

ERRATUM

Erratum to: On the geometry of spaces of oriented geodesics

Dmitri V. Alekseevsky¹ \cdot Brendan Guilfoyle² \cdot Wilhelm Klingenberg³

Received: 15 March 2016 / Accepted: 11 May 2016 / Published online: 14 June 2016 © Springer Science+Business Media Dordrecht 2016

Erratum to: Ann Glob Anal Geom (2011) 40:389–409 DOI 10.1007/s10455-011-9261-5

We correct some of the entries of Table 1 in our original paper.

1. Those entries of Table 1 in the original paper listing the numbers of geometric structures on the space of geodesics $L^{\epsilon}(S^{p,q})$ of the 3-dimensional space $S^{p,q}$ of non-zero constant curvature with p+q=3 are incorrect. In this note we give the correct values and arguments. In original paper we failed to note that the $(\mathfrak{so}(V) + \mathfrak{so}(V'))$ -module $V \otimes V'$, where V, V' are 2-dimensional pseudo-Euclidian spaces, has not only the invariant (para)complex structures $J = J_V \otimes 1$, $J' = 1 \otimes J_{V'}$, but that also their product $J'' = JJ' = J_V \otimes J_{V'}$ is an invariant (para)complex structure. We next analyze the impact of this observation in detail and correct Table 1 accordingly. The authors would like to thank Henri Anciaux for drawing their attention to this oversight.

2. Let $E = E^{p+1,q}$ be a pseudo-Euclidean 4-dimensional vector space of signature (p + 1, q) = (4, 0), (3, 1), (2, 2) or (1, 3) with an orthonormal basis e_1, e_2, e_3, e_4 with $e_4^2 := g(e_4, e_4) = 1$. We denote by $E' = e_4^{\perp}$ the orthogonal complement to e_4 . The pseudo-sphere

The online version of the original article can be found under doi:10.1007/s10455-011-9261-5.

Brendan Guilfoyle brendan.guilfoyle@ittralee.ie

> Dmitri V. Alekseevsky dalekseevsky@iitp.ru

Wilhelm Klingenberg wilhelm.klingenberg@dur.ac.uk

¹ Institute for Information Transmission Problems "B. Karetny", per. 19, Moscow 127051, Russian Federation

² School of STEM, IT Tralee, Clash, Tralee, County Kerry, Ireland

³ School of Mathematical Sciences, University of Durham, Durham DH1 3LE, UK

	Symplectic structure	Complex		Para-complex		Kähler		ParaKähler	
		Int	Non	Int	Non	Int	Non	Int	Non
$L^{\pm}(E^{p+1,q})$									
$p+1+q\neq 3$	Symmetric	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
p + 1 + q = 3		1	Ø	Ø	Ø	1	Ø	Ø	Ø
$L^+(S^{p,q})$									
p + q > 3	1	1	Ø	Ø	Ø	1	Ø	Ø	Ø
(p,q) = (3,0)	\mathbb{R}	2	Ø	1	Ø	\mathbb{R},\mathbb{R}	Ø	Ø	Ø
(p,q) = (1,2)	\mathbb{R}	2	Ø	1	Ø	\mathbb{R},\mathbb{R}	Ø	Ø	Ø
(p,q) = (2,1)	\mathbb{R}	2	Ø	1	Ø	\mathbb{R}	Ø	\mathbb{R}	Ø
$L^{-}(S^{p,q})$									
p + q > 3	1	Ø	Ø	1	Ø	Ø	Ø	1	Ø
(p,q) = (0,3)	\mathbb{R}	2	Ø	1	Ø	\mathbb{R}	Ø	\mathbb{R}	Ø
(p,q) = (2,1)	\mathbb{R}	2	Ø	1	Ø	\mathbb{R}	Ø	\mathbb{R}	Ø
(p,q) = (1,2)	\mathbb{R}	2	Ø	1	Ø	Ø	Ø	\mathbb{R},\mathbb{R}	Ø
$L(\mathbb{C}P^n)$	\mathbb{R}	2	2	Ø	Ø	2	2	Ø	Ø
$L(\mathbb{H}P^n)$	1	1	Ø	Ø	Ø	1	Ø	Ø	Ø
$L(\mathbb{O}P^2)$	1	1	Ø	Ø	Ø	1	Ø	Ø	Ø
$L(\mathbb{C}H^n)$	\mathbb{R}	Ø	Ø	1	1	Ø	Ø	1	1
$L(\mathbb{H}H^n)$	1	Ø	Ø	1	1	Ø	Ø	1	1

 Table 1
 Invariant geometric structures

of unit vectors $S^{p,q} = \{x \in E, x^2 = 1\}$ is the orbit $S^{p,q} = SO(E)e_4$. It has the reductive decomposition

$$\mathfrak{so}(E) = \mathfrak{so}(E') + e_4 \wedge E',$$

where $\mathfrak{so}(E') \simeq \mathfrak{so}_{3,0}$, $\mathfrak{so}_{2,1}$, $\mathfrak{so}_{1,2}$, $\mathfrak{so}_{0,3}$, respectively. The metric of E induces an SO(E')invariant metric in the tangent space $T_0S^{p,q} = e_4 \wedge E'$. The stability subalgebra of the geodesic $\ell(e_4 \wedge e_3)$ through the origin $o = e_4 \in S^{p,q}$ in the direction $e_4 \wedge e_3 \in T_oS^{p,q} = e_4 \wedge E'$ is $\mathfrak{so}(V) \times \mathfrak{so}(V^{\perp})$, where $V = \operatorname{span}(e_1, e_2)$ and $V^{\perp} = \operatorname{span}(e_3, e_4)$. The geodesic is spacelike if $\epsilon = e_3^2 = 1$ and timelike if $\epsilon = e_3^2 = -1$. The space of such geodesics is identified with $L^{\epsilon}(S^{p,q}) = SO(E)/SO(V) \times SO(V^{\perp})$ (up to a covering).

We now denote by g_V the unique (up to a scale) metric in 2-dimensional SO(V)-module V and by ω_V unique (up to scale) 2-form. Then for some positive λ , the complex structure $J_V = \lambda g_V^{-1} \circ \omega_V$ is the unique (up to sign) $\mathfrak{so}(V)$ -invariant complex structure if the metric g_V has signature (2, 0) or (0, 2). It is the unique (up to sign) paracomplex structure if the signature of g_V is (1, 1). We use similar notations for V^{\perp} . The reductive decomposition of the symmetric space $L^{\epsilon}(S^{p,q})$ is given by

$$\mathfrak{so}(E) = (\mathfrak{so}(V) \oplus (\mathfrak{so}(V^{\perp})) + V \wedge V^{\perp}.$$

The tangent space $T_o L^{\epsilon}(S^{p,q})$ is identified with $\mathfrak{m} := V \wedge V^{\perp} \simeq V \otimes V^{\perp}$ with the natural action of the isotropy algebra $\mathfrak{h} = \mathfrak{so}(V) + \mathfrak{so}(V^{\perp})$. We have therefore proved the following.

Proposition The \mathfrak{h} -invariant symmetric bilinear form (respectively, invariant 2-form) on \mathfrak{m} are of the form

$$h_{\lambda,\mu} = \lambda \omega_V \otimes \omega_{V^{\perp}} + \mu g_V \otimes g_{V^{\perp}}, \quad \omega_{\lambda,\mu} = \lambda g_V \otimes \omega_{V^{\perp}} + \mu \omega_V \otimes g_{V^{\perp}}$$

for $\lambda, \mu \in \mathbb{R}$.

The endomorphisms $J := J_V \otimes 1$, $J^{\perp} := 1 \otimes J_{V^{\perp}}$, $J' := J \circ J^{\perp} = J_V \otimes J_{V^{\perp}}$ are invariant (para)complex structure in m. Moreover, $J.J^{\perp}$ are skew-symmetric with respect to any metric $h_{\lambda,\mu}$ and the endomorphism J' is symmetric.

Since $S^{p,q}$ is an irreducible symmetric space, any invariant tensor field is parallel. We obtain

Corollary Any non-degenerate form $h_{\lambda,\mu}$ defines an invariant pseudo-Riemannian metric, any non-degenerate 2-form $\omega_{\lambda,\mu}$ defines an invariant symplectic form and the endomorphisms J, J^{\perp}, J' define integrable (para)complex structures on $L^{\epsilon}(S^{p,q})$. Furthermore, any pair of the form $(h_{\lambda,\mu}, J)$ or $(h_{\lambda,\mu}, J^{\perp})$, where $h_{\lambda,\mu}$ is as above, defines a (para)Kähler structure on m.

3. In the following table we indicate the signature of the metrics g_V and $g_{V^{\perp}}$ for different values of p and ϵ and the type of the endomorphisms $J = J_V \otimes 1$, $J^{\perp} = 1 \otimes J_{V^{\perp}}$, $J' = J_V \otimes J_V \perp$ (cx = complex structure, para = paracomplex structure). Note also that there is

р	ϵ	g_V	$g_V \bot$	J	J^{\perp}	J'
3	+	(2,0)	(2,0)	cx	cx	para
2	+	(1,1)	(2,0)	para	cx	cx
2	_	(2,0)	(1,1)	cx	para	cx
1	+	(0,2)	(2,0)	cx	cx	para
1	_	(1,1)	(1,1)	para	para	сх
0	-	(0,2)	(1,1)	cx	para	cx

a natural isomorphism $L^{\pm}(S^{p,q} = L^{\mp}(S^{q,p}_{-}))$, where $S^{q,p}_{-} = \{x \in E^{q,p+1}, x^2 = -1\}$. We finally reproduce Table 1 in its corrected form.