − w is a solution of the problem:

cn�g0v − R+
0 v =

{−Ru2
∗−1 in 
−,

0, in M \ 
−,

v = 0 on ∂M.
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The standard L p regularity theory implies that v ∈ W 1,p
0 (M, g0) ∩ W 2,p(M, g0), with an

estimate of the form:∫
M

∣∣∣∣�g0v − 1

cn
R+
0 v

∣∣∣∣
p

dμ0 ≤ Ccp(2
∗−1)

0

∫
M

|R|pdμ0, (12)

holding, where C = C(n, p). Using the L p theory for solutions of elliptic equations once
more, we get an estimate for v in W 2,p(M, g0), which, combined with (12), yields the
following inequalities:

(||v||W 2,p(M,g0))
p ≤ C

∫
M

∣∣∣∣�g0v − 1

cn
R+
0 v

∣∣∣∣
p

dμ0 ≤ Ccp(2
∗−1)

0

∫
M

|R|pdμ0.

We then extend this estimate, for v in C1(M, g0), using the Sobolev Embedding Theorem,
and get

|v − w| ≤ C ||R||L p(M,μ0)c
(2∗−1)
0 ,

where C = C(M, n, p), after taking into account the definition of v.
Let γ = inf x∈M u, with γ > 0, since u is positive and continuous on M . Then, using the

definition of Ep , and the fact that u ∈ Ap(c1, c2, u0), we have:

||R||L p(M,μ0) ≤
(

1

γ 2∗

∫
M

|R|pu2∗
dμ0

)1/p

= γ −2∗/pc1/p1 Ep(u) ≤ γ −2∗/pc1/p1 E0.

Hence, it follows that:

c0
(
k − Cc2

∗−2
0 c1/p1 E0γ

−2∗/p
)

< w − C ||R||L p(M,μ0)c
(2∗−1)
0 < v ≤ γ, (13)

since u ≥ v. Setting q = 1
2 + n

4p , note that the following relation holds:

n

2p
< q < 1,

since p > n/2. Moreover,

(2∗ − 2)q − 2∗

p
= 2 − n

p

n − 2
> 0.

If γ > (inf∂M u0)1/q , we have a uniform lower bound for u in M , and there is nothing to
prove. So, suppose that γ ≤ (inf∂M u0)1/q and set c0 = γ q . Then, Eq. (13) implies that:

γ 1−q ≥
(
k − Cc1/p1 E0γ

2− n
p

n−2

)
.

Clearly, a positive lower bound C2 for u follows, as long as:

γ ≥ (
k

2Cc1/p1 E0

)

n−2
2− n

p .

Otherwise, the last inequality implies:

γ ≥
(
k

2

) 1
1−q

,

allowing us to finish the proof in that case as well. ��
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2.2 Upper bounds

Now that we have established existence of lower bounds for solutions of (2), it remains to
prove that uniform upper bounds exist too. We begin with the statement of the:

Theorem 2 Let u ∈ Ap0(c1, c2, u0) be a positive solution of the equation:

− cn�g0u + R0u = Ru2
∗−1, (14)

for p0 > n fixed. In addition, let δ such that:

0 < δ <
cn
K 2
n
, (15)

where Kn is the best constant for the Euclidean Sobolev Inequality. Then, if the following
statement is true:

c
2p0
n −1

1

∫
M

|R|p0u2∗
dμ0 ≤ δ p0 , (16)

there exists a positive constant C = C(M, δ, n, p0, c1, c2, g0, u0), such that:

u(x) ≤ C, (17)

∀x ∈ M.

The proof of Theorem 2 consists of a blow-up type argument used widely in that context
(see [2] for a detailed survey in the case of closedmanifolds). In particular,we argue indirectly,
supposing that no uniform upper bounds exist for a sequence uα of solutions to (14). Then,
the exponential map can be used to transfer our sequence of solutions to R

n . In the case
the boundary is not involved, the sharp Euclidean Sobolev inequality and (16) allow us to
reach a contradiction. If that is not the case, some subtleties arise, which we overcome using
standard techniques, similar to the ones in [8].

Proof To reach a contradiction, suppose that condition (17) does not hold. Then, we can
choose a sequence of solutions {uα}α∈N for (14), which satisfy (16), such that:

sup
x∈M

uα(x) → ∞, (18)

as α → ∞.
Nevertheless, note that multiplying Eq. (14) by uα , integrating by parts and using the

triangle inequality yields:∣∣∣∣cn
∫
M

|∇uα|2dμ0 − cn

∫
∂M

uα

∂uα

∂ν
dσ0

∣∣∣∣ ≤
∫
M

|R0|u2αdμ0 +
∫
M

|Rα|u2∗
α dμ0. (19)

Then, constraint (4), Eq. (16) andHolder’s inequality, imply that the terms in the righthandside
are uniformly bounded. Moreover, the boundary term satisfies∣∣∣∣

∫
∂M

uα

∂uα

∂ν
dσ0

∣∣∣∣ ≤ C, (20)

for a constant C independent of α, as is evident after using the triangle inequality, Holder’s
inequality and the boundary conditions (6), (7). Hence, using Eqs. (19) and (20), we deduce
that

∫
M |∇uα|2dμ0 ≤ C , with C independent of α, which in terms implies that uα is uni-

formly bounded in W 1,2(M, g0). Any constant appearing from now on, should be assumed
independent of α, unless otherwise noted.
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Let xα ∈ M such that uα(xα) = supx∈Muα(x). Also, let λ
2−n
2

α = uα(xα), and note that
λα → 0 by our assumptions on uα . Moreover, consider the following quantity:

dα = distg0(xα, ∂M)

λα

.

Then we can assume that, up to choosing a subsequence, dα → d0, for some d0 ∈ [0,∞].
We will distinguish two cases in what follows, depending on the values of d0.

Case 1 We first consider the case d0 = ∞. Note that by compactness, there exists a point
x0 ∈ M such that, up to selecting a subsequence, we have:

xα → x0,

as α → ∞. Let ûα the sequence of functions:

ûα(x) = λ
n−2
2

α uα(expxα
(λαx)),

where expxα
stands for the exponential map at xα . Then, for α large enough, ûα is well

defined in a ball BR(0) of radius R > 0 around 0, since d0 = ∞. In addition, it holds that
0 ≤ ûα ≤ 1, with ûα(0) = 1, as is evident from the definition of the sequence and standard
properties of the exponential map. Finally, the change of coordinates we are using, yields
induced metrics ĝα(x) = exp∗

xα
g0(λαx), with corresponding measures μ̂α , gradients ∇̂α

and Laplace–Beltrami operators �ĝα
. In particular,

ĝα → geuc (21)

holds locally, where geuc stands for the standard metric in R
n .

Consider the rescaled functions given by R̂0α = λ2αR0(expxα
(λαx)) and R̂α =

Rα(expxα
(λαx)), which correspond to R0 and Rα respectively, in our new coordinates. Then,

the sequence ûα satisfies the equation:

− cn�ĝα
ûα + R̂0α ûα = R̂α û

2∗−1
α (22)

in BR(0), for every R > 0, as long as α is large enough. Moreover, the following estimates
hold ∫

BR(0)
|∇̂α ûα|2dμ̂α ≤ C, (23)

∫
BR(0)

û2
∗

α dμ̂α ≤ C, (24)

for every radius R > 0 and for α large enough, after using the change of variables formula.
We now proceed using a cut-off function argument as in [2], for a smooth function 0 ≤

η ≤ 1, with:

η(x) =
{
1 in BR/2(0),
0 in R

n \ B3R/4(0),
(25)

for some R independent of α. Letting ηα(x) = η(λαx), we note that by the definition of η

we have:
|∇̂αηα| ≤ Cλα. (26)

Following that, we derive some more estimates on ηα ûα to establish some regularity results.
Trivially, it holds that:∫

Rn
|∇̂α(ηα ûα)|2dμ̂α ≤ 2

(∫
Rn

|∇̂αηα|2|ûα|2dμ̂α +
∫
Rn

|∇̂α ûα|2|ηα|2dμ̂α

)
. (27)
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Proceeding to a closer examination of the terms in (27), we obtain the following estimate:
∫
Rn

|∇̂α ûα|2|ηα|2dμ̂α ≤
∫
BR(0)

|∇̂α ûα|2dμ̂α ≤ C,

for some R > 0, using (23). Moreover, if we turn our attention to the remaining term, we
have:

∫
Rn

|∇̂αηα|2|ûα|2dμ̂α ≤
(∫

Rn
|∇̂αηα|ndμ̂α

)2/n (∫
B3/4λα(0)

û2
∗

α dμ̂α

)2/2∗

≤ C,

using (24), (26) and Holder’s inequality. Thus the last two estimates imply that∫
Rn |∇̂α(ηα ûα)|2dμ̂α ≤ C . Combing this estimate and (24), it follows that up to a sub-
sequence ηα ûα → û, weakly in the homogeneous Sobolev space D2

1(R
n, μeuc) and strongly

in L2∗
(Rn, μeuc), for a limit function û. Hence:

||û||L2∗ (BR(0),μeuc)
≤ lim inf

α→+∞ ||ηα ûα||L2∗ (BR(0),μ̂α) ≤ C

holds, for every R > 0, following the weak convergence, Eqs. (21), (24) and the fact that
η ≤ 1. Note that the constant C is independent of R.

It remains to prove that û �= 0. We will do so, using the Harnack inequality Lemma 3.4
from [2], based on an inequality in [9]. In that direction, let fα := (R̂α û2

∗−2
α − R̂0α). Then,

the following inequalities:

∫
BR(0)

|R̂α|n/2û2
∗

α dμ̂α ≤ c
1− n

2p0
1

(∫
M

|Rα|p0u2∗
α dμ0

) n
2p0 ≤ δn/2, (28)

are valid ∀R > 0, after using (16). In addition, Holder’s inequality and the fact that ûα ≤ 1,
imply a bound: ∫

B1(0)
| fα|sdμ̂α ≤ C, (29)

for s ≤ p0. Using the aforementioned Harnack inequality, we derive:

1 = sup
B1/2(0)

ûα ≤ C ||ûα||L1(B1(0),μ̂α).

It then follows that û �= 0, since η̂α ûα = ûα → û, strongly in L1(B1(0)), as α → ∞.
Turning our attention to R̂α , we have:

R̂α û
2∗−2
α ⇀ f in L

n
2 (Rn, μeuc), (30)

for a limit function f , up to a subsequence. Moreover, by the definition of R̂0α , and since
ûα ≤ 1, it holds that:

∣∣∣∣
∫
BR(0)

R̂0α ûαηαφdμ̂α

∣∣∣∣ ≤ C max
M

|R0|λ2α,

for every φ ∈ C∞
0 (Rn). Note that the righthandside goes to 0 as α → +∞. Similarly, after

using Eq. (26), we have
∣∣∣∣
∫
BR(0)

(∇̂α ûα∇̂αηαφ)dμ̂α

∣∣∣∣ ≤ Cλα

∫
BR(0)

|(∇̂α ûα)φ|dμ̂α,
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for φ ∈ C∞
0 (Rn), with the latter expression tending to 0 when α → ∞ as well. Then, (22)

implies

cn

∫
BR(0)

(∇Euûα∇Euφ)ηαdμeuc =
∫
BR(0)

R̂α û
2∗−1
α φdμeuc + o(1),

for every φ ∈ C∞
0 (Rn) and α large enough, after multiplying by ηαφ and integrating by parts.

Here ∇Eu stands for the ordinary gradient in R
n . Using the various convergence modes that

we have established, we pass to the limit as α → +∞ and get:

cn

∫
Rn

(∇Euû∇Euφ)dμeuc ≤
∫
Rn

f ûφdμeuc,

for every φ ∈ C∞
0 (Rn). Inserting φ = û and using Holder’s inequality, we have

cn

∫
Rn

|∇Euû|2dμeuc ≤
(∫

Rn
| f |n/2dμeuc

)2/n (∫
Rn

û2
∗
dμeuc

)2/2∗

.

But from the definition of weak convergence and (28) it follows that:
(∫

Rn
| f | n2 dμeuc

)2/n

≤ lim
R→∞ lim inf

α→+∞ ||R̂α û
2∗−2
α ||

L
n
2 (BR(0),μ̂α)

≤ δ.

Thus (15) immediately implies that:

∫
Rn

|∇Euû|2dμeuc <
1

K 2
n

(∫
Rn

û2
∗
dμeuc

) 2
2∗

,

which contradicts the sharp Euclidean Sobolev inequality :

||û||L2∗ (Rn) ≤ Kn ||∇Euû||L2(Rn),

proving our argument when d0 = ∞.

Case 2 In the case 0 ≤ d0 < ∞, we infer that up to a subsequence xα → x0 ∈ ∂M holds, as α

goes to ∞. Thus, we need to consider boundary data in that case. Using standard arguments,
see [8] for example, we may assume that near x0 the boundary of our domain is included in
the halfspace {xn = −dα}, after using a straightening argument if necessary. Here xn stands
for the last coordinate in R

n as usual.
When dα �= 0, ûα is well defined in the half-space BR(0) ∩ {xn > −dα}, as long as

R < d0. Moreover, we extend ûα on the boundary using u0. Thus

− cn�ĝα
ûα + R̂0α ûα = R̂α û

2∗−1
α (31)

holds in any ball BR(0), for α sufficiently large, after extending the scalar curvature functions
R̂α and R̂0α by 0, outside of {xn > −dα}.

Wemay also define f̂α and û, like in the first part of our proof. Our functions are supported
in the halfspace {xn > −dα} in that case, but they remain well defined in any ball around 0,
as long as α is large enough. The Harnack inequality that we used is still valid in our new
context too. Since the rest of our arguments from the first part of the proof carry over under
those modifications, the sharp Sobolev inequality also yields a contradiction in that case.

In the case that d0 = 0, ûα is well defined in a half ball B+
R (0) of radius R > 0, as long

as α is large enough. Moreover, ûα satisfies

−cn�ĝα
ûα = f̂α ûα, in B+

R ,
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and we may use u0 to extend ûα on the boundary. In particular, when x ∈ {xn = 0}
ûα(x) → 0, (32)

as α → ∞, since λα → 0 and the boundary data are independent of α. Also, we still have
ûα(xα) = 1, as is evident from the definition of ûα . Finally, note that∫

B+
1 (0)

| f̂α|sdμ̂α ≤ C (33)

holds for a fixed s, with n/2 < s < p0.
The coefficients of �ĝα

converge smoothly to those of the usual Euclidean Laplacian,
as α → 0. This fact along with the smooth boundary data on ∂B+

R allow us to use the
standard elliptic regularity theory in B+

1 (0). Hence, we first obtain a uniform bound for ûα

in W 2,p(B+
1 (0)), for p > n/2, after taking into account Eq. (33). The Sobolev Embedding

Theorem then implies that:
||ûα||C0,γ (B+

1 (0),ĝα) ≤ C, (34)

for some 0 < γ < 1. Thus our sequence ûα is equicontinuous. Moreover, since ûα ≤ 1
holds, we may infer that a function ũ exists, such that:

uα → ũ,

uniformly as α → ∞, by means of the Arzela–Ascoli Theorem. Hence, up to selecting a
subsequence, we have:

uα(xα) → ũ(0) = 1,

uniformly as α → ∞. The latter clearly contradicts (32), thus concluding our proof in that
case too. ��

3 Existence and uniform estimates for the p-problem

The presence of uniform a-priori bounds, allows us to use the DirectMethod to establish exis-
tenceofminimizers for the approximating functionals Ep(u)=(

∫
M

1
vol(M,μ)

|R|pu2∗
dμ0)

1/p .
In particular, we have the following:

Proposition 2 Let c1 > 0, u0 ∈ C∞(M) be given. Then ∀δ > 0 and for every fixed p0 with
p0 > n, such that:

δ <
cn
K 2
n
,

and

inf
u∈Ap0 (c1,c2,u0)

Ep0(u) < c1/p0−2/n
1 δ,

there exists a minimizer u p0 of the functional Ep0(u) in the set Ap0(c1, c2, u0).

Proof Let {uk}k∈N ⊂ Ap0(c1, c2, u0) a minimizing sequence for Ep0 , with corresponding
scalar curvature Rk . Then for p0 > n and k large enough,∫

M
|Rk |p0u2∗

k dμ0 < δ p0c1−2p0/n
1 (35)
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holds, and there exist positive constantsC1 andC2 independent of k, such thatC2 ≤ uk ≤ C1

in M , following Proposition 1 and Theorem 2. Thus, standard elliptic estimates imply that:

||uk ||W 2,p0 (M,g0) ≤ C

⎡
⎣||uk ||L p0 (M,μ0) +

∣∣∣∣∣
∣∣∣∣∣Rku

2∗
p0
k

∣∣∣∣∣
∣∣∣∣∣
L p0 (M,μ0)

+ ||u0||W 2,p0 (M,g0)

⎤
⎦ ≤ C,

for a constant C independent of k. In addition, there exists a limit function u �= 0, in light of
Proposition 1, such that:

uk → u,

weakly inW 2,p0(M, g0) and strongly inC1(M, g0). Hence, a uniform bound inC1,α(M, g0)
follows, for α ∈ (0, 1 − n

p0
) via the Sobolev Embedding Theorem. On the other hand, we

also have Rk ⇀ R weakly in Lq(M, μ0), up to a subsequence, for a limit curvature R and
every q < ∞. Then, integration by parts and the Dominated Convergence Theorem yield:
∫
M
Rku

2∗−1
k φdμ0 = lim

k→∞

[
−cn

∫
M
uk�g0φdμ0 +

∫
M
R0ukφdμ0

]
=

∫
M
Ru2

∗−1φdμ0,

for φ ∈ C∞
0 (M, g0), proving that R is the curvature of u.

The lower semicontinuity of the L p0 norm in M with respect to μ0, implies that the
infimum of Ep0 is achieved, using the lower semicontinuity of the functional with respect
to weak convergence. Hence, it remains to prove that u ∈ Ap0(c1, c2, u0). Indeed, Theorem
2 and the C1-convergence we established, imply that the volume constraint is preserved.
Finally, the constraint (6) is preserved too, over the boundary, since the C1 convergence
holds in all of M , thus concluding the proof. ��

Note that for the minimization of Ep(u) under constraints (4), (6) and (7), there exist
Lagrange multipliers ap, bp ∈ R. If u p is a minimizer satisfying those constraints, and Rp

is the scalar curvature of the metric gp = u2
∗−2
p g0, the Euler–Lagrange equations for our

problem are as follows:

−�gp (|Rp|p−2Rp) +
[

n

2p(n − 1)
− 1

n − 1

]
|Rp|p = ap, on M,

|Rp|p−2Rp = bp, on ∂M.

We remark that n
2p(n−1) − 1

n−1 �= 0 under our assumptions on p. Let

γp = max
{
|ap|, |bp|, ||Rp||p−1

L p(μp)

}
, (36)

and consider the quantities αp = ap/γp , βp = bp/γp and wp = |Rp |p−2Rp
γp

. It follows that
the initial fourth order boundary value problem can now be reformulated, as a second order
one:

−�gpwp +
[

n

2p(n − 1)
− 1

n − 1

]
Rpwp = αp, on M,

wp = βp, on ∂M, (37)

with αp, βp ∈ [−1, 1].
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Equation (8) is satisfied, so it holds that:

lim sup
p→∞

||Rp||L p(M,μp) <
cn

c2/n1 K 2
n

.

Also, from the definition of wp , it follows that:

||wp||L p
′
(M,μp)

≤ 1,

after using the renormalization (36). Since Rp is uniformly bounded in L p(M, μp) and wp

is uniformly bounded in L p
′
(M, μp), we conclude, using Holder’s inequality, that the term:

kp := αp −
[

n

2p(n − 1)
− 1

n − 1

]
Rpwp,

is uniformly bounded in L1(M, μ0).
Note that we may interpret kpμ0 as a bounded sequence of Radon measures μkp . A

standard compactness result in that case (Theorem 1.3.2 in [6]), leads us to the conclusion
that wp ∈ W 1,q(M, g0), for every 1 ≤ q < n

n−1 . Moreover, the uniform L1 boundedness
of Rpwp implies that wp is uniformly bounded in W 1,q(M, g0) too, for 1 ≤ q < n

n−1 .
Then, the Sobolev Embedding Theorem allows us to deduce that wp is uniformly bounded
in L p̃(M, μ0), for every p̃ = nq

n−q , with q < n
n−1 . This in turn implies that wp is uniformly

bounded in L p̃(M, μ0), for every p̃ < n
n−2 . In addition, a direct application of Holder’s

inequality implies that Rpwp is uniformly bounded in Lλ(M, μ0), for every λ < n/(n − 2)
and for p large enough. Furthermore, we may use the standard elliptic L p theory, since the
leading order coefficients of�gp are uniformly bounded inC1,α(M, g0), for someα ∈ (0, 1).
Thus, wp is uniformly bounded in W 2,q(M, g0), for every q < n

n−2 .
To obtain further regularity results bootstrapping is needed, hence we have the following:

Lemma 1 The sequencewp, defined as above, is uniformly bounded inC0,α(M, g0), ∀a < 1
and converges up to a subsequence, uniformly to a limit function w.

Proof We first claim that wp is uniformly bounded in Lq(M, μ0), for every q < n
n−l , pro-

vided that 2 ≤ l < n. We will prove our claim using induction in l. In the base case l = 2, the
Sobolev Embedding Theorem guarantees that wp is uniformly bounded in Lq(M, μ0), for
every q < n

n−2 . Now, suppose that for l0 ∈ N, we havewp uniformly bounded in Lq(M, μ0)

with

q <
n

n − l0
.

For the induction step, suppose that:

l0 + 1 < n.

From our inductive hypothesis, we get a uniform bound for wp in Lq(M, μ0), for every q <
n

n−l0
. Then, a uniformbound for Rpwp in Lq̃(M, μ0) follows usingHolder’s inequality, when

q̃ < n
n−l0

. Moreover, the partial differential equation for wp , combined with the standard

elliptic regularity theory, provide us with a uniform bound for wp in W 2,q̃(M, g0), when
q̃ < n

n−l0
again. Finally, the Sobolev Embedding Theorem implies a uniform bound for every

q <
n

n − (l0 + 2)
,

proving our claim.
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It follows that we can always achieve uniform Lq̃ bounds, for n
2 < q̃, by letting l ∈ N, be

sufficiently large if necessary. A standard application of standard elliptic estimates provides
us with uniform bounds in W 2,q̃(M, g0). Hence, wpk is a uniformly bounded sequence in
C0,α(M, g0), ∀α < 1, which is equicontinuous. Thus, the Arzela–Ascoli Theorem applies,
and there exists a subsequence of wp , which we still call wp , which converges uniformly to
a limit w, concluding our proof. ��

4 Proof of the main result

Up to now, we have proved existence of a positive minimizer u p of Ep , for every p ∈ (n,∞).
Moreover, by the regularity results we have obtained, there exists a subsequence pk → ∞,
such that:

1. u pk ⇀ u in W 2,q(M, g0) and u pk → u in C1(M, g0),
2. wpk → w uniformly,
3. Rpk ⇀ R̂ in Lq(M, μ0), for a limit curvature R̂ and for every q < ∞.

Then Rpk = u1−2∗
pk [−cn�g0u pk + R0u pk ] ⇀ R̂, so we deduce that:

R̂ = R = u1−2∗ [−cn�g0u + R0u]. (38)

In addition, w is a weak solution of the problem

−�gw − 1

n − 1
Rw = α, in M,

w = β, on ∂M, (39)

following (37), after letting p → ∞. Here α, β are the limits of αpk , βpk respectively, and�g

is the Laplacian of the metric g = u2
∗−2g0. Moreover,w is not identically zero in M . Indeed,

recalling (36), we remark that if α �= 0, then w is not 0 identically zero in the interior, and if
β �= 0 then w �= 0 on the boundary. In the remaining case, we have ||wpk ||L p′k (M,μpk )

= 1,

for k large enough, and since our convergence is uniform, we are done.

Let � = w−1({0}) and k → ∞. Then log |wpk |
1

pk−1 → 0, outside of �, since wpk → w

uniformly. This in turns implies:

|wpk |
1

pk−1 → 1,

as k → ∞, locally uniformly in M \ �. In addition, up to a subsequence, we have:

γ
1/(pk−1)
pk → γ∞,

as k → ∞, for some γ∞ ∈ [0,∞]. Hence, from the definition of wp , it holds that |R| = γ∞
in M \ �. Note that the set � is closed relative to M , as the intersection of the closed set �

with M . In addition, R < ∞ obviously, from Eq. (38). Then, since w �= 0 and � �= M , we
are able to deduce γ∞ < ∞.

The definition of u p implies that:

Ep(u p) ≤ Ep(uq),

for p ≤ q , and by Holder’s inequality:

Ep(uq) ≤
(
1

c1

)1/p

c
q−p
qp

1

(∫
M

|R|qdμq

)1/q

≤
(
1

c1

)1/q (∫
M

|R|qdμq

)1/q

= Eq(uq).
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Hence, lim p→∞ Ep(u p) = e∞ exists, and from the lower semicontinuity of Ep and the
definition of lim inf, the relation

Eq(u) ≤ lim inf
k→∞ Eq(u pk ) ≤ lim inf

k→∞ Epk (u pk ) = e∞ (40)

follows. We also remark that u belongs to A∞(c1, c2, u0) too. Indeed, the volume constraint
(4) is preserved for u pk as we pass to the limit, following the strong C1 convergence that we
have established in M . The latter fact, along with our prescribed boundary values, guarantees
that the average mean curvature constraint (6) is preserved too.

Letting q → ∞ in (40), we conclude that E∞(u) ≤ e∞. On the other hand, since u p

minimizes Ep , we have:

e∞ ≤ lim
p→∞ Ep(u p) ≤ lim

p→∞ Ep(ũ) = E∞(ũ), (41)

for any other ũ ∈ A∞(c1, c2, u0). Now from (40) and (41), we conclude that u is a minimizer
for our problem in A∞(c1, c2, u0).

Further regularity results forw may be established by working with equation (39) directly.
In particular, we know that u is uniformly bounded in C1,α(M, g0), ∀α ∈ (0, 1), via the
SobolevEmbeddingTheorem.Hence, the definition of theLaplace–Beltrami operator implies
that its leading order coefficients belong to C1,α(M), ∀α ∈ (0, 1). Also, 1

n−1 Rw belongs to
L∞, by construction, so we may deduce that w ∈ C1,α(M, g0), ∀α ∈ (0, 1), using standard
elliptic regularity theory. Iterating the latter result, and recalling that Rw = γ∞|w|, we
conclude, using Schauder Theory, thatw ∈ C2,α(M, g0), ∀α ∈ (0, 1). But even more is true.
Writing w = w+ − w−, we may deduce that w is locally smooth, on each one of the sets
M+, M−, where M+ = {x ∈ M, w(x) > 0} and M− = {x ∈ M, w(x) < 0}. This follows
easily after bootstrapping the existing Schauder estimates for w on the sets M+ and M−.

To conclude, it remains to prove that the set � has the structure stated in Theorem 1. For
that we will use a result from [10], concerning the form and regularity of �. In particular, the
following holds:

Proposition 3 The set � = w−1{0} is contained in the union of a countable union of embed-
ded C1,ρ submanifolds and a countably (n − 2) rectifiable closed set.

Proof If α = 0, we have w satisfying the equation

−�gw − 1

n − 1
Rw = 0,

onM .Wewrite� = N (w)∪S(w), where N (w) = {x ∈ �, Dw �= 0} and S(w) = �\N (w).
Then 0 is a regular value ofw for x ∈ N (w), hencewe can use the Implicit Function Theorem,
to deduce that N (w) is contained in the union of countablymanyC2,ρ manifolds of dimension
n − 1.

For S(w), we use the fact that w ∈ C2,ρ(M), and then a result of Hardt and Simon
[10] applies. Namely, we have S(w) contained in a countable union of subsets of a pairwise
disjoint collection of smooth (n − 2) dimensional submanifolds. Then, using a standard
characterization for countably rectifiable sets, Lemma 11.1 from [18], we conclude that
S(w) is countably (n − 2) rectifiable.

Similarly, if α �= 0 the method used for N (w) in the first part of the proof still applies,
hence we only have to prove the corresponding result for S(w). We have w satisfying

−�gw − 1

n − 1
Rw = α,
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on M . Thus, −�gw(x) = α for x ∈ S(w), and this implies that d ∂w
∂xi

(x) �= 0, for some
i ≤ n, where {xi } are local coordinates centered around a point in S(w). Consequently, S(w)

is contained in the union of countably many (n − 1) dimensional C1,ρ manifolds by the
Implicit Function Theorem, since each x ∈ S(w) is a regular value for ∂w

∂xi
. ��

Hence, in any case we can conclude thatμ0(�) = 0, due to the structure of�, as presented
in the last lemma. Then, it follows that E(u) = γ∞. Also, recall that |R| = γ∞ in M \ �.
Thus, we have:

|R| = E(u),

in M \ �, finishing our proof.

Acknowledgements This work is based on my Ph.D. thesis at the University of Bath. I would like to thank
my supervisor Prof. Roger Moser for his guidance, help and support.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aubin, T.: Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire.
J. Math. Pures Appl. 55, 269–296 (1976)

2. Druet, O., Hebey, E., Robert, F.: Blow-up Theory for Elliptic PDEs in Riemannian Geometry. Princeton
University Press, Princeton (2004)

3. Escobar, J.F., Schoen, R.M.: Conformal metrics with prescribed scalar curvature. Invent. Math. 86, 243–
254 (1986)

4. Escobar, J.F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean
curvature on the boundary. Ann. Math. 2(136), 1–50 (1992)

5. Escobar, J.F.: The Yamabe problem on manifolds with boundary. J. Differ. Geom. 35(1), 21–84 (1992)
6. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS 74. Amer-

ican Mathematical Society, Providence (1974)
7. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Heidelberg

(1983)
8. Han, Z.C., Li, Y.Y.: TheYamabe problem onmanifolds with boundary: existence and compactness results.

Duke Math. J. 99(3), 489–542 (1999)
9. Han, Q., Lin, F.: Elliptic partial differential equations, CIMS Lecture Notes, Courant Institute of Mathe-

matical Sciences, vol. 1, 2nd edn. American Mathematical Society, Providence (2000)
10. Hardt, R., Simon, L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30, 505–522 (1989)
11. Kazdan, J.L., Warner, F.W.: Curvature functions for compact 2-manifolds. Ann. Math. 99(2), 14–47

(1974)
12. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37–91 (1987)
13. Marques, F.C.: Existence results for the Yamabe problem on manifolds with boundary. Indiana Univ.

Math. J. 54(6), 1599–1620 (2005)
14. Marques, F.C.: Conformal deformations to scalar-flat metrics with constant mean curvature on the bound-

ary. Commun. Anal. Geom. 15(2), 381–405 (2007)
15. Moser, R., Schwetlick, H.: Minimizers of a weighted maximum of the Gauss curvature Ann. Global Anal.

Geom. 41, 199–207 (2012)
16. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom.

20, 479–495 (1984)
17. Schwetlick, H., Struwe, M.: Convergence of the Yamabe flow for “large” energies. J. Reine Angew.Math.

562, 59–100 (2003)
18. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analy-

sis. Australian National University, Australia (1983)

123

http://creativecommons.org/licenses/by/4.0/


Ann Glob Anal Geom (2017) 51:73–89 89

19. Trudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on compact
manifolds. Ann. Scuola Norm. Sup. Pisa 22, 265–274 (1968)

20. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. OsakaMath. J. 12, 21–37
(1960)

123


	Minimization of scalar curvature in conformal geometry
	Abstract
	1 Introduction: statement of the main result
	2 A priori bounds
	2.1 Lower bounds
	2.2 Upper bounds

	3 Existence and uniform estimates for the p-problem
	4 Proof of the main result
	Acknowledgements
	References




