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Abstract
This paper presents a new approach to modeling of linear time-invariant discrete-time
non-commensurate fractional-order single-input single-output state space systems by
means of the Balanced Truncation and Frequency Weighted model order reduction
methods based on the cross Gramian. These reduction methods are applied to the
specific rational (integer-order) FIR-based approximation to the fractional-order sys-
tem, which enables to introduce simple, analytical formulae for determination of the
cross Gramian of the system. This leads to significant decrease of computational
burden in the reduction algorithm. As a result, a rational and relatively low-order
state space approximator for the fractional-order system is obtained. A simulation
experiment illustrates an efficiency of the introduced methodology in terms of high
approximation accuracy and low time complexity of the proposed method.

Keywords Model order reduction · Cross Gramian · Frequency weighted ·
Non-commensurate fractional order system · FIR-based approximation

Mathematics Subject Classification (2010) 78M34 · 26A33 · 37M99

1 Introduction

Nowadays, fractional-order calculus, which is a generalization of ordinary derivation
and integration to non integer orders, has been given considerable interest in various
fields of research. This is due to the fact that many phenomena can be modeled more
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adequately by fractional-order models, such as heat conduction [19, 34, 55], elec-
trochemical processes [11, ch. 2], [20, 51], biological systems [11, ch. 4], [30], or
viscoelasticity problems [1, 42], [47, ch. 10.2]. In addition to the modeling problems,
there has been an increase in research effort to apply the fractional calculus in con-
trol systems. Fractional-order versions of the PID controller, that is PIλDμ , have
been found to produce a very good control performance [44, ch. 5-7], [48], as well as
optimal/adaptive/predictive control strategies have been extended to fractional-order
systems [15, 56, 64], [44, ch. 10].

The main problem occurred in fractional-order systems is their infinite time
computational complexity, due to the fractional-order derivatives (or differences)
incorporated in the model. Therefore, the key step in practical implementations is to
approximate fractional-order systems by integer-order models having nearly the same
properties in a given frequency range. A number of methods have been proposed
in continuous- and discrete-time domains, using transfer function as well as state
space representations, e.g., specific finite impulse response (FIR) and infinite impulse
response (IIR) representations of fractional-order systems [7, 46, 58–60, 65]. How-
ever, an accurate approximation of the fractional-order system in a wide frequency
range usually requires a very high integer-order approximator. Thus, to decrease the
order of approximators, both in continuous- and discrete-time cases, various model
reduction techniques have been proposed [21, 36, 41, 54, 60, 62].

Among reduction methods, a great attention has been given to the SVD-based
methods, which use the balanced model realization theory. This concept enables an
easy way of determination of the dominant part of the model and elimination of
state variables which have negligible impact on the system properties. In general, the
Balanced Truncation (BT) method consists in simultaneous diagonalization of the
controllability P and observability Q Gramians [6, 23, 38, 45, 60]. A combination of
the two, called the cross Gramian, which simultaneously encodes controllability and
observability information on the system in a single matrix, can also be used in the
model order reduction process. This concept was firstly introduced for single-input
single-output (SISO) and symmetric multi-input multi-output (MIMO) systems [17,
18, 39]. Furthermore, this approach was also extended to nonlinear systems by the
use of empirical Gramians [13, 24, 27].

The frequency weighted (FW) methods are extended versions of BT. They
are based on either (1) direct application of input/output weighting functions
[16, 29, 63, 66, 68] or (2) Gramians in a restricted frequency interval � = [ω1, ω2] in
the frequency domain [5, 10, 22, 28, 31] or (3) Gramians in a restricted time interval
τ = [t1, t2] in the time domain [22, 25, 32, 61]. These lead to a higher model accu-
racy in selected frequency ranges, in particular when the parameters of the weighting
functions and frequency/time intervals are optimized [50].

It is worth mentioning that the reduction process, in particular determination
of Gramians for very high order systems, is highly time-consuming. This problem
can be solved through the Fourier Model Reduction (FMR) method, which uses
discrete-time Fourier coefficients to develop an intermediate order approximation
of the original model [49, 60, 67]. Controllability and observability Gramians can
be calculated in an analytical way, which significantly reduces time complexity of
the reduction process [49, 60]. In this paper, new model order reduction methods



New integer-order approximations of discrete-time... 633

combining the FIR-based approximation of a non-commensurate fractional-order
system with BT and FW model order reduction methods based on the cross Gramian
are proposed.

The remainder of the paper is organized as follows. A representation of non-
commensurate fractional-order state space systems and integer-order approximation
based on FIR technique are presented in Section 2. Consequently, this Section also
gives the background for balancing the systems by use of the cross Gramian and
recalls fundamentals of the BT and FW reduction methods for discrete-time state
space systems. The main result in terms of new analytical formulae for determination
of the cross Gramian for FIR-based approximation of the fractional-order system are
presented in Section 3. Numerical examples of Section 4 confirm the effectiveness
of the introduced methodology both in terms of modeling accuracy and low time
complexity. Conclusions of Section 5 complete the paper.

2 Preliminaries

2.1 System representation

Consider a stable discrete-time non-commensurate fractional-order (NCFO) lin-
ear time-invariant (LTI) single-input single-output (SISO) state space system
G = {A, B, C, D}

�αx[k + 1] = Ax[k] + Bu[k], x0,

y[k] = Cx[k] + Du[k], (1)

where k = 0, 1, . . . , x[k] ∈ �n is the state vector, x0 ∈ �n is the vector of initial
conditions, A ∈ �n×n, B ∈ �n×1, C ∈ �1×n, D ∈ � denote the system properties
and �αx[k + 1] is the fractional-order difference vector

�αx[k + 1] =
⎡
⎢⎣

�α1x1[k + 1]
...

�αnxn[k + 1]

⎤
⎥⎦ ,

with αi ∈ � being called the fractional (or non-integer) order, αi ∈ (0, 2) for
i = 1, . . . , n.

Individual fractional-order differences �αi xi[k + 1], i = 1, . . . , n can be repre-
sented by the well-known Grünwald-Letnikov fractional difference [44, ch. 3.5]

�αi xi[k + 1] =
k+1∑
j=1

(−1)j
(

αi

j

)
xi(k − j + 1), k = 0, 1, . . . , (2)

where
(
αi

j

)
denotes the Newton binomial

(
αi

j

)
=

{
1 j = 0
αi(αi−1)···(αi−j+1)

j ! j > 0
.
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In the case of α1 = · · · = αn, the system as in Eqn. (1) is called a commensurate
fractional-order system.

2.2 FIR-based approximation of discrete-time fractional-order system

It is well known that the discrete-time integer- or fractional-order system can be
described using the Fourier decomposition

G(z) =
∞∑

k=0

gkz
−k, (3)

with gk ∈ � k = 0, 1, . . . , being the impulse response components for the system.
In practice, the impulse response components usually approach values very close
to zero and can be neglected after a certain implementation length L. In this way,
a finite length approximation G̃L(z) to the G(z) can be obtained. The error bounds
corresponding to the introduced approximation∥∥∥G(z) − G̃L(z)

∥∥∥∞ = max|z|=1

∣∣∣G(z) − G̃L(z)

∣∣∣ , (4)

usually decide on a value of the chosen implementation length L. However, the error
bound given in Ref. [67] is not readily computable. Therefore, one way to determine
the appropriate approximation length L is to stop calculating Fourier components
when their magnitudes |gk| decrease below a certain value [67].

The way of calculating Fourier components for a commensurate fractional-order
system was proposed in Ref. [60] and it can be extended to NCFO systems as follows:

gk =
{

D k = 0
Cφk k = 1, 2, . . . , L

, (5)

where

φk =

⎧⎪⎨
⎪⎩

B k = 1

(A+diag (α1, ... , αn))φk−1−
k−1∑
j=2

(−1)j diag

[(
α1

j

)
, ... ,

(
αn

j

)]
φk−j k = 2, ... ,L ,

with A, B, C, D and αi as in Eqn. (1) and L being the implementation length. This
enables to present the FIR-based approximation of the system for the implementation
length L in state space form (G̃L = {Ã, B̃, C̃, D̃}) as follows:

x̃[k + 1] = Ãx̃[k] + B̃u[k],
ỹ[k] = C̃x̃[k] + D̃u[k], (6)

with Ã ∈ �L×L, B̃ ∈ �L×1, C̃ ∈ �1×L and D̃ ∈ � defined as

Ã =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

, B̃ =

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

, C̃ = [
g1 g2 · · · gL

]
, D̃ = g0.
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It is worth emphasizing that the state matrix Ã is singular and nilpotent of order L.

Remark 1 For MIMO systems, Fourier components become matrices gk ∈ �ny×nu ,
where nu and ny denote the numbers of inputs and outputs of the system, respec-
tively. In that case, every element 0 and 1 in the state space form of the FIR-based
approximation (6) changes into 0 ∈ �nu×nu and I ∈ �nu×nu being the zero and iden-
tity matrices, respectively. Therefore, the order L of the FIR-based MIMO model
depends on the number of inputs of the system and implementation length L = Lnu

[60, 67].

2.3 Cross Gramian-basedmodel order reduction

Balancing-related model order reduction methods can be interpreted as performing
a linear state transformation x̄ → T x̃. This concept is an easy way to determine a
dominant part of the model which accurately describes the system dynamics. Trans-
formation (or projection) matrix T and its inverse are not unique. Nevertheless,
the majority of algorithms determine its form based on the controllability P and
observability Q Gramians of the system [23, 29, 37, 38, 49, 60, 63, 66].

Consider a SISO FIR-based approximation of the NCFO system as in Eqn. (6).
Let T be the transformation matrix of that system, which diagonalizes the system’s
controllability and observability Gramians, with decreasing Hankel singular values
on the main diagonal

T PT T = T −T QT −1 = diag (σ1, σ2, . . . , σr , σr+1, . . . , σL) ,

where σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 ≥ · · · ≥ σL > 0. Linear state transformation
x̄ → T x̃ enables to calculate the balanced form of the system ḠL = {Ā, B̄, C̄, D̄} in
the following way

Ḡ =
[

T ÃT −1 T B̃

C̃T −1 D̃

]
=

⎡
⎣

Ā11 Ā12

Ā21 Ā22

B̄1

B̄2

C̄1 C̄2 D̃

⎤
⎦ ,

where the submatrices Ãr = Ā11 ∈�r×r , B̃r = B̄1 ∈�r×1, C̃r = C̄1 ∈�1×r define
the reduced-order state space model G̃r = {Ãr , B̃r , C̃r , D̃r} of order r < L.

Partitioning T and T −1 in the form of

T =
[

Tr

TL−r

]
, T −1 =

[
T −1

r T −1
L−r

]
, (7)

where the matrices Tr ∈ �r×L, T −1
r ∈ �L×r such that TrT

−1
r = Ir are called trun-

cation matrices and they are the only ones necessary to determine the reduced model
[6, ch. 7.3] [63]

G̃r =
[

TrÃT −1
r Tr B̃

C̃T −1
r D̃

]
. (8)
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The H∞-norm of the difference between full (L) and reduced (r) order models is
upper bounded by the twice of the sum of the neglected Hankel singular values
[6, ch. 7.2]

∥∥∥G̃L − G̃r

∥∥∥
H∞

≤ 2
L∑

i=r+1

σi . (9)

In addition to controllability and observability Gramians, another type of Gramian,
known as the cross Gramian X , can be used in the reduction process. The following
definitions of reachability R(Ã, B̃) and observability O(C̃, Ã) matrices

R(Ã, B̃) = [
B̃ ÃB̃ Ã2B̃ · · · ] , O(C̃, Ã) =

⎡
⎢⎢⎢⎣

C̃

C̃Ã

C̃Ã2

...

⎤
⎥⎥⎥⎦ ,

can be a basis for the respective definitions of controllability, observability and cross
Gramians [6, ch. 4.3.2]

P = RRT , Q = OT O, X = RO. (10)

On this ground, for SISO and symmetric state-space MIMO systems, we can combine
the three Gramians’ definitions to obtain [18]

X 2 = PQ. (11)

As it is clearly seen from Eqn. (11), the cross Gramian simultaneously encodes con-
trollability and observability properties into a single matrix X [17, 18, 39]. For the
considered SISO FIR-based approximation (6), due to the nilpotency of the state
matrix Ã, the cross Gramian can be expressed as a finite sum

X =
L∑

k=0

ÃkB̃C̃Ãk, (12)

and it is always a symmetric matrix for the SISO systems. The controllability and
observability Gramians can be calculated from the respective discrete-time Lya-
punov equations [6, ch. 4.3], [45], whereas the cross Gramian is determined from the
following Sylvester equation [6, ch. 4.3.2], [17]

ÃX Ã − X = −B̃C̃. (13)

In both cases, square roots of eigenvalues of the product of controllability and
observability Gramians and absolute values of eigenvalues of the cross Gramian are
input-output invariants and are equal to Hankel singular values of the model

σi = |λi(X )| = √
λi(PQ).

For this reason, reduced model G̃r can be calculated on the basis of the cross
Gramian, making this approach useful in decreasing computational complexity of the
reduction algorithm, since solving two Lyapunov equations for P and Q is replaced
by solving the single Sylvester equation only.
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Various methods can be used to obtain projection matrices from the cross Gramian
[4, 5, 9, 27, 57]. The first approach can be performed on the basis of singular value
decomposition (SVD) of the cross Gramian

X = U
V = (
Ur UL−r

) (

r 0
0 
L−r

)(
Vr

VL−r

)
, (14)

where U and V are the unitary matrices, Ur ∈ �L×r , Vr ∈ �r×L. In the general case,
the 
1 = diag(σ c

1 , . . . , σ c
r ) and 
2 = diag(σ c

r+1, . . . , σ
c
L) matrices contain σc

i sorted
in decreasing order, which are the approximation to the Hankel singular values σi . In
this way, only the approximation to the BT can be obtained [57]. However, for the
SISO FIR-based model (6), the cross Gramian is a symmetric matrix, i.e., X = X T

(see Eqn. (26)), which provide σc
i = |λi(X )| = σi [6, ch. 3.2.3] and for that case the

reduction is equivalent to the BT. The truncation matrices Tr and T −1
r can be obtained

through either the one-sided Galerkin projection

Tr = UT
r , T −1

r = Ur, (15)

or the two-sided Petrov-Galerkin projection

Tr = UT
r , T −1

r = Vr . (16)

The second approach for determination of the transformation matrix T relies on
decomposition of matrix X into two blocks, which separate the strongly coupled
from the weakly coupled controllable and observable states [3, 5, 52]

TXT −1 =
(

Sl 0
0 Ss

)
,

where eigenvalues of Sl ∈ �r×r and Ss ∈ �(L−r)×(L−r) are the large and small (in
magnitude) Hankel singular values of the system.

One of the algorithms within the second approach requires of a block-ordered real
Schur form of the cross Gramian and calculation of an additional Sylvester equation
[3, 5, 68]

X = (
Vr VL−r

) (
S1 S12
0 S2

)(
V T

r

V T
L−r

)
,

S1Z − ZS2 = −S12,

(17)

where S1 ∈ �(r×r), S2 ∈ �((L−r)×(L−r)). This enables calculation of the truncation
matrices as

Tr = V T
r − ZV T

L−r , T −1
r = Vr . (18)

Another algorithm within the second approach uses orthogonal Givens rotations in
order to compute the ordered real Schur forms in ascending and descending orders
of absolute eigenvalues along the diagonal [4, 52].

Taking into account that the algorithms based on the Schur decomposition are
highly computationally involving, they can only be used for moderately complex
models. This limits the maximum value of the implementation length L of the
FIR-based approximation to the fractional-order model. It finally affects the approxi-
mation accuracy of the obtained reduced order model, in particular for low-frequency
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range. On the other hand, algorithms for computing low-rank approximate solu-
tions to the Sylvester equation, which provide the r-rank approximation to the cross
Gramian X , can be used in order to reduce computational complexity and enable
approximate balancing reduction of large scale systems [8, 9, 33, 57].

Remark 2 The cross Gramian satisfies Eqn. (11) for SISO and symmetric MIMO
systems only. Note that the cross Gramian for non-symmetric, square MIMO systems
can be calculated from Eqn. (13), however without any theoretical background as for
the symmetric case, so there is no guarantee for obtaining the reduced-order model of
appropriate quality [9]. The approaches for non-square MIMO systems rely, e.g., on
embedding the system into a symmetric square system by using a symmetrizer matrix
[14], which produces a model of the same order but with more inputs and outputs
[6, ch. 12.3], [57] or decompose the system into a set of individual SISO subsystems
[26, 35, 43, 53].

2.4 Frequency weightedmodel order reduction

The aim of the reduction process based on the above discussed balancing method is
system’s approximation over all frequencies. In many cases, however, a good approx-
imation is required in designated frequency ranges only. This leads to a specific
frequency weighted balanced truncation. The FW method has been developed for
stable models and stable input and output weighting functions with minimal realiza-
tions Win = {Ain, Bin, Cin, Din} and Wout = {Aout , Bout , Cout , Dout } of orders min

and mout , respectively. It is well known that, in case of two-sided weighting, the
controllability, observability, and cross Gramians are computed based on the system
connected with the input weight (G̃LWin), the output weight (Wout G̃L), and both
weights (Wout G̃LWin), respectively [6, ch. 7.6], [16, 29, 49, 63, 66, 68].

Remark 3 Note that for SISO systems, the input and output weighting functions can
be very simply transformed into a single weighting function. Therefore, without the
loss of generality for SISO systems, further examination will be conducted for one-
sided input weighting case only.

Accounting that no pole-zero cancellations occur during forming of G̃LWin, the
augmented system is given as follows [6, ch. 7.6], [29, 49, 63, 66, 68]

G̃LWin =
[

Ãin B̃in

C̃in D̃in

]
=

⎡
⎣

Ã B̃Cin

0 Ain

B̃Din

Bin

C̃ D̃Cin D̃Din

⎤
⎦ , (19)

for which the cross Gramian is the solution of the following Sylvester equation

ÃinX̃ Ãin − X̃ = −B̃inC̃in. (20)

It is important to emphasize that the application of the weighting functions affects
the order of the solutions of the Lyapunov/Sylvester equations. However, in order
to calculate truncation matrices Tr and T −1

r , Gramians of order L are required. A
number of algorithms to solve the problem have been developed [16, 29, 40, 63]. For
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instance, the cross Gramian of the augmented system G̃LWin can be partitioned as
follows

X̃ =
[
X11 X12
X21 X22

]
∈ �(L+min)×(L+min), where X11 ∈ �L×L. (21)

Like for the Enns technique [16] for frequency weighted controllability and observ-
ability Gramians, the frequency weighted cross Gramian X̄ can be defined as

X̄ = X11, (22)

which means that the X̄ satisfy the following equation

ÃX11Ã − X11 = −B̃CinX21Ã − B̃DinC̃.

A more general approach is based on the Schur complement of a matrix block, which
is identical to the method proposed in [40, 63] for calculating frequency weighted
controllability and observability Gramians

X̄ = X11 − γX12X−1
22 X21, (23)

where for γ = 0, we have the Enns [16] and for γ = 1 the Lin and Chiu [40] methods.
In a general case, when 0 < γ < 1, a combination of these two approaches is chosen
[63].

Remark 4 All the subsequent steps of determination of the truncation matrices Tr

and T −1
r for the FW method are the same as for the methods presented in Section 2.3,

with the frequency weighted cross Gramian X̄ substituted for X .

2.5 Fourier model reduction for continuous time systems

The presented FMR cross Gramian model order reduction method can also be easily
applied to reduction of continuous-time fractional-order systems. Note that the FIR-
based approximation of the system and reduction algorithm are still realized in the
z-domain. Therefore, approximation of continuous-time systems by the use of the
considered methodology require the following steps:

1. Discretization of the continuous-time fractional-order system to its discrete-time
counterpart.

2. Approximation of the discrete-time fractional-order system by the FIR-based
model (see Section 2.2).

3. Reduction of the FIR-based model (see Sections 2.3 and 2.4).
4. Conversion of the reduced-order model back to the continuous-time domain.

Taking into account the above items, an additional step in terms of discretization of
NCFO system has to be realized.

Consider a stable continuous-time non-commensurate fractional-order LTI SISO
state space system

Dαx(t) = Acx(t) + Bcu(t),

y(t) = Ccx(t) + Dcu(t),
(24)
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with Ac ∈ �n×n, Bc ∈ �n×1, Cc ∈ �1×n, Dc ∈ � denoting the system properties and
Dαx(t) being the fractional-order derivative vector

Dαx(t) =
⎡
⎢⎣
Dα1x1(t)

...
Dαnxn(t)

⎤
⎥⎦ .

Fractional-order derivatives Dαi xi(t), i = 1, . . . , n can be represented by various
definitions involving the Riemann-Liouville, Caputo or Grünwald-Letnikov deriva-
tives [47, ch. 2]. Moreover, to obtain discrete-time non-commensurate fractional-
order system (1), various discretization schemes, such as Euler, Tustin or Al-Alaoui,
can be used [2, 12]. Taking into account that the simplest discretization procedure can
be implemented by the use of the Euler operator to the Grünwald-Letnikov derivative,
we arrive at [44, ch. 3.5]

Dαi x(t)
∣∣
t=kh

≈
[
�αi x(kh)

hαi

]
,

where t = kh, k = 0, 1, . . . denotes the (unnormalized) discrete-time and h is the
sampling interval. Therefore, transferring from continuous-time system (24) to its
discrete-time counterpart (1) results in [44, ch. 3.5]

A = hαAc, B = hαBc, C = Cc, D = Dc, (25)

with A, B, C, and D being the matrices of the discrete-time NCFO system (1) and
hα = diag(hα1 , . . . , hαn).

Taking into account that the reduced discrete-time model (8) is the integer-order
model, a conversion process from the discrete to continuous domain can be obtained
by using the well known classical methods, e.g., Tustin approach. A value of sam-
pling period h should be chosen with respect to an adequacy range of final reduced
order model.

3 Main result

The main computational cost of the model reduction process based on the cross
Gramian is the determination of the Gramian itself. Therefore, the main result of
this paper is a new, analytical method for calculation of the cross Gramian of the
FIR-based models.

3.1 Cross Gramian for FIR-based approximation of NCFO system

In general, the time complexity of calculating the cross Gramian by solving the
Sylvester Eq. 13 is a class of cubic one. However, due to the special structure of the
FIR-based approximation of discrete-time fractional-order model as in Eqn. (6), it is
possible to determine an analytical solution of the cross Gramian.
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Lemma 1 Consider the FIR-based approximation (6) of a stable discrete-time non-
commensurate fractional-order LTI SISO state space system (1). Then the cross
Gramian for that model is an upper triangular Hankel matrix

X =

⎡
⎢⎢⎢⎢⎢⎣

g1 g2 · · · gL−1 gL

g2 g3 · · · gL 0
...

...
...

...
...

gL−1 gL · · · 0 0
gL 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (26)

where gk , k = 1, . . . , L, are as in Eqn. (5).

Proof Because of the special structure of the state space for the FIR-based model,
such that the matrix Ã is a lower shift matrix, it results that Ãk is a k-th diago-
nal matrix and Ã is nilpotent since ÃL = 0. Therefore, the reachability R(Ã, B̃)

and observability O(C̃, Ã) matrices have finite dimensions (L columns and rows
respectively) and are equal to

R(Ã, B̃) = [
B̃ ÃB̃ Ã2B̃ · · · ÃL−1B̃

] =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦ ,

O(C̃, Ã) =

⎡
⎢⎢⎢⎢⎢⎣

C̃

C̃Ã

C̃Ã2

...
CÃL−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

g1 g2 · · · gL

g2 g3 · · · 0
...

...
. . .

...
gL 0 · · · 0

⎤
⎥⎥⎥⎦ .

Taking into account (10), we can determine the cross Gramian in a form of Eqn. (26).
This completes the proof.

3.2 Frequency weighted cross Gramian for FIR-based approximation of NCFO
systemwith input weighting function

The cross Gramian for the augmented system G̃LWin is a solution of the Sylvester
Eq. 20. However, taking into account (19), the cross Gramian can be determined as a
solution to four Sylvester equations of lower dimensions.

Lemma 2 Consider the discrete-time augmented system as in Eqn. (19). The cross
Gramian in a form of Eqn. (21) can be determined as a solution to four consecutive
Sylvester equations

AinX21Ã − X21 = −BinC̃, (27)

ÃX11Ã − X11 = −B̃CinX21Ã − B̃DinC̃, (28)

AinX22Ain − X22 = −AinX21B̃Cin − BinD̃Cin, (29)

ÃX12Ain−X12 = −ÃX11B̃Cin−B̃CinX21B̃Cin−B̃CinX22Ain−B̃DinD̃Cin, (30)
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where X11 ∈ �L×L, X12 ∈ �L×min , X21 ∈ �min×L, X22 ∈ �min×min .

Proof Combining Eqns. (19), (20), and (21), we obtain

[
Ã B̃Cin

0 Ain

] [
X11 X12
X21 X22

] [
Ã B̃Cin

0 Ain

]
−

[
X11 X12
X21 X22

]
=−

[
B̃DinC̃ B̃DinD̃Cin

BinC̃ BinD̃Cin

]
.

(31)

Expanding the matrix description (31) into four submatrix equations, we arrive at
Eqns. (27) to (30). This completes the proof.

Consider the input weighting function in terms of the FIR filter described as

Win(z) =
min∑
k=0

wtz
−k, (32)

where wk ∈ �, k = 0, 1, . . . , min are the impulse response components of the
weighting function (32). Then the augmented system G̃LWin as in Eqn. (19) con-
sisting of the FIR-based approximation of the NCFO system (6) and input weighting
function (32) can be presented in state space form as follows

x̂[k + 1] = Ãinx̂[k] + B̃inu[k],
ŷ[k] = C̃inx̂[k] + D̃inu[k], (33)

where Ãin ∈ �(L+min)×(L+min), B̃in ∈ �(L+min)×1), C̃in ∈ �1×(L+min) and D̃in ∈ �
are defined as

Ãin =
[

Ã B̃Cin

0 Ain

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 w1 w2 w3 · · · wmi

1 0 0 · · · 0 0 0 0 · · · 0
0 1 0 · · · 0 0 0 0 · · · 0
...

. . .
. . .

. . .
...

...
...

... · · · ...
0 · · · 0 1 0 0 0 0 · · · 0
0 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 1 0 0 · · · 0
0 0 0 · · · 0 0 1 0 · · · 0
...

...
...

...
...

...
. . .

. . .
. . .

...
0 0 0 · · · 0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̃in =
[

B̃Din

Bin

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0
0
0
...
0
1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C̃in =[
C̃ D̃Cin

] =[
g1 g2 g3 · · · gL g0w1 g0w2 · · · g0wmin

]
, D̃in =

[
D̃Din

]
=g0w0.

Due to the special structure of G̃LWin given in Eqn. (33), it is possible to present a
new, analytical method for determination of the cross Gramian for such a system.

Theorem 1 Consider the augmented system (33) consisting of the FIR-based
approximation (6) of a stable discrete-time NCFO LTI SISO state space system (1)
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and the input weighting function (32). Then the cross Gramian for the augmented
system is a block matrix such that

X̃ =
[
X11 X12
X21 X22

]
, (34)

where

1) submatrix X11 ∈ �L×L is an upper triangular Hankel matrix

X11 =

⎡
⎢⎢⎢⎢⎢⎣

r1 r2 · · · rL−1 rL
r2 r3 · · · rL 0
r3 r4 · · · 0 0
...

...
...

...
...

rL 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (35)

with

ri =
i+min∑
k=i

w(k−i)gk for i = 1, . . . , L ,

2) submatrix X12 ∈ �L×min is as follows

X12 =

⎡
⎢⎢⎢⎣

r̂1 r̂2 · · · r̂min

r̂2,1 r̂2,2 · · · r̂2,min

...
...

...
...

r̂L,1 r̂L,2 · · · r̂L,min

⎤
⎥⎥⎥⎦ , (36)

with

r̂i =
min∑
j=0

wj

j∑
k=0

gkw(i+j−k) for i = 1, . . . , L,

r̂i,j = r̂(i+j−1) +
min∑
k=1

r(i−k)w(j+k−1) for i = 1, . . . , L, j = 1, . . . , min,

3) submatrix X21 ∈ �min×L is a rectangular Hankel matrix

X21 =

⎡
⎢⎢⎢⎣

g1 g2 · · · gL−1 gL

g2 g3 · · · gL 0
...

...
...

...
...

gmin
gmin+1 · · · 0 0

⎤
⎥⎥⎥⎦ , (37)

4) submatrix X22 ∈ �min×min is as follows

X22 =

⎡
⎢⎢⎢⎣

ř1,1 ř1,2 · · · ř1,min

ř2,1 ř2,2 · · · ř2,min

...
...

...
...

řmin,1 řmin,2 · · · řmin,min

⎤
⎥⎥⎥⎦ , (38)
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with

ři,j =
i∑

k=1
g(k−1)w(j+i−k) for i = 1, . . . , min, j = 1, . . . , min ,

and, for all the four items above, gk = 0 for k > L, wk = 0 for k > min, r̂k = 0 for
k < 1 or k > L.

Proof Consider the cross Gramian of the augmented system G̃LWin partitioned as in
Eqn. (34), where the submatrices of X̃ can be concisely presented as follows:

Xij =

⎡
⎢⎢⎢⎢⎣

x
ij

1,1 x
ij

1,2 · · · x
ij

1,(γ−1) x
ij

1,γ

x
ij

2,1 x
ij

2,2 · · · x
ij

2,(γ−1) x
ij

2,γ

...
...

...
...

...
x

ij

β,1 x
ij

β,2 · · · x
ij

β,(γ−1) x
ij
β,γ

⎤
⎥⎥⎥⎥⎦

,

with the dimensions β = γ = L for X11, β = L, γ = min for X12, β = min, γ = L

for X21 and β = γ = min for X22 resulting from Lemma 2.
Since Ã and Ain are lower shift matrices (compare Eqn. (33)), the left hand sides

of the four consecutive Sylvester Eqs. 27 to (30) are as follows:

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x
ij

1,1 x
ij

1,2 x
ij

1,3 · · · x
ij

1,(γ−1) x
ij

1,γ

x
ij

2,1−x
ij

1,2 x
ij

2,2−x
ij

1,3 x
ij

2,3−x
ij

1,4 · · · x
ij

2,(γ−1)−x
ij

1,γ x
ij

2,γ

x
ij

3,1−x
ij

2,2 x
ij

3,2−x
ij

2,3 x
ij

3,3−x
ij

2,4 · · · x
ij

3,(γ−1)−x
ij

2,γ x
ij

3,γ

...
...

...
...

...
...

x
ij

β,1−x
ij

(β−1),2 x
ij

β,2−x
ij

(β−1),3 x
ij

β,3−x
ij

(β−1),4 · · · x
ij

β,(γ−1)−x
ij

(β−1),γ x
ij
β,γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The right hand sides of the Sylvester Eqs. 27 and (28) are respectively equal to

−BinC̃ = −

⎡
⎢⎢⎢⎣

g1 g2 · · · gL−1 gL

0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎦ ,

−B̃CinX21Ã − B̃DinC̃ =

−

⎡
⎢⎢⎣

w0g1+...+wmin
g(min+1) w0g2+...+wmin

g(min+2) · · · w0g(L−1)+w1gL w0gL

0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0

⎤
⎥⎥⎦.

Both above matrices contain nonzero entries in the first rows only, which proves that
X11 and X21 are the upper triangular Hankel matrix and rectangular Hankel matrix,
respectively.



New integer-order approximations of discrete-time... 645

The right hand side of the Sylvester Eq. 29 can be presented as (compare
Eqn. (33))

−AinX21B̃Cin −BinD̃Cin =

−

⎡
⎢⎢⎢⎣

g0w1 g0w2 · · · g0w(min−1) g0wmin

g1w1 g1w2 · · · g1w(min−1) g1wmin

...
...

...
...

...
g(min−1)w1 g(min−1)w2 · · · g(min−1)w(min−1) g(min−1)wmin

⎤
⎥⎥⎥⎦.

After simple manipulations, we arrive at

X22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

g0w1 g0w2 · · · g0w(min−1) g0wmin

g1w1 + x22
1,2 g1w2 + x22

1,3 · · · g1w(min−1) + x22
1,min

g1wmin

...
...

...
...

...
g(min−1)w1 g(min−1)w2 . . . g(min−1)w(min−1) g(min−1)wmin

+x22
(min−1),2 +x22

(min−1),3 +x22
(min−1),min

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Similar elementary operations performed on the right hand side of the Sylvester
Eq. 30 can lead to

X12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 σ2 · · · σ(min−1) σmin

r1w1 + x12
1,2 r1w2 + x12

1,3 · · · r1wmin−1 + x12
1,min

r1wmin

r2w1 + x12
2,2 r2w2 + x12

2,3 · · · r2wmin−1 + x12
2,min

r2wmin

...
...

...
...

...
r(L−1)w1 r(L−1)w2 . . . r(L−1)w(min−1) r(L−1)wmin

+x12
(L−1),2 +x12

(L−1),3 +x12
(L−1),min

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

σ0 = g1w1 + · · · + gmin
wmin

,

σ1 = w1σ0 + w1ř1,2 + · · · + wmin
řmin,2 + w0g0w1,

σ2 = w2σ0 + w1ř1,3 + · · · + wmin
řmin,3 + w0g0w2,

...
σ(min−1) = w(min−1)σ0 + w1ř1,min

+ · · · + wmin
řmin,min

+ w0g0w(min−1),

σmin
= wmin

σ0 + w0g0wmin
.

Accounting for the elements x12
i,j and x22

i,j occurring in the previous rows, e.g., starting

from x12
1,2 = σ2 in X12 and from x22

1,2 = g0w2 in X22, we arrive at Eqns. (36) and
(38). This completes the proof.

As mentioned above, the cross Gramian for the augmented system, consisting of
the FIR-based approximation for NCFO system and input weighting function, sat-
isfies (20) for SISO systems only. Note that the cross Gramian for non-symmetric
square MIMO systems can be determined using Theorem 1 with substitution of all
the elements gk , wk by the respective matrices gk ∈ �nu×nu , wk ∈ �nu×nu and all
the elements 0 and 1 by the respective zero and identity matrices 0 ∈ �nu×nu and
I ∈ �nu×nu , where nu denotes both the number of inputs and outputs of the system.
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However, for non-symmetric square MIMO systems the singular values of the cross
Gramian σc

i (14) are only the approximation to the Hankel singular values σi [57].
Therefore, it must be emphasized that without any theoretical background as for the
SISO case, there is no guarantee for obtaining the reduced-order model of appropriate
quality.

3.3 Frequency weighted Fourier model reduction algorithm

The frequency weighted Fourier model reduction (FMR-FW) algorithm for reduction
of fractional-order systems can be summarized in the following steps:

1. For continuous-time NCFO system, use discretization procedure to obtain
discrete-time counterpart as in Eqn. (25).

2. Calculate gk components for NCFO system using Eqn. (5).
3. Specify wk components of the input weighting function (32).
4. Create the augmented system G̃LWin as in Eqn. (33), consisting of the FIR-based

approximation of NFCO system and input weighting function.
5. Use Theorem 1 to analytically calculate the cross Gramian X̃ of the system

G̃LWin.
6. Select coefficient γ and calculate frequency weighted cross Gramian X̄ based

on Eqn. (23).
7. Calculate the truncation matrices Tr and T −1

r using either the one-sided Galerkin
projection (15) or the two-sided Petrov-Galerkin projection (16) or the algorithm
based on the Schur decomposition (18).

8. Reduce order of the model as in Eqn. (8).
9. Use G̃r as a final model for the discrete-time NCFO system or convert G̃r to the

continuous-time domain using classical methods (e.g., Tustin approach) in order
to obtain a final model for the continuous-time NCFO system.

4 Simulation examples

The effectiveness of the reduction process by the use of the introduced methodol-
ogy will be demonstrated on test examples. All the computations were done on a
board 2 IntelXeon E5-2683V3 CPUs with 2.0 GHz clock and 128 GB RAM using
MATLAB/Simulink 2015b software.

Example 1 Consider the discrete-time NCFO state space system (1) with

[
A B

C D

]
=

⎡
⎢⎢⎢⎢⎣

−2.2 −1.5 −0.45 −0.05 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

, �α =

⎡
⎢⎢⎣

�0.8

�0.4

�0.5

�0.25

⎤
⎥⎥⎦ .

The system is approximated by the FIR-based models (6), with the H∞-norm approx-
imation errors equal to 0.0855, 0.0204, 0.0044 for the respective implementation
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lengths L being 100, 1000, and 10000. Hankel singular values for all models are
presented in Fig. 1a. Figure 1b shows approximation errors, the upper bound of H∞-
norm (9) calculated on the basis of HSV for FIR-based models and the actual value
of H∞-norm for the reduced models obtained by use of the FMR-BT method. The
results show that approximation accuracy for the FIR-based model plays a crucial
role in the reduction process as the global approximation error for the reduced model
is a sum of errors for the FIR-based approximation and the reduction process.

Example 2 Consider the NFCO system as in Example 1 approximated by the FIR-
based model (6), with the implementation length L = 104. The input frequency
weighting function is applied in the form of a low-pass FIR digital filter with cut-
off frequency ωc = 0.01π [rad/s] and min = 12. The system is reduced to models
of order r = 4 using the FMR-BT method based on the cross Gramian given as in
Lemma 1 as well as the FMR-FW method based on the frequency weighted cross
Gramian as in Eqn. (23) for γ = 0, 0.35, 0.7, 1.0 and the one-sided Galerkin pro-
jection for determination of the truncation matrices Tr and T −1

r . The cross Gramian
of the augmented system X̃ is calculated based on Theorem 1. Since the matrix
X22 may be ill-conditioned, the Moore-Penrose pseudoinverse can be used. The fre-
quency responses of NCFO system, high integer-order FIR-based approximation and
reduced models, as well as the approximation errors are presented in Fig. 2.

Example 3 Consider the same example of fractional-order system and the FMR-FW
algorithm as in Example 2. Figure 3 shows the approximation errors of reduced mod-
els obtained by the use two algorithms of determination for truncation matrices Tr

and T −1
r , that is (1) the one-sided Galerkin projection (15), denoted as FMR-FW-G

and (2) the algorithm based on the Schur decomposition (18), denoted as FMR-FW-
S. Table 1 presents the values of the approximation errors for the analyzed models in
terms of DCE - steady-state approximation error, MSE - mean square approxima-
tion error for the frequency characteristics in the frequency range ω ∈ [10−5, π ] and
H∞-norm approximation error.

a b

Fig. 1 a Hankel singular values of FIR-based models. b H∞-norm errors for the reduced models
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Fig. 2 Frequency responses and approximation errors for the reduced models

To compare time complexities of (each iteration of) the FMR-FW algorithm the
fractional-order system was reduced for various implementation lengths L and var-
ious orders min of the input weighting function. Table 2 shows times required for
determination of the augmented system (33), item 1 in the table, calculation of the
cross Gramian from the Sylvester Eq. 20, item 2, calculation of the cross Gramian
based on Lemma 2, item 3, calculation of the cross Gramian based on Theorem 1,
item 4, calculation of truncation matrices Tr and T −1

r based on the one-sided Galerkin
projection (15), item 5, calculation of truncation matrices based on the real Schur
decomposition (18), item 6.

The results presented in Figs. 2 and 3 and Table 1 show that FMR-FW gives a
good approximation accuracy, in particular for low frequency range, in comparison
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Fig. 3 Approximation errors for the reduced models

to the FMR-BT method, due to application of the low-pass filter. It can be seen that
the approximation error in the low frequency range is in a large part the result of the
FIR-based approximation of the NCFO system. Reduced order models obtained by
the use of both methods for determination of truncation matrices give very similar
results. Taking into account that the algorithm based on the Schur decomposition is
much more computationally involving, it is strongly recommended to use the one-
sided Galerkin projection. It can also be seen from Table 2 that the computational
times for the FMR-FW algorithm using the introduced analytical solution to the cross
Gramian and the one-sided Galerkin projection is the least time consuming.

The Matlab scripts used to compute the presented results can be obtained from:
http://doi.org/10.5281/zenodo.1256699.

Table 1 Approximation errors
for models DCE MSE H∞-norm

FIR 4.4e−3 0.1003 4.4e−3

FMR-BT 79.0e−3 62.72 0.079

FMR-FW-G (γ = 0) 25.5e−3 5.852 0.2864

FMR-FW-S (γ = 0) 25.5e−3 5.852 0.2864

FMR-FW-G (γ = 0.35) 2.80e−3 0.485 0.2459

FMR-FW-S (γ = 0.35) 19.4e−3 3.283 4.5017

FMR-FW-G (γ = 0.7) 15.2e−3 1.913 0.1872

FMR-FW-S (γ = 0.7) 20.4e−3 3.627 3.1588

FMR-FW-G (γ = 1) 19.0e−3 3.087 0.1846

FMR-FW-S (γ = 1) 23.6e−3 4.960 1.5921

http://doi.org/10.5281/zenodo.1256699
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Table 2 Computation time (in seconds) of the FMR-FW algorithm

L = 100 L = 300 L = 1000 L = 3000 L = 10000

1) mi = 10 23.23e−3 184.0e−3 1.938 16.89 185.7

mi = 100 41.66e−3 202.3e−3 2.092 18.31 201.7

2) mi = 10 7.023e−3 93.79e−3 2.712 163.5 7028

mi = 100 43.80e−3 199.6e−3 3.834 175.8 7123

3) mi = 10 9.892e−3 103.7e−3 2.907 170.1 7271

mi = 100 33.50e−3 141.5e−3 3.139 173.7 7389

4) mi = 10 0.771e−3 2.022e−3 0.0330 0.4871 4.575

mi = 100 2.561e−3 3.943e−3 0.0342 0.4759 4.551

5) 2.754e−3 20.20e−3 0.1693 2.194 24.74

6) 46.77e−3 689.0e−3 22.11 617.9 23941

5 Conclusions

In this paper, a new approximation methodology for modeling of discrete-time
non-commensurate fractional-order state space systems by integer-order state-space
models has been offered. The introduced FW reduction method is based on cross
Gramian of a high-order FIR-based approximation to the fractional-order system.
The main contribution of the paper is the introduction of analytical formulae enabling
low-cost calculation of the cross Gramians, including the frequency weighted one,
instead of a very time consuming process of classical solving the Sylvester equation.
Simulation examples illustrate the efficiency of the proposed methodology, both in
terms of high accuracy within prespecified frequency ranges and low computation
effort of the reduction algorithms.
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