
Advances in Computational Mathematics (2019) 45:757–785
https://doi.org/10.1007/s10444-018-9637-1

On the exponent of exponential convergence of p-version
FEM spaces

Zhaonan Dong1

Received: 22 February 2018 / Accepted: 16 September 2018 /
Published online: 28 September 2018
© The Author(s) 2018

Abstract
We study the exponent of the exponential rate of convergence in terms of the num-
ber of degrees of freedom for various non-standard p-version finite element spaces
employing reduced cardinality basis. More specifically, we show that serendipity
finite element methods and discontinuous Galerkin finite element methods with total
degree Pp basis have a faster exponential convergence with respect to the num-
ber of degrees of freedom than their counterparts employing the tensor product Qp

basis for quadrilateral/hexahedral elements, for piecewise analytic problems under
p-refinement. The above results are proven by using a new p-optimal error bound
for the L2-orthogonal projection onto the total degree Pp basis, and for the H 1-
projection onto the serendipity finite element space over tensor product elements with
dimension d ≥ 2. These new p-optimal error bounds lead to a larger exponent of the
exponential rate of convergence with respect to the number of degrees of freedom.
Moreover, these results show that part of the basis functions in Qp basis plays no
roles in achieving the hp-optimal error bound in the Sobolev space. The sharpness of
theoretical results is also verified by a series of numerical examples.

Keywords hp-finite element method · Discontinuous Galerkin method · Serendipity
basis · Pp basis · Reduced cardinality basis · Exponential convergence
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1 Introduction

Polynomial approximation on tensor product domains plays an important role in
deriving the exponential rate of convergence with respect to the number of degrees
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of freedom for hp-version finite element methods (FEMs) [4, 16–20, 24, 25, 29] and
hp-version discontinuous Galerkin finite element methods (DGFEMs) [21, 22, 26–
28, 31]. In general, the proof of the exponential rate of convergence usually depends
on the hp-approximation results for some suitable projection operators onto a local
polynomial space consisting of polynomials with degree less or equal than p in each
variable (known as Qp basis) over a tensor product element (quadrilateral/hexahedral
elements), for dimension d ≥ 2.

The key reason for using the Qp basis over a tensor product element is because
hp-optimal approximation results for the multi-dimensional projection operators can
be derived by using the stability and approximation results of the one-dimensional
projections via tensor product arguments. On the other hand, the hp-approximation
results for L2-orthogonal projections onto polynomial basis with total degree less or
equal than p (Pp basis) and H 1-projections onto serendipity basis (Sp basis) have
not been fully explored. Typically, hp-error bounds for projections onto the Pp or Sp

basis have been derived using the fact that there exists a q ≤ p such that the bases Pp

or Sp contain Qq as a subset, together with the help of the hp-optimal approximation
results for the projections onto the basis Qq (see Corollary 4.52 in [29]).

For instance, we consider the L2-norm error bound of the two-dimensional L2-
orthogonal projection �Qp

onto the Qp basis as an example (cf. [11, 22]). Let κ̂ =
(−1, 1)2 and u ∈ Hl(κ̂), l is an integer with l ≥ 0. Then, the following estimate
holds,

‖u − �Qp
u‖2

L2(κ̂)
≤ C(s)(p + 1)−2s |u|2

Hs(κ̂)
, (1)

where the constant C(s) is independent of p and 0 ≤ s ≤ min{p + 1, l}. It is
straightforward to see that the above error bound is sharp in the sense that it is p-
optimal in both Sobolev regularity index l and polynomial approximation order p.

Next, we consider the L2-norm error bound of L2-orthogonal projection �Pp
onto

the Pp basis. Following the Lemma 6 in [2], we define �Pp
= �Q�p/2� , with �p/2�

denoting the largest integer which is less than or equal to p/2. Then, the following
bound holds:

‖u − �Pp
u‖2

L2(κ̂)
= ‖u − �Q�p/2�u‖2

L2(κ̂)
≤ C̃(s)(�p/2� + 1)−2s |u|2

Hs(κ̂)
, (2)

where the constant C̃(s) is independent of p and 0 ≤ s ≤ min{�p/2� + 1, l}.
We emphasize that for function u ∈ Hl(κ̂), with p sufficiently large, the above
error bound is p-optimal because s = l. However, if function u is sufficiently
smooth or even analytic, then the above error bound is p-suboptimal by at least
p/2 orders because s = �p/2� + 1. The similar p-suboptimal error bound holds for
H 1-projections onto Sp basis.

Using the p-suboptimal error bound for L2-orthogonal projections onto the Pp

basis and H 1-projections onto the Sp basis, it is possible to derive an exponential rate
of convergence for hp-FEMs employing the Sp basis and hp-DGFEMs employing
the Pp basis, but the resulting exponent is much smaller with respect to the num-
ber of degrees of freedom than the exponent of FEMs and DGFEMs employing the
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Qp basis. This contradicts the numerical observation in work [8–10, 13], where it is
observed that the error with respect to the number of degrees of freedom for DGFEMs
with the Pp basis on tensor product elements has a steeper exponential convergence
compared to DGFEMs with the Qp basis, for sufficiently smooth problems. This sit-
uation has been numerically tested on many different examples. We also observed
numerically that the ratio of the slope of the exponential error decay for DGFEMs
with the Pp basis compared to that of the Qp basis depends only on the space dimen-
sion. The same phenomenon is also observed when comparing conforming FEMs
with the Sp basis and the Qp basis.

The disagreement between the numerical observations and theoretical results
implies that the error bound (2) is not a sharp bound for Pp and Sp bases. To address
this, in this work, we derive an hp-optimal error bound for the L2-orthogonal projec-
tion onto the Pp basis in the L2-norm, and for the H 1-projection onto the Sp basis
in the L2-norm and H 1-seminorm.

The technique for proving the new error bounds is different from the existing
techniques for hp-approximation with the Qp basis, due to the lack of a tensor prod-
uct structure in the Pp and Sp bases, thereby hindering the use of the usual tensor
product arguments. The key tools used in this work are: a multi-dimensional orthog-
onal polynomial expansion and the careful selection of basis functions. To the best
author’s knowledge, the new error bounds for both projections never appeared in the
literatures. The resulting bounds are hp-optimal with respect to both Sobolev regu-
larity and polynomial approximation order. Moreover, it also shows that the Qp basis
contains in a sense “extra” basis functions that are unnecessary for optimal conver-
gence. These basis functions do not increase the order in p of the error bound, but
instead only reduce its “constant”.

By using the new hp-optimal error bound for the L2-orthogonal projection onto
the Pp basis and the H 1-projection onto the Sp basis, we can prove that methods
using Pp and Sp bases offer exponential convergence with a larger exponent with
respect to the number of degrees of freedom than comparable methods using Qp basis
for piecewise analytic problem under p-refinement. Furthermore, the approximation
results also show that there are a lot of basis functions in Qp basis with no roles in
improving the hp-optimal error bound, which can be generalized to other FEM with
the local polynomial space employing reduced cardinality basis. Finally, we empha-
size that we are using DGFEM employing Pp basis for quadrilateral and hexahedral
elements also and this is the key novelty of the approach, since this is possible for
DGFEM and essentially for serendipity spaces.

The remainder of this work is structured as follows. In Section 2, we introduce
the required notation and the weighted Sobolev spaces together with some prop-
erties about the orthogonal polynomials. Then, the p-optimal error bound for the
L2-orthogonal projection onto the Pp basis in L2-norm is proved in Section 3. In
Section 4, we derive the p-optimal error bound for H 1-projection onto the Sp basis
in both L2-norm and H 1-seminorm. Section 5 is devoted to deriving the exponen-
tial rate of convergence for the L2- and the H 1-projections employing different local
polynomial bases. The sharpness of the approximation results is verified through a
series of numerical examples in Section 6.
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2 Preliminaries

2.1 Notation

We employ the multi-indices i = (i1, . . . , id ) and α = (α1, . . . , αd), where each
component is non-negative. We denote by | · | the l1-norm of the multi-index i, with
|i| = ∑d

j=1 |ik|. Further, for multi-indices, the relation i ≥ α means that ik ≥ αk for
all k = 1, . . . , d .

Next, we define the following shorthand notation for the summations of indices.
For multi-indices i and α satisfying i ≥ α, we define

∑∞
i≥α := ∑∞

i1=α1
· · · ∑∞

id=αd

and the summation for multi-indices i satisfying |i| ≥ p is defined as
∑∞

|i|=p. More-
over, we also define a summation for a multi-index i satisfying multiple conditions,
e.g. multi-index i satisfying the condition i ≥ α and the condition |i| ≥ p is defined
as

∑∞
|i|=p,i≥α .

We introduce a function �d(m, n) which will be used frequently in this work,
given by

�d(m, n) =
(�(m−n

d
+ 1)

�(m+n
d

+ 1)

)d

, (3)

where � is the Gamma function satisfying �(n + 1) = n! for integer n ≥ 0.

2.2 Weighted Sobolev spaces

For the reference element κ̂ := (−1, 1)d , let Wα(x) = ∏d
k=1 Wk(xk)

αk , where the
weight function Wk(xk) := (1 − x2

k )1/2, for k = 1, . . . , d , and αk ≥ 0 are integers.
Next, we define the weighted Sobolev spaces V l(κ̂) as a closure of C∞(κ̂) in the

norm with the weights Wα , defined by

‖u‖2
V l(κ̂)

=
l∑

|α|=0

|u|2
V l(κ̂)

, and |u|2
V l(κ̂)

=
∑

|α|=l

‖WαDαu‖2
L2(κ̂)

. (4)

It is easy to see that |u|V l(κ̂) ≤ |u|Hl(κ̂), ∀u ∈ Hl(κ̂), with some integer l ≥ 0. We
note that the above definition for weighted Sobolev spaces can be extended to the
fractional order weighted Sobolev spaces and weighted Besov spaces by using the
real interpolation techniques (cf. [7]).

For u ∈ L2(κ̂), we introduce the Legendre polynomial expansion over the refer-
ence element κ̂ , given by u(x) = ∑∞

|i|=0 ai

∏d
k=1 Lik (xk), where x = (x1, . . . , xd),

and Lik (xk) denotes the Legendre polynomial with order ik over the variable xk . The
coefficients ai are defined by

ai =
∫

κ̂

u(x)

d∏

k=1

2ik + 1

2
Lik (xk) dx. (5)

The derivatives of the function u can be expressed as

Dαu(x) =
∞∑

i≥α

ai

d∏

k=1

L
(αk)
ik

(xk). (6)
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The derivatives of the Legendre polynomials satisfy the orthogonality property
∫ 1

−1
(1 − ξ2)kL

(k)
i (ξ)L

(k)
j (ξ) dξ = 2δij

2i + 1

�(i + k + 1)

�(i − k + 1)
, (7)

see [29, Lemma 3.10]. By employing (7), we have

‖WαDαu‖2
L2(κ̂)

=
∞∑

i≥α

|ai |2
d∏

k=1

2

2ik + 1

�(ik + αk + 1)

�(ik − αk + 1)
. (8)

Identity (8) establishes a link between the derivatives of the functions in the weighted
L2-norms and their Legendre polynomial expansions.

Remark 1 The weighted Sobolev space in the above definition is a special case of the
general Jacobi-weighted Sobolev spaces introduced in [5]. The key reason to intro-
duce the Jacobi-weighted Sobolev spaces is to deal with the loss of orthogonality
suffered by orthogonal polynomials in standard Sobolev spaces; the L2-orthogonality
is preserved in Jacobi-weighted Sobolev spaces. As we shall see in the forthcom-
ing analysis, orthogonality plays a key role in deriving optimal error bounds in the
polynomial order p.

3 The L2-orthogonal projection operator onto thePp basis

In this section, we derive an hp-optimal error bound for the L2-orthogonal projection
over the reference element κ̂ := (−1, 1)d .

3.1 The L2-orthogonal projection operator

For the reference element κ̂ , we define Pp(κ̂) and Qp(κ̂) be the space of all polyno-
mials with total degree less than or equal to p and with separate degree less than or
equal to p, respectively.

In order to distinguish the same projections onto spaces with different polynomial
bases, we use subscripts to signify the basis type: we use �Qp

:= �
(1)
p �

(2)
p . . . �

(d)
p

to denote the L2-projection onto Qp, which is constructed by using tensor product
arguments together with the one-dimensional L2-projection with respect to variable
xk , given by �

(k)
p . On the other hand, the L2-projection onto Pp is denoted by �Pp

.
First, we have the following hp-optimal approximation result for the L2-

orthogonal projection �Qp
(c.f. [22, Lemma 3.4]).

Lemma 1 Let κ̂ = (−1, 1)d . Suppose that u ∈ Hl(κ̂), for some interger l ≥ 0. Let
�Qp

u be the L2-projection of u onto Qp(κ̂) with p ≥ 0. Then, for any integer s,
with 0 ≤ s ≤ min{p + 1, l}, and Wk = Wk(xk), we have:

‖u − �Qp
u‖2

L2(κ̂)
≤ �1(p + 1, s)

( d∑

k=1

‖Ws
k Ds

ku‖2
κ̂

)
≤ �1(p + 1, s)|u|2

Hs(κ̂)
, (9)
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where �1(p + 1, s) is defined in (3).

Proof The result is proved by modifying the proof of Lemma 3.4 in [22]. Instead
of using triangle inequality, we use the orthogonality and stability of the one-
dimensional L2-orthogonal projection, which leads to the error bound (9).

We remark on the asymptotic behaviour of the gamma function. Making use of
sharp double side inequalities for the gamma function (see Theorem 1.6. in [6]), for
all positive real numbers x ≥ 1, we have

√
2πxx+ 1

2 e−x ≤ �(x + 1) ≤ exx+ 1
2 e−x, (10)

and it follows

�d(p + 1, s) ≤ C(s)
( d

p + 1

)2s

, (11)

with 0 ≤ s ≤ min{p + 1, l} and C(s) depending on the constant s only. This implies
that the error bound (9) is optimal in p with respect to both the Sobolev regularity
index l and polynomial order p. In fact, by modifying the proof of Theorem 6.2 in
[23], it is can be shown that the constant C(s) = ( e

2 )2s .
Next, we introduce a useful lemma which is the key tool in proving the optimal

error bounds in p. The proof of the lemma is postponed until Section 3.2.

Lemma 2 Let ξ = (ξ1, ξ2, . . . , ξd) and ρ = (ρ1, ρ2, . . . , ρd) be two non-negative
integer valued vectors with ρ ≥ ξ , satisfying |ρ| = M , |ξ | = m for M, m ∈ N. Then,
we have the (global) upper bound

F(ξ, ρ) :=
d∏

k=1

�(ρk − ξk + 1)

�(ρk + ξk + 1)
≤ �d(M, m). (12)

Furthermore, the maximum value of F(ξ, ρ) under the above constraints on ξ and ρ

is attained at ξk = m/d, ρk = M/d, k = 1, . . . , d .

Theorem 1 Let κ̂ = (−1, 1)d . Suppose that u ∈ Hl(κ̂), for some integer l ≥ 0.
Let �Pp

u be the L2-projection of u onto Pp(κ̂) with p ≥ 0. Then, for any integer s,
0 ≤ s ≤ min{p + 1, l}, we have:

‖u − �Pp
u‖2

L2(κ̂)
≤ �d(p + 1, s)|u|2

V s(κ̂)
≤ C(s)

( d

p + 1

)2s |u|2
Hs(κ̂)

. (13)

where �d(p + 1, s) is defined in (3).
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Proof Using the relation (7) , for any integer s, 0 ≤ s ≤ min{p + 1, l}, we have

‖u − �Pp
u‖2

L2(κ̂)
=

∞∑

|i|=p+1

|ai |2
d∏

k=1

2

2ik + 1
≤

∑

|α|=s

∞∑

|i|=p+1,i≥α

|ai |2
d∏

k=1

2

2ik + 1

=
∑

|α|=s

∞∑

|i|=p+1,i≥α

|ai |2
( d∏

k=1

2

2ik + 1

�(ik + αk + 1)

�(ik − αk + 1)

)

×
( d∏

k=1

�(ik − αk + 1)

�(ik + αk + 1)

)

≤ �d(p +1, s)
∑

|α|=s

∞∑

|i|=p+1,i≥α

|ai |2
d∏

k=1

2

2ik + 1

�(ik + αk + 1)

�(ik − αk + 1)

≤ �d(p + 1, s)
∑

|α|=s

‖WαDαu‖2
L2(κ̂)

= �d(p + 1, s)|u|2
V s(κ̂)

≤ C(s)
( d

p + 1

)2s |u|2
Hs(κ̂)

,

where in step 1, the index set is enlarged; indeed, some of the terms with multi-index
|i| ≥ p + 1 have been used more than once; in step 3, we use Lemma 2, taking
ξk = αk ≥ 0, ρk = ik ≥ 0, M = p + 1, m = s, together with the restriction
0 ≤ s ≤ min{p + 1, l}; in step 4, we used (8) and in the last step, the bound holds
from (11).

Remark 2 We point out that the above proof for the L2-orthogonal projection
�Pp

on d-dimensional reference element is a natural extension of the proof for
one-dimensional result, see [29] for details.

By comparing the L2-norm bound (9) for the projection �Qp
and (13) for the pro-

jection �Pp
, it is easy to see that both bounds are p-optimal with respect to Sobolev

regularity index l and also for polynomial order p. Moreover, we can see that the
bound in (13) will have a larger constant compared to the bound in (9), and this con-
stant depends on the dimension d. This result will play a key role in deriving the
exponential convergence for the Pp basis.

3.2 The proof of Lemma 2

The proof will be split into three steps.

Step 1 The proof follows a constrained optimization procedure. We set,

L(ξ, ρ, μ, λ) = F(ξ, ρ) + μ(|ξ | − m) + λ(|ρ| − M), (14)

and we calculate the stationary points. We consider the partial derivatives with respect
to ξk and ρk , k = 1, . . . , d ,

∂L

∂ξk

= −
(

�′(ρk − ξk + 1)

�(ρk − ξk + 1)
+ �′(ρk + ξk + 1)

�(ρk + ξk + 1)

)

F(ξ, ρ) + μ = 0,
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and

∂L

∂ρk

=
(

�′(ρk − ξk + 1)

�(ρk − ξk + 1)
− �′(ρk + ξk + 1)

�(ρk + ξk + 1)

)

F(ξ, ρ) + λ = 0,

which satisfy the equations

�′(ρk − ξk + 1)

�(ρk − ξk + 1)
= μ − λ

2F(ξ, ρ)
and

�′(ρk + ξk + 1)

�(ρk + ξk + 1)
= μ + λ

2F(ξ, ρ)
, (15)

with k = 1, . . . , d , by using the fact that F(ξ, ρ) > 0. The right-hand sides of
the two equations in (15) are independent of the index k. Moreover, the function
φ(z) = �(z)′/�(z) is the so-called digamma function with the property that (see [1],
(6.3.16))

φ(z + 1) = −γ +
∞∑

n=1

z

n(n + z)
= −γ +

∞∑

n=1

(1

n
− 1

n + z

)
, z �= −1, −2, . . . ,

where γ is the Euler-Mascheroni constant. For z ≥ 0, the function φ(z + 1) is a
continuous monotonically increasing function, which shows that (15) have only one
solution. This solution is ξ̃k = m/d and ρ̃k = M/d, k = 1, . . . , d , and the F(ξ, ρ)

will have the extreme value at this stationary point, given by

F(ξ̃ , ρ̃) = �d(M, m). (16)

Step 2 In order to find the global maximum, we need to prove the following
asymptotic relationship:

�n(M, m) ≤ �d(M, m), n = 1, . . . , d − 1. (17)

This is proven by considering three different cases. We first consider the special case
m = 0. In this case, (17) holds trivially. Next, we consider the case m = δM , with
0 < δ < 1. By using the property (10) of gamma functions, we have the following
bound:

�d(M, m)

�n(M, m)
≥

(√
2π

e

)d+n(d

n

)2δM(1 − δ

1 + δ

) d−n
2

. (18)

By recalling that 0 < δ < 1 and n = 1, . . . , d − 1, we have that 0 < 1−δ
1+δ

< 1

and the function ( d
n
)2δM is monotonically increasing with respect to M . For M ≥

(
(d + n) log

(
e√
2π

)
+ d−n

2 log
(

1+δ
1−δ

)) (
2δ log

(
d
n

))−1
, the above quotient formula

is greater than 1 and therefore (17) holds.
Finally, we consider the case m = M . Using the same techniques used to derive

(18) together with the fact that �(1) = 1, we have

�d(M, m)

�n(M, m)
= (�( 2M

n
+ 1))n

(�( 2M
d

+ 1))d
≥ (

√
2π)n

ed

( d

2M

) d−n
2

(d

n

)2M+ n
2
. (19)



On the exponent of exponential convergence of p-version FEM spaces 765

By using the fact that exponentially increasing functions grow faster than polynomi-
als, we know that for sufficiently large M the right-hand side of (19) is greater than
1 and therefore (17) holds.

Step 3 Finally, we need to show that the extreme value (16) is the global maximum
value of F(ξ, ρ) under the constraints |ξ | = m and |ρ| = M .

First, we can see that the function F(ξ, ρ) is symmetric and continuous with
respect to ξ and ρ. The constraints |ξ | = m and |ρ| = M restrict the domain of ξ

and ρ to be a (d − 1)-dimensional simplex, which is convex and compact. So the
maximum value of the function F(ξ, ρ) over the domain will be obtained only at the
boundary of the domain or the stationary point of F(ξ, ρ). We have calculated the
function value at the stationary point in (16) already, so now we just need to check
the function values on the boundary of the domain.

This may be proved by induction. We start with the case d = 2: the domain of ξ

and ρ satisfying the constrains are two straight lines, ρ1 + ρ2 = M and ξ1 + ξ2 = m.
Here, the stationary point is the mid-point of each of the two lines ξ̃ = (m/2, m/2),
ρ̃ = (M/2, M/2), and the boundary of the domain consists of the points ξb = (0, m),
ρb = (0, M) or ξb = (m, 0), ρb = (M, 0), due to the constraints ρ ≥ ξ . Using the
symmetry of the function and of the domain, we know that at the two boundary points
of the domain, F(ξ, ρ) will attain the same value, with F(ξb, ρb) = �1(M, m). By
using the asymptotic relation (17), we find

F(ξb, ρb) = �1(M, m) ≤ �2(M, m) = F(ξ̃ , ρ̃).

The above relation shows that the extreme value (16) is the global maximum value
under the constraints for d = 2.

Next, we consider the case d = 3, where the domain of each of ξ and ρ will be
a triangle. In this case, the stationary point of F(ξ, ρ) is when ξ and ρ are located
at the barycentre of their respective triangle. The boundary of each domain consists
of three straight lines. We need to calculate the maximum value of F(ξ, ρ) on the
boundary of the domain. By using the symmetry of F(ξ, ρ), and that fact that |ξ | = m

and |ρ| = M , we only need to consider one part of domain boundary where ξ3
= 0 and ρ3 = 0. Then, the maximum of F(ξ, ρ) on the domain boundary can be
viewed as exactly the same problem with the same constraints as in the case d = 2.
Consequently, the maximum value of F(ξ, ρ) along the boundary of the domain is
F(ξb, ρb) = �2(M, m). Again, by using the same techniques as for d = 2, we
deduce that

F(ξb, ρb) = �2(M, m) ≤ �3(M, m) = F(ξ̃ , ρ̃).

The above relation shows that the extreme value (16) is the global maximum value
under the constraints for d = 3. For the general d-dimensional case, the proof can
be carried out in a similar way. The key observation is that the maximum value of
F(ξ, ρ) on the boundary of d-dimensional domain will be at the stationary point of
F(ξ, ρ) on the (d − 1)-dimensional domain. By using the relation

�d−1(M, m) ≤ �d(M, m),
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the proof is complete.

4 The H1-projection operator onto theSp basis

In this section, we shall consider the H 1-projection over the reference element
κ̂ := (−1, 1)d with d = 2, 3. Since the three-dimensional results depend on the
two-dimensional results, we start with the two-dimensional case.

4.1 The H1-projection operator on the reference square

First, we introduce the two-dimensional serendipity finite element space (cf. [29])

Sp(κ̂) := Pp(κ̂) + span{xp

1 x2, x1x
p

2 }, p ≥ 1. (20)

We can see in Fig. 1 that the serendipity space Sp contains two more basis functions
than the Pp basis for p ≥ 2. Another way to define the serendipity basis is to con-
sider the decomposition of the C0 finite element space with Qp basis over κ̂ . For
polynomial order p, the Sp basis has the same number of nodal basis functions and
edge basis functions as the Qp basis, but the Sp basis only has internal moment basis
functions (those with zero value along the element boundary ∂κ̂) whose total degree
is less than or equal p (cf. [29, 30]). We note that serendipity FEMs can be defined
in a dimension-independent fashion (see [3]).

Similarly to the case of the L2-projection, we use πQp
:= π

(1)
p π

(2)
p to denote the

H 1-projection onto the Qp basis, which can be constructed via a tensor product of

one-dimensional H 1-projection with respect to variable xk , given by π
(k)
p . Similarly,

the H 1-projection onto the Sp basis is denoted by πSp
, which is defined in (25).

0 1 2 3 4 5 6 7 8 9 10

index x

0

1

2

3

4

5

6

7

8

9

10

in
de

x 
y

nodal index
edge index
modal index

0 1 2 3 4 5 6 7 8 9 10

index x

0

1

2

3

4

5

6

7

8

9

10

in
de

x 
y

nodal index
edge index
modal index

Fig. 1 Qp (left) and Sp (right) with polynomial order 10
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Now, we construct the two-dimensional H 1-projection explicitly by using the one-
dimensional H 1-projection and tensor product arguments (see [21, 29]). For u ∈
Hl(κ̂), l ≥ 2, the projection πQp

u ∈ Qp(κ̂), p ≥ 1, is defined by

πQp
u(x1, x2) :=

∫ x1

−1

∫ x2

−1
�Qp−1∂1∂2u(x1, x2) dx1 dx2+

∫ x1

−1
�

(1)
p−1∂1u(x1, −1) dx1

+
∫ x2

−1
�

(2)
p−1∂2u(−1, x2) dx2 + u(−1, −1)

=
p−1∑

i1=0

p−1∑

i2=0

ai1i2ψi1(x1)ψi2(x2) +
p−1∑

i1=0

bi1ψi1(x1) +
p−1∑

i2=0

ci2ψi2(x2)

+u(−1, −1); (21)

the projections �Qp−1 and �
(k)
p−1 are the two-dimensional and one-dimensional L2-

orthogonal projections, respectively, the coefficients ai1i2 , bi1 and ci2 are given by:

ai1i2 = 2i1 + 1

2

2i2 + 1

2

∫

κ̂

∂1∂2u(x1, x2)Li1(x1)Li2(x2) dx,

bi1 = 2i1 + 1

2

∫ 1

−1
∂1u(x1, −1)Li1(x1) dx1,

ci2 = 2i2 + 1

2

∫ 1

−1
∂2u(−1, x2)Li2(x2) dx2, (22)

and the polynomial function ψj (z) = ∫ z

−1 Lj (z) dz with degree j + 1, and satisfies

ψj (±1) = 0 for j ≥ 1. Moreover, for j ≥ 1, ψj(z) = − 1
j (j+1)

(1 − z2)L′
j (z) has the

following properties (cf. [29]),

∫ 1

−1
ψj (z)ψk(z)

1

1 − z2
dz = 2δjk

j (j + 1)(2i + 1)
. (23)

Next, we rearrange the relation (21) by separating the internal moment basis
functions:

πQp
u(x1, x2) :=

p−1∑

i1=1

p−1∑

i2=1

ai1i2ψi1(x1)ψi2(x2)+
p−1∑

i1=0

ai10ψi1(x1)ψ0(x2)+u(−1, −1)

+
p−1∑

i2=1

a0i2ψ0(x1)ψi2(x2) +
p−1∑

i1=0

bi1ψi1(x1) +
p−1∑

i2=0

ci2ψi2(x2), (24)
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so that the first double summation in (24) only contains the internal moment basis
functions. From the definition of Sp, πSp

can be constructed by removing the
internal moment basis functions with polynomial order greater than p in πQp

. More
specifically, πSp

u ∈ Sp(κ̂), p ≥ 4, is defined by

πSp
u(x1, x2) :=

p−2∑

|i|=2
ik≥1,k=1,2

ai1i2ψi1(x1)ψi2(x2)+
p−1∑

i1=0

ai10ψi1(x1)ψ0(x2)+u(−1, −1)

+
p−1∑

i2=1

a0i2ψ0(x1)ψi2(x2) +
p−1∑

i1=0

bi1ψi1(x1) +
p−1∑

i2=0

ci2ψi2(x2). (25)

For 1 ≤ p ≤ 3, the first term in (25) will vanish, because there are no internal
moment basis functions for the serendipity basis in that case. In this work, we focus
on the high-order polynomial cases, so we only consider the H 1-projection πSp

for
p ≥ 4.

Next, we recall the following approximation lemma for πQp
from [21].

Lemma 3 Let κ̂ = (−1, 1)2. Suppose that u ∈ Hl+1(κ̂), for some l ≥ 1. Let πQp
u

be the H 1-projection of u onto Qp(κ̂) with p ≥ 1. Then, we have

πQp
u = u at the vertices of κ̂, (26)

and the following error estimates hold:

‖u − πQp
u‖2

L2(κ̂)
≤ 2

p(p + 1)
�1(p, s)

(
‖∂s+1

1 u‖2
L2(κ̂)

+ 2‖∂s+1
2 u‖2

L2(κ̂)

)

+ 4

p2(p + 1)2
�1(p, s − 1)‖∂1∂

s
2u‖2

L2(κ̂)

≤ C(s)
( 1

p

)2s+2|u|2
Hs+1(κ̂)

, (27)

and

‖∇(u − πQp
u)‖2

L2(κ̂)
≤ 2�1(p, s)

(
‖∂s+1

1 u‖2
L2(κ̂)

+ ‖∂s+1
2 u‖2

L2(κ̂)

)

+ 8

p(p + 1)
�1(p, s − 1)

(
‖∂s

1∂2u‖2
L2(κ̂)

+ ‖∂1∂
s
2u‖2

L2(κ̂)

)
≤ C(s)

( 1

p

)2s |u|2
Hs+1(κ̂)

,

(28)

for any integer s, 1 ≤ s ≤ min{p, l}.

Then, we derive the hp-error bound for the H 1-projection πSp
for p ≥ 4.

Theorem 2 Let κ̂ = (−1, 1)2. Suppose that u ∈ Hl+1(κ̂), for some l ≥ 1. Let πSp
u

be the H 1 projection of u onto Sp(κ̂) with p ≥ 4. Then, we have

πSp
u = u at the vertices of κ̂, (29)
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and for any integer s, 1 ≤ s ≤ min{p, l}, p sufficiently large, the following error
estimates hold:

‖u − πSp
u‖2

L2(κ̂)
≤ 4

p(p + 1)
�1(p, s)

(
‖∂s+1

1 u‖2
L2(κ̂)

+ 2‖∂s+1
2 u‖2

L2(κ̂)

)

+ 8

p2(p + 1)2
�1(p, s − 1)‖∂1∂

s
2u‖2

L2(κ̂)

+72�2(p + 1, s + 1)|∂1∂2u|2
V s−1(κ̂)

≤ C(s)
( 2

p + 1

)2s+2|u|2
Hs+1(κ̂)

, (30)

and

‖∇(u − πSp
u)‖2

L2(κ̂)
≤ 4�1(p, s)

(
‖∂s+1

1 u‖2
L2(κ̂)

+ ‖∂s+1
2 u‖2

L2(κ̂)

)

+ 16

p(p + 1)
�1(p, s − 1)

(
‖∂s

1∂2u‖2
L2(κ̂)

+ ‖∂1∂
s
2u‖2

L2(κ̂)

)

+24�2(p, s)|∂1∂2u|2
V s−1(κ̂)

≤ C(s)
( 2

p

)2s |u|2
Hs+1(κ̂)

. (31)

Proof The key observation is the fact that the serendipity basis Sp differs from
the Qp basis only at the internal moment basis functions which vanish along the
boundary of κ̂ . Indeed, using (24) and (25), we have

(
πQp

u − πSp
u
)
(x1, x2) =

2(p−1)∑

|i|=p−1
p−1≥ik≥1,k=1,2

ai1i2ψi1(x1)ψi2(x2). (32)

Using the fact that ψj (±1) = 0 for j ≥ 1, we deduce that (πQp
u − πSp

u)|∂κ̂ = 0.
Thus, (29) is proved.

Next, we derive (30). The first step is the use of the triangle inequality,

‖u − πSp
u‖2

L2(κ̂)
≤ 2‖u − πQp

u‖2
L2(κ̂)

+ 2‖πQp
u − πSp

u‖2
L2(κ̂)

. (33)

Thus, we only need to consider the error from the second term in the above bound.
By using the orthogonality relation (23) of ψj (x) for j ≥ 1 and 1 ≤ s ≤ min{p, l},
we have

‖πQp
u − πSp

u‖2
L2(κ̂)

≤ ‖(πQp
u − πSp

u)W−1‖2
L2(κ̂)

=
2(p−1)∑

|i|=p−1
p−1≥ik≥1,k=1,2

|ai1i2 |2
2∏

k=1

2

2ik + 1

1

ik(ik + 1)

≤
∑

|α|=s−1

∞∑

|i|=p−1,i≥α
ik≥1,k=1,2

|ai1i2 |2
2∏

k=1

2

2ik + 1

1

ik(ik + 1)
, (34)
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where in step 2, we enlarged the summation index sets by adding the high-order
internal moment basis functions with coefficients ai1i2 , ik ≥ 1 for k = 1, 2 and
|i| ≥ p − 1. Thus, we have

‖πQp
u − πSp

u‖2
L2(κ̂)

≤
∑

|α|=s−1

∞∑

|i|=p−1,i≥α
ik≥1,k=1,2

|ai1i2 |2
( 2∏

k=1

2

2ik + 1

�(ik + αk + 1)

�(ik − αk + 1)

)

×
( 2∏

k=1

1

ik(ik + 1)

�(ik − αk + 1)

�(ik + αk + 1)

)

≤
∑

|α|=s−1

∞∑

|i|=p−1,i≥α
ik≥1,k=1,2

|ai1i2 |2
( 2∏

k=1

2

2ik + 1

�(ik + αk + 1)

�(ik − αk + 1)

)

×
( 2∏

k=1

�(ik − αk + 1)

�(ik + αk + 3)

)
× 36, (35)

where we used 1
ik(ik+1)

≤ 6
(ik+αk+1)(ik+αk+2)

, since ik ≥ αk and ik ≥ 1. Now, we have

‖πQp
u − πSp

u‖2
L2(κ̂)

≤
∑

|α|=s−1

∞∑

|i|=p−1,i≥α

|ai1i2 |2
( 2∏

k=1

2

2ik + 1

�(ik + αk + 1)

�(ik − αk + 1)

)

×
( 2∏

k=1

�(ik − αk + 1)

�(ik + αk + 3)

)
× 36

≤ 36�2(p + 1, s + 1)
∑

|α|=s−1

‖WαDα(∂1∂2u)‖2
L2(κ̂)

= 36�2(p + 1, s + 1)|∂1∂2u|2
V s−1(κ̂)

≤ C(s)
( 2

p + 1

)2s+2|u|2
Hs+1(κ̂)

; (36)

in step 1, we enlarge the index set by adding functions with coefficients ai1i2 whose
index satisfying the relation |i| ≥ p−1,

∏2
k=1 ik = 0, while in step 2, we use Lemma

2, with ξ1 = α1 + 1 ≥ 1, ξ2 = α2 + 1 ≥ 1, ρ1 = i1 + 1 ≥ 1, ρ2 = i2 + 1 ≥ 1,
M = p+1, and m = s+1, together with the restriction 1 ≤ s ≤ min{p, l}; in step 3,
we use (8) and (22) to build up the link between the derivatives of u and coefficients
ai1i2 and in the last step, we use (11).

Using the same techniques, we can derive the error estimate for the H 1-seminorm.
We have

‖∂1(πQp
u − πSp

u)‖2
L2(κ̂)

≤ ‖∂1(πQp
u − πSp

u)W−1
2 ‖2

L2(κ̂)

≤
∑

|α|=s−1

∞∑

|i|=p−1,i≥α
ik≥1,k=1,2

|ai1i2 |2
1

i2(i2 + 1)

2∏

k=1

2

2ik + 1
.(37)
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In the last step, we enlarge the summation index sets by adding the high-order internal
moment basis functions with coefficients ai1i2 , ik ≥ 1 for k = 1, 2 and |i| ≥ p − 1.
Thus, we have

‖∂1(πQp
u−πSp

u)‖2
L2(κ̂)

≤
∑

|α|=s−1

∞∑

|i|=p−1,i≥α
ik≥1,k=1,2

|ai1i2 |2
( 2∏

k=1

2

2ik + 1

�(ik+αk+1)

�(ik−αk+1)

)

×
(�(i1 − α1 + 1)

�(i1 + α1 + 1)

�(i2 − α2 + 1)

�(i2 + α2 + 3)

)
× 6

≤
∑

|α|=s−1

∞∑

|i|=p−1,i≥α

|ai1i2 |2
( 2∏

k=1

2

2ik+1

�(ik+αk+1)

�(ik−αk+1)

)

×
(�(i1 − α1 + 1)

�(i1 + α1 + 1)

�(i2 − α2 + 1)

�(i2 + α2 + 3)

)
× 6

≤ 6�2(p, s)
∑

|α|=s−1

‖WαDα(∂1∂2u)‖2
L2(κ̂)

= 6�2(p, s)|∂1∂2u|2
V s−1(κ̂)

≤ C(s)
( 2

p

)2s |u|2
Hs+1(κ̂)

, (38)

where in step 2, we enlarge the index set again; in step 3, we use Lemma 2, taking
ξ1 = α1 ≥ 0, ξ2 = α2 + 1 ≥ 1, ρ1 = i1 ≥ 0, ρ2 = i2 + 1 ≥ 1, M = p, and m = s,
together with the restriction 1 ≤ s ≤ min{p, l}.

Therefore, we have the bound

‖∇(πQp
u − πSp

u)‖2
L2(κ̂)

≤ 12�2(p, s)|∂1∂2u|2
V s−1(κ̂)

≤ C(s)
(

2
p

)2s |u|2
Hs+1(κ̂)

.(39)

Finally, using (36), (39) and Lemma 3, the bounds (30) and (31) follow.

4.2 The H1-projection operator on the reference cube

In this section, we shall consider the H 1-projection operator over the reference cube
κ̂ := (−1, 1)3. First, we introduce the 3D serendipity finite element space.

A simple way to define the serendipity basis is to consider a decomposition of
the C0 finite element space with Qp basis over κ̂ . For polynomial order p, the Sp

basis has the same number of nodal basis functions and edge basis functions as the
Qp basis, but the Sp basis only has face basis functions (those with zero value on
12 edges and eight vertices) and internal moment basis functions (those with zero
value along the element boundary ∂κ̂) whose total degree is less than or equal p. The
number of basis functions of Sp basis is calculated in the following way

Dof (Sp(κ̂)) := 8 + 12 × (p − 1) + 6 × (p − 2)(p − 3)

2

+ (p − 3)(p − 4)(p − 5)

6
, (40)

here, we note that for p = 1, the serendipity basis only contains eight nodal basis
functions and S1(κ̂) := Q1(κ̂). For p ≥ 2, the serendipity basis contains (p−1) edge
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basis functions for each of the 12 edges. For p ≥ 4, the serendipity basis contains
(p − 2)(p − 3)/2 face basis functions for each of the six faces. For p ≥ 6, the
serendipity basis contains (p − 3)(p − 4)(p − 5)/6 internal moment basis functions.

Similarly to the 2D case, we use πQp
:= π

(1)
p π

(2)
p π

(3)
p to denote the H 1-projection

onto the Qp basis. The H 1-projection onto the Sp basis is denoted by πSp
. Addition-

ally, we introduce some new notation for the forthcoming analysis. The projection
π

(1,2)

Sp
shall denote the H 1-projection onto the serendipity spaces Sp with variables

(x1, x2) only, and the projections π
(1,3)

Sp
and π

(2,3)

Sp
are defined in an analogous

manner.
First, we explicitly construct the three-dimensional projection πQp

=
π

(1)
p π

(2)
p π

(3)
p . For u ∈ Hl(κ̂), l ≥ 3, the projection πQp

u ∈ Qp(κ̂), p ≥ 1, is defined
by

πQp
u(x1, x2, x3) :=

∫ x1

−1

∫ x2

−1

∫ x3

−1
�Qp−1∂1∂2∂3u(x1, x2, x3) dx1 dx2 dx3

+
∫ x1

−1

∫ x2

−1
�

(1)
p−1�

(2)
p−1∂1∂2u(x1, x2, −1) dx1 dx2

+
∫ x1

−1

∫ x3

−1
�

(1)
p−1�

(3)
p−1∂1∂3u(x1, −1, x3) dx1 dx3

+
∫ x2

−1

∫ x3

−1
�

(2)
p−1�

(3)
p−1∂2∂3u(−1, x2, x3) dx2 dx3

+
∫ x1

−1
�

(1)
p−1∂1u(x1, −1, −1) dx1

+
∫ x2

−1
�

(2)
p−1∂2u(−1, x2, −1) dx2

+
∫ x3

−1
�

(3)
p−1∂3u(−1, −1, x3) dx3 + u(−1, −1, −1).

Then, the following Legendre polynomial expansion holds:

πQp
u(x1, x2, x3) :=

p−1∑

i1=0

p−1∑

i2=0

p−1∑

i3=0

ai1i2i3ψi1(x1)ψi2(x2)ψi3(x3) + u(−1, −1, −1)

+
p−1∑

i1=0

p−1∑

i2=0

bi1i2ψi1(x1)ψi2(x2) +
p−1∑

i1=0

p−1∑

i3=0

ci1i3ψi1(x1)ψi3(x3)

+
p−1∑

i2=0

p−1∑

i3=0

di2i3ψi2(x2)ψi3(x3) +
p−1∑

i1=0

ei1ψi1(x1) +
p−1∑

i2=0

fi2ψi2(x2)

+
p−1∑

i3=0

gi3ψi3(x3), (41)
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with coefficients ai1i2i3 , bi1i2 , ci1i3 , di2i3 , given by

ai1i2i3 = 2i1 + 1

2

2i2 + 1

2

2i3 + 1

2

∫

κ̂

∂1∂2∂3u(x1, x2, x3)Li1(x1)Li2(x2)Li3(x3) dx,

bi1i2 = 2i1 + 1

2

2i2 + 1

2

∫ 1

−1

∫ 1

−1
∂1∂2u(x1, x2, −1)Li1(x1)Li2(x2) dx1 dx2,

ci1i3 = 2i1 + 1

2

2i3 + 1

2

∫ 1

−1

∫ 1

−1
∂1∂3u(x1, −1, x3)Li1(x1)Li3(x3) dx1 dx3,

di2i3 = 2i2 + 1

2

2i3 + 1

2

∫ 1

−1

∫ 1

−1
∂2∂3u(−1, x2, x3)Li2(x2)Li3(x3) dx2 dx3, (42)

together with ei1 , fi2 and gi3

ei1 = 2i1 + 1

2

∫ 1

−1
∂1u(x1, −1, −1)Li1(x1) dx1,

fi2 = 2i2 + 1

2

∫ 1

−1
∂2u(−1, x2, −1)Li2(x2) dx2,

gi3 = 2i3 + 1

2

∫ 1

−1
∂3u(−1, −1, x3)Li3(x3) dx3. (43)

Now, we separate the face basis functions and internal moment basis functions
from (41).

πQp
u(x1, x2, x3) :=

p−1∑

i1=1

p−1∑

i2=1

p−1∑

i3=1

ai1i2i3ψi1(x1)ψi2(x2)ψi3(x3)

+
p−1∑

i1=1

p−1∑

i2=1

(
ai1i20ψi1(x1)ψi2(x2)ψ0(x3) + bi1i2ψi1(x1)ψi2(x2)

)

+
p−1∑

i1=1

p−1∑

i3=1

(
ai10i3ψi1(x1)ψ0(x2)ψi3(x3) + ci1i3ψi1(x1)ψi3(x3)

)

+
p−1∑

i2=1

p−1∑

i3=1

(
a0i2i3ψ0(x1)ψi2(x2)ψi3(x3) + di2i3ψi2(x2)ψi3(x3)

)

+edge basis + nodal basis. (44)

Here, the first triple summation terms contains all the internal moment basis functions
only. Three double summation terms contain all the face basis functions. The edge
basis functions and nodal basis functions will not be written explicitly because they
play no role in the analysis.
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From the definition of Sp, πSp
u can be constructed by removing the face basis

functions and internal moment basis functions with polynomial order greater than p

in πQp
u. More specifically, πSp

u ∈ Sp(κ̂), p ≥ 6, is defined by

πSp
u(x1, x2, x3) :=

p−3∑

|i|=3
ik≥1,k=1,2,3

ai1i2i3ψi1(x1)ψi2(x2)ψi3(x3)

+
p−2∑

i1+i2=2
i1≥1,i2≥1

(
ai1i20ψi1(x1)ψi2(x2)ψ0(x3) + bi1i2ψi1(x1)ψi2(x2)

)

+
p−2∑

i1+i3=2
i1≥1,i3≥1

(
ai10i3ψi1(x1)ψ0(x2)ψi3(x3) + ci1i3ψi1(x1)ψi3(x3)

)

+
p−2∑

i2+i3≥2
i2≥1,i3≥1

(
a0i2i3ψ0(x1)ψi2(x2)ψi3(x3) + di2i3ψi2(x2)ψi3(x3)

)

+edge basis + nodal basis (45)

For 1 ≤ p ≤ 3, both face basis functions and internal moment basis functions in
(45) will vanish. For 4 ≤ p ≤ 5, internal moment basis functions in (45) will vanish.
Similar to the 2D case, we only consider the H 1-projection πSp

for p ≥ 6.
Next, by using the stability and approximation results for one-dimensional H 1-

projection in [21], we can derive the following approximation results for πQp
.

Lemma 4 Let κ̂ = (−1, 1)3. Suppose that u ∈ Hl+1(κ̂), for some l ≥ 2. Let πQp
u

be the H 1-projection of u onto Qp(κ̂) with p ≥ 1. Then, we have

πQp
u = u at the vertices of κ̂, (46)

and the following error estimates hold:

‖u − πQp
u‖2

L2(κ̂)
≤ 8

p(p + 1)
�1(p, s)

×
(
‖∂s+1

1 u‖2
L2(κ̂)

+ ‖∂s+1
2 u‖2

L2(κ̂)
+ ‖∂s+1

3 u‖2
L2(κ̂)

)

+ 8

p2(p + 1)2
�1(p, s − 1)

(
‖∂1∂

s
2u‖2

L2(κ̂)
+ ‖∂1∂

s
3u‖2

L2(κ̂)
+ ‖∂2∂

s
3u‖2

L2(κ̂)

)

+ 8

p3(p + 1)3
�1(p, s − 2)‖∂1∂2∂

s−1
3 u‖2

L2(κ̂)
≤ C(s)

( 1

p

)2s+2|u|2
Hs+1(κ̂)

, (47)



On the exponent of exponential convergence of p-version FEM spaces 775

and

‖∇(u − πQp
u)‖2

L2(κ̂)
≤ 2�1(p, s)

(
‖∂s+1

1 u‖2
L2(κ̂)

+ ‖∂s+1
2 u‖2

L2(κ̂)
+ ‖∂s+1

3 u‖2
L2(κ̂)

)

+ 8

p(p + 1)
�1(p, s − 1)

(
‖∂1∂

s
2u‖2

L2(κ̂)
+ ‖∂2∂

s
3u‖2

L2(κ̂)
+ ‖∂3∂

s
1u‖2

L2(κ̂)

+‖∂1∂
s
3u‖2

L2(κ̂)
+ ‖∂2∂

s
1u‖2

L2(κ̂)
+ ‖∂3∂

s
2u‖2

L2(κ̂)

)

+ 8

p2(p + 1)2
�1(p, s − 2)

(
‖∂1∂2∂

s−1
3 u‖2

L2(κ̂)
+ ‖∂1∂2∂

s−1
3 u‖2

L2(κ̂)

+‖∂1∂2∂
s−1
3 u‖2

L2(κ̂)

)
≤ C(s)

( 1

p

)2s |u|2
Hs+1(κ̂)

, (48)

for any integer s, 2 ≤ s ≤ min{p, l}.

Then, we derive the hp-error bound for the H 1-projection πSp
for p ≥ 6.

Theorem 3 Let κ̂ = (−1, 1)3. Suppose that u ∈ Hl+1(κ̂), for some l ≥ 2. Let πSp
u

be the H 1 projection of u onto Sp(κ̂) with p ≥ 6. Then, we have

πSp
u = u at the vertices of κ̂, (49)

and for any integer s, 2 ≤ s ≤ min{p, l}, p sufficiently large, the following error
estimates hold:

‖u − πSp
u‖2

L2(κ̂)
≤ 2‖u − πQp

u‖2
L2(κ̂)

+ 2‖πQp
u − πSp

u‖2
L2(κ̂)

.

≤ C1�3(p + 1, s + 1)|u|2
Hs+1(κ̂)

≤ C(s)
( 3

p + 1

)2s+2|u|2
Hs+1(κ̂)

,

(50)

and

‖∇(u − πSp
u)‖2

L2(κ̂)
≤ 2‖∇(u − πQp

u)‖2
L2(κ̂)

+ 2‖∇(πQp
− πSp

u)‖2
L2(κ̂)

≤ C2�3(p, s)|u|2
Hs+1(κ̂)

≤ C(s)
( 3

p

)2s |u|2
Hs+1(κ̂)

. (51)

Here, C1 and C2 are positive constants independent of p, l and s.

Proof See the proof of Theorem 4.4 in [14].

Remark 3 We again make a comparison between the bounds in the L2-norm and
H 1-seminorm, given in Lemma 3 for d = 2 and Lemma 4 for d = 3 respectively
for πQp

, and Theorem 2 for d = 2 and Theorem 3 for d = 3 respectively for πSp
.

Similarly to the comparisons for the L2-projection onto Pp and Qp, both bounds are
p-optimal in both Sobolev regularity and polynomial order. We can also see that the
bounds for πSp

have a larger constant than those for πQp
, and this constant depends

on dimension d. Moreover, we point out that the optimal approximation results for
the H 1-projection with Sp basis in Theorems 2 and 3 directly imply the hp-optimal
error bound for the L2-norm on the trace of κ̂ for πSp

.
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Remark 4 We note that in the Theorems 2 and 3, the minimum Sobolev regular-
ity requirement for defining H 1-projection is u ∈ Hd(κ̂) for the reference element.
In fact, this regularity requirement can be relaxed by using the the tensor prod-
uct Sobolev spaces (cf. [15, 29]). In this work, we do not consider the minimum
regularity assumptions because we only consider the standard Sobolev spaces.

4.3 The H1-projection operator onto thePp basis

Finally, we present the error bound for πPp
which we shall define now. The key

observation is that the Pp basis with polynomial order p contains the Sp+1−d basis
for p ≥ d, see [3]. Then, we can simply define πPp

= πSp+1−d
for d = 2, 3.

Corollary 1 Let κ̂ = (−1, 1)d , d = 2, 3. Suppose that u ∈ Hl+1(κ̂), for some
l ≥ d − 1. Let πPp

u := πSp+1−d
u be the H 1 projection of u onto Pp(κ̂) with

p ≥ 3d − 1. Then, we have:

πPp
u = u at the vertices of κ̂, (52)

and the following error estimates hold:

‖u − πPp
u‖2

L2(κ̂)
= ‖u − πSp+1−d

u‖2
L2(κ̂)

≤ C(s)
( d

p + 1 − d

)2s+2|u|2
Hs+1(κ̂)

.

(53)
and

‖∇(u − πPp
u)‖2

L2(κ̂)
= ‖∇(u − πSp+1−d

u)‖2
L2(κ̂)

≤ C(s)
( d

p − d

)2s |u|2
Hs+1(κ̂)

.

(54)
for any integer s, d − 1 ≤ s ≤ min{p + 1 − d, l}, p sufficiently large.

Remark 5 We emphasize that the above error bound for the πPp
projection is p-

suboptimal by one order for d = 2 and two orders for d = 3 for sufficiently smooth
functions, but it is p-optimal for functions with finite Sobolev regularity in the case
l ≤ p+1−d. However, sub-optimality by one or two orders in p is better than using
the πQ

�p/d� projection, as suggested by [29] (see Corollary 4.52 on p. 190), which is
sub-optimal in p by at least p/2 orders for sufficiently smooth functions for d = 2.
Moreover, the one- or two-order sub-optimality in p for analytic functions does not
influence the exponent of the exponential rate of convergence, as we shall see below.

5 Exponential convergence for analytic solutions

We shall be concerned with the proof of exponential convergence for serendipity
FEMs and DGFEMs with the Pp basis over tensor product elements. For simplic-
ity, we only consider the case when the given problem is piecewise analytic over the
whole computational domain. Exponential convergence is then achieved by fixing
the computational mesh, and increasing the polynomial order p. Only parallelepiped
meshes are considered, which are the affine family obtained from the reference
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element κ̂ = (−1, 1)d . The analysis of FEMs and DGFEMs with a general hp-
refinement strategy is beyond the scope of this analysis (see [25–28] for the analysis
for both methods employing the Qp basis).

The proof of exponential convergence for FEMs and DGFEMs depends on proving
exponential convergence of L2- and H 1-projections for piecewise analytic func-
tions under p-refinement. The H 1-projection πSp

onto Sp can be directly applied
to p-FEMs for second-order elliptic problems with the same optimal rate as the H 1

projection πQp
(see [29] for details). For deriving error bounds of DGFEMs using

the L2- and H 1- projections onto Qp, we refer to [15, 21, 22]. Following similar
techniques, we can prove the corresponding hp-bounds for DGFEMs employing the
Pp basis, albeit with sub-optimal rate in p. The sub-optimality in p is due to the fact
that the p-optimal bound for L2-projection onto Pp basis over the trace of the tensor
product elements is still open. Additionally, the H 1-projection onto the Pp basis is
suboptimal in p by d −1 orders for sufficiently smooth functions. However, we point
out that the sub-optimality in p by d − 1 order, with d = 2, 3, does not influence the
exponent of the exponential rate of convergence.

Next, we focus on deriving the exponential convergence for the L2-projections in
the L2-norm and H 1-projections in the L2-norm and H 1-seminorm on analytic prob-
lems under p-refinement on shape-regular d-parallelepiped meshes. The extension
to anisotropic meshes will be consider in the future.

Let κ be a parallelepiped element. For a function u having an analytic extension
into an open neighbourhood of κ̄ , we have:

∃Rκ > 0, C(u) > 0, ∀sκ : |u|Hsκ (κ) ≤ C(u)(Rκ)sκ �(sκ + 1)|κ|1/2, (55)

where |κ| denotes the measure of element κ , cf. [12, Theorem 1.9.3].

Lemma 5 Let u : κ → R have an analytic extension to an open neighbourhood
of κ̄ . Also let pκ ≥ 0 and 0 ≤ sκ ≤ pκ + 1 be two positive numbers such that
sκ = ε(pκ + 1), 0 ≤ ε ≤ 1 and d = 2, 3. Then, the following bounds hold:

‖u − �Qpκ
u‖2

L2(κ)
≤ C(hκ)2sκ �1(pκ + 1, sκ)|u|2

Hsκ (κ̂)

≤ C(u)(pκ + 1)e−2b1,κ (pκ+1)|κ|,
and

‖u − �Ppκ
u‖2

L2(κ)
≤ C(hκ)2sκ �d(pκ + 1, sκ)|u|2

Hsκ (κ̂)

≤ C(u)(pκ + 1)e−2b2,κ (pκ+1)|κ|.
Here, C and C(u) are positive constants depending elemental shape regularity, and

C(u) also depends on u. F1(Rκ, ε) = (1−ε)1−ε

(1+ε)1+ε (εRk)
2ε , εmin = 1/

√
1 + R2

κ , b1,κ :=
1
2 | log F1(Rκ, εmin)| + εmin| log hκ | and b2,κ := b1,κ − εmin log d.

Proof Using standard scaling arguments for κ together with Lemma 1 and Theorem
1, we have the approximation results for the L2-projection over κ . For brevity, we
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set qκ = pκ + 1. By employing the relation (11) and the fact |u|V l(κ) ≤ |u|Hl(κ), we
have the bounds:

�1(pκ +1, sκ)|u|2
Hsκ (κ̂)

≤ C(u)(Rκ)2sκ �(sκ + 1)2 �(qκ − sκ + 1)

�(qκ + sκ + 1)
|κ|

≤ C(u)(Rκ)2εqκ
(εqκ)2εqκ+1

e2εqκ

((1 − ε)qκ)(1−ε)qκ e−(1−ε)qκ

((1 + ε)qκ)(1+ε)qκ e−(1+ε)qκ
|κ|

≤ C(u)qκ(F1(Rκ, ε))qκ |κ|,
where

F1(Rκ, ε) = (1 − ε)1−ε

(1 + ε)1+ε
(εRk)

2ε .

Recalling (55), we have Rκ > 0,

min
0<ε<1

F1(Rκ, ε) = F1(Rκ, εmin) =
(

Rκ
√

1 + R2
κ + 1

)2

< 1, εmin = 1
√

1 + R2
κ

.

(56)
Thus, we have

�(pκ − sκ + 2)

�(pκ + sκ + 2)
|u|2

Hsκ (κ̂)
≤ C(u)qκe−| log F1(Rκ ,εmin)|qκ |κ|. (57)

Therefore, we have the exponential convergence for the L2-projection �Qpκ
, via

‖u − �Qpκ
u‖2

L2(κ)
≤ C(u)(pκ + 1)e−2b1,κ (pκ+1)|κ|, (58)

with b1,κ := 1
2 | log F1(Rκ, εmin)| + εmin| log hκ |. Similarly, for the L2-projection

�Ppκ
, Stirling’s formula implies

�d(pκ +1, sκ)|u|2
Hsκ (κ̂)

≤ C(u)(Rκ)2sκ �(sκ + 1)2
(�(

qκ−sκ
d

+ 1)

�(
qκ+sκ

d
+ 1)

)d |κ|

≤ C(u)(Rκ)2εqκ
(εqκ)2εqκ+1

e2εqκ

× ((1−ε)qκ)(1−ε)qκ (ed)−(1−ε)qκ

((1+ε)qκ)(1+ε)qκ (ed)−(1+ε)qκ
|κ|

≤ C(u)qκ(F2(Rκ, ε))qκ |κ|,
where,

F2(Rκ, ε) = (1 − ε)1−ε

(1 + ε)1+ε
(εRkd)2ε,

with the minimum,

min
0<ε<1

F2(Rκ, ε) =
(

Rκd
√

1 + (Rκd)2 + 1

)2

< 1.

In order to compare with the slope of projection �Qpκ
, here, we will use the same

εmin. We have

min
0<ε<1

F2(Rκ, ε) ≤ F2(Rκ, εmin) = F1(Rκ, εmin)d
2εmin .
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Thus, we have

‖u − �Ppκ
u‖2

L2(κ)
≤ C(u)(p + 1)e−2b2,κ (pκ+1)|κ|, (59)

with slope b2,κ := 1
2 | log F1(Rκ, εmin)| + εmin(| log hκ | − log d).

Next, we begin to derive the exponential convergence for H 1-projections.

Lemma 6 Let u : κ → R have an analytic extension to an open neighbourhood
of κ̄ . Also let pκ ≥ 2d and (d − 1) ≤ sκ ≤ pκ be two positive numbers such that
sκ = εpκ , 0 < ε ≤ 1 and d = 2, 3. Then, the following bounds hold:

‖u − πQpκ
u‖2

L2(κ)
≤ C(hκ)2sκ+2�1(pκ + 1, sκ + 1)|u|2

Hsκ+1(κ̂)
(60)

≤ C(u)pκe−2b1,κpκ |κ|,

‖u − πSpκ
u‖2

L2(κ)
≤ C(hκ)2sκ+2�d(pκ + 1, sκ + 1)|u|2

Hsκ+1(κ̂)
(61)

≤ C(u)pκe−2b2,κpκ |κ|,
and

‖∇(u − πQpκ
u)‖2

L2(κ)
≤ C(hκ)2sκ �1(pκ, sκ)|u|2

Hsκ+1(κ̂)
≤ C(u)p3

κe−2b1,κpκ |κ|,

‖∇(u − πSpκ
u)‖2

L2(κ)
≤ C(hκ)2sκ �d(pκ, sκ)|u|2

Hsκ+1(κ̂)
≤ C(u)p3

κe−2b2,κpκ |κ|.
Here, C and C(u) are positive constants depending elemental shape regularity, and

C(u) also depends on u. F1(Rκ, ε) = (1−ε)1−ε

(1+ε)1+ε (εRk)
2ε , εmin = 1/

√
1 + R2

κ , b1,κ :=
1
2 | log F1(Rκ, εmin)| + εmin| log hκ | and b2,κ := b1

κ − εmin log d.

Proof The proof follows by the same techniques used in Lemma 5.

In the above Lemmas 5 and 6, we can see that the L2-norm error for both L2-
projections �Qpκ

and �Ppκ
, and the L2-norm and H 1-seminorm errors for the

H 1-projections πSpκ
and πQpκ

decay exponentially for analytic functions under p-
refinement. If we measure the error against p, the exponent b1,κ for the Qp basis is
slightly greater than the exponent b2,κ for the Pp basis and Sp basis by a small fac-
tor of (log d)/

√
1 + R2

κ . By using Lemmas 5 and 6, we can also derive the following
theorem.

Theorem 4 Let u be an analytic function as defined in (55), and exponent b1,κ and
b2,κ defined in Lemma 5. Then, there exists C > 0 such that following bounds hold:

‖u − �Qpκ
u‖2

L2(κ)
≤ Ce−2b1,κ

d
√

Dof , (62)

‖u − �Ppκ
u‖2

L2(κ)
≤ Ce−2(b2,κ

d√
d!) d

√
Dof , (63)
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and

‖u − πQpκ
u‖2

L2(κ)
≤ Ce−2b1,κ

d
√

Dof , (64)

‖u − πSpκ
u‖2

L2(κ)
≤ Ce−2(b2,κ

d√
d!) d

√
Dof , (65)

and

‖∇(u − πQpκ
u)‖2

L2(κ)
≤ Ce−2b1,κ

d
√

Dof , (66)

‖∇(u − πSpκ
u)‖2

L2(κ)
≤ Ce−2(b2,κ

d√
d!) d

√
Dof . (67)

Proof By recalling the relationship between degrees of freedom and polynomial
order p for both the Qp and Pp bases, we have

Dof (Qp) = (p + 1)d , (68)

and

Dof (Pp) =
(

p + d

d

)

= (p + 1)d

d! + O((p + 1)d−1). (69)

Then, (62) and (63) follow from Lemma 5.
By using relations (20) and (40), we have the asymptotic relation

Dof (Sp) ≈ pd

d! + O(pd−1). (70)

The relations (64), (65), (66) and (67) follow from the Lemma 6.

For d = 2, 3, if the following condition

1

2
| log F1(Rκ, εmin)| + εmin| log hκ | � εmin log d, (71)

holds, then we have b2,κ ≈ b1,κ . It is easy to see that for small Rκ or small mesh
size h, the condition (71) will be satisfied. Moreover, we point out that an analytic
function having sufficiently small Rκ is equivalent to the function having an analytic
continuation into a sufficiently large open neighbourhood of κ̄ , see [12] for details.

Now, if we consider the error in terms of d
√

Dof for the above bounds, the expo-
nent for the exponential convergence rate of the Pp basis and the Sp basis are larger
than the exponent for the Qp basis by a fixed factor of d

√
d!.

We have observed a steeper slope in error against d
√

Dof for FEMs with Sp basis
and DGFEMs with Pp basis. For d = 2, this suggests a typical ratio between con-
vergence slopes of DGFEMs with Pp and Qp bases, FEMs with Sp and Qp bases,
to be

√
2! ≈ 1.414. For d = 3, this ratio is 3

√
3! ≈ 1.817. The numerical examples

in Section 6 show that the ratio is slightly worse than the ideal ratio, but it is not far
from the ideal ratio.
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6 Numerical examples

We present some numerical examples to confirm the theoretical analysis in the pre-
vious sections. All the numerical examples are computed by Matlab on the High
Performance Computing facility ALICE of the University of Leicester. For simplic-
ity of presentation, we use DGFEM(P) and DGFEM(Q) to denote the DGFEMs with
local polynomial basis consisting of either Pp or Qp polynomials and use FEM(S)
and FEM(Q) to denote the FEMs with local polynomial basis consisting of either Sp

or Qp polynomials.
The comparisons are mainly made between the slope of FEM(S) and FEM(Q)

over square meshes for d = 2 and hexahedral meshes for d = 3 under p-refinement.
The slopes of the convergence lines are calculated by taking the average of the last
two slopes of the line segments of each convergence line. We will also present an
example comparing DGFEM(P) and DGFEM(Q). For more numerical examples for
DGFEMs, see [13, 14].

6.1 Example 1

In the first example, we investigate the computational efficiency of DGFEM(P) and
DGFEM(Q) schemes. To this end, we consider a partial differential equation with
non-negative characteristic form of mixed type. Let � = (−1, 1)2, and consider the
PDE problem:

{ −x2uyy + ux + u = 0, for − 1 ≤ x ≤ 1, y > 0,

ux + u = 0, for − 1 ≤ x ≤ 1, y ≤ 0,
(72)

with exact solution:

u(x, y) =
{

sin( 1
2π(1 + y)) exp(−(x + π2x3

12 )), for − 1 ≤ x ≤ 1, y > 0,

sin( 1
2π(1 + y)) exp(−x), for − 1 ≤ x ≤ 1, y ≤ 0.

(73)

This problem is hyperbolic in the region y ≤ 0 and parabolic for y > 0. In order
to ensure continuity of the normal flux across y = 0, where the partial differential
equation changes type, the exact solution has a discontinuity across the line y = 0,
cf. [9, 15].

By following [9], we use the symmetric interior penalty DGFEMs employing a
special class of quadrilateral meshes for which the discontinuity in the exact solution
lies on element interfaces. In this setting, we modify the discontinuity-penalization
parameter σ , so that σ vanishes on edges which form part of the interface y = 0; this
ensures that the (physical) discontinuity present in the exact solution is not penalized
within by the numerical scheme.

In this case, the exact solution is piecewise analytic on the two parts of the domain.
In Fig. 2, we observe that the DG–norm |‖u − uh|‖DG decays exponentially for both
DGFEM(P) and DGFEM(Q) under p-refinement on 64, 4096 and 16384 uniform
square elements. The definition of DG–norm |‖·|‖DG can be found in [9]. More-
over, the slope of the convergence line for the DGFEM(P) is greater than the line of
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Fig. 2 Example 1: Convergence of the DGFEMs under p-refinement on uniform square elements
(|‖u − uh|‖DG). 8 × 8 mesh (left); 64 × 64 mesh (right); 128 × 128 mesh (bottom)

DGFEM(Q) in error against
√

Dof . The ratio between the two slopes is about 1.39 on
coarse meshes and fine meshes. The numerical observation confirms the theoretical
results in Theorem 4.

6.2 Example 2

In the second example, we investigate the computational efficiency of FEM(S) and
FEM(Q) on standard tensor-product elements (quadrilaterals in 2D and hexahedra in
3D).

Firstly, we consider the following two-dimensional Poisson problem: let � =
(0, 1)2 and select f = 2π2 sin(πx) sin(πy), so that the exact solution is given by
u = sin(πx) sin(πy).

In this case, the exact solution is piecewise analytic on the domain. In Fig. 3, we
observe that the H 1-seminorm |u − uh|H 1(�) decays exponentially for both FEM(S)
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Fig. 3 Example 2: Convergence of the FEMs under p-refinement on uniform square elements (|u −
uh|H 1(�)). 8 × 8 mesh (left); 64 × 64 mesh (right); 128 × 128 mesh (bottom)

and FEM(Q) under p-refinement on 64, 4096 and 16384 uniform square elements.
Again, we observe that the slope of the convergence line for the FEM(S) is greater
than the line of FEM(Q) in error against

√
Dof . The ratio between the two slopes is

about 1.39 on coarse meshes and fine meshes.
We now consider the three-dimensional variant of the above problem. Let � =

(0, 1)3 and select f = 3π2 sin(πx) sin(πy) sin(πz), so that the exact solution is
given by u = sin(πx) sin(πy) sin(πz).

In Fig. 4, we observe that the H 1-seminorm |u − uh|H 1(�) decays exponentially
for both FEM(S) and FEM(Q) under p-refinement on 64, 4096 and 32768 uniform
hexahedral elements. Moreover, we observe that the slope of the convergence line
for the FEM(S) is greater than the line of FEM(Q) in error against 3

√
Dof . The ratio

between the two slopes is about 1.62 on coarse meshes and 1.73 on fine meshes. The
numerical observation confirms the theoretical results in Theorem 4.
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Fig. 4 Example 2: Convergence of the FEMs under p-refinement on uniform hexahedral elements (|u −
uh|H 1(�)). 4 × 4 × 4 mesh (left); 16 × 16 × 16 mesh (right); 32 × 32 × 32 mesh (bottom)

Acknowledgments The author wishes to express his gratitude to Emmanuil Georgoulis (University of
Leicester and National Technical University of Athens) and Andrea Cangiani (University of Leicester) for
their helpful comments.

Funding information Z. D. was supported by the Leverhulme Trust (grant no. RPG-2015-306).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, Volume 55 of National Bureau of Standards Applied Mathematics Series. For
Sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. (1964)

2. Ainsworth, M., Pinchedez, K.: hp-approximation theory for BDFM and RT finite elements on
quadrilaterals. SIAM J. Numer. Anal. 40(6), 2047–2068 (2003). 2002

http://creativecommons.org/licenses/by/4.0/


On the exponent of exponential convergence of p-version FEM spaces 785

3. Arnold, D.N., Awanou, G.: The serendipity family of finite elements. Found. Comput. Math. 11(3),
337–344 (2011)
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20. Guo, B.Q., Babuška, I.: The hp version of the finite element method. Part II: general results and
applications. Comput. Mech. 1(1), 203–220 (1986)
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