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Abstract
Drosophila suzukii is a serious pest of soft fruit worldwide. With the global over-dependence on broad-spectrum pesti-
cides, a strong imperative exists for more environmentally friendly and targeted methods of control. One promising avenue 
involves employing synthetic neuropeptide analogues as insecticidal agents to reduce pest fitness. Neuropeptides, central 
to the regulation of physiological and behavioural processes, play a vital role in cold and desiccation survival. Building 
upon this, the current study investigated the effects of biostable kinin, the cardioacceleratory peptide CAP2b and pyrokinin 
(PK) analogues (the latter of which have previously displayed cross-talk with the capa receptor), on desiccation, starvation 
and cold stress tolerance of the pest, D. suzukii, and the closely related non-pest, D. melanogaster. Results demonstrated 
analogues of the superfamily (CAP2b and PK derived) significantly impacted survival of the target insect under conditions 
of desiccation stress. However, these peptides enhanced desiccation stress survival in relation to controls, suggesting that 
they may act as antagonists of the capa signalling pathway in the Malpighian tubules. Of particular note was the ability of 
analogues 1895 (2Abf-Suc-FGPRLa) and 1902 (2Abf-Suc-FKPRLa) to impact D. suzukii but not D. melanogaster. A focus 
on native Drosophila CAP2b/PK and kinin sequences in analogue development may yield pure agonists with diuretic action 
that may reduce desiccation stress survival in the pest flies. In highlighting the PRXamide neuropeptide superfamily more 
generally, and the structures of promising analogues more specifically, this research will feed the evolution of next-generation 
analogues and drive forward the development of neuropeptidomimetic-based agents.

Keywords  CAP2b · Dromekinin · Drosophila suzukii · G-protein-coupled receptors · Insecticide · Peptidomimetics · 
Pyrokinin

Key message

•	 The employment of synthetic neuropeptide analogues 
represents a novel approach to target-specific and envi-
ronmentally friendly pest control.

•	 Biostable kinin, CAP2b and pyrokinin (PK) analogues 
were developed and tested ex vivo in Malpighian tubule 
fluid secretion assays.

•	 Analogues were subsequently tested in vivo for an abil-
ity to reduce the fitness of a pest species (Drosophila 
suzukii) under a variety of stress conditions relative to a 
non-pest species (Drosophila melanogaster).

•	 Results highlight the structure of neuropeptides of the 
PRXamide superfamily as candidates in the drive for 
neuropeptidomimetic-based insecticidal agents.

Introduction

Drosophila suzukii Matsumura (Diptera: Drosophilidae) is 
a pest of soft fruits worldwide (Asplen et al. 2015) and a 
close relative of the model organism D. melanogaster. Its 
pest status is due to the female’s use of a specialised serrated 
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ovipositor to deposit eggs in ripe pre-harvest soft fruit crops 
(Atallah et al. 2014; Hamby et al. 2016). Recent research 
effort has focused on management strategies to minimise 
further spread of D. suzukii and associated economic losses, 
with a focus on detection, tracking and trap and bait design 
(Landolt et al. 2012; Feng et al. 2018; Frewin et al. 2017; 
Huang et al. 2017), biological control (e.g. Becher et al. 
2017; Garriga et al. 2018; Giorgini et al. 2018; Girod et al. 
2018; Woltz et al. 2015), harvesting techniques (Leach et al. 
2018) and the development of biopesticides (Fanning et al. 
2018). However, current management programs still rely 
heavily on broad-spectrum insecticides (Desneux et al. 2007; 
Diepenbrock et al. 2017). With the negative effects of chemi-
cal insecticides well documented (Pimentel et al. 1992), a 
strong imperative exists to develop more target-specific and 
‘greener’ methods of pest control.

One promising avenue of pest control research involves 
the development and employment of neuropeptide synthetic 
mimetics (Nachman 2009). Neuropeptides are regulatory 
peptides and, within the insects, have functional roles in 
growth and development, behaviour and reproduction, 
metabolism and homeostasis and muscle movement (Alt-
stein and Nässel 2010). Neuropeptides and their receptors 
(G-protein-coupled receptors, GPCRs) offer promising 
targets in the development of a new generation of insec-
ticidal agents that selectively reduce the fitness of target 
pest insects, whilst minimising detrimental environmental 
impacts (Nachman 2009; Van Hiel et al. 2010; Audsley and 
Down 2015). Fundamental to this is an enhanced under-
standing of ligand–GPCR interactions to aid in the design 
of neuropeptide-based insecticidal agents.

Three neuropeptide families were selected for study 
including the insect cardioacceleratory peptides (capa, 
CAP2b; Kean et al. 2002), the pyrokinins (PK; Holman et al. 
1986) and the kinins (Holman et al. 1999). Neuropeptides 
of the capa family were first identified in the moth Manduca 
sexta (CAP2b; Huesmann et al. 1995). Since their discov-
ery, these neuropeptides have been shown to stimulate heart 
contractions (Huesmann et al. 1995), rapid fluid secretion 
by Malpighian (renal) tubules (Davies et al. 1995) and to 
modulate desiccation and cold tolerance in both Drosophila 
melanogaster and D. suzukii (Terhzaz et al. 2015). Widely 
distributed among invertebrates, the capa peptides belong to 
the PRXamide superfamily that can be further subdivided 
into three major classes: capa peptides, pyrokinins (PK) and 
ecdysis triggering hormone (ETH). Capa peptides may be 
defined by a characteristic C-terminus FXPRVamide.

The second family, the pyrokinins (PK), feature a char-
acteristic C-terminus FXPRLamide and belong to the 
FXPRLaminde (pyrokinin/PBAN) family and the PRXa-
mide superfamily (Altstein et al. 2013). First identified in 
the cockroach Leucophaea maderae, PK was found to be 
myotropic, activating the cockroach hindgut (Holman et al. 

1986). However, the subsequent isolation of PKs in other 
invertebrates has led to some confusion over nomenclature 
with peptides featuring the characteristic C-terminus FXPR-
Lamide being named after their functions, e.g. pheromone 
biosynthesis-activating neuropeptides (PBAN) and diapause 
hormone (DH), which are N-terminally extended pyrokinins 
found primarily in Lepidoptera, with specific neuronal and 
hormonal functions (DiNER; Yeoh et al. 2017). Pyrokinins 
are known to have roles in insect development, mating, mus-
cle contraction and tannin (Altstein et al. 2013).

The final group, the insect kinins are multifunctional 
neuropeptides sharing a conserved C-terminal pentapeptide 
motif FX1X2WGamide, where X1 can be Histidine, Aspara-
gine, Serine or Tyrosine, and X2 can be Serine, Proline or 
Alanine (Holman et al. 1999). Since their discovery, kinins 
have been identified in most insects including D. suzukii 
(Terhzaz et al. 2017) with the exception of Coleoptera (Hal-
berg et al. 2015), and with roles in myostimulation (Holman 
et al. 1987; Schoofs et al. 1993), fluid secretion by the Mal-
pighian tubules (Coast et al. 1990; Radford et al. 2002; Dow 
2009; Coast et al. 2011), the release of digestive enzymes 
(Harshini et al. 2002, 2003) and inhibition of larval weight 
gain (Nachman et al. 2003; Seinsche et al. 2000).

In Drosophila, tolerance to cold and desiccation stress 
is modulated by gene expression for key physiological 
responses including ion transport, carbohydrate metabo-
lism, antioxidants, immunity, signalling and gene expression 
pathways (Davies et al. 2014; Terhzaz et al. 2015). Recent 
work has also identified neuroendocrine signalling by kinin 
and capa peptides as a control mechanism of environmental 
stress tolerance, with the Malpighian tubules representing 
the primary target of neuropeptide action (Terhzaz et al. 
2012, 2015, 2017; Cannell et al. 2016). Here, capa acts to 
increase intracellular calcium (Ca2+), triggering a nitric 
oxide/cGMP signalling pathway in the tubule’s principal 
cells (Rosay et al. 1997; Kean et al. 2002), whilst kinin acts 
on tubule stellate cells to elevate intracellular calcium (Ca2+) 
and chloride shunt conductance (Terhzaz et al. 1999; Rad-
ford et al. 2002; Cabrero et al. 2014). Unlike capa and kinin, 
PKs are not known to have roles in environmental stress 
tolerance. However, cross-activity of PK analogues has been 
observed, with analogues displaying activity on recombinant 
capa receptors of Tribolium castaneum (Jiang et al. 2014, 
2015). For this reason, selected PK analogues have been 
included in the current study into Drosophila desiccation 
and thermal stress, notably 1895 (Table 1) which exhibited 
agonist activity, and 1896 and 1902 (Table 1) which exhib-
ited antagonist activity, on the T. castaneum TcCAPAr (Jiang 
et al. 2015). Furthermore, the addition of hydrophobic moi-
eties to the N-terminus of PRXamide analogues, as exhib-
ited by analogues 1895, 1896 and 1902 (Table 1), results in 
greater in vivo biostability (Zhang et al. 2011). Analogues 
2089 and 2129 (Table 1) were subsequently designed and 
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synthesised as second-generation analogues of 1895, 1896 
and 1902 to be evaluated in the current study. For the pur-
pose of this study, these peptide analogues belonging to the 
PRXamide superfamily will be collectively referred to as 
‘CAP2b/PK’.

In addition to the Cap2b/PK analogues, kinin analogues 
were included in the current study due to their role in envi-
ronmental stress control. However, insect kinins are subject 
to rapid biological degradation by peptidases. Incorporation 
of the α-amino isobutyric acid (Aib) at the third position of 
the insect kinin active core has been shown to protect the 
primary hydrolysis site from tissue-bound peptidase (Nach-
man et al. 1997a, b, 2002; Taneja-Bageshwar et al. 2006, 
2009). Incorporation of a second Aib residue adjacent to 
the secondary peptidase hydrolysis site further enhances 
biostability (Nachman et al. 2002). Indeed, kinin analogues 
incorporating sterically bulky Aib residues adjacent to the 
primary and secondary hydrolysis sites have been shown 
to retain potent activity on receptors of the southern cattle 
tick, Rhipicephalus (Boophilus) microplus (Taneja-Bagesh-
war et al. 2006, 2009), and the dengue vector, the mosquito 
Aedes aegypti (Taneja-Bageshwar et al. 2006, 2009). For this 
reason, three biostable Aib analogues of the insect kinins 
1728, 2139 and 2139-Ac were evaluated in the current study 
(Table 1).

The current study therefore aimed to elucidate the effect 
of biostable CAP2b/PK and kinin analogues on the stress 
tolerance of the pest insect D. suzukii and the closely related 
non-pest species D. melanogaster. Biostable analogues 
(Nachman 2009) were tested ex vivo for their physiologi-
cal role in modulating fluid secretion via the Malpighian 
tubules and in vivo for their effect on desiccation, starvation 
and cold stress tolerance. To add additional validity to the 
screening process, promising analogues were further tested 
in vitro for their ability to trigger a Ca2+ signalling response 
in Drosophila S2 cells heterologously expressing prospec-
tive target receptors of the tested peptide analogues.

Material and methods

Drosophila rearing

Drosophila melanogaster wild-type flies were obtained from 
Bloomington Stock Centre and maintained on a standard 
Drosophila medium at 22 °C, 45–55% relative humidity 
and a 12:12 h light: dark photoperiod. D. suzukii flies were 
reared on standard blueberry-cornmeal agar medium, at 
26 °C, 60% humidity with a 12:12 h light: dark photoperiod 
(Terhzaz et al. 2017). Adult Drosophila of both sexes were 
used in all experiments, 6–7 days after eclosion.

Neuropeptide analogue synthesis

The synthesis of neuropeptide analogues has been previously 
described as follows: CAP2b/PK analogues (displaying prior 
cross-talk with the capa receptor) 1895 and 1902 (Zhang 
et al. 2011; Jiang et al. 2015); 1896 (Jiang et al. 2015), 2089 
and 2129 (using the method described in Zhang et al. 2011); 
kinin analogues 1728, 2139 and 2139-Ac (Taneja-Bagesh-
war et al. 2006, 2009). Analogues were purified and identity 
confirmed as detailed in Alford et al. (2019). The structures 
of the biostable analogues are displayed in Table 1.

Fluid secretion assay

Prior to in vivo screening, peptide analogues were first tested 
ex vivo for efficacy via a Ramsay fluid secretion assay for 
Drosophila Malpighian tubules (Dow et al. 1994; Terhzaz 
et al. 2017). Capa-1 at 10−5 M stimulates fluid secretion 
in D. melanogaster tubules (Kean et  al. 2002) and cal-
cium increase via the capaR (Terhzaz et al. 2012), but at 
levels which are not significantly different from 10−7 M. 
For this reason, analogues were first tested at a concentra-
tion of 1 × 10−5 M to efficiently rule out those analogues 
which failed to impact Malpighian tubule fluid secre-
tion. Analogues that stimulated fluid secretion at 10−5 M 
were subsequently tested at lower concentrations down to 
1 × 10−9 M. Briefly, Malpighian tubules from 6-d-old adult 
D. melanogaster and D. suzukii flies of mixed sex were iso-
lated in Schneider’s medium and suspended in a 9 µl drop 
of a 1:1 mixture of Schneider’s medium: Drosophila saline. 
Male and female, posterior and anterior tubules were used 
interchangeably and grouped together due to showing no 
prior significant difference in secretion rate, with 10–15 
secreting tubules per condition. Basal secretion rates were 
measured every 10 min for a period of 30 min. 1 µl of neu-
ropeptide analogue (1 × 10−4 M stock solution) was then 
added to each well, resulting in a final concentration of 
1 × 10−5 M. Secretion rates were subsequently measured for 

Table 1   CAP2b, pyrokinin and kinin analogues

Modifications are shown in bold

Code Structure

CAP2b/PK
 1895 2Abf-Suc-FGPRLa
 1896 2Abf-Suc-FTPRIa
 1902 2Abf-Suc-FKPRLa
 2089 2Abf-Suc-FTPRVa
 2129 2Abf-Suc-ATPRIa

Kinin
 1728 [Aib]FF[Aib]WGa
 2139 FF[Aib]WGa
 2139-AC Ac-FF[Aib]WGa
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an additional 30 min. Resultant data were analysed using a 
t test or Mann–Whitney U test to compare pre-stimulated 
basal time points (pooled 10–30 min) to each post-stimu-
lated secretion time point. All analogues which stimulated 
fluid secretion at the supraphysiological dose of 1 × 10−5 M 
were subsequently tested at increasingly lower concentra-
tions down to 1 × 10−9 M to test for differential sensitivity 
of the Malpighian tubules.

Microinjection of Drosophila

Native neuropeptides were diluted in Drosophila injection 
saline (Terhzaz et al. 2015) to 1 × 10−5 M. Neuropeptide ana-
logues were diluted in Drosophila injection saline to the fol-
lowing concentrations : kinin analogues 1728 (2.5 × 10−5 M), 
2139 (3.5 × 10−5 M), 2139-Ac (3.5 × 10−5 M); CAP2b/PK 
analogues 1895 (3.5 × 10−5 M), 1896 (3.5 × 10−5 M), 1902 
(3.5 × 10−5 M), 2089 (3.9 × 10−5 M), 2129 (2.0 × 10−5 M). 
Neuropeptide solutions were administered to test flies at 
a sex-adjusted injection volume of 69 nL for females and 
41 nL for males (Terhzaz et al. 2015). Injections were per-
formed using a Nanoject II Auto-Nanoliter Injector (Drum-
mond Scientific Company, Broomall, Pennsylvania). Flies 
were injected in the thoracic segment below the left haltere. 
A vehicle control was set up on each treatment day. For this, 
control flies were injected with 69 nL or 41 nL of injection 
saline and exposed to identical conditions as flies receiving 
the neuropeptide treatment. Amaranth dye (Sigma; A1016) 
was added to all injected media to assist in visualising the 
success of an injection (i.e. to ensure that fluid was injected 
below the insect cuticle). Neuropeptide-treated and vehicle 
control flies were subsequently used in the stress bioassays 
detailed below.

Desiccation tolerance bioassay

Drosophila suzukii and D. melanogaster 6-d-old male and 
female flies were treated with a neuropeptide analogue 
or injection saline (vehicle control) via microinjection as 
detailed above. Following injection, flies were placed in 
groups of ten in 30 mL empty vials (no food or water) or 
vials containing 1% agar (no food) and the open end of the 
tube sealed with a cotton plug (buzzplug, Scientific Labo-
ratory Supplies or Fly stuff, Flugs (49-103) (Bemis, NA)). 
Vials containing 1% agar provided flies with a water source 
and acted as the experimental control group. Surviving flies 
were counted every 3–4 h until no living flies remained. All 
experiments were run in triplicate with 20–30 flies for each 
species/sex/neuropeptide treatment combination. Survival 
data were subsequently analysed using a log-rank (Man-
tel–Cox) test in GraphPad Prism version 7.0.

Cold tolerance bioassay

Calculation of discriminating temperatures

The method for peptide analogue screening was adapted 
from the methodology commonly used to detect the pres-
ence of a rapid cold hardening response in insects (Lee 
et  al. 1987). Here, variation in survival is compared 
between treatment groups at a predetermined ‘discrimi-
nating temperature’ (e.g. Powell and Bale 2005). To cal-
culate a discriminating temperature, survival curves were 
first established for male and female D. suzukii and D. 
melanogaster to enable calculation of species-specific 
discriminating temperatures for subsequent neuropeptide 
testing. For this, adults of D. suzukii and D. melanogaster 
were selected at 6-d-old post-eclosion and exposed to a 
range of low temperatures (− 10 °C to − 2 °C at 1 °C inter-
vals) using a direct plunge method (Sinclair and Chown 
2006; Terblanche et al. 2008). Temperature ranges were 
selected to encompass 0–100% mortality. For each tem-
perature treatment, 30 adults of each sex and each spe-
cies were anesthetised briefly with CO2 and placed within 
plastic 0.5 mL Eppendorf tubes at densities of ten adults 
per tube, which, in turn, were placed within a glass boiling 
tube held within an alcohol bath (Haake G50 and PC200; 
Thermo Scientific, Germany) preset to the desired tem-
perature. Pieces of cotton wool were used to stopper the 
boiling tubes to limit air circulation and to ensure a more 
stable internal temperature within the tubes. Adults were 
held at the desired exposure temperature for 1 h. Follow-
ing exposure, adults were allowed to recover at the culture 
temperature in vials containing a food source and sur-
vival was assessed after 48 h. The procedure was repeated 
for each exposure temperature. A total of 270 male D. 
melanogaster, 270 female D. melanogaster, 240 male D. 
suzukii and 240 female D. suzukii were used to indepen-
dently assess the cold tolerance of each species.

Survival data were analysed by Probit analysis in 
MINITAB, version 17 (Minitab Inc., State College, Penn-
sylvania), and the LT30 (the lethal temperature resulting 
in 30% mortality of a test population) was elucidated for 
each species. The LT30 was chosen to act as a discriminat-
ing temperature for subsequent neuropeptide testing since 
it enabled detection of directional effects of subsequent 
neuropeptide treatment, but primarily in the direction of 
interest, i.e. which neuropeptides significantly increased 
mortality in the species of interest. A separate discriminat-
ing temperature was calculated for males and females of 
each species to ensure that exposure to the discriminating 
temperature posed a comparable level of thermal stress for 
each species/sex treatment group.
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Neuropeptide treatment and testing at the discriminating 
temperature

Individuals of D. suzukii and D. melanogaster were selected 
at 5-d-old post-eclosion and treated with neuropeptide ana-
logues using the microinjection method detailed above. Fol-
lowing microinjection treatment, individuals were returned 
to vials containing food at densities of approximately 20–30 
per vial and allowed to recover for 24 h at the culture tem-
perature. Following the 24-h recovery period, adults of 
D. suzukii and D. melanogaster were cold shocked at the 
discriminating temperature following the same protocol as 
used to establish the discriminating temperature. Statistical 
analyses were performed using R software (R Development 
Core Team 2013). A generalised linear model (GLM) with 
binomial family was fitted to survival data with analogue 
‘Treatment’ (peptide analogue), treatment ‘Type’ (test vs. 
control) and analogue treatment × treatment type interaction 
as factors.

Measurements of analogue‑induced intracellular 
Ca2+ signalling response

Promising analogues from in vivo assays were taken forward 
and tested in vitro for an ability to trigger an intracellular 
Ca2+ signalling response in Drosophila S2 cells (Terhzaz 
et al. 2012). Transient transfection was performed with 
Effectene Transfection Reagent (Qiagen) using 1 μg of DNA 
of inducible pMT-CapaR and pMT-Apoaequorin expression 
vectors prepared according to manufacturer’s instructions. 
Cells were plated in 6-well plates (1 × 106 cells/mL) and 
were incubated with the transfection mixture for 24 h before 
adding CuSO4 (final concentration of 500 μM) to the cell 
culture (3 mL) for 48 h to induce capaR and Apoaequorin 
protein expression. Transfected S2 cells were harvested and 
incubated with 2.5 μM coelenterazine in the dark at room 
temperature for 1 h (Radford et al. 2002). Approximately 
25,000 cells were subsequently placed in 175 μL Schnei-
der’s medium containing 10% FCS within a 5 mL Röhren 
tube (Sarstedt, Germany). Bioluminescence was recorded 
every 0.1 s using a Lumat LB 9507 luminometer (Berthold 
Technologies). Of a peptide analogue, 25 μL of a peptide 
analogue was applied to a final concentration of 10−7 M. 
Peptides were applied via the reagent rapid injectors of the 
Lumat LB 9507 luminometer into the aequorin-transfected 
S2 cell samples. This enables rapid and continuous record-
ing of luminescence of the intracellular capa-induced Ca2+ 
signalling response (Rosay et al. 1997; Terhzaz et al. 2012). 
CAP2b (and capa) causes a rapid (< 100 ms) rise of [Ca2+]i 
that remains significantly above background for 90 s. The 
detection limit of the instrument has a time resolution of 
100 ms; it may be that the actual response is even more rapid 
(Rosay et al. 1997). Accurate quantification of calcium levels 

at any point in the experiment requires the total available 
luminescence (i.e. the amount of reconstituted aequorin) to 
be known, since only a small fraction is used during the 
experiment (Cobbold and Rink 1987). Therefore, after a 
5-min recording period, tissues were disrupted in 200 μL 
lysis solution (1% (v/v) Triton X-100, 100 mM CaCl2), 
causing discharge of the remaining aequorin and allowing 
estimation of the total amount of aequorin in the sample by 
integration of total counts. The [Ca2+] concentration was 
subsequently calculated as previously described in Rosay 
et al. (1997).

Results

Fluid secretion assay

Ramsay secretion assays were performed on both D. mel-
anogaster and D. suzukii, (Fig.  1). All three kinin ana-
logues (1728, 2139 and 2139-Ac) tested at a concentration 
of × 10−5 M acted to significantly increase secretion rate 
(Fig. 1a–c). Of the CAP2b/PK neuropeptide analogues tested 
to a final concentration of × 10−5 M, four had no effect on 
Malpighian tubule secretion of either species: 1896, 1902, 
2089 and 2129. CAP2b/PK analogue 1895 caused a small 
but significant decrease in the fluid secretion of D. suzukii 
(Fig. 1d), but not in D. melanogaster.

Lower concentrations of the three kinin neuropeptide ana-
logues were tested to determine fluid secretion response of 
the Malpighian tubules of D. melanogaster and D. suzukii 
to these analogues. For analogue 1728, a final concentra-
tion of 2.5 × 10−7 M failed to elicit a response in the fluid 
secretion rate of the Malpighian tubules of either species 
(data not shown). Application of 2139 at 3.5 × 10−7  M 
caused a significant increase in the fluid secretion rate of the 
Malpighian tubules of D. suzukii but not D. melanogaster 
(Fig. 1e). Application of 2139 at the lower concentration of 
3.5 × 10−8 M failed to elicit a response in D. suzukii (data not 
shown). Analogue 2139-Ac caused a significant increase in 
both species at 3.5 × 10−7 M (Fig. 1f), but failed to do so at 
3.5 × 10−9 M (data not shown).

Desiccation stress

Results of the desiccation bioassay are displayed in Table 2, 
with selected survival curves shown in Fig. 2. Of the tested 
analogues, kinin analogue 2139 and CAP2b/PK analogue 
1896 acted to significantly reduce survival under conditions 
of desiccation stress for D. melanogaster, although the effect 
was not consistent between the sexes. Here, 2139 signifi-
cantly impacted only female survival (median survival: con-
trol 27.0 h, treatment 21.0 h) (Fig. 2a). 1896 significantly 
impacted only male survival, although median survival was 
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identical between the control and treatment group, (median 
survival: control 14.0 h, treatment 14.0 h) (Fig. 2b). Interest-
ingly, 2139 had no effect on the desiccation tolerance of D. 
suzukii (Fig. 2a), and 1896 acted to significantly increase 
the survival of female D. suzukii (median survival: control 
20.5 h, treatment 23.5 h) (Fig. 2b). CAP2b/PK analogues 
1895 and 1902 (Fig. 2b) significantly increased survival of 

both male and female D. suzukii under desiccation stress 
(1895 median survival: male control 8.0 h, treatment 10.0 h; 
female control 16.0 h, treatment 25.5 h) (1902 median sur-
vival: male control 7.0 h, treatment 14.0 h; female con-
trol 17.0 h, treatment 21.0 h), although showed no effect 
on D. melanogaster survival. Analogue 2129 significantly 
improved female D. melanogaster (median survival control: 

Fig. 1   Effects of neuropeptide analogues on fluid secretion rates of 
D. melanogaster (black) and D. suzukii (red) Malpighian tubules. 
Data show the response of tubule fluid secretion rate to a kinin 
1728 (2.5 × 10−5  M), b kinin 2139 (3.5 × 10−5  M), c kinin 2139-

Ac (3.5 × 10−5  M), d CAP2b/PK 1895 (3.5 × 10−5  M), e kinin 2139 
(3.5 × 10−7  M) and f kinin 2139-Ac (3.5 × 10−7  M). Tubules were 
stimulated with the analogue at 30  min, as indicated by the black 
arrow. Data are presented as mean ± SEM; p < 0.05
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Table 2   (a) CAP2b, pyrokinin and kinin analogue impact on desicca-
tion tolerance of male and female D. melanogaster and D. suzukii. (b) 
Experimental control flies were subjected to a starvation stress in the 

presence of a water source (1% agar). Survival is shown as median 
survival (h) ± interquartile range

(a)

Desiccation

Peptide Male Median survival ± IQR (h)
vehicle control|treatment

Female Median survival ± IQR (h)
vehicle control|treatment

D. melanogaster
 Kinin p p

  1728 22.0 ± 3.0|22.0 ± 0.0 0.579 22.0 ± 2.0|22.0 ± 0.0 0.004
  2139 20.0 ± 3.0|20.5 ± 3.0 0.614 27.00 ± 23.3|21.0 ± 6.0 < 0.001
  2139-AC 11.0 ± 13.0|11.0 ± 10.0 0.488 8.0 ± 14.3|16.0 ± 13.0 0.024

 CAP2b/PK
  1895 18.0 ± 9.0|18.0 ± 9.1 0.082 29.5 ± 7.0|31.5 ± 12.0 0.113
  1896 14.0 ± 5.0|14.0 ± 4.0 0.016 25.0 ± 9.0|25.0 ± 14.8 0.573
  1902 19.0 ± 14.0|19.0 ± 7.8 0.136 33.0 ± 15.0|29.0 ± 12.0 0.228
  2089 25.0 ± 12.5|33.0 ± 11.0 0.375 39.0 ± 14.0|37.50 ± 18.0 0.655
  2129 19.0 ± 15.8|19.0 ± 15.0 0.879 14.0 ± 12.0|27.00 ± 15.0 < 0.001

D. suzukii
 Kinin p p

  1728 6.0 ± 3.0|6.0 ± 6.3 0.939 20.0 ± 0.0|20.0 ± 0.0 0.802
  2139 7.0 ± 17.0|8.0 ± 17.0 0.198 22.0 ± 0.0|22.0 ± 0.0 0.832
  2139-AC 3.0 ± 4.00|6.0 ± 3.0 < 0.001 7.5 ± 9.0|19.0 ± 4.0 < 0.001

 CAP2b/PK
  1895 8.0 ± 7.0|10.0 ± 8.0 0.010 16.0 ± 13.5|25.50 ± 6.3 < 0.001
  1896 8.5 ± 4.0|8.5 ± 4.0 0.706 20.5 ± 7.0|23.5 ± 9.0 0.009
  1902 7.0 ± 0.8|14.0 ± 7.0 < 0.001 17.0 ± 7.8|21.0 ± 10.0 0.034
  2089 13.0 ± 7.6|15.0 ± 7.8 0.291 23.0 ± 11.0|23.0 ± 8.0 0.550
  2129 5.0 ± 6.0|6.5 ± 15.0 0.029 17.0 ± 5.0|24.0 ± 7.0 < 0.001

(b)

Starvation control

Peptide Male Median survival ± IQR (h)
vehicle control|treatment

Female Median survival ± IQR (h)
vehicle control|treatment

D. melanogaster
 Kinin p p

  1728 47.0 ± 0.0|47.0 ± 16.5 0.177 74.0 ± 21.8|74.0 ± 6.0 0.283
  2139 47.0 ± 0.0|47.0 ± 0.0 0.304 *|* NA
  2139-AC 39.0 ± 11.5|35.0 ± 15.3 0.876 *|* NA

 CAP2b
  1895 64.5 ± 33.8|76.5 ± 24.3 0.789 97.0 ± 36.3|107.5 ± 45.5 0.143
  1896 56.0 ± 14.3|75.0 ± 26.3 0.008 83.0 ± 45.8|132.0 ± 50.0 0.037
  1902 68.0 ± 28.0|62.0 ± 22.3 0.219 80.0 ± 8.5|80.0 ± 19.5 0.985
  2019 85.0 ± 21.3|93.0 ± 22.0 0.538 142.0 ± 23.0|127.0 ± 39.0 0.102
  2129 53.0 ± 18.5|63.0 ± 26.3 0.191 71.0 ± 23.8|88.0 ± 55.3 0.058

D. suzukii
 Kinin p p

  1728 30.0 ± 13.0|25.0 ± 5.8 0.734 48.5 ± 27.0|48.0 ± 6.0 0.035
  2139 23.0 ± 6.0|22.0 ± 4.8 0.282 49.0 ± 0.0|49.0 ± 0.0 0.737
  2139-AC 26.0 ± 7.0|19.0 ± 14.0 0.018 *|* NA

 CAP2b
  1895 34.5 ± 13.3|36.5 ± 17.0 0.406 75.5 ± 33.5|78.5 ± 12.0 0.899
  1896 33.5 ± 17.0|33.5 ± 11.0 0.170 52.5 ± 13.0|57.5 ± 61.0 0.476
  1902 32.5 ± 16.0|32.5 ± 15.0 0.626 69.0 ± 21.0|66.0 ± 15.0 0.675
  2019 52.0 ± 5.3|55.0 ± 11.3 0.208 85.0 ± 34.8|85.0 ± 21.0 0.321
  2129 32.5 ± 17.0|32.0 ± 19.1 0.316 81.5 ± 34.0|79.0 ± 26.5 0.811
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14.0 h, treatment 27.0 h) and both male and female D. 
suzukii survival (median survival: male control 5.0 h, treat-
ment 6.5 h; female control 17.0 h, treatment 24.0 h) under 
desiccation stress, whilst male D. melanogaster was unaf-
fected by 2129 (Fig. 2b).

The effect of analogue treatment under the experimen-
tal control condition of starvation stress in the presence 
of a water source (1% agar) was minimal. Kinin analogue 
1728 acted to decrease female D. suzukii survival, but with 
enhanced mortality only occurring after the point of LTime50 
(i.e. the time taken to kill 50% of the test population) 
(median survival 48.5 and 48.0 h for the control and treat-
ment group, respectively) (Fig. 2c). In contrast, treatment 
with 2139-Ac decreased male survival under conditions of 
starvation stress (median survival: control 26.0 h, treatment 
19.0 h) (Fig. 2c). The kinin analogues had no significant 

effect on the starvation tolerance of D. melanogaster. Of 
the CAP2b/PK analogues, only 1896 significantly increased 
survival of both male and female D. melanogaster (median 
survival: male control 56.0 h, treatment 75.0 h; female con-
trol 83.0 h, treatment 132.0 h) (Fig. 2d). The CAP2b/PK 
analogues had no significant effect on the starvation toler-
ance of D. suzukii.

Cold stress

Survival curves were calculated for D. melanogaster and 
D. suzukii of both sexes (Fig. 3), and the LT30 (discrimi-
nating temperature) was calculated as follows: D. mela-
nogaster females − 6.7 °C; D. melanogaster males − 6.8 °C; 
D. suzukii females − 4.9 °C; and D. suzukii males − 4.5 °C. 

Table 2   (continued)
Significant effects are shown in bold. Selected survival curves are displayed in Fig. 2
* analysis not possible due to low n numbers

Fig. 2   Selected survival curves of Drosophila melanogaster males 
(black), D. melanogaster females (grey), D. suzukii males (blue) and 
D. suzukii females (red) when treated with biostable peptide ana-
logues via microinjection and subjected to either desiccation stress or 
starvation stress. a Kinin analogue treatment under desiccation stress; 

b CAP2b/PK analogue treatment under desiccation stress; c Kinin 
analogue treatment under starvation stress; d CAP2b/PK analogue 
treatment under starvation stress. Treatment groups are indicated by 
the block line and vehicle control groups by the dashed line
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Calculated discriminating temperatures were used for sub-
sequent neuropeptide screening.

Results of the desiccation and starvation bioassay 
revealed kinin analogues 1728, 2139 and 2139-Ac and 
CAP2b/PK analogues 1895 and 2129 to be of most inter-
est in eliciting an effect on survival. These neuropeptides 
were subsequently carried forward for use in the cold stress 
bioassay.

There was a significant effect of ‘Type’ (control vs. 
treatment) on the cold stress survival of D. melanogaster 
males following cold shock at the discriminating tempera-
ture (GLM DF = 1, χ2 = 34.931, p = 0.018), indicating that 
all analogues are increasing fly survival relative to control 
groups under conditions of cold stress (Fig. 4). However, 
there was no effect of the factor ‘Treatment’ (peptide ana-
logue + associated control) on male D. melanogaster cold 
stress survival (GLM DF = 4, χ2 = 32.714, p = 0.696), indi-
cating that all analogues appear equivalent in their effect, 
with no analogue having a stronger effect than another. In 
contrast, there was no effect of ‘Type’ on the cold stress sur-
vival of D. melanogaster females (GLM DF = 1, χ2 = 84.293, 
p = 0.723), D. suzukii females (GLM DF = 1, χ2 = 126.745, 
p = 0.729) and the survival of D. suzukii males (GLM 
DF = 1, χ2 = 44.505, p = 0.543) when subjected to their dis-
criminating temperature, indicating that peptide analogue 
treatment failed to impact survival (Fig. 4).

Intracellular Ca2+ response

Due to eliciting a response in  vivo in the desiccation 
stress assays, the CAP2b/PK analogues were carried for-
ward for in vitro testing for agonistic properties employing 

transfected Drosophila S2 cells expressing prospective tar-
get receptors of the tested peptide analogues. Stimulation of 
the capa receptor (capaR) with capa-1 results in a biphasic 
rise in intracellular Ca2+, constituting a rapid primary peak 
followed by a gradual secondary peak (Fig. 5a) (cf Terhzaz 
et al. 2012). Stimulation with CAP2b/PK analogue 1895 
initiated a Ca2+ response (Fig. 5b), although to a lower 
magnitude than that observed for the native capa-1 neuro-
peptide. Stimulation with CAP2b/PK analogues 1896, 1902, 
2089 and 2129 failed to initiate a Ca2+ response, suggesting 
that the analogues are not acting on the capaR (in Fig. 5c, 
only data for 1896 are shown to represent a non-response). 
Analogue 1895, which had elicited a stimulatory response 
against the capaR receptor, failed to initiate a response when 
tested against the Drosophila pyrokinin 2 (PK2) receptor 
(Terhzaz et al. 2012) (Fig. 6b). In contrast, 1896 (Fig. 6c) 
and 1902 (Fig. 6d) both initiated a Ca2+ response when 
tested on S2 cells expressing the Drosophila PK2 receptor, 
with 1902 producing a response similar in magnitude to the 
signature biphasic response observed for native pyrokinin 
(Fig. 6a) (Terhzaz et al. 2012), suggesting that these ana-
logues act as ligands for the PK2 receptor but not capaR.

Discussion

The neuropeptidergic system offers a promising target for 
the development of novel, environmentally friendly insec-
ticidal agents and over the last decade has received increas-
ing research attention (Kaczmarek et al. 2010; Smagghe 
et al. 2010; Zhang et al. 2011; Nachman et al. 2011). Key 
to the development of peptidomimetic-based insecticides is 

Fig. 3   Survival curves calcu-
lated via Probit analysis of D. 
melanogaster (black symbols) 
and D. suzukii (blue symbols) 
following a 1-h exposure at the 
desired temperature. For both 
species, males are indicated by 
the open symbol and dashed 
line and females by the solid 
symbol and the solid line
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the screening of potential biostable analogues for species-
specific effects. The current study assayed five biostable 
CAP2b/PK analogues of the PRXamide superfamily and 
three biostable kinin analogues for an ability to reduce pest 
fitness under conditions of desiccation, starvation and ther-
mal (cold) stress, employing D. suzukii as a target pest insect 
and the closely related D. melanogaster as a non-pest insect.

Of the screened analogues, all kinin analogues (1728, 
2139, 2139-Ac) acted to increase the fluid secretion rate 
of D. melanogaster and D. suzukii at concentrations of 
×10−5 M, in agreement with previous work showing that 
kinin neuropeptides are diuretic, stimulating rapid fluid 

secretion in the Malpighian tubules of D. melanogaster and 
D. suzukii (Terhzaz et al. 1999, 2017). Furthermore, when 
testing kinin analogues at increasingly lower concentrations, 
analogue 2139 stimulated fluid secretion in D. suzukii at 
concentrations of ×10−7 M, but failed to elicit a response in 
D. melanogaster, suggesting enhanced sensitivity of the D. 
suzukii kinin receptor to analogue 2139. Although all the 
kinin analogues acted to increase the fluid secretion rate, this 
did not correlate to a consistent directional effect on D. mel-
anogaster or D. suzukii survival under conditions of desic-
cation stress. The reason for this is not known, although one 
explanation may be due to in vivo receptor desensitisation 

Fig. 4   Mean ± SE proportion survival of D. melanogaster females, D. 
melanogaster males, D. suzukii females and D. suzukii males when 
treated with biostable peptide analogues (CAP2b/PK: 1895, 2129; 

kinin: 1728, 2139, 2139-Ac) via microinjection and subjected to a 
discriminating temperature for a 1-h exposure. Control groups are 
shown in black and peptide treatment groups in red

Fig. 5   Capa and biostable analogue-associated calcium signatures. 
a Typical cytoplasmic Ca2+ response in S2 cells expressing the 
capaR and apoaequorin challenged with capa-1 at a concentration of 

10−7 M. Cytoplasmic Ca2+ response in S2 cells when challenged with 
analogues, b 1895 and c 1896 (representative of a non-response) at a 
concentration of 10−5 M
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under the conditions and time frame of the desiccation stress 
assay. Furthermore, in the current study, which investigated 
Drosophila stress tolerance, the Malpighian tubules were 
the desired target of analogue action. Direct injection of 
the analogues into the haemolymph was thus chosen as the 
mode of application to maximise the probability of injected 
analogues reaching the target organ. However, we cannot 
exclude analogue action on the Drosophila CNS and further 
work perturbing the kinin signalling system is required to 
elucidate this (Zandawala et al. 2018).

In contrast to the kinin analogues, none of the CAP2b/
PK analogues screened significantly affected the rate of 
fluid secretion in the Malpighian tubules of either D. mela-
nogaster or D. suzukii, with the exception of 1895 which 
resulted in a small decrease in the secretion of D. suzukii 
tubules. It is known that neuropeptides of the capa fam-
ily have roles in the stimulation of fluid secretion, acting 
via elevation of intracellular calcium and activation of the 
NO-cGMP signalling pathway (Davies et al. 1997; Kean 
et al. 2002). This failure of most of the screened CAP2b 
analogues to impact fluid secretion, either as a diuretic or 

an anti-diuretic, suggests an inability of the analogues to 
bind to capaR and initiate a calcium signalling response. 
This was supported via screening of the CAP2b analogues in 
Drosophila S2 cells which were tested for agonistic proper-
ties, affirming an inability of analogues 1896, 1902, 2089 
and 2129 to initiate a calcium response. Only analogue 1895 
stimulated capaR to produce a calcium response although 
this was significantly lower in magnitude for both primary 
and secondary peaks compared to the capa-induced capaR 
response, Fig. 5a (Terhzaz et al. 2012).

Drosophila melanogaster encodes three putative pyro-
kinin receptors: CG9918, PK1-R; CG8795, PK2-R2; 
CG8784, PK2-R1 (Flybase, Grimmelikhuijzen, C.J.P. 
(2013.6.6). Nomenclature of Pyrokinin receptor-encoding 
genes). The previous work has shown that D. melanogaster 
PK1 (capa-3 TGPSASSGLWFGPRLamide) and PK2 
(renamed PK-gamma, SVPFKPRLamide) and hugin acti-
vate calcium signalling via CG8795, PK2-R2 (Choi et al. 
2003; Terhzaz et al. 2012). Analogue 1895 has previously 
been shown to interact with the Tribolium PK receptor (Jiang 
et al. 2015), and analogue 1902 also contains PK-like motifs 

Fig. 6   Pyrokinin and biostable analogue-associated calcium signa-
tures. a Typical cytoplasmic Ca2+ response in S2 cells expressing the 
PK2 receptor and apoaequorin challenged with pyrokinin 2 at a con-

centration of 10−7  M. Cytoplasmic Ca2+ response in S2 cells when 
challenged with analogues, b 1895, c 1896 and d 1902 at a concentra-
tion of 10−5 M
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(PRLamide). In addition, 1896 contains the PRIamide motif, 
which is also seen, for example, in H. abietis PK-1 (DiNER; 
Yeoh et al. 2017). Therefore, 1895, 1896 and 1902 were 
assessed against the functional PK receptor encoded by 
CG8795. 2129 was not assessed against the PK receptor, 
as the critical F residue in the PK core FXPRLa, which is 
required for PK receptor interaction, is replaced with an ‘A’ 
in 2129. Analogue 2129 also possesses steric hindrance 
adjacent to the alpha carbon in the C-terminal position (e.g. 
as found with Ile or Val) which is strongly preferred for 
binding to capaR but which will interfere with PK receptor 
binding.

More recently, peptides of the capa family have been 
linked to desiccation and cold tolerance in Drosophila, with 
the capability (capa) neuropeptide gene found to be desic-
cation and cold stress responsive (Terhzaz et al. 2015). In 
addition, knock-down of the capa gene has been shown to 
increase Drosophila desiccation tolerance (Terhzaz et al. 
2015). In the current study, it was the CAP2b/PK analogues 
that showed the most promise in significantly impacting 
survival under conditions of desiccation stress, whilst caus-
ing minimal effects under conditions of starvation stress. 
Here, analogues 1895, 1896, 1902 and 2129 significantly 
impacted female D. suzukii desiccation survival and 1895, 
1902 and 2129 male D. suzukii desiccation survival, whilst 
having no (1895, 1902) or limited (1896, 2129) effect on 
D. melanogaster. These selected neuropeptides offered a 
protective effect and thus increased survival under desic-
cation stress. Furthermore, when under conditions of cold 
stress, all analogues produced a protective effect in D. 
melanogaster males, although failed to impact the survival 
of female D. melanogaster and both male and female D. 
suzukii. The reason for this male D. melanogaster-specific 
effect is unknown. According to the absolute energy demand 
(AED) hypothesis, larger bodied individuals are hypothe-
sised to be at a disadvantage when under stressful condi-
tions such as thermal stress due to expending energy at a 
proportionately faster rate than smaller bodied individuals 
(Reim et al. 2006). Under this hypothesis, smaller bodied D. 
melanogaster males would be considered at an advantage 
when under cold stress. However, why analogue treatment 
would significantly affect only D. melanogaster male cold 
stress survival is unknown.

As desiccation survival is tightly linked with fluid secre-
tion by Malpighian tubules, the lack of effect on fluid 
secretion by many of the analogues tested may explain the 
desiccation survival phenotypes upon treatment with ana-
logues 1896, 1902 and 2129. The protective effect of these 
CAP2b analogues may also be due to an antagonist response 
against binding of endogenous capa neuropeptides to capaR 
in vivo, as both 1896 and 1902 demonstrated an antagonist 
effect on the heterologous T. castaneum TcCAPAr (Jiang 
et al. 2015), although further testing is required to confirm 

this. The inability of both 1896 and 1902 to initiate a Ca2+ 
response in the S2 cell assay when targeting the capaR adds 
support to this. 1896 and 1902 instead showed activation of 
the pyrokinin receptor, which has not been shown to influ-
ence fluid secretion rates (Kean et al. 2002). These findings 
may indicate a, heretofore unknown, role for PK, and the PK 
receptor, in desiccation survival.

The current study investigated the effect of biostable 
kinin and CAP2b/PK analogue treatment on Drosophila 
stress tolerance (desiccation, starvation and cold tempera-
ture stress), focusing on D. suzukii as the target (pest) spe-
cies and D. melanogaster as a non-target species. Of the 
kinin and CAP2b/PK analogues, it was the CAP2b/PK 
analogues which displayed the most promise in altering the 
relative fitness of treated D. suzukii when under conditions 
of desiccation stress. Of particular interest were analogues 
1895 (2Abf-Suc-FGPRLa), 1896 (2Abf-Suc-FTPRIa), 1902 
(2Abf-Suc-FKPRLa) and 2129 (2Abf-Suc-ATPRIa), with 
1895 and 1902 showing increased promise due to an ability 
to target the pest D. suzukii, whilst leaving the non-pest D. 
melanogaster unaffected.

In order to develop neuropeptide analogues that can 
reduce survival in pest fruit flies, future directions in ana-
logue design should focus on the inclusion of D. suzukii 
peptide sequences (DiNER; Yeoh et al. 2017), as well as 
the addition of polyethylene glycol (PEG) polymer moieties 
that can increase bioavailability characteristics (Boccù et al. 
1982; Jeffers and Roe 2008). Testing of new-generation ana-
logues is currently underway with a focus on mode of appli-
cation to elucidate the most efficacious method of delivery to 
apply neuropeptide-based insecticides in the field.
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