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Abstract We introduce a novel class of features for multidimensional time series that are
invariant with respect to transformations of the ambient space. The general linear group, the
group of rotations and the group of permutations of the axes are considered. The starting
point for their construction is Chen’s iterated-integral signature.
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1 Introduction

The analysis of multidimensional time series is a standard problem in data science. Usually,
as a first step, features of a time series must be extracted that are (in some sense) robust and
that characterize the time series. In many applications the features should additionally be in-
variant to a particular group acting on the data. In Human Activity Recognition for example,
the orientation of the measuring device is often unknown. This leads to the requirement of
rotation invariant features [37]. In EEG analysis, invariants to the general linear group are
beneficial [12]. In other applications, the labeling of coordinates is arbitrary, which leads to
permutation invariant features.

As any time series in discrete time can, via linear interpolation, be thought of as a multidi-
mensional curve, one is naturally led to the search of invariants of curves. Invariant features
of curves have been treated using various approaches, mostly focussing on two-dimensional
curves. Among the techniques are Fourier series (of closed curves) [21, 27, 52], wavelets
[6], curvature based methods [2, 36] and integral invariants [13, 35].

The usefulness of iterated integrals in data analysis has recently been realized, see for
example [20, 26, 32, 51] and the introduction in [5]. Let us demonstrate the appearance of
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iterated integrals on a very simple example. Let X : [0, T ] → R
2 be a smooth curve. Say

we are looking for a feature describing this curve that remains unchanged if one is handed
a rotated version of X. Maybe the simplest one that one can come up with is the (squared)
total displacement length |XT − X0|2. Now,

|XT − X0|2 = (X1
T − X1

0

)2 + (X2
T − X2

0

)2

= 2
∫ T

0

(
X1

r − X1
0

)
Ẋ1

r dr + 2
∫ T

0

(
X2

r − X2
0

)
Ẋ2

r dr

= 2
∫ T

0

(∫ r

0
Ẋ1

udu

)
Ẋ1

r dr + 2
∫ T

0

(∫ r

0
Ẋ2

udu

)
Ẋ2

r dr

= 2
∫ T

0

∫ r

0
dX1

udX1
r + 2

∫ T

0

∫ r

0
dX2

udX2
r ,

where we have applied the fundamental theorem of calculus twice and then introduced the
notation dXi

r for Ẋi
rdr . We see that we have expressed this simple invariant in terms of

iterated integrals of X; the collection of which is usually called its signature. The aim of
this work can be summarized as describing all invariants that can be obtained in this way.
It turns out, when formulated in the right way, this search for invariants reduces to classical
problems in invariant theory. We note that already in the early work of Chen (see for example
[4, Chap. 3]) the topic of invariants arose, although a systematic study was missing (see
also [23]).

The aim of this work is threefold. Firstly, we adapt classical results in invariant theory
regarding non-commuting polynomials (or, equivalently, multilinear maps), to our situation.
These results are spread out in the literature and sometimes need a little massaging. Sec-
ondly, it lays out the usefulness of the iterated-integral signature in the search for invariants
of d-dimensional curves. We show, see Sect. 7, that certain “integral invariants” found in
the literature are in fact found in the signature and our approach simplifies their enumer-
ation. Lastly, we present new geometric insights into some entries found in the signature,
Sect. 3.3.1

The paper is structured as follows. In the next section we introduce the iterated-integral
signature of a multidimensional curve, as well as some algebraic language to work with it.
Based on this signature, we present in Sect. 3 and Sect. 4 invariants to the general linear
group and the special orthogonal group. Both are based on classical results in invariant
theory. For completeness, we present in Sect. 5 the invariants to permutations, which have
been constructed in [1]. In Sect. 6 we show how to use all these invariants if an additional
(time) coordinate is introduced. In Sect. 7 we relate our work to the integral invariants of
[13] and demonstrate that the invariants presented there cannot be complete. We formulate
the conjecture of completeness for our invariants and point out open algebraic questions.

For readers who want to use these invariants without having to go into the technical re-
sults, we propose the following route. The required notation is presented in the next section.
The invariants are presented in Proposition 3.11, Proposition 4.4 and Proposition 5.4. Ex-
amples are given in Sect. 3.1 (in particular Remark 3.14), Example 4.7 and Example 5.6.
All these invariants are also implemented in the software package [9]. For calculating the
iterated-integral signature in Python we propose using the package iisignature, as de-
scribed in [40].

1The signature is notorious for being hard to interpret in geometric terms.
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2 The Signature of Iterated Integrals

By a multidimensional curve X we will denote a continuous mapping X : [0, T ] → R
d

of bounded variation.2 The aim of this work is to find features (i.e. complex or real num-
bers) describing such a curve that are invariant under the general linear group, the group of
rotations and the group of permutations. Note that in practical situations one is usually pre-
sented with a discrete sequence of data points in R

d , a multidimensional time series. Such
a time series can be easily transformed into a (piecewise) smooth curve by linear interpola-
tion.

It was proven in [22], which extends the work of [4], that a curve X = (X1, ..,Xd) is
almost completely characterized by the collection of its iterated integrals3

∫ T

0

∫ rn

0
. . .

∫ r2

0
dXi1

r1
. . . dXin

rn
, n ≥ 1, i1, . . . in ∈ {1, . . . , d}.

The collection of all these integrals is called the signature4 of X. In a first step, we can
hence reduce the goal

Find functions Ψ : curves → R that are invariant under the action of a group G,

to the goal

Find functions Ψ : signature of curves → R that are invariant under the action of a
group G.

By the shuffle identity (Lemma 2.1), any polynomial function on the signature can be re-
written as a linear function on the signature. Assuming that arbitrary functions are well-
approximated by polynomial functions, we are led to the final simplification, which is the
goal of this paper

Find linear functions Ψ : signature of curves →R that are invariant under the action
of a group G.

2.1 Algebraic Underpinning

Let us introduce some algebraic notation in order to work with the collection of iterated
integrals. Denote by T ((Rd)) the space of formal power series in d non-commuting variables
x1, x2, . . . , xd . We can conveniently store all the iterated integrals of the curve X in T ((Rd)),
by defining the signature of X to be

S(X)0,T :=
∑

xi1 . . . xin

∫ T

0

∫ rn

0
. . .

∫ r2

0
dXi1

r1
. . . dXin

rn
.

2The reader might prefer to just think of a (piecewise) smooth curve.
3Since X is of bounded variation the integrals are well-defined using classical Riemann-Stieltjes integration
(see for example Chap. 6 in [43]). This generalizes the notation in the introduction above beyond smooth
curves. It can be pushed much further though. In fact the following considerations are purely algebraic and
hence hold for any curve for which a sensible integration theory (in particular: obeying integration by parts)
exists. A relevant example is Brownian motion which, although being almost surely nowhere differentiable,
nonetheless admits a stochastic (Stratonovich) integral.
4Also called the “rough path signature”.
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Here the sum is taken over all n ≥ 0 and all i1, . . . , in ∈ {1,2, .., d}. For n = 0 the summand
is, for algebraic reasons, taken to be the constant 1.

The algebraic dual of T ((Rd)) is T (Rd), the space of polynomials5 in x1, x2, . . . , xd . The
dual pairing, denoted by 〈·, ·〉 is defined by declaring all monomials to be orthonormal, so
for example

〈
x1 + 15 · x1x2 − 2 · x1x2x1, x1x2

〉
= 15.

Here, we write the element of T ((Rd)) on the left and the element of T (Rd) on the right.
We can “pick out” iterated integrals from the signature as follows

〈
S(X)0,T , xi1 . . . xin

〉
=
∫ T

0

∫ rn

0
. . .

∫ r2

0
dXi1

r1
. . . dXin

rn
.

The space T ((Rd)) becomes an algebra by extending the usual product of monomials,
denoted ·, to the whole space by bilinearity. Note that · is non-commutative.

On T (Rd) we often use the shuffle product ∃ which, on monomials, interleaves them in
all order-preserving ways, so for example

x1
∃

x2x3 = x1x2x3 + x2x1x3 + x2x3x1.

Note that ∃ is commutative.
Monomials, and hence homogeneous polynomials, have the usual concept of order or

homogeneity. For n ≥ 0 we denote the projection on polynomials of order n by πn, so for
example

π2(x1 + 15 · x1x2 − 2 · x1x2x1) = 15 · x1x2.

See [41] for more background on these spaces.
As mentioned above, every polynomial expression in terms of the signature can be re-

written as a linear expression in (different) terms of the signature. This is the content of the
following lemma, which is proven in [39] (see also [41, Corollary 3.5]).

Lemma 2.1 (Shuffle identity) Let X : [0, T ] → R
d be a continuous curve of bounded vari-

ation, then for every a, b ∈ T (Rd)

〈
S(X)0,T , a

〉〈
S(X)0,T , b

〉= 〈S(X)0,T , a

∃

b
〉
.

Remark 2.2 We have used this fact already in the introduction, where we confirmed by hand
that

(〈
S(X)0,T , x1

〉)2 + (〈S(X)0,T , x2

〉)2 = 2
〈
S(X)0,T , x1x1

〉+ 2
〈
S(X)0,T , x2x2

〉

(= 〈S(X)0,T , x1

∃

x1

〉+ 〈S(X)0,T , x2

∃

x2

〉)
.

The concatenation of curves is compatible with the product on T ((Rd)) in the following
sense (for a proof, see for example [16, Theorem 7.11]).

5In contrast to a power series, a polynomial only has finitely many terms.
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Lemma 2.3 (Chen’s relation) For curves X : [0, T ] → R
d , Y : [0, T ] → R

d denote their
concatenation

X � Y : [0,2T ] →R
d ,

as X· on [0, T ] and Y·−T − Y0 + XT on [T ,2T ]. Then

S(X � Y )0,2T = S(X)0,T · S(Y )0,T .

We will use the following fact repeatedly, which also explains the commonly used name
tensor algebra for T (Rd).

Lemma 2.4 The space of all multilinear maps on R
d ×· · ·×R

d (n-times) is in a one-to-one
correspondence with homogeneous polynomials of order n in the non-commuting variables
x1, . . . , xd by the following bijective linear map

ψ 	→ poly(ψ) :=
∑

i1,...,in∈{1,...,d}
ψ(ei1 , ei2 , . . . , ein )xi1 · xi2 · .. · xin ,

with ei being the i-th canonical basis vector of Rd .

For example, with d = 2 and n = 3, we can consider the multilinear map ψ which takes(
(a1, b1), (a2, b2), (a3, b3)

) ∈ R
2 × R

2 × R
2 to the number a1a2b3. It maps to poly(ψ) =

x1x1x2.

3 General Linear Group

Let

GL
(
R

d
)= {A ∈R

d×d : det(A) 
= 0
}
,

be the general linear group of Rd .

Definition 3.1 For w ∈N, we call φ ∈ T (Rd) a GL invariant of weight w if
〈
S(AX)0,T , φ

〉= (detA)w
〈
S(X)0,T , φ

〉

for all A ∈ GL(Rd) and all curves X.

Definition 3.2 Define a linear action of GL(Rd) on T ((Rd)) and T (Rd), by specifying on
monomials

Axi1 ..xin :=
∑

j

(Aei1)j1xj1 ..(Aein)jnxjn

=
∑

j

Aj1i1 ..Ajninxj1 ..xjn .

Lemma 3.3 For all A ∈R
d×d and any curve X,
〈
S(AX)0,T , φ

〉= 〈S(X)0,T ,A�φ
〉
.
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Proof It is enough to verify this on monomials φ = x�1 ..x�m . Then, since the �r -th compo-
nent of the curve AX is equal to (AX)�r =∑jr

A�r jr X
jr , we get

〈
S(AX),φ

〉=
∫

d(AX)�1 . . . d(AX)�m

=
∑

j

A�1j1 . . .A�mjm

∫
dXj1 . . . dXjm

=
〈
S(X),

∑

j

A�1j1xj1 ..A�mjmxjm

〉

= 〈S(X),A�φ
〉
. �

We can simplify the concept of GL invariants further, using the next lemma. Owing to the
shuffle identity, signatures of curves live in a nonlinear subset of the whole tensor algebra
T ((Rd)), the set of “grouplike elements” (compare [41, Sect. 3.1]). It turns out though that
they linearly span all of T ((Rd)).

Lemma 3.4 For n ≥ 1

span
{
πnS(X)0,T : X curve

}= πnT
((
R

d
))

. (1)

Proof It is clear by definition that the left hand side of (1) is included in πnT ((Rd)). We
show the other direction and use ideas of [3, Proposition 4]. Let xin · . . . ·xi1 ∈ πnT ((Rd)) be
given. Let X be the piecewise linear path that results from the concatenation of the vectors
t1ei1 , t2ei2 up to tnein , where ei , i = 1, .., d is the standard basis of Rd . Its signature is given
by (see for example [16, Chap. 6])

S(X)0,1 = exp(tnxin ) · . . . · exp(t1xi1) =: φ(t1, . . . , tn),

where the exponential function is defined by its power series. Then

d

dtn
. . .

d

dt1
φ(0, . . . ,0) = xin · . . . · xi1 .

Combining this with the fact that left hand side of (1) is a closed set we get that

xin · . . . · xi1 ∈ span
{
πn

(
S(X)0,1

) : X curve
}
.

These elements span πnT ((Rd)), which finishes the proof. �

Hence φ is a GL invariant of weight w in the sense of Definition 3.1 if and only if for all
A ∈ GL(Rd)

A�φ = (detA)wφ.

Since the action respects homogeneity, we immediately obtain that projections of invari-
ants are invariants (take B = (detA)−wA� in the following lemma):
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Lemma 3.5 If φ ∈ T (Rd) satisfies

Bφ = φ,

for some B ∈ GL(Rd) then

Bπnφ = πnφ,

for all n ≥ 1.

Proof By definition, the action of GL on T (Rd) commutes with πn. �

In order to apply classical results in invariant theory, we use the bijection poly between
multilinear functions and non-commuting polynomials, given in Lemma 2.4.

Lemma 3.6 For ψ : (Rd)×n →R multilinear and A ∈ GL(Rd),

poly
[
ψ(A·)]= A�poly[ψ].

Proof

poly
[
ψ(A·)]=

∑

i

ψ(Aei1 , ..Aein)xi1 ..xin

=
∑

i,j

Aj1i1 ..Ajninψ(ej1 , ..ejn )xi1 ..xin

=
∑

j

ψ(ej1 , ..ejn )A
�xj1 ..xjn

= A�poly[ψ]. �

The simplest multilinear function

Ψ : (Rd
)×n → R,

satisfying Ψ (Av1, ..,Avn) = det(A)Ψ (v1, .., vn) that one can maybe think of, is the deter-
minant itself. That is, n = d and

Ψ (v1, .., vn) = det[v1v2..vn],
where v1v2..vn is the d × d matrix with columns vi . Up to a scalar this is in fact the only
one, and it turns out that invariants of higher weight are built only using determinants as a
building block.

To state the following classical result, we introduce the notion of Young diagrams, which
play an important role in the representation theory of the symmetric group.

Let λ = (λ1, .., λr) be a partition of n ∈N, which we assume ordered as λ1 ≥ λ2 ≥ .. ≥ λr .
We associate to it a Young diagram, which is an arrangement of n boxes into left-justified
rows. There are r rows, with λi boxes in the i-th row. For example, the partition (4,2,1) of
7 gives the Young diagram
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A Young tableau is obtained by filling these boxes with the numbers 1, .., n. Continuing
the example, the following is a Young tableau

2 3 7 1

5 4

6

A Young tableau is standard if the values in every row are increasing (from left to right)
and are increasing in every column (from top to bottom). The previous tableau was not
standard; the following is.

1 3 5 7

5 4

6

The following result is classical, see for example Dieudonné [10, Sect. 2.5], [50] and [18],
none of which explicitly give a basis for the invariants though. See [47, Theorem 4.1.12] for
a slightly different basis.

Theorem 3.7 The space of multilinear maps

ψ :Rd × · · · ×R
d

︸ ︷︷ ︸
n times

→ R

that satisfy

ψ(Av1,Av2, . . . ,Avn) = (detA)wψ(v1, v2, . . . , vn)

for all A ∈ GL(Rd) and v1, . . . , vn ∈R
d is non-empty if and only if n = wd for some integer

w ≥ 1.
In that case, a linear basis is given by

{
v 	→ det[vC1 ]..det[vCw ]}

where Ci are the columns of Σ , and Σ ranges over all standard Young tableaux correspond-

ing to the partition λ =
d times

︷ ︸︸ ︷
(w,w, ..,w) of n.

Here, for a sequence C = (c1, .., cd), vC denotes the matrix of column vectors vci
, i.e.

vC = (vc1 , .., vcd
).

Remark 3.8 A consequence of this theorem is the existence of identities between products
of determinants. For example, for vectors v1, .., v4 ∈R

2, one can check by hand

det[v1v4]det[v2v3] = det[v1v3]det[v2v4] − det[v1v2]det[v3v4].
This is why the product on the left-hand side here is not part of the basis in the previous
lemma for d = 2, w = 2 (compare Sect. 3.1).

Identities of this type are called Plücker identities. They have a long history and are a
major ingredient in the representation theory of the symmetric group. The procedure of re-
ducing certain products of determinants to a basic set of such products is called the straight-
ening algorithm [44, Sect. 2.6]. See also [30] and [48].
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Remark 3.9 The only invariant for d = 2, w = 1 is

x1x2 − x2x1 = [x1, x2],
a Lie polynomial. One can generally ask for invariant Lie polynomials [41, Sect. 8.6.2].
This seems to be of no relevance to the application of invariant feature extraction for curves
though.

Remark 3.10 Let C(d)
w be the number of linear independent invariants of weight w. By The-

orem 3.7, this is the number of standard Young tableaux of shape (w,w, ..,w). By the Hook
formula [44, Theorem 3.10.2]

C(d)
w =

∏d−1
�=1 �!

∏d

�=1(w + 1)d−�

(
d · w

w,w, ..,w

)

=
∏d−1

�=1 �! · (d · w)!
∏d−1

�=0 (w + �)! .

For example for d = 2, the number of invariants for weights w = 0,1,2,3, . . . (and hence
for levels n = 0,2,4,6, . . .) are (the Catalan numbers, https://oeis.org/A000108)

1,1,2,5,14,42,132,429,1430,4862, ..

For d = 3, the number of invariants for weights w = 0,1,2,3, . . . (and hence for levels
n = 0,3,6,9, . . .) are (the 3-dimensional Catalan numbers, https://oeis.org/A005789)

1,1,5,42,462,6006,87516,1385670,23371634,414315330, ..

Proof of Theorem 3.7 Write V = (Rd)∗, the dual space of Rd . Every φ ∈ V ⊗n that satisfies

Aφ = (detA)wφ, (2)

clearly spans a one-dimensional irreducible representation of GL(V ). Hence we need to
investigate all one-dimensional irreducible representation of GL(V ) contained in V ⊗n (and
it will turn out that all of them satisfy (2)).

The (diagonal) action of GL(V ) on V ⊗n is best understood by simultaneously studying
the left action of Sn on V ⊗n given by

τ · v1 ⊗ .. ⊗ vn := vτ−1(1) ⊗ .. ⊗ vτ−1(n).

By Schur-Weyl duality, [29, Theorem 6.4.5.2], as Sn × GL(V ) modules,

V ⊗n �
⊕

λ�n

Sλ ⊗ V λ, (3)

where the sum is over integer partitions λ of n, the Sλ are irreducible representations of Sn,
to be detailed below and the V λ are irreducible representations of GL(V ). The exact form of
the latter is irrelevant here, we only need to know that V λ is one-dimensional if and only if
λ = (w, ..,w), d-times, for some integer w ≥ 1, [10, p. 21]. This gives the condition n = wd

in the statement. We assume this to hold from now on.

https://oeis.org/A000108
https://oeis.org/A005789
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We are hence left with understanding the unique copy of the “Specht module” Sλ inside
of V ⊗n. We sketch its classical construction. Let us recall that a tabloid is an equivalence
class of Young tableaux modulo permutations leaving the set of entries in each row invariant
[44, Chap. 2].6 For t a Young tableau denote {t} its tabloid, so for example

⎧
⎨

⎩
1 3

2 4

⎫
⎬

⎭
=
⎧
⎨

⎩
1 3

4 2

⎫
⎬

⎭
=
⎧
⎨

⎩
3 1

2 4

⎫
⎬

⎭
=
⎧
⎨

⎩
3 1

4 2

⎫
⎬

⎭
.

The symmetric group Sn acts on Young tableaux as

(τ · t)ij := τ(tij ).

For example

(234) · 2 4

1 3
= 3 2

1 4

It then acts on tabloids by τ · {t} := {τ · t}. Define for a Young tableau t

et :=
∑

π

sign(π)π · {t},

where the sum is over all π ∈ Sn that leave the set of values in each column invariant. For
example with

t = 1 2

3 4

we get

et = {t} − (13) · {t} − (24) · {t} + (13)(24) · {t}.
Then

Irrep(w,..,w) := span
{
et : t Young tableau of shape (w, ..,w)

}

is an irreducible representation of Sn and
{
et : t standard Young tableau of shape (w, ..,w)

}
,

forms a basis [44, Theorem 2.5.2]. This concludes the reminder on representation theory
for Sn.

Define the map ι from the space of tabloids of shape (w, ..,w) into V ⊗n as follows,

ι
({t}) := e∗

j1
⊗ .. ⊗ e∗

jn
,

6One can also think of a tabloid as the following element of the vector space spanned by Young tableaux,

{t} =
∑

π

πt.

Here the sum is over all permutations π that leave the elements of each row of t unchanged.
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where e∗
i is the canonical basis of V and

j� = i ⇔ � ∈ i-th row of {t}.
For example

ι

⎛

⎝

⎧
⎨

⎩
1 2 5

3 4 6

⎫
⎬

⎭

⎞

⎠= e∗
1 ⊗ e∗

1 ⊗ e∗
2 ⊗ e∗

2 ⊗ e∗
1 ⊗ e∗

2 .

This is a homomorphism of Sn representations. Indeed,

ι
(
τ · {t})= e∗

j1
⊗ .. ⊗ e∗

jn
,

with

j� = i ⇔ � ∈ i-th row of τ · {t}.
On the other hand

τ · ι({t})= τ · e∗
r1

⊗ .. ⊗ e∗
rn

= e∗
p1

⊗ .. ⊗ e∗
pn

,

with p� := rτ−1(�) and

p� = i ⇔ rτ−1(�) = i

⇔ τ−1(�) ∈ i-th row of {t}
⇔ � ∈ i-th row of τ · {t}.

So indeed ι(τ · {t}) = τ · ι({t}), and ι is a homomorphism of Sn representations. It is a
bijection from the space of (w, ..,w) tabloids into the space spanned by the vectors

e∗
i1

⊗ .. ⊗ e∗
in

: #{� : i� = j} = w, j = 1, .., d.

Restricting to Irrep(w,..,w) then yields an isomorphism of irreducible Sn representations.
Hence ι(Irrep(w,..,w)) is the (unique) realization of Sλ inside of V ⊗n in (3). We finish by
describing its image.

Consider the standard Young tableau tfirst of shape (w,w, ..,w) obtained by filling the
columns from left to right, i.e.

tfirst :=

1 d + 1 .. .. ..

2 d + 2 .. .. ..

.. .. .. .. ..

d 2d .. .. n
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Clearly, for any (standard) Young tableau t there exists a unique σt ∈ Sn such that

σt · tfirst = t.

We claim

ι(et ) = (v 	→ det[vσt (1)..vσt (d)] · ... · det[vσt ((w−1)d+1)..vσt (n)]
)
.

Indeed, since ι is a homomorphism of Sn representation,

ι(σt · etfirst)(v1, .., vn) = ι(etfirst)(vσt (1), .., vσt (n))

It remains to check

ι(etfirst) = det[v1..vd ] · ... · det[v(w−1)d+1..vn].
Every π ∈ Sn that is column-preserving for tfirst can be written as the product π1 · .. · πw ,
with πj ranging over the permutations of the entries of the j -th column tfirst. Then

ι(etfirst)(v1, .., vn) =
∑

π

signπ ι
(
π{t})(v1, .., vn)

=
∑

πj

∏

j

signπj ι
(
π1..πw{t})(v1, .., vn)

=
∑

πj

∏

j

signπj e∗
π−1

1 (1)
⊗ .. ⊗ e∗

π−1
1 (d)

⊗ e∗
(π−1

2 (d+1)modd)+1
⊗ · · ·

⊗ e∗
(π−1

w (n)modd)+1
(v1, .., vn)

= det[v1..vd ] · ... · det[v(w−1)d+1..vn],
as desired. �

Applying Lemma 2.4 to Theorem 3.7 we get the invariants in T (Rd).

Proposition 3.11 A linear basis for the space of GL invariants of order n = wd is given by

∑

i1,...,in∈{1,...,d}
gΣ(ei1 , ei2 , . . . , ein )xi1xi2 . . . xin ,

where

gΣ(v) = det[vC1 ]..det[vCw ],
where Ci are the columns of Σ , Σ ranges over all standard Young tableaux corresponding
to the partition λ = (w,w, ..,w)︸ ︷︷ ︸

d times

of n, and the notation vC is as introduced in Theorem 3.7.

Remark 3.12 By Lemma 3.5, for any invariant φ ∈ T (Rd) and n ≥ 1 we have that πnφ is
also invariant. Hence the previous theorem characterizes all invariants we are interested in
(Definition 3.1), not just homogeneous ones.
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Remark 3.13 Note that each of these invariants φ consists only of monomials that contain
every variable x1, . . . , xd at least once. This implies that 〈S(X)0,T , φ〉 consists only of iter-
ated integrals that contain every component X1, . . . ,Xd of the curve at least once. Hence, if
at least one of these components is constant, the whole expression will be zero.

Since φ is invariant, this implies that 〈S(X)0,T , φ〉 = 0 as soon as there is some coordinate
transformation under which one component is constant, that is whenever the curve X stays
in a hyperplane of dimension strictly less then d .

One of the simplest curves in d dimensions that does not lie in any hyperplane of lower
dimension is the moment curve

t 	→ (
t, t2, .., td

)
.

We will come back to this example in Lemma 3.29.

3.1 Examples

We will use the following short notation:

i1 . . .in := xi1xi2 ..xin ,

so, for example

1121 := x1x1x2x1.

We present the invariants described in Sect. 2 for some special cases of d and w.

The case d = 2

Level 2 (w = 1)

12− 21

Remark 3.14 Let us make clear that from the perspective of data analysis, the “invariant” of
interest is really the action of this element in T (Rd) on the signature of a curve.

In this example, the real number

〈
S(X)0,T ,12− 21

〉=
∫ T

0

∫ r2

dX1
r1
dX2

r2
−
∫ T

0

∫ r2

dX1
r1
dX2

r2
,

changes only by the determinant of A ∈ GL(R2) when calculating it for the transformed
curve AX:

〈
S(AX)0,T ,12− 21

〉= det(A)
〈
S(X)0,T ,12− 21

〉
.

Level 4 (w = 2)

1212− 1221− 2112+ 2121

1122− 1221− 2112+ 2211
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Remark 3.15 This is a linear basis of invariants in the fourth level. If one takes algebraic
dependencies into consideration, the set of invariants becomes smaller. To be specific, as-
sume that one already has knowledge of the invariant of level 2 (i.e. 〈S(X)0,T ,12− 21〉).
If, say in a machine learning application, the learning algorithm can deal sufficiently well
with nonlinearities, one should not be required to provide additionally the square of this
number. In other words |〈S(X)0,T ,12− 21〉|2 can also be assumed to be “known”. But, by
the shuffle identity (Lemma 2.1), this can be written as

∣∣〈S(X)0,T ,12− 21
〉∣∣2 = 〈S(X)0,T ,12− 21

〉 · 〈S(X)0,T ,12− 21
〉

= 〈S(X)0,T , (12− 21)

∃

(12− 21)
〉

= 〈S(X)0,T ,4 · 1122− 4 · 1221− 4 · 2112+ 4 · 2211〉.
Now, seeing that 4 · 1122− 4 · 1221− 4 · 2112+ 4 · 2211 is invariant, there is only one
“new” independent invariant in the fourth level, namely 1212− 1221− 2112+ 2121.

A similar analysis can also be carried out for the following invariants, but we refrain from
doing so, since it can be easily done with a computer algebra system.

Level 6 (w = 3)

121212−121221−122112+122121− 211212+ 211221+ 212112− 212121

112212−112221−122112+122121− 211212+ 211221+ 221112− 221121

121122−121221−122112+122211− 211122+ 211221+ 212112− 212211

112122−112221−122112+122211− 211122+ 211221+ 221112− 221211

111222−112221−121212+122211− 211122+ 212121+ 221112− 222111

The case d = 3

Level n = 3 (w = 1)

123− 132− 213+ 231+ 312− 321

Level n = 6 (w = 2)

123123− 312132+ 312312+ 213132− 213231− 213123+ 321213− 312321− 132231

− 132123− 321231+ 321132+ 132321+ 132213+ 231231+ 321321+ 213321

+ 123231+ 231123− 312213− 321123− 231132+ 213213+ 132132+ 312231

− 213312− 231321− 132312− 123213− 321312+ 312123− 231213+ 231312

− 123321+ 123312− 123132

+ 4 more

The case d = 4

Level n = 4 (w = 1)

1234− 1243− 1324+ 1342+ 1423− 1432− 2134+ 2143

+ 2314− 2341− 2413+ 2431+ 3124− 3142− 3214+ 3241

+ 3412− 3421− 4123+ 4132+ 4213− 4231− 4312+ 4321



Invariants of Multidimensional Time Series Based. . . 97

Fig. 1 A curve X = (X1,X2) is
shown, with shaded area given by
1
2 〈S(X)0,T , x1x2 − x2x1〉 =
1
2

∫ T
0
∫ r2

0 dX1
r1

dX2
r2

−
1
2

∫ T
0
∫ r2

0 dX2
r1

dX1
r2

3.2 The Invariant of Weight One, in Dimension Two

Geometric Interpretation The invariant for d = 2, w = 1, namely φ = x1x2 − x2x1 has a
simple geometric interpretation: it picks out (two times)7 the area (signed, and with multi-
plicity) between the curve X and the cord spanned between its starting and endpoint (com-
pare Fig. 1). For (smooth) non-intersecting curves, this follows from Green’s theorem [43,
Theorem 10.33]. For self-intersecting curves, the mathematically most convenient definition
of “signed area” is the integral (in the plane) of its winding number. The claimed relation to
the invariant φ is for example proven in [34, Proposition 1].

Connection to Correlation Assume that X is a continuous curve, piecewise linear be-
tween some time points ti , i = 0, . . . , n.8 The area is then explicitly calculated as

∫ T

0

∫ r

0
dX1

udX2
r −
∫ T

0

∫ r

0
dX2

udX1
r

=
∫ T

0

(
X1

r − X1
0

)
dX2

r −
∫ T

0

(
X2

r − X2
0

)
dX1

r

=
n−1∑

i=0

∫ 1

0

(
X1

ti
+ t
(
X1

ti+1
− X1

ti

)− X1
0

)(
X2

ti+1
− X2

ti

)
dt

−
n−1∑

i=0

∫ 1

0

(
X2

ti
+ t
(
X2

ti+1
− X2

ti

)− X2
0

)(
X1

ti+1
− X1

ti

)
dt

=
n−1∑

i=0

X1
ti
X2

ti+1
−

n−1∑

i=0

X2
ti
X1

ti+1
+ X2

0

(
X1

tn
− X1

t0

)− X1
0

(
X2

tn
− X2

t0

)

= Corr
(
X2,X1

)
1
− Corr

(
X1,X2

)
1
+ X2

0

(
X1

tn
− X1

t0

)− X1
0

(
X2

tn
− X2

t0

)
.

Here, for two vectors a, b of length n

Corr(a, b)1 :=
n−1∑

i=0

ai+1bi,

7The prefactor 1/2 is irrelevant, so we will speak of φ and also of 1
2 φ as picking out the area.

8The standard example is a time series that is discretely observed at times ti and linearly interpolated in
between.
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the lag-one cross-correlation, which is a commonly used feature in signal analysis, see for
example [38, Chap. 13.2].9 In particular, if the curve starts at 0, we have

∫ T

0

∫ r

0
dX1

udX2
r −
∫ T

0

∫ r

0
dX2

udX1
r = Corr

(
X2,X1

)
1
− Corr

(
X1,X2

)
1
,

which is an antisymmetrized version of the lag-one cross-correlation.

Remark 3.16 The antisymmetrized version of the lag τ cross-correlation, for each τ ≥ 2,
is also a GL(R2) invariant of the curve. In general these invariants cannot be found in the
signature, and we thank the anonymous referee for pointing out the following example.
Consider the treelike curve which linearly interpolates the following points

(0,0), (1,0), (1,1/2), (1,1), (1,0), (0,0).

Its signature is trivial, but

Corr
(
X1,X2

)
2
− Corr

(
X2,X1

)
2
= 1 − 0.5 = 0.5.

3.3 The Invariant of Weight One, in Any Dimension

Whatever the dimension d of the curve’s ambient space, the space of invariants of weight 1
has dimension 1 and is spanned by

Invd := Invd(x1, .., xd) :=
∑

σ∈Sd

sign(σ ) xσ(1)..xσ(d) = det

⎛

⎝
x1 .. xd

.. .. ..

x1 .. xd

⎞

⎠ . (4)

Here, for a matrix C of non-commuting variables, (compare [14, Definition 3.1])

detC :=
∑

τ

sign τ
∏

i

Ciτ(i).

This invariant is of homogeneity d . The following lemma tells us that we can write Invd

in terms of expressions on lower homogeneities.
To state it, we first define the operation InsertAfter(xi, r) on monomials of order n ≥ r ,

as the insertion of the variable xi after position r , and extend it linearly. For example

InsertAfter(x1,1) Inv2(x2, x3) = InsertAfter(x1,1)(x2x3 − x3x2)

= x2x1x3 − x3x1x2.

Lemma 3.17 In any dimension d and for any r = 0,1, .., d − 1

Invd(x1, .., xd) = (−1)r

d∑

j=1

(−1)j+1InsertAfter(xj , r) Invd−1(x1, .., x̂j .., xd),

where x̂j denotes the omission of that argument.

9Note the nomenclature used in signal analysis. A probabilist or statistician would tend to call this a “covari-
ance” and not a “correlation”.



Invariants of Multidimensional Time Series Based. . . 99

For d odd,

Invd(x1, .., xd) =
d∑

j=1

(−1)j+1xj

∃ Invd−1(x1, .., x̂j .., xd).

Remark 3.18 For completeness, we also note the related de Bruijn’s formula. For d even,

Invd(x1, .., xd) = Pf ∃ [A],
where

Aij = Inv2(xi, xj ),

and the Pfaffian (with respect to the shuffle product), is

Pf ∃ [A] = 1

2d/2(d/2)!
∑

σ∈Sd

sign(σ )Aσ(1),σ (2)

∃

Aσ(3),σ (4)

∃

..

∃

Aσ(d−1),σ (d).

For a proof see [7] and [33].

Proof The first statement follows from expressing the determinant in (4) in terms of minors
with respect to the row r + 1 (since the xi are non-commuting, this does not work with
columns!).

Regarding the second statement, since d is odd and then using the first statement

Invd =
d−1∑

r=0

(−1)r Invd

=
d−1∑

r=0

(−1)r (−1)r

d∑

j=1

(−1)j+1InsertAfter(xj , r) Invd−1(x1, .., x̂j .., xd)

=
d∑

j=1

(−1)j+1
d−1∑

r=0

InsertAfter(xj , r) Invd−1(x1, .., x̂j .., xd)

=
d∑

j=1

(−1)j+1xj

∃ Invd−1(x1, .., x̂j .., xd),

as claimed. �

An immediate consequence is the following lemma.

Lemma 3.19 If the ambient dimension d is odd and the curve X is closed (i.e. XT = X0)
then

〈
S(X)0,T , Invd

〉= 0.

Proof By Lemma 3.17 and then by the shuffle identity (Lemma 2.1)

〈
S(X)0,T , Invd

〉=
d∑

j=1

〈
S(X)0,T , (−1)j+1xj

∃ Invd−1(x1, .., x̂j .., xd)
〉
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=
d∑

j=1

(−1)j+1
〈
S(X)0,T , xj

〉〈
S(X)0,T , Invd−1(x1, .., x̂j .., xd)

〉

= 0,

since the increment 〈S(X)0,T , xj 〉 = X
j

T − X
j

0 is zero for all j by assumption. �

In even dimension we have the phenomenon that closing a curve does not change the
value of the invariant.

Lemma 3.20 If the ambient dimension d is even, then for any curve X

〈
S(X)0,T , Invd

〉= 〈S(X̄)0,T , Invd

〉
,

where X̄ is X concatenated with the straight line connecting XT to X0.

Proof Let X̄ be parametrized on [0,2T ] as follows: X̄ = X on [0, T ] and it is the linear
path connecting XT to X0 on [T ,2T ]. By translation invariance we can assume X0 = 0 and
by GL(Rd)-invariance that XT lies on the x1 axis. Then the only component of X̄ that is
non-constant on [T ,2T ] is the first one, X̄1.

By Lemma 3.17

Invd = −
d∑

j=1

(−1)j+1 Invd−1(x1, .., x̂j , ..xd)xj .

Letting the summands act on S(X̄)0,t we get ±1 times

∫ t

0

〈
S(X̄)0,r , Invd−1(x1, .., x̂j , ..xd)

〉
dX̄j

r .

For j 
= 1 these expressions are constant on [T ,2T ], since we arranged things so that those
X̄j do not move on [T ,2T ]. But also for j = 1 this expression is constant on [T ,2T ].
Indeed, the integrand

〈
S(X̄)0,r , Invd−1(x2, x3, .., xd)

〉
,

is zero on [T ,2T ], since X, projected on the x2 − .. − xd hyperplane, is a closed curve, and
so Lemma 3.19 applies. �

Lemma 3.21 Let X be the piecewise linear curve through p0, ..,pd ∈ R
d . Then

〈
S(X)0,T , Invd

〉= det

[
1 1 .. 1
p0 p1 .. pd

]

Proof First, for any v ∈R
d ,

det

[
1 1 .. 1

p0 + v p1 + v .. pd + v

]
= det

[
1 1 .. 1
p0 p1 .. pd

]
.
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Since the signature is also invariant to translation, we can assume p0 = 0. Now both sides of
the statement transform the same way under the action of GL(Rd) on the points p1, ..,pd . It
is then enough to prove this for

p0 = 0

p1 = e1

p2 = e1 + e2

..

pd = e1 + .. + ed .

Now, for this particular choice of points the right hand side is clearly equal to 1. For the
left hand side, the only non-zero term is

〈
S(X)0,T ,12..d

〉=
∫

dX1..dXd

= 1. �

The modulus of the determinant

det

[
1 1 .. 1
0 p1 .. pd

]
= det

[
p1 .. pd

]

gives the Lebesgue measure of the parallelepiped spanned by the vectors p1 −p0, ..,pd −p0.
The polytope spanned by the points p0,p1, ..,pd fits d! times into that parallelepiped. We
hence have the relation to classical volume as follows.

Lemma 3.22 Let p0, ..,pd ∈R
d , then

∣
∣Convex-Hull(p0, ..,pd)

∣
∣= 1

d!
∣∣
∣∣det

[
1 1 .. 1
p0 p1 .. pd

]∣∣
∣∣

We now proceed to piecewise linear curves with more than d vertices.

Lemma 3.23 Let X be the piecewise linear curve through, p0, ..,pn ∈ R
d , with n ≥ d . Then,

〈
S(X)0,T , Invd

〉=
∑

i

det

[
1 1 .. 1

pi0 pi1 .. pid

]
. (5)

For d even, the subsequences i are chosen as follows:

i0 = 0

and i1, .., id ranges over all possible increasing subsequences of 1,2, .., n such that for �

odd: i� + 1 = i�+1.
For d odd, they are chosen as follows:

i0 = 0

id = n,
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and i1, .., id−1 ranges over all possible increasing subsequences of 1,2, .., n − 1 such that
for � odd: i� + 1 = i�+1

Remark 3.24 The number of indices is easily calculated. In the even case, we have B := d/2
“groups of two” to place, A := n − d “fillers” in between. This gives

(
A + B

B

)
=
(

n − d + d/2

d/2

)
=
(� d

2 � + n − d

� d
2 �

)
,

where �r� is the largest integer less than or equal to r .
In the odd case, we have B := (d − 1)/2 “groups of two” to place, with A := n − 1 −

(d − 1) “fillers” in between. This gives

(
A + B

B

)
=
(

n − 1 − d−1
2

d−1
2

)
=
(� d

2 � + n − d

� d
2 �

)
.

Remark 3.25 Consider the case d = 2, and a curve X through the points p0,p1, ..,pn ∈R
d ,

with p0 = 0. Then

〈
S(X)T , Inv2

〉= 〈S(X)T ,12− 21
〉

=
n−1∑

i=1

det

[
1 1 1
p0 pi pi+1

]

=
n−1∑

i=1

det
[
pi pi+1

]

=:
n−1∑

i=1

Pi,i+1.

We can express Invd as a linear combination of the 2 × 2 minors Pi,j of the 2 × n matrix
(p1,p2, ..,pn). Generally, it is well-known that all invariants to GL(R2) of a tuple of points
are expressible in terms of these minors [47, Sect. 3.2]. So, for a piecewise linear curve
through 0,p1, ..,pn, all our integral invariants are—a fortiori—expressible in terms of them.
In the simple case shown here, this expression is just a linear combination. Experimentally,
for higher order invariants, polynomial combinations appear with a lot of structure. This
poses the question on whether one can set up some kind of “GL invariant integration”,
where, instead of the classical Riemann integration that uses increments, one “integrates”
using only these Pi,j .

Example 3.26 For d = 2, n = 5 we get the subsequences

[0,1,2]
[0,2,3]
[0,3,4]



Invariants of Multidimensional Time Series Based. . . 103

For d = 4, n = 7 we get the subsequences

[0,1,2,3,4]
[0,1,2,4,5]
[0,1,2,5,6]
[0,2,3,4,5]
[0,2,3,5,6]
[0,3,4,5,6]

For d = 5, n = 8 we get the subsequences

[0,1,2,3,4,7]
[0,1,2,4,5,7]
[0,1,2,5,6,7]
[0,2,3,4,5,7]
[0,2,3,5,6,7]
[0,3,4,5,6,7]

Proof of Lemma 3.23 The case d = 2
Let X be the curve through the points p0,p1, ..,pn. We can write it as concatenation of the
curves X(i), where X(i) is the curve through the points p0, pi , pi+1, p0. The time-interval
of definition for these curves (and all curves in this proof) do not matter, so we omit the
subscript of S(.). Then, by Chen’s lemma (Lemma 2.3)

〈
S(X),12− 21

〉= 〈S(X(n−1)
) · .. · S(X(1)

)
,12− 21

〉

=
n−1∑

i=1

〈
S
(
X(i)

)
,12− 21

〉
.

For the last equality we used that

〈gh,12− 21〉 = 〈g,12− 21〉 + 〈h,12− 21〉 + 〈g,1〉〈h,2〉 − 〈g,2〉〈h,1〉,

and that the increments of all curves X(i) are zero. Now by Lemma 3.20 we can omit the
last straight line in every X(i) and hence by Lemma 3.21

〈
S
(
X(i)

)
,12− 21

〉= det

[
1 1 1
p0 pi pi+1

]
,

which finishes the proof for d = 2.
Now assume the statement is true for all dimensions strictly smaller than some d . We

show it is true for d .
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d is odd
As before we can assume p0 = 0 and that pn lies on the x1 axis. Every sequence summed
over on the right-hand side of (5) is of the form i = (0, . . . , n). For each of those, we calcu-
late

det

[
1 1 .. 1 1

pi0 pi1 .. pid−1 pid

]
= det

[
1 1 .. 1 1
0 pi1 .. pid−1 � · e1

]

= � · det

[
1 1 .. 1
0 p̄i1 .. p̄id−1

]
.

Here p̄j ∈ R
d−1 is obtained by deleting the first coordinate of pj , e1 is the first canonical

coordinate vector in R
d and � := (p0 − pn)1 = 〈S(X), x1〉 is the total increment of X in the

x1 direction. Here we used that d is odd (otherwise we would get a prefactor −1).
The last determinant is the expression for the summands of the right-hand side of (5), but

with dimension d − 1 and points 0 = p̄0, p̄1, .., p̄n−1. By assumption, summing up all these
determinants gives

� · 〈S(X̄), Invd−1
〉= 〈S(X), x1

〉〈
S(X̄), Invd−1

〉
,

where X̄ is the curve in R
d−1 through the points p̄0, .., p̄n−1. Since p̄n = p̄0 = 0, we can

attach the additional point p̄n to X̄ without changing the value here (Lemma 3.20). Hence
the sum of determinants is equal to

〈
S(X), x1

〉〈
S(X), Invd−1(x2, .., xd)

〉
.

Since we arranged matters such that 〈S(X), xi〉 = 0 for i 
= 1, this is equal to

d∑

i=1

〈
S(X), xi

〉〈
S(X), Invd−1(x1, x2, .., x̂i , .., xd)

〉

=
〈

S(X),

d∑

i=1

xi

∃ Invd−1(x1, x2, .., x̂i , .., xd)

〉

,

where we used the shuffle identity, Lemma 2.1. By the second part of Lemma 3.17 this is
equal to 〈S(X), Invd〉, which finishes the proof for odd d .

d is even
We proceed by induction on n. For n = d the statement follows from Lemma 3.21.

Let it be true for some n, we show it for a piecewise linear curve through some points
p0, ..,pn+1. Write X = X′ � X′′ where X′ is the linear interpolation of p0, ..,pn, X′′ is the
linear path from pn to pn+1 and we recall concatenation � of paths from Lemma 2.3. By
assumption, (5) is true for the curve X′. Adding an additional point pn+1, the sum on the
right hand side of (5) gets additional indices of the form

(pj0 , ..,pjd−1 ,pn+1),

where
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j0 = 0

jd−1 = n,

and where j1, .., jd−2 ranges over all possible increasing subsequences of 1,2, .., n− 1 such
that for � odd j� + 1 = j�+1.

Assume pn+1 − pn = � · e1 lies on the x1-axis. Then, summing over those j ,

∑

j

det

[
1 1 .. 1 1 1
0 pj1 .. pjd−2 pn pn+1

]

=
∑

j

det

[
1 1 .. 1 1 1

−pn pj1 − pn .. pjd−2 − pn 0 pn+1 − pn

]

=
∑

j

det

[
1 1 .. 1 1 1

−pn pj1 − pn .. pjd−2 − pn 0 � · e1

]

= −� ·
∑

j

det

[
1 1 .. 1 1

−p̄n p̄j1 − p̄n .. p̄jd−2 − p̄n 0

]

= −� ·
∑

j

det

[
1 1 .. 1 1
0 p̄j1 .. p̄jd−2 p̄n

]

= −� · 〈S(X̄′), Invd−1
〉

= −� · 〈S(X′), Invd−1(x2, .., xd)
〉

Here X̄′ is the curve in R
d−1 through the points p̄0, .., p̄n, and we used the fact that the

indices j here range over the ones used for (5) in dimension d − 1 on the points p̄0, .., p̄n.
On the other hand,

〈
S(X), Invd

〉= 〈S(X′)S
(
X′′), Invd

〉

= 〈S(X′), Invd

〉− 〈S(X′), Invd−1(x2, .., xd)
〉〈
S
(
X′′), x1

〉

Here we used that S(X′′) = exp(� · x1) = 1 + � · x1 + O(x2
1 ) [16, Example 7.21], the fact

that each monomial in Invd has exactly one occurrence of x1 and Lemma 3.17. This finishes
the proof. �

Definition 3.27 Let X : [0, T ] → R
d be any curve. Define its signed volume to be the

following limit, if it exists,

Signed-Volume(X) := 1

d! lim
|π |→0

∑

i

det

[
1 1 .. 1

Xtπ
i0

Xtπ
i1

.. Xtπ
id

]
.

Here π = (0 = tπ0 , .., tπnπ = T ) is a partition of the interval [0, T ] and |π | denotes its mesh
size. The indices i are chosen as in Lemma 3.23.

Theorem 3.28 Let X : [0, T ] → R
d a continuous curve of bounded variation. Then its

signed volume exists and

Signed-Volume(X) = 1

d!
〈
S(X)0,T , Invd

〉
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Proof Fix some sequence {πn}n∈N, of partitions of [0, T ] with |πn| → 0 and interpolate X

linearly along each πn to obtain a sequence of linearly interpolated curves Xn. Then by
Lemma 3.23

Signed-Volume
(
Xn
)= 1

d!
〈
S
(
Xn
)

0,T
, Invd

〉

By stability of the signature in the class of continuous curves of bounded variation [16,
Proposition 1.28, Proposition 2.7], we get convergence

〈
S
(
Xn
)

0,T
, Invd

〉→ 〈
S(X)0,T , Invd

〉

and this is independent of the particular sequence πn chosen. �

The previous theorem is almost a tautology, but there are relations to classical objects in
geometry. For d = 2, as we have seen in Sect. 3.2,

1

2

〈
S(X)0,T , Inv2

〉
,

is equal to the signed area of the curve X. In general dimension, the value of the invariant is
related to some kind of classical “volume” if the curve satisfies some kind of monotonicity.
This is in particular satisfied for the “moment curve”.

Lemma 3.29 Let X be the moment curve

Xt = (t, t2, . . . , td
) ∈ R

d .

Then for any T > 0

1

d!
〈
S(X)0,T , Invd

〉= ∣∣Convex-Hull(X[0,T ])
∣
∣

Remark 3.30 It is easily verified that for integers n1..nd one has

1

n1 · .. · nd

∫ T

0
dt

n1
1 ..dt

nd

d = 1

n1

1

n1 + n2
..

1

n1 + .. + nd

T n1+..+nd .

We deduce that

∣
∣Convex-Hull(X[0,T ])

∣
∣= T 1+2+..+d

∑

σ∈Sd

signσ
1

σ(1)

1

σ(1) + σ(2)
..

1

σ(1) + .. + σ(d)
.

In [24, Sect. 15], the value of this volume is determined, for T = 1, as

d∏

�=1

(� − 1)!(� − 1)!
(2� − 1)! .

We hence get the combinatorial identity

d∏

�=1

(� − 1)!(� − 1)!
(2� − 1)! =

∑

σ∈Sd

signσ
1

σ(1)

1

σ(1) + σ(2)
..

1

σ(1) + .. + σ(d)
.
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Proof For n ≥ d let 0 = t0 < .. < tn ≤ T be time-points, let pi := Xti be the corresponding
points on the moment curve and denote by Xn the piecewise linear curve through those
points. We will show

1

d!
〈
S
(
Xn
)

0,T
, Invd

〉= ∣∣Convex-Hull
(
Xn

[0,T ]
)∣∣.

First note that for any 1 ≤ i0 < i1 < .. ≤ id ≤ n,

det

[
1 1 .. 1

pi0 pi1 .. pid

]
=

∏

0≤�<k≤n

(tik − ti� ) > 0, (6)

since it is a Vandermonde determinant.
We will decompose P := {p0, ..,pn} into (overlapping) sets S� with cardinality d + 1

and such that10

∣∣Convex-Hull(p0, ..,pn)
∣∣=
∑

�

∣∣Convex-Hull(S�)
∣∣.

A face of P is a subset F ⊂ P such that its convex hull Convex-Hull(F ) equals the inter-
section of Convex-Hull(P ) with some affine hyperspace. A face is a facet, if its affine span
has dimension d − 1. The following is a fact that is true for any polytope spanned by some
points P : up to a set of measure zero, for every point x in Convex-Hull(P ), the line connect-
ing p0 to x exits Convex-Hull(p0, ..,pn) through a unique facet of Convex-Hull(p0, ..,pn)

contained in {p1, ..,pn}. Hence

∣
∣Convex-Hull(p0, ..,pn)

∣
∣=
∑

F

∣
∣Convex-Hull(p0 ∪ F)

∣
∣,

where the sum is over all such facets.
Our points pi lie on the moment curve. Then, by (6), any collection of points

pi0 ,pi1 , ..,pid is in general position. This means that every facet of P must have exactly
d points (and not more). Facets of Convex-Hull(P ) with d points are characterized by
Gale’s criterion ([17, Theorem 3], [53, Theorem 0.7]):

the points pi1 , ..,pid , with distinct ij ∈ {0, .., n} form a facet of P if and only if any two
elements of {0, .., n} \ {i1, .., id} are separated by an even number of elements in {i1, .., id}.11

d odd
We are looking for such {ij } such that i1 ≥ 1. Those are exactly the indices with

• i�+1 = i� + 1 for � odd
• id = n.

Together with i0 := 0 these form the indices of Lemma 3.23.

d even
We are looking for such {ij } such that i1 ≥ 1. Those are exactly the indices with

10The following can be formulated in terms of pulling triangulations, compare [49, Chap. 16], [31]. For a
proof that the pulling triangulation is in fact a triangulation, see [46, Proposition 8.6].
11For example, with n = 4 and dimension d = 3, the indices {0,1,2}, {0,2,3}, {0,3,4}, {0,1,4}, {1,2,4},
{2,3,4} lead to the facets, which in this dimension are triangles.
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• i�+1 = i� + 1 for � odd.

Together with i0 := 0 these form the indices of Lemma 3.23.
Hence

∣∣Convex-Hull
(
Xn

[0,T ]
)∣∣=

∑

i

∣∣Convex-Hull(pi0 , ..,pid )
∣∣.

Now by Lemma 3.22

∣∣Convex-Hull(pi0 , ..,pid )
∣∣= 1

d!
∣
∣∣
∣det

[
1 1 .. 1

pi0 pi1 .. pid

]∣∣∣
∣ .

The determinant is in fact positive here, by (6). We can hence omit the modulus and get

∣∣Convex-Hull
(
Xn

[0,T ]
)∣∣=

∑

i

∣∣Convex-Hull(pi0 , ..,pid )
∣∣

=
∑

i

1

d! det

[
1 1 .. 1

pi0 pi1 .. pid

]

= 1

d!
〈
S
(
Xn
)

0,T
, Invd

〉
,

by Lemma 3.23.
The statement of the lemma now follows by piecewise linear approximation of X using

continuity of the convex hull, which follows from [11, Lemma 3.2], and of iterated integrals
[16, Proposition 1.28, Proposition 2.7]. �

4 Rotations

Let

SO
(
R

d
)= {A ∈ GL

(
R

d
) : AA� = id,det(A) = 1

}
,

be the group of rotations of Rd .

Definition 4.1 We call φ ∈ T (Rd) an SO invariant if

〈
S(X)0,T , φ

〉= 〈S(AX)0,T , φ
〉

for all A ∈ SO(Rd) and all curves X. Alternatively, as explained in Sect. 3,

A�φ = φ,

for all A ∈ SO(Rd), where the action on T (Rd) was given in Definition 3.2.

Since det(A) = 1, any GL invariant of weight w ≥ 1 (Sect. 3) is automatically an SO
invariant. But there are SO invariants that are not GL invariants (of any weight), for example,
for d = 2, φ := x1x1 + x2x2.
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Switching to the perspective of multilinear maps, this is the map (v1, v2) 	→ 〈v1, v2〉. It
is shown, see for example [50, Theorem 2.9.A], that all invariants are built from the inner
product and the determinant.

Recently, a linear basis for these invariants has been constructed. To formulate the result,
we need to introduce some notation from [28]. Define

I (r, n) := {(i1, .., ir ) : 1 ≤ i1 < .. < ir ≤ n
}
.

Use the following partial order on these sequences: for a ∈ I (r, n), a′ ∈ I (r ′, n)

a ≥ a′

if r ≤ r ′ and aj ≥ a′
j for j ≤ r .

For c ∈ I (d,n) and v1, .., vn ∈R
d , define

u(c)(v1, .., vn) := d-minor of the d × n matrix (v1, .., vn), with columns given by c.

For a, b ∈ I (r, n) × I (r, n) with r ≤ d and v1, .., vn ∈R
d , define

p(a, b)(v1, .., vn) := r-minor of the matrix 〈vi, vj 〉, rows given by a, columns given by b

Theorem 4.2 ([28, Theorem 12.5.0.8]) Let V be a d-dimensional vector space with inner
product 〈·, ·〉. A basis for the space of multilinear maps

ψ : V × · · · × V︸ ︷︷ ︸
n times

→R

that satisfy

ψ(Av1,Av2, . . . ,Avn) = ψ(v1, v2, . . . , vn)

for all A ∈ SO(V ) and v1, . . . , vn ∈ V is given by the maps

F(v1, .., vn) = p
(
a(1), b(1)

)
(v1, .., vn) · .. · p(a(r), b(r)

)
(v1, .., vn)

· u(c(1)
)
(v1, .., vn) · .. · u(c(s)

)
(v1, .., vn),

satisfying

• c(j) ∈ I (d,n) for each j = 1, .., s

• a(j), b(j) ∈ I (tj , n) for some 1 ≤ tj ≤ d − 1 for each j = 1, .., r

• a(1) ≥ b(1) ≥ a(2) ≥ .. ≥ b(r) ≥ c(1) ≥ .. ≥ c(s)

• every number 1, .., n appears in exactly one of the sequences a(1), .., a(r), b(1), .., b(r),

c(1), .., c(s); (in particular n = 2 · C1 + d · C2 for some C1, C2 non-negative integers)

Example 4.3 We give examples of these sequences for d = 2.
n = 1: There is no such set of sequences, since non-negative integers C1, C2 with 2 · C1 +
2 · C2 = 1 cannot be found.
n = 2: Allowed sets of sequences are

• c(1) = (1,2); meaning that F(v1, v2) = 〈v1, v2〉
• a(1) = (2), b(1) = (1); meaning that F(v1, v2) = det[v1v2]
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n = 3: There is no such set of sequences.
n = 4: Allowed sets of sequences are

• a(1) = (4), b(1) = (3), a(2) = (2), b(2) = (1); meaning that F(v1, v2, v3, v4) =
〈v4, v3〉〈v2, v1〉.

• a(1) = (4), b(1) = (3), c(1) = (1,2); meaning that F(v1, v2, v3, v4) = 〈v4, v3〉det[v1v2].
• a(1) = (4), b(1) = (2), c(1) = (1,3)

• a(1) = (3), b(1) = (2), c(1) = (1,4)

• c(1) = (3,4), c(2) = (1,2)

• c(1) = (2,4), c(2) = (1,3)

In the setting of T (Rd) we have

Proposition 4.4 The SO invariants of homogeneity n are spanned by

poly(Ψ ),

where Ψ ranges over the invariants of the previous theorem and poly is given in Lemma 2.4.

In the case d = 2, there is another way to arrive at a basis for the invariants. Taking
inspiration from [15], which concerns rotation invariants of images, we work in the complex
vector space T (C2).12

Theorem 4.5 Define

z1 = x1 + ix2

z2 = x1 − ix2.

The space of SO invariants on level n in T (C2) is spanned freely by

z = zj1 · .. · zjn with #{r : jr = 1} = #{r : jr = 2}.

The space of SO invariants on level n in T (R2) is spanned freely by

Re[z], Im[z] with #{r : jr = 1} = #{r : jr = 2} and z1 = 1.

Remark 4.6 In particular for d = 2 and n even, the dimension of rotation invariants on level
n in T (R2) is equal to

(
n

n/2

)
.

Proof 1. The elements z are invariant
Let

Aθ :=
(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)

12One may think of this as the space of noncommuting polynomials in x1, x2 with complex coefficients,

or, equivalently, as the complexification [42, Chap. 1] of the vector space T (R2). An element A ∈ GL(R2)

then acts on T (C2) by the prescription in Definition 3.2. More abstractly: this is the diagonal action of the
complexification of A on T (C2).
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Then (recall Definition 3.2)

A�
θ z1 = A�

θ (x1 + ix2)

= cos(θ)x1 + sin(θ)x2 + i
(− sin(θ)x1 + cos(θ)x2

)

= e−iθ z1

A�
θ z2 = eiθ z2.

Hence

A�
θ zj1 · .. · zjn = zj1 · .. · zjn∀θ if and only #{r : jr = 1} = #{r : jr = 2}.

2. The elements z form a basis
Now xj1 ..xjn : j� ∈ {1,2} is a basis of πnT (C2) with respect to C. Hence zj1 ..zjn is (the

map (x1, x2) 	→ (z1, z2) is invertible). By Step 1 we have hence exhibited a basis (with
respect to C) for all invariants in πnT (C2).

3. Real invariants
The space of SO invariants on level n in T (C2) is spanned freely by the set of

zj1 · .. · zjn with #{r : jr = 1} = #{r : jr = 2}.
Adding and subtracting the elements with j1 = 2 from the elements with j1 = 1, we get that
the space of SO invariants on level n in T (C2) is spanned freely by the set of

(zj1 · .. · zjn + z3−j1 · .. · z3−jn ) and (zj1 · .. · zjn − z3−j1 · .. · z3−jn )

with #{r : jr = 1} = #{r : jr = 2} and j1 = 1.

Because z3−j1 · .. · z3−jn is the complex conjugate of zj1 · .. · zjn , this means that the space of
SO invariants on level n in T (C2) is spanned freely by the set of

Re(zj1 · .. · zjn) and Im(zj1 · .. · zjn)

with #{r : jr = 1} = #{r : jr = 2} and j1 = 1.

This is an expression for a basis of the SO invariants in terms of real combinations of basis
elements of the tensor space. They thus form a basis for the SO invariants for the free real
vector space on the same set, namely πnT (R2). �

Example 4.7 Consider d = 2, level n = 2

11+ 22

−12+ 21

Level n = 4

1111− 1122+ 1212+ 1221+ 2112+ 2121− 2211+ 2222

−1112− 1121+ 1211− 1222+ 2111− 2122+ 2212+ 2221

1111+ 1122− 1212+ 1221+ 2112− 2121+ 2211+ 2222
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−1112+ 1121− 1211− 1222+ 2111+ 2122− 2212+ 2221

1111+ 1122+ 1212− 1221− 2112+ 2121+ 2211+ 2222

1112− 1121− 1211− 1222+ 2111+ 2122+ 2212− 2221

Consider d = 3, level n = 2

11+ 22+ 33

Level n = 3.

123− 132+ 312− 321+ 231− 213

Consider d = 4, level n = 2

11+ 22+ 33+ 44.

Level n = 4

1144+ 4422+ 4444+ 3333+ 1122+ 4433+ 1133+ 4411+ 2211+ 3344

+ 1111+ 2244+ 2222+ 3322+ 2233+ 3311

+ 4 more

5 Permutations

Denote by Sd the group of permutations of [d] := {1, .., d}.

Lemma 5.1 For σ ∈ Sd , define M(σ) ∈ GL(Rd) as

M(σ)ij = 1 if i = σ(j).

Then M : Sd → GL(Rd) is a group homomorphism and moreover M(σ−1) = M(σ)�.13

Proof Regarding the first point, for i = {1, .., d},
M(σ)M(τ)ei = M(σ)eτ(i) = eσ(τ(i)) = M(στ)ei .

Regarding the last point, note the following sequence of equivalences.

Mij

(
σ−1
)= 1 ⇔ i = σ−1(j) ⇔ j = σ(i) ⇔ Mji(σ ) = 1.

This proves the claim. �

Sd then acts on T ((Rd)) and T (Rd) via Definition 3.2. Explicitly,

σ · xi1 ..xin = xσ(i1)..xσ(in).

13M is sometimes called the defining representation of Sd .
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Definition 5.2 We call φ ∈ T (Rd) a permutation invariant if

〈
S
(
M(σ)X

)
0,T

, φ
〉= 〈S(X)0,T , φ

〉

for all σ ∈ Sd and all curves X. Alternatively, as explained in Sect. 3,

M(σ)�φ = φ,

for all σ ∈ Sd . Equivalently,

M(σ)φ = φ,

for all σ ∈ Sd .

We follow [1, Sect. 3]. To a monomial

xi1 · .. · xin ,

we associate the following set partition of [n] := {1, .., n}
∇(xi1 · .. · xin) := {{� : i� = p} : p ∈ [d]} \ {{}}.

Example 5.3 Let d = 3, then

∇(x2x3x2x2x1) = {{1,3,4}, {2}, {5}}.

Note that for every permutation σ ∈ Sd ,

∇(xi1 · .. · xin) = ∇(xσ(i1) · .. · xσ(in)). (7)

Proposition 5.4 ([1, Sect. 3]) Define

MA :=
∑

i:∇(xi1 ..xin )=A

xi1 ..xin .

Then {MA : A is set partition of [n] and |A| ≤ d} is a linear basis for the space of permuta-
tion invariants of homogeneity n.

Remark 5.5 The generating function for partitions with at most d blocks is given by

∑d+1
�=1 x�

∏d

m=�(1 − m x)
∏d

�=1(1 − � x)
.

This follows from summing up [45, (1.94c)].
For example d = 2,

(1 − x)(1 − 2x) + x(1 − 2x) + x2

(1 − x)(1 − 2x)
= 1 − x

1 − 2x
,

which is the generating function of the sequence (https://oeis.org/A011782)

1,20,21,22,23,24, ..

https://oeis.org/A011782
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For d = 3 one gets, the generating function

(1 − x)(1 − 2x)(1 − 3x) + x(1 − 2x)(1 − 3x) + x2(1 − 3x) + x3

(1 − x)(1 − 2x)(1 − 3x)
,

which is the generating function of the sequence (https://oeis.org/A124302)

1,
(
30 + 1

)
/2,
(
31 + 1

)
/2,
(
32 + 1

)
/2, ..

We are not aware of a general explicit formula for the number of partitions (i.e. the
coefficients of the generating function).

Proof of Proposition 5.4 By (7), each MA is permutation invariant. Moreover, since |A| ≤
d , MA is nonzero.

For A, A′ distinct set partitions of [n], the monomials in MA and the monomials in MA′
do not overlap. Hence the proposed basis is linearly independent.

Now, if φ is permutation invariant and if for some i, i ′, ∇(xi1 ..xin ) = ∇(xi′1 ..xi′n) then
the coefficient of xi and xi′ must coincide. Hence the proposed basis spans invariants of
homogeneity n. �

Example 5.6 Consider d = 3
Order n = 1

1+ 2+ 3

Order n = 2

33+ 22+ 11

32+ 31+ 23+ 21+ 13+ 12

Order n = 3

333+ 222+ 111

332+ 331+ 223+ 221+ 113+ 112

323+ 313+ 232+ 212+ 131+ 121

322+ 311+ 233+ 211+ 133+ 122

321+ 312+ 231+ 213+ 132+ 123

6 An Additional (Time) Coordinate

Assume now that X = (X0,X1, ..,Xd) : [0, T ] → R
1+d . Here X0 plays a special role, in that

we assume that it is not affected by the space transformations under consideration.
Adding an “artificial” 0-th component, usually keeping track of time, X0

t := t , is a com-
mon trick to improve the expressiveness of the signature. In particular, if such an X0 is
monotonically increasing, the enlarged curve (X0,X1, ..,Xd) never has any “tree-like” com-
ponents (compare Sect. 7), no matter what the original (X1, ..,Xd) was.

Consider GL invariants for the moment.

https://oeis.org/A124302
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Definition 6.1 Let

GL0
(
R

d
) := {A ∈ GL

(
R

1+d
) : Ae0 = A−1e0 = e0

}
,

the space of invertible maps of R
1+d leaving the first direction unchanged. We call φ ∈

T (R1+d) a GL0 invariant of weight w if

A�φ = (detA)wφ,

for all A ∈ GL0(R
d).

Consider the GL(R2) invariant of weight 1

x1x2 − x2x1.

Since elements of GL0(R
2) leave the variable x0 unchanged, a straightforward way to pro-

duce GL0 invariants presents itself: insert x0 at the same position in every monomial. For
example

x1x0x2 − x2x0x1

is a GL0(R
2) invariant of weight 1. We now formalize this idea and show that we get every

GL0 invariant this way.
Define the linear map Remove of “removing instances of x0” on monomials, as

Removexi1 ..xim :=
∏

�:i� 
=0

xi� ,

so for example

Removex0x1x1x0x3 = x1x1x3

Removex0x0 = 1.

Define for U ⊂ [m] and i = (i1, .., im)

i|U = (i� : � = 1, ..,m;� ∈ U).

Define the linear map of restriction to U on polynomials of order m by defining on
monomials

xi |U := xi|U

so for example

xi1xi2xi3 |{1,3} = xi1xi3 .

For z = (z1, .., zm+1) ∈ N
m+1 denote by Insertz the linear operator on polynomials of

order m by defining it on monomials as follows. For a monomial xi1 ..xim of order m, Insertz
inserts z1 occurrences of x0 before xi1 , z2 occurrences of x0 before xi2 , .., zm occurrences of
x0 before xim and zm+1 occurrences of x0 after xim . For example

Insert(2,1,4)x1x2 = x0x0x1x0x2x0x0x0x0.
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Theorem 6.2 A basis for the space of GL0 invariants of weight w, homogeneous of degree
m, is given by the polynomials

Insertzψ,

with 0 ≤ n ≤ m, ψ ranging over the basis for GL invariant of weight w and homogeneity n

(Proposition 3.11) and z ∈N
n+1 such that

∑
� z� = m − n.

Proof Let n, ψ , z be as in the statement. Then, for A0 = diag(1,A) ∈ GL0(R
d), with A ∈

GL(Rd),

A0 Insertzψ = InsertzAψ = (detA)w Insertzψ.

Therefore Insertzψ is GL0 invariant of weight w.
On the other hand, let φ of order m be a GL0 invariant modulo time of weight w. Define

for U ⊂ [m]
φU :=

∑

i:i�=0,�∈U ;ij 
=0,j /∈U

〈φ,xi〉xi,

which collects all monomials having x0 exactly at the positions in U . Then

φ =
∑

U⊂[m]
φU .

Now, since φ is GL0 invariant of weight w and since GL0 leaves

span{xi : i� = 0, � ∈ U ; ij 
= 0, j /∈ U}
invariant, we get that φU is GL0 invariant of weight w. Clearly, there is 0 ≤ n ≤ m and
z ∈N

n+1 such that

Insertz RemoveφU = φU .

Lastly, RemoveφU is GL invariant, since for A0 = diag(1,A) ∈ GL0(R
d), with A ∈

GL(Rd),

ARemoveφU = RemoveA0φ
U = (detA0)

w RemoveφU = (detA)w RemoveφU .

Hence every invariant is in the span of the set given in the statement. They are linearly
independent, and hence form a basis. �

The corresponding statements for rotations and permutations are completely analogous,
so we omit them.

7 Discussion and Open Problems

We have presented a novel way to extract invariant features of d-dimensional curves, based
on the iterated-integral signature. We have identified all those features that can be written as
a finite linear combination of terms in the signature.
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Among the techniques used previously for finding invariants of curves, the method of
“integral invariants” [13] is closest to ours (it has been used for example in [19] for character
recognition). In that work, for a curve X : [0, T ] → R

d , d = 2,3, the building blocks for
invariants are expressions of the form

∫ T

0

(
X1

r

)α1
..
(
Xd

r

)αd
dXi

r , i = 1, .., d. (8)

Using an algorithmic procedure, some invariants to certain subgroups of G ⊂ GL(Rd) are
derived. In particular for d = 2 and G = GL(Rd) the following invariants are given

I1 = 1

2

∫ T

0
X1

0,rdX2
r − 1

2
X1

0,tX
2
0,t

I2 =
∫ T

0
X1

0,rX
2
0,rdX2

r X1
0,t − 1

2

∫ t

0

(
X1

r

)2
dX2

r X2
0,t

I3 =
∫ T

0
X1

0,r

(
X2

0,r

)2
dX2

r X2
0,T −

∫ T

0

(
X1

0,r

)2
X2

0,rdX2
r X1

0,T X2
0,T

+ 1

3

∫ T

0

(
X1

0,r

)3
dX2

r X2
0,rX

2
0,r − 1

12

(
X1

0,t

)3(
X2

0,t

)3
.

By the shuffle identity (Lemma 2.1), we can write these as Ii = 〈S(X)0,T , φi〉, with

φ1 := 1

2
12− 1

2
12

φ2 := 1

3
1221+ 1

3
1212− 2

3
1122+ 1

3
2121+ 1

3
2112− 2

3
2211

φ3 := −121212− 211122+ 212121+ 221112− 121221+ 122211− 112212

+122112−211212−211221−121122+122121− 3222111+ 3111222

+ 221121+ 212211− 112122+ 212112− 112221+ 221211.

One can easily check that these lie in the linear span of the invariants given in Proposition 4.4
(or Theorem 4.5), as expected.

We note that expressions of the form (8) are not enough to uniquely characterize a path.
Indeed, the following lemma gives a counterexample to the conjecture on p. 906 in [13] that
“signatures of non-equivalent curves are different” (here, the “signature” of a curve means
the set of expressions of the form (8)).

Lemma 7.1 Consider the two closed curves X+ and X− in R
2, given for t in [0,2π] as

X±,1
t = ± cos t

X±,2
t = sin 2t.

Then all the expressions (8) coincide on X+ and X−.14

14Note that X+ and X− are not tree-like equivalent and therefore have different (iterated-integral) signatures.
The lowest level on which they differ is level 4.
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Fig. 2 The lemniscate of
Gerono. Traversing it once from
each of the two starting points
indicated gives two distinct
closed curves with distinct
iterated-integral signatures, but
which cannot be distinguished
with the “signature” of [13]

These curves both trace a figure called the lemniscate of Gerono which is illustrated in
Fig. 2.

Proof Consider the function f m
n (t) := cosm t sinn t , where m and n are nonnegative integers.

If n is odd, then f m
n (t) = −f m

n (2π − t) so
∫ 2π

0 f m
n (t) dt is zero. If m is odd, then

∫ 2π

0
f m

n (t) dt = −
∫ − 3π

2

π
2

f m
n

(
π

2
− t

)
dt =

∫ π
2

− 3π
2

f n
m(t) dt =

∫ 2π

0
f n

m(t) dt = 0.

Thus
∫ 2π

0 f m
n (t) dt can only be nonzero if m and n are both even.

Any expression like (8) is either of the form

A±
m,n =

∫ 2π

0

(
X±,1

t

)m(
X±,2

t

)n
dX±,1

t

=
∫ 2π

0
(±1)m cosm t sinn 2t (∓ sin t) dt

= ∓2n(±1)m

∫ 2π

0
cosm+n t sinn+1 t dt

=
{

0 n even or m even

−2n
∫ 2π

0 cosm+n t sinn+1 t dt otherwise

or of the form

B±
m,n =

∫ 2π

0

(
X±,1

t

)m(
X±,2

t

)n
dX±,2

t

=
∫ 2π

0
(±1)m cosm t sinn 2t (2 cos 2t) dt

= 2n+1(±1)m

∫ 2π

0
cosm+n t sinn t

(
cos2 t − sin2 t

)
dt

=
{

0 n odd or m odd

2n+1
∫ 2π

0 cosm+n t sinn t (cos2 t − sin2 t) dt otherwise.
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Both these expressions are free from the symbols ± and ∓. Therefore these two curves have
the same values on terms of the form (8). �

Moreover, the algorithmic nature of the construction in [13] makes it difficult to proceed
to invariants of higher order. In contrast, our method gives an explicit linear basis for the
invariants under consideration up to any order.

Regarding the question of whether our invariants are complete we propose the following
conjecture. As shown in [22], if S(X)0,T = S(Y )0,T for some curves X and Y , then X is
“tree-like equivalent” to Y . For the concrete definition of this equivalence we refer to their
paper, but let us give one example. Consider in d = 2, the constant path Xt := (0,0), t ∈
[0, T ] and the piecewise linear path Y , between the points (0,0), (1,0) and (0,0). One can
check that

S(X)0,T = S(Y )0,T = 1.

The signature has no chance of picking up these kind of “excursions” in a path; this con-
cept is formalized in “tree-like equivalence”. We suspect that the following holds true (with
corresponding formulations for the other subgroups of GL(Rd)).

Conjecture 7.2 Let X,Y : [0, T ] → R
d be two curves such that

〈
S(X)0,T , φ

〉= 〈S(Y )0,T , φ
〉
,

for all SO invariants given in Proposition 4.4. Then there is a curve X̄, tree-like equivalent
to X, and a rotation A ∈ SO(Rd), such that

AX̄ = Y.

In Proposition 3.11, Proposition 4.4 and Proposition 5.4 we have established a linear ba-
sis for invariants for every homogeneity. As already mentioned in Remark 3.15, owing to the
shuffle identity, there are algebraic relations between elements of different homogeneity. An
interesting open problem is then to find a minimal set of generators for the set of invariants,
considered as a subalgebra of the shuffle algebra. This applies to all subgroups of GL(Rd)

and their corresponding invariants.
Lastly, a word on (computational) complexity. We have seen in Remark 3.10 the dimen-

sions of GL invariant elements (which is a lower bound on the dimensions of SO invariant
elements).15 In Remark 5.5 we have seen the dimensions for the permutation invariant ele-
ments.

Computing the signature itself up to level n has complexity Ω(dn), since d + .. + dn

integrals need to be calculated. So any method that calculates the invariant features of a
curve X by first calculating its signature and extracting them (see Remark 3.14) will have
computational complexity dominated by the calculation of the signature. Furthermore, the
calculation of the invariant elements is a computation that can be done offline (they do not
depend on the curve X).

This leaves several directions of future research.

15In this section we take “invariant element” to mean the elements of the space T (Rd ), incarnations of which
can be seen in Sect. 3.1. They do not depend on any curve X one might be interested in.
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• Is it possible to apply kernelization techniques similar to the ones used for the entire
(non-invariant) signature in [25]? These techniques, in the non-invariant setting, allow
to use information of the signature up to high levels and dimension for certain learning
algorithms.

• We have studied in this paper linear expressions on the signature that are invariant to a
group action. This was justified by using the shuffle identity (Lemma 2.1), which tells
us that any polynomial functional on the signature can in fact be linearized. One can
also consider a fixed level n of the signature and look for all nonlinear expressions that
are invariant under the group action. This is the classical problem of invariant theory for
polynomial rings [47, Sect. 4]. On the one hand, this makes it possible to “peek ahead”
in the signature, since one gets invariant information that would only be seen in linear
expressions of higher levels than n. On the other hand, except for special cases, there are
no explicit expressions for these nonlinear invariant. One has to proceed algorithmically
(for example via Derksen’s algorithm, [8]) which only works for low dimension d and
low levels n. Since the calculation of those nonlinear invariant elements can also be done
offline it would nonetheless be nice to have a tabulation of nonlinear invariants (as far as
existing algorithms can reach).

• For GL invariants, in Remark 3.25 we conjecture the existence of a “GL invariant” sig-
nature. This could improve computation time, since no non-invariant integrals have to be
computed.
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