Erratum to: On the geometry of spaces of oriented geodesics

Dmitri V. Alekseevsky ${ }^{1}$ • Brendan Guilfoyle ${ }^{2}$. Wilhelm Klingenberg ${ }^{3}$

Received: 15 March 2016 / Accepted: 11 May 2016 / Published online: 14 June 2016
© Springer Science+Business Media Dordrecht 2016

Erratum to: Ann Glob Anal Geom (2011) 40:389-409 DOI 10.1007/s10455-011-9261-5

We correct some of the entries of Table 1 in our original paper.

1. Those entries of Table 1 in the original paper listing the numbers of geometric structures on the space of geodesics $L^{\epsilon}\left(S^{p, q}\right)$ of the 3-dimensional space $S^{p, q}$ of non-zero constant curvature with $p+q=3$ are incorrect. In this note we give the correct values and arguments. In original paper we failed to note that the $\left(\mathfrak{s o}(V)+\mathfrak{s o}\left(V^{\prime}\right)\right)$-module $V \otimes V^{\prime}$, where V, V^{\prime} are 2-dimensional pseudo-Euclidian spaces, has not only the invariant (para)complex structures $J=J_{V} \otimes 1, J^{\prime}=1 \otimes J_{V^{\prime}}$, but that also their product $J^{\prime \prime}=J J^{\prime}=J_{V} \otimes J_{V^{\prime}}$ is an invariant (para)complex structure. We next analyze the impact of this observation in detail and correct Table 1 accordingly. The authors would like to thank Henri Anciaux for drawing their attention to this oversight.
2. Let $E=E^{p+1, q}$ be a pseudo-Euclidean 4-dimensional vector space of signature ($p+$ $1, q)=(4,0),(3,1),(2,2)$ or $(1,3)$ with an orthonormal basis $e_{1}, e_{2}, e_{3}, e_{4}$ with $e_{4}^{2}:=$ $g\left(e_{4}, e_{4}\right)=1$. We denote by $E^{\prime}=e_{4}^{\perp}$ the orthogonal complement to e_{4}. The pseudo-sphere
[^0]Table 1 Invariant geometric structures

	Symplectic structure	Complex		Para-complex		Kähler		ParaKähler	
		Int	Non	Int	Non	Int	Non	Int	Non
$L^{ \pm}\left(E^{p+1, q}\right)$									
$p+1+q \neq 3$	Symmetric	\emptyset							
$p+1+q=3$		1	\emptyset	\emptyset	\emptyset	1	\emptyset	\emptyset	\emptyset
$L^{+}\left(S^{p, q}\right)$									
$p+q>3$	1	1	\emptyset	\emptyset	\emptyset	1	\emptyset	\emptyset	\emptyset
$(p, q)=(3,0)$	\mathbb{R}	2	\emptyset	1	\emptyset	\mathbb{R}, \mathbb{R}	\emptyset	\emptyset	\emptyset
$(p, q)=(1,2)$	\mathbb{R}	2	\emptyset	1	\emptyset	\mathbb{R}, \mathbb{R}	\emptyset	\emptyset	\emptyset
$(p, q)=(2,1)$	\mathbb{R}	2	\emptyset	1	\emptyset	\mathbb{R}	\emptyset	\mathbb{R}	\emptyset
$L^{-}\left(S^{p, q}\right)$									
$p+q>3$	1	\emptyset	\emptyset	1	\emptyset	\emptyset	\emptyset	1	\emptyset
$(p, q)=(0,3)$	\mathbb{R}	2	\emptyset	1	\emptyset	\mathbb{R}	\emptyset	\mathbb{R}	\emptyset
$(p, q)=(2,1)$	\mathbb{R}	2	\emptyset	1	\emptyset	\mathbb{R}	\emptyset	\mathbb{R}	\emptyset
$(p, q)=(1,2)$	\mathbb{R}	2	\emptyset	1	\emptyset	\emptyset	\emptyset	\mathbb{R}, \mathbb{R}	\emptyset
$L\left(\mathbb{C} P^{n}\right)$	\mathbb{R}	2	2	\emptyset	\emptyset	2	2	\emptyset	\emptyset
$L\left(\mathbb{H} P^{n}\right)$	1	1	\emptyset	\emptyset	\emptyset	,	\emptyset	\emptyset	\emptyset
$L\left(\mathbb{O} P^{2}\right)$	1	1	\emptyset	\emptyset	\emptyset	1	\emptyset	\emptyset	\emptyset
$L\left(\mathbb{C} H^{n}\right)$	\mathbb{R}	\emptyset	\emptyset	1	1	\emptyset	\emptyset	1	1
$L\left(\mathbb{H} H^{n}\right)$	1	\emptyset	\emptyset	1	1	\emptyset	\emptyset	1	1

of unit vectors $S^{p, q}=\left\{x \in E, x^{2}=1\right\}$ is the orbit $S^{p, q}=S O(E) e_{4}$. It has the reductive decomposition

$$
\mathfrak{s o}(E)=\mathfrak{s o}\left(E^{\prime}\right)+e_{4} \wedge E^{\prime},
$$

where $\mathfrak{s o}\left(E^{\prime}\right) \simeq \mathfrak{s o}_{3,0}, \mathfrak{s o}_{2,1}, \mathfrak{s o}_{1,2}, \mathfrak{s o}_{0,3}$, respectively. The metric of E induces an $S O\left(E^{\prime}\right)$ invariant metric in the tangent space $T_{0} S^{p, q}=e_{4} \wedge E^{\prime}$. The stability subalgebra of the geodesic $\ell\left(e_{4} \wedge e_{3}\right)$ through the origin $o=e_{4} \in S^{p, q}$ in the direction $e_{4} \wedge e_{3} \in T_{o} S^{p, q}=$ $e_{4} \wedge E^{\prime}$ is $\mathfrak{s o}(V) \times \mathfrak{s o}\left(V^{\perp}\right)$, where $V=\operatorname{span}\left(e_{1}, e_{2}\right)$ and $V^{\perp}=\operatorname{span}\left(e_{3}, e_{4}\right)$. The geodesic is spacelike if $\epsilon=e_{3}^{2}=1$ and timelike if $\epsilon=e_{3}^{2}=-1$. The space of such geodesics is identified with $L^{\epsilon}\left(S^{p, q}\right)=S O(E) / S O(V) \times S O\left(V^{\perp}\right)$ (up to a covering).

We now denote by g_{V} the unique (up to a scale) metric in 2-dimensional $S O(V)$-module V and by ω_{V} unique (up to scale) 2-form. Then for some positive λ, the complex structure $J_{V}=\lambda g_{V}^{-1} \circ \omega_{V}$ is the unique (up to sign) $\mathfrak{s o}(V)$-invariant complex structure if the metric g_{V} has signature $(2,0)$ or $(0,2)$. It is the unique (up to sign) paracomplex structure if the signature of g_{V} is $(1,1)$. We use similar notations for V^{\perp}. The reductive decomposition of the symmetric space $L^{\epsilon}\left(S^{p, q}\right)$ is given by

$$
\mathfrak{s o}(E)=\left(\mathfrak{s o}(V) \oplus\left(\mathfrak{s o}\left(V^{\perp}\right)\right)+V \wedge V^{\perp} .\right.
$$

The tangent space $T_{o} L^{\epsilon}\left(S^{p, q}\right)$ is identified with $\mathfrak{m}:=V \wedge V^{\perp} \simeq V \otimes V^{\perp}$ with the natural action of the isotropy algebra $\mathfrak{h}=\mathfrak{s o}(V)+\mathfrak{s o}\left(V^{\perp}\right)$. We have therefore proved the following.

Proposition The \mathfrak{h}-invariant symmetric bilinear form (respectively, invariant 2 -form) on \mathfrak{m} are of the form

$$
h_{\lambda, \mu}=\lambda \omega_{V} \otimes \omega_{V^{\perp}}+\mu g_{V} \otimes g_{V^{\perp}}, \quad \omega_{\lambda, \mu}=\lambda g_{V} \otimes \omega_{V^{\perp}}+\mu \omega_{V} \otimes g_{V^{\perp}}
$$

for $\lambda, \mu \in \mathbb{R}$.
The endomorphisms $J:=J_{V} \otimes 1, J^{\perp}:=1 \otimes J_{V^{\perp}}, J^{\prime}:=J \circ J^{\perp}=J_{V} \otimes J_{V^{\perp}}$ are invariant (para)complex structure in \mathfrak{m}. Moreover, J. J^{\perp} are skew-symmetric with respect to any metric $h_{\lambda, \mu}$ and the endomorphism J^{\prime} is symmetric.

Since $S^{p, q}$ is an irreducible symmetric space, any invariant tensor field is parallel. We obtain

Corollary Any non-degenerate form $h_{\lambda, \mu}$ defines an invariant pseudo-Riemannian metric, any non-degenerate 2 -form $\omega_{\lambda, \mu}$ defines an invariant symplectic form and the endomorphisms J, J^{\perp}, J^{\prime} define integrable (para)complex structures on $L^{\epsilon}\left(S^{p, q}\right)$. Furthermore, any pair of the form $\left(h_{\lambda, \mu}, J\right)$ or $\left(h_{\lambda . \mu}, J^{\perp}\right)$, where $h_{\lambda, \mu}$ is as above, defines a (para)Kähler structure on \mathfrak{m}.
3. In the following table we indicate the signature of the metrics g_{V} and $g_{V^{\perp}}$ for different values of p and ϵ and the type of the endomorphisms $J=J_{V} \otimes 1, J^{\perp}=1 \otimes J_{V^{\perp}}, J^{\prime}=$ $J_{V} \otimes J_{V} \perp(\mathrm{cx}=$ complex structure, para $=$ paracomplex structure $)$. Note also that there is

p	ϵ	g_{V}	$g_{V} \perp$	J	J^{\perp}	J^{\prime}
3	+	$(2,0)$	$(2,0)$	cx	cx	para
2	+	$(1,1)$	$(2,0)$	para	cx	cx
2	-	$(2,0)$	$(1,1)$	cx	para	cx
1	+	$(0,2)$	$(2,0)$	cx	cx	para
1	-	$(1,1)$	$(1,1)$	para	para	cx
0	-	$(0,2)$	$(1,1)$	cx	para	cx

a natural isomorphism $L^{ \pm}\left(S^{p, q}=L^{\mp}\left(S_{-}^{q, p}\right)\right.$, where $S_{-}^{q, p}=\left\{x \in E^{q, p+1}, x^{2}=-1\right\}$. We finally reproduce Table 1 in its corrected form.

[^0]: The online version of the original article can be found under doi:10.1007/s10455-011-9261-5.
 Brendan Guilfoyle
 brendan.guilfoyle@ittralee.ie
 Dmitri V. Alekseevsky
 dalekseevsky @iitp.ru
 Wilhelm Klingenberg
 wilhelm.klingenberg@dur.ac.uk
 1 Institute for Information Transmission Problems "B. Karetny", per. 19, Moscow 127051, Russian Federation

 2 School of STEM, IT Tralee, Clash, Tralee, County Kerry, Ireland
 3 School of Mathematical Sciences, University of Durham, Durham DH1 3LE, UK

