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Abstract
Objective  To measure healthy brain T

1
 and T

2
 relaxation times at 0.064 T.

Materials and methods  T
1
 and T

2
 relaxation times were measured in vivo for 10 healthy volunteers using a 0.064 T magnetic 

resonance imaging (MRI) system and for 10 test samples on both the MRI and a separate 0.064 T nuclear magnetic resonance 
(NMR) system. In vivo T

1
 and T

2
 values are reported for white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) 

for automatic segmentation regions and manual regions of interest (ROIs).
Results  T

1
 sample measurements on the MRI system were within 10% of the NMR measurement for 9 samples, and one 

sample was within 11%. Eight T
2
 sample MRI measurements were within 25% of the NMR measurement, and the two long-

est T
2
 samples had more than 25% variation. Automatic segmentations generally resulted in larger T

1
 and T

2
 estimates than 

manual ROIs.
Discussion  T

1
 and T

2
 times for brain tissue were measured at 0.064 T. Test samples demonstrated accuracy in WM and GM 

ranges of values but underestimated long T
2
 in the CSF range. This work contributes to measuring quantitative MRI proper-

ties of the human body at a range of field strengths.

Keyword  Magnetic resonance imaging

Introduction

The field of quantitative magnetic resonance imaging 
(qMRI) is concerned with extracting characteristic biomark-
ers from a magnetic resonance (MR) image that have physi-
cal units attached to them [1, 2]. Methods for qMRI have 
been developed for measuring length and volume, relaxa-
tion properties ( T

1
 , T

2
 , T

2
*), fluid flow, diffusion, phase, fat 

fraction, proton density, etc. To achieve clinical utility of 
these methods, accurate knowledge of quantitative values 
for healthy and diseased tissue is critical [3, 4].

There has been renewed interest in MRI at field 
strengths ≤ 0.55 T for point-of-care diagnostics due to lower 

cost, greater portability, quieter operation, improved implant 
safety, reduced susceptibility artifacts, increased accessi-
bility, and reduced limitations on the specific absorption 
rate while imaging compared to conventional MR systems 
(1.5 T and 3 T) [5]. Several scanners that operate at field 
strengths ≤ 0.55 T are in development [6–15]. Many compa-
nies have products available or under development at lower 
field strengths, including at 0.064 T (Swoop, Hyperfine, 
Guilford CT, USA), 0.066 T (Promaxo Inc., Oakland CA, 
USA), 0.345 T (MRIdian Linac, ViewRay, Mountain View 
CA, USA), 0.4 T (Magnifico Open, Esaote, Genoa, Italy), 
0.5 T (Synaptive Medical Inc., Toronto, Canada), 0.55 T 
(MAGNETOM Free.Max, Siemens Healthineers, Erlangan, 
Germany), and at undisclosed field strengths (neuro42, San 
Francisco CA, USA). A natural extension of lower field MRI 
is to adopt qMRI methods, for which accurate knowledge of 
quantitative tissue properties at the relevant field strength 
is crucial. In the past, many in vivo quantitative measure-
ments at field strengths ≤ 0.55 T have suffered from hard-
ware limitations, causing trade-offs between feasibility and 
accuracy [16, 17]. Although there has been increased inves-
tigation into healthy brain relaxation parameters at lower 
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field strengths [18], additional measurements are necessary 
for each specific field strength and hardware, and for ensur-
ing reproducibility of qMRI measurements.

We measure T
1
 and T

2
 relaxation parameters in the 

brain using a commercially-available 0.064 T MRI sys-
tem. We design and test the in vivo measurement protocols 
by measuring test sample relaxation times on the 0.064 T 
MRI system and comparing them to 0.064 T NMR T

1
 and 

T
2
 measurements. T

1
 and T

2
 tissue values for white matter 

(WM), gray matter (GM), and cerebrospinal fluid (CSF) are 
reported.

Materials and methods

Measurement systems

Measurements were conducted on a 0.064 T Hyperfine 
Swoop MRI scanner (hardware 1.8, software rc8.3.1, 
Guilford CT, USA) using an 8-channel receive, 1-channel 
transmit head coil. The study was conducted in accordance 
with IRB guidelines, and all subjects provided informed 
consent. Additionally, the National Institute of Standards 
and Technology Research Protections Office reviewed and 
approved the research protocol, and the study was performed 
in accordance with the ethical standards as laid down in the 
1964 Declaration of Helsinki and its later amendments.

Relaxation time measurements for a set of test samples 
were made on a Bruker variable field electromagnet nuclear 
magnetic resonance (NMR) system set to a field strength of 
0.064 T, using a Redstone spectrometer and TNMR software 
(Tecmag, Houston, TX, USA). A custom RF copper solenoid 
coil was used, which was designed to allow perfluorocar-
bon coolant (TMC Industries, Inc., Waconia, MN, USA PN: 
FC-40) to flow around the sample for temperature control.

Test sample synthesis protocols

Test samples were prepared by dissolving stock solutions 
of metal compounds into deionized water. Specifically, 
the compounds used included CuSO4·5H20 (Millipore-
Sigma, St. Louis, MO, USA; Part number (PN): 209198), 
GdCl3·6H20 (Millipore-Sigma, St. Louis, MO, USA; PN: 
203289), edetic acid (EDTA) (Millipore-Sigma, St. Louis, 
MO, USA; PN: 324503), and NiCl2·6H20 (Millipore-Sigma, 
St. Louis, MO, USA; PN: N6136). GdCl3-EDTA was made 
by stirring a GdCl3 and EDTA (at twice the mmol/L value of 
GdCl3) solution on a 98 °C hotplate for 30 min. Dry agarose 
(Millipore-Sigma, St. Louis, MO, USA; PN: A6013) was 
weighed and added to the paramagnetic salt solution, fol-
lowed by heat cycles: (1) 30 s interval microwave cycle until 
boiling; (2) 10 min hotplate cycle to ensure well-hydrated 

agarose. Deionized water was added to the mixture to make 
up for mass lost to evaporation. The mixture was poured into 
50 ml or 30 ml sample tubes, pre-washed with isopropyl 
alcohol.

The selected test samples were: 0.1 mmol/L CuSO4, 
2 mmol/L CuSO4, 0.75 mmol/L CuSO4 in 0.25% agarose 
mass concentration (%), 1 mmol/L CuSO4 in 1% agarose 
mass concentration (%), 0.025  mmol/L GdCl3-EDTA, 
0.1 mmol/L GdCl3-EDTA in 1.5% agarose mass concentra-
tion (%), 4 mmol/L NiCl2 in 1.2% agarose mass concentra-
tion (%), 0.1% agarose mass concentration (%), 0.5% agarose 
mass concentration (%), and deionized water. These samples 
were chosen for their expected similarity in T

1
 and T

2
 to WM, 

GM, or CSF at 0.064 T.

Quantitative imaging protocols

Optimization of T
1
 mapping protocol via simulation

T
1
 maps were acquired using an inversion recovery (IR) 

sequence, chosen for its robustness in T
1
 measurements com-

pared to other T
1
 mapping methods [19].

The T
1
 measurement protocol was optimized to acquire 

accurate values for WM, GM, and CSF in a feasible scan 
time for in vivo use. The repetition time ( TR ) and inversion 
times ( TI s) were chosen by the following optimization pro-
cess: (1) simulating the expected IR signal in the presence 
of noise; (2) solving for T

1
 using the noisy simulations and 

IR signal equation; and (3) choosing the protocol that mini-
mized the error in estimated T

1
.

Specifically, MR signals were simulated for T
1
 values in 

the range of 0.1 s to 4 s using the IR signal equation [20]:

with S
i
 as the simulated signal for the i th TI , scale factor 

for imperfect inversion d (set to 0.95), and nominal signal 
intensity for a voxel S

0
 . A total of 25 simulations of Eq. 1 

with additive Rician noise ( n
i
 ) [21] were used to estimate T

1
 , 

from which a mean T
1
 estimate was calculated. The nominal 

signal magnitude S
0
 was varied such that the signal-to-noise 

ratio (SNR) of the simulated signals ranged from 5 to 95. An 
SNR of 95 corresponds to the SNR observed in IR scans of 
the test samples. The ranges of TI

i
 and TR that were tested 

were selected such that the total scan time for the T
1
 mapping 

protocol would be less than one hour.
T
1
 was estimated from the simulated signals S

i
 for each 

[ TI
i
 , TR ] combination, and the optimal protocol was chosen 

such that it minimized simulated T
1
 error for a range of SNR 

values, especially for the target tissue T
1
 values (as given in 

[18]). While there was not one protocol with optimal perfor-
mance for all SNR values, the optimal protocol was selected 

(1)S
i
= S

0

|
|
|
|

1 − (1 + d)e
−

TIi

T1 + e
−

TR

T1

|
|
|
|

+ n
i
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for particularly good performance for SNR between 50 and 
95, and reasonably good performance for SNR down to 25. 
Below an SNR of 25, all protocol simulations degraded sub-
stantially in their T

1
 estimation capability.

T
1
 mapping protocol

T
1
 Maps were acquired using a research version of the 

Hyperfine T
1
-weighted IR 3D fast spin echo (FSE) sequence.

The optimized protocol resulted in a TR of 2.4 s and TI s 
of 0.05 s, 0.15 s, 0.35 s, 0.5 s, 0.95 s, 1.995 s. Images were 
acquired with a 1.6 mm2 in-plane resolution and 5 mm slice 
thickness, with a field of view of 22 cm × 18 cm × 18 cm. 
Each IR scan time was 9 min and 46 s, leading to a total 
IR session time of 58 min and 48 s, not including pre-scan 
calibration and localizer sequences. The total scan session 
time was typically around 61 min.

T
2
 mapping protocol

To acquire T
2
 maps, a research version of a Hyperfine T

2

-weighted 3D FSE sequence with 10 echo times ( TE s) 
was used. The protocol had a TR of 3 s and TE s of 0.037 s, 
0.111 s, 0.185 s, 0.259 s, 0.333 s, 0.407 s, 0.480 s, 0.554 s, 
0.628 s, 0.702 s, and was acquired on a spiral-out k-space 
trajectory with two dummy echoes. Images were acquired 
with a 1.5 mm2 in-plane resolution and 5 mm slice thickness, 
with a field of view of 22 cm × 18 cm × 18 cm. The T

2
 map-

ping sequence scan time was 17 min and 8 s, not including 
pre-scan calibration and localizer sequences. A typical total 
scan session time was around 20 min.

MRI measurements

In vivo measurements

In vivo T
1
 and T

2
 measurements were acquired using the 

protocols described above from 10 healthy volunteers (5 
male, 5 female, ranging from 20 to 56 years old). Due to the 
extended scan time for each imaging protocol and to mini-
mize strain on volunteers, quantitative measurements were 
acquired over two sessions for each volunteer. The average 
inter-session time was 9.3 days, with 8 volunteers having an 
inter-session time of less than or equal to 8 days, and two 
volunteers having longer inter-session times of 29 days and 
42 days.

NMR measurements

T
1
 and T

2
 measurements were acquired for the test sam-

ples using the in vivo protocols described above on the 
0.064 T MRI system, using a custom Hyperfine-provided 
phantom that held the 50 ml sample tubes. Additionally, T

1
 

measurements were acquired on the 0.064 T MRI system 
using a reference protocol with 29 TI s that is prohibitively 
long for in vivo scanning ( TI s of 0.1 s, 0.15 s, 0.2 s, 0.25 s, 
0.3 s, 0.35 s, 0.4 s, 0.45 s, 0.5 s, 0.55 s, 0.6 s, 0.7 s, 0.8 s, 
0.9 s, 1.0 s, 1.1 s, 1.2 s, 1.3 s, 1.4 s, 1.5 s, 1.6 s, 1.7 s, 1.8 s, 
1.9 s, 2.0 s, 2.1 s, 2.2 s, 2.3 s, 2.4 s; TR of 2.8 s; 1.6 mm2 
in-plane resolution; 5 mm slice thickness; and total imag-
ing time of approximately 5.5 h).

For the T
1
 NMR measurements, an IR sequence was 

used with 20 exponentially increasing TI  s in steps of 
[0.001*x to x], with x being sample-dependent and rang-
ing from 2.5 s to 15 s, selected such that the largest inver-
sion time was longer than 5 times the expected T

1
 . For 

the T
2
 NMR measurement, a Carr-Purcell-Meiboom-Gill 

(CPMG) sequence was used with 20 linearly increasing 
TE s in steps of [0.05*x to x] with x being sample-depend-
ent and ranging from 0.08 s to 3.76 s, selected such that 
the longest echo time was 2.5 times to 3 times the expected 
T
2
 . For both T

1
 and T

2
 , a final delay time of 5 times the 

expected T
1
 was used. The samples for the NMR measure-

ments were kept at 21.3 °C, the approximate temperature 
of the laboratory housing the 0.064 T MRI system.

Quantitative parameter analysis

Quantitative parameter map reconstruction

For all quantitative parameters, we assumed one quantita-
tive value per voxel, and partial volume effects were not 
taken into account.

T
1
 was calculated for each voxel using least squares 

minimization (lmfit, Python) for the IR model mentioned 
earlier [20]:

where T
1
 is the target value for the fit. For long T

1
 and in 

the presence of noise, the in vivo protocol is ill-conditioned 
and results in very large estimated error in the T

1
 measure-

ments, on the order of the measurement itself. Thus, in vivo 
T
1
 measurements were excluded when the standard error of 

the fit exceeded the measurement itself. A total of 14 voxels 
out of 80,389 total voxels were excluded.

The T
2
 map was calculated for the Hyperfine protocol 

using non-linear least squares optimization (SciPy opti-
mize curve_fit, Python) for the model:

where T
2
 is the target value for the fit. A monoexponen-

tial decay was assumed and used to fit Eq. 3 directly to the 
image-space data.
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Test sample region of interest selection

For T
1
 and T

2
 maps of the test samples acquired with the 

0.064  T MRI system, regions of interest (ROIs) were 
selected using an automated protocol that searched for cir-
cles of the expected 50 ml tube size in each image slice. 
Once each tube was identified for each slice, the ROI of each 
tube was limited to a central circular region of half the tube’s 
image radius. T

1
 was fit using data from all voxels located in 

each ROI simultaneously, which resulted in one T
1
 per ROI 

and per slice. T
2
 values came directly from the Hyperfine 

software, and the mean of the T
2
 value for all voxels in each 

ROI was calculated to give one T
2
 value per ROI per slice. 

Finally, the six central slices of the phantom were selected 
due to their clean ROI tube segmentations compared to 
slices near the ends of the tubes, which had ROI segmenta-
tions that sometimes included the ends of the tube. The final 
reported T

1
 and T

2
 values represent the mean and standard 

deviation of each tube’s ROI over these central six slices.
For 0.064 T NMR measurements, three repeated meas-

urements were acquired for both T
1
 and T

2
 , and the reported 

mean and standard deviation for each sample were calcu-
lated over the three replicate measurements. T

2
 was calcu-

lated using Eq. 3, whereas because the NMR measurements 
used TR > 5*T

1
 , T

1
 was calculated using a simplified form 

of Eq. 2, namely:

In vivo image segmentation

For in vivo images, T
1
 and T

2
 were calculated on a per-voxel 

basis using Eqs. 2, 3 for a slice chosen to be approximately 
centered on the ventricles, such that the anterior horn is well 
visualized. The skull was stripped away from each in vivo 
map using a thresholding-open-close image transformation 
series of operations. For T

1
 , the raw IR images were used in 

8 of 10 volunteers to aid in the skull stripping.
A segmentation algorithm inspired by O’Reilly & Webb 

[18] was implemented to distinguish WM, GM, and CSF. 
A mixture of Gaussians was used with Python Scikit-learn 
Gaussian Mixture (GMM) to model the acquired T

1
 or T

2
 

measurements, and voxels were binned into one of the tis-
sue compartments based on the T

1
 or T

2
 value. To attempt to 

account for potential partial volume mixture between CSF 
and GM, a “partial” volume bin was included in the seg-
mentation algorithm for tissue segmentation. Additionally, 
as in previous work [18], T

2
 was indistinguishable for WM 

and GM using the auto-segmentation mixture of Gaussians 
method, and it was thus segmented as one tissue.

(4)S
i
= S

0

|
|
|
|

1 − (1 + d)e
−

TIi

T1

|
|
|
|

Manual selection of ROIs for WM, GM, and CSF were 
created via visual inspection of the raw images, the relaxa-
tion parameter maps, and the automatic segmentations. 
Small regions of 2 voxels × 2 voxels were selected by locat-
ing visually dissimilar areas to attempt to identify WM from 
GM in the right frontal lobe. For CSF, a region was selected 
wherever the ventricles showed the highest relaxation val-
ues. Manual CSF ROIs were selected from the right side 
for 5 volunteers, from the left side for 5 volunteers. The 
automatic segmentation results were used as a reference such 
that manually selected ROIs only included voxels from one 
automatically segmented region.

Statistical analysis

Relaxation time measurements for test samples using the 
NMR system versus the MRI system were compared by plot-
ting the 95% confidence interval using the mean and stand-
ard deviation of each test sample, on each system. All MRI 
protocol measurements were normalized to the respective 
NMR measurement for each sample and relaxation param-
eter. Measurements that had overlapping 95% confidence 
intervals were said to be similar.

Bland–Altman plots were used to compare in vivo meas-
urements from the manually selected ROIs to the measure-
ments using the automatic segmentations. T

1
 and T

2
 were 

normalized to the average measurement value before calcu-
lating paired averages and differences for the Bland–Altman 
plots.

Results

Simulation results of estimated versus actual T
1
 were used 

to select an optimized  T
1
 protocol (Fig. 1a) and resulted in 

a mean error in T
1
 estimation of 2.03%. For comparison, 

simulation results from two non-optimal test protocols had 
mean errors in T

1
 estimation of 39.0% and 187% (Fig. 1b, c).

To better understand measurement uncertainty, test sam-
ples were used to compare T

1
 and T

2
 measurements from 

the MRI system to measurements made using the 0.064 T 
NMR (Fig. 2). The Supplementary Information Table S.1 
lists the test sample mean and standard deviation for the 
measurements shown in Fig. 2. T

1
 measurements using the 

optimized in vivo MRI protocol had mean difference from 
the NMR measurements of 5.82% (Fig. 2a) and was acquired 
in one hour. By comparison, a reference MRI protocol that 
used 15 TI s and was acquired in 5.5 h had mean difference 
from the NMR measurements of 3.28% (Fig. 2b). All  T

1
 

measurements were within 10% of the NMR measurement, 
except for 0.025 mmol/L GdCl3-EDTA, which has an 11% 
difference between the NMR measurement and in vivo MRI 
protocol.
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For the test samples, the T
2
 measurements using the 

in vivo MRI protocol had a mean difference from the NMR 
measurements of 20.1% (Fig. 2c). Eight samples have T

2
 

MRI measurements that lie within 25% of the NMR meas-
urement, with 3 samples having MRI measurements within 
10% of the NMR measurements. Specifically, for T

2
 ≤ 1.27 s, 

MRI and NMR measurements are within 25% of each other. 
For T

2
 ≥ 1.27 s, the in vivo MRI T

2
 mapping protocol greatly 

underestimates T
2
 compared to the NMR measurements.

The test sample measurement uncertainty was further 
quantified using confidence intervals of the in vivo MRI 
protocol measurements compared to confidence intervals 
of the NMR system measurements (Fig. 2d). T

1
 measure-

ments using the NMR system and measurements using the 
reference MRI protocol had overlapping 95% confidence 
intervals for all samples except 0.025 mmol/L GdCl3-EDTA 
and 2  mmol/L CuSO4. Comparing the NMR system to 
the in vivo MRI protocol, 0.025 mmol/L GdCl3-EDTA, 
2 mmol/L CuSO4, and 0.75 mmol/L CuSO4 in 0.25% aga-
rose mass concentration (%) had non-overlapping 95% con-
fidence intervals. Seven of 10 T

2
 MRI measurements were 

not within the 95% confidence interval range of the NMR 
measurements.

The efficacy of the skull stripping algorithm is explored 
in Supplementary Information Fig. S.1. Example in vivo IR 
images from the optimized T

1
 protocol are shown for one 

volunteer, and the full T
1
 map for the same volunteer and the 

skull stripped version are shown for comparison, where the 
raw IR image for TI of 0.05 s was used to aid in skull strip-
ping for this volunteer. An example T

2
 map and skull strip-

ping result for a different volunteer are also shown. Based on 
qualitative observation, the skull stripping algorithm suffi-
ciently removed the skull without affecting brain soft tissue.

T
1
 and T

2
 measurements normalized to the average meas-

ured value for each volunteer and each segmentation type 
are plotted in Fig. 3. A summary of T

1
 and T

2
 measure-

ment results for each volunteer and each segmented ROI 
is shown in the Supplementary Information Table S.2. 
Averages over all participants for each segmentation type 
and tissue are given. For T

1
 , the manual ROI averages are 

0.254 s ± 0.0179 s for WM, 0.377 s ± 0.0351 s for GM, 
2.073 s ± 1.2007 s for CSF. For T

2
 , the manual ROI aver-

ages are 0.081 s ± 0.0024 s for WM, 0.105 s ± 0.0241 s 
for GM, 1.172 s ± 0.3234 s for CSF. For T

1
 , the automati-

cally segmented averages are 0.294 s ± 0.0179 s for WM, 
0.46 s ± 0.1258 s for GM, 1.854 s ± 1.2097 s for CSF. For T

2
 , 

the automatically segmented averages are 0.097 s ± 0.0016 s 
for combined WM and GM, 0.553 s ± 0.1422 s for CSF. Two 
volunteers had manually segmented T

1
 ROIs with lower CSF 

measurements than the automatic segmentations. In one vol-
unteer, the highest CSF T

1
 measurement was near the frontal 

lobe rather than in the ventricles where the manual ROIs 
were located. In the other, the measured T

1
 in the ventri-

cles was the highest of any volunteer, and selecting a square 
region for the manual ROI could not capture all of the high-
est T

1
 values.

Variations were observed across volunteers in head size, 
ventricle size, the range of measured T

1
 and T

2
 , and auto-

matic segmentation regions (Figs. 4 and 5). A volunteer with 
typical outcomes is shown (Figs. 4a and 5a). A volunteer 
with the smallest head size by voxel count (subject 3 of Sup-
plementary Information Table S.2) has lower CSF measure-
ments compared to other volunteers (Figs. 4b and 5b). A 
volunteer with qualitatively larger ventricles shows higher 
CSF measurements compared to other volunteers (Figs. 4c 
and 5c).

Fig. 1   a Simulation results of estimated versus actual T
1
 for the 

selected in vivo T
1
 mapping protocol. Six TI s were selected with a 

repetition time of 2.4 s, resulting in a total scan time of 60 min. Gray 
dots indicate each T

1
 estimate of 25 simulations with added noise; 

black indicates the mean over the 25 noisy estimates; blue indicates 
estimated T

1
 for the target expected T

1
 values of WM, GM and CSF at 

0.064 T. b Similar to plot (a), simulation results of an example sub-
optimal T

1
 mapping protocol that would greatly overestimate T

1
 of 

around 0.2 s, and greatly underestimate T
1
 around 2 s. c Similar test 

protocol to (b), but with a longer TR and one fewer TI s, resulting in 
worse T

1
 estimation overall. SNR = 95 was used to simulate (a–c)
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Fig. 2   a–c Sample validation results for the Hyperfine scan proto-
cols compared to measurements made on an NMR electromagnet set 
to 0.064  T. a T

1
 test sample results using the in  vivo MRI protocol 

(1 h scan time) compared to the NMR measurements. b T
1
 test sample 

results using a reference MRI T
1
 protocol (5.5 h scan time) compared 

to NMR measurements. c T
2
 test sample in vivo MRI protocol results 

compared to NMR measurements. d Comparisons for test sample T
1
 

(left) and T
2
 (right) measurements using the NMR measurements as 

a reference versus the MRI in vivo and reference protocols. Measured 
NMR ( T

1
 , T

2
 ) values are shown next to each material label. Averages 

and 95% confidence intervals are plotted for each sample and meas-
urement type
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Differences in in vivo tissue T
1
 and T

2
 measurements 

between manually selected ROIs and automatic segmenta-
tions were explored using Bland–Altman plots (Fig. 6). T

2
 

for GM has mean differences of less than 10% between the 
two ROI creation methods. Other tissues all have less than 
20% mean difference between the methods, except for CSF 
T
2
 , which has 72% mean difference between the measure-

ments. Finally, the variance in the differences between the 
ROI creation methods are smaller for WM and GM than 
for CSF.

Discussion

In vivo relaxation properties at 0.064 T were measured for 
10 adult volunteers. The protocols used to measure relaxa-
tion were optimized when possible, and their accuracy was 
examined using test samples measured on a 0.064 T NMR 
system.

Measurement protocols

T
1
 And T

2
 measurement protocols suitable for in vivo use 

were developed and validated. The T
1
 in vivo protocol was 

designed to minimize expected error in measured T
1
 , while 

keeping the total scan time to be one hour. Simulations of 
protocols that used fewer TI s resulted in overall worse T

1
 

estimation than when using additional TI s. However, the 
scan time limitation required the use of a shorter TR when 
the number of TI s was increased. Overall, this resulted in a 
T
1
 protocol that can have an ill-conditioned fit for high values 

of T
1
 when the noise in the image is large. Thus, a tradeoff 

was made between scan time and expected accuracy in high 
T
1
 measurements, resulting in a higher coefficient of vari-

ation for the CSF T
1
 measurements compared to WM and 

GM. A limitation to this study is that the T
1
 fitting protocol 

did not account for Rician noise in the IR magnitude images, 
which can improve fitting outcomes [22, 23].

Test samples were used to validate both of the T
1
 and T

2
 

in vivo MRI protocols compared to an NMR measurement, 

Fig. 3   Each volunteer’s T
1
 (left) 

and T
2
 (right) mean measure-

ments, with standard deviation 
shown as error bars. Mean T

1
 

and T
2
 values are shown below 

tissue labels for auto/manual 
segmentations
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as well as a reference MRI protocol for T
1
 . Test samples 

demonstrated accuracy in the WM and GM range of values 
but underestimated large T

2
 in the CSF range. A limitation 

of this study is the underestimation of T
2
 using the MRI 

in vivo protocol for CSF, and care should be taken when 
interpreting CSF T

2
 results. There are a few confounds that 

could influence the accuracy of the long T
2
 measurements. 

Spurious signal pathways due to system imperfections are 
more likely to compound in long T

2
 species, making them 

more susceptible to errors. Furthermore, the fast spin 
echo acquisition that was modified to build the T

2
 map-

ping sequence was designed to generate clean clinically 

Fig. 4   Each row shows one of 
3 example T

1
 in vivo measure-

ments: (left) T
1
 maps with 

visual indications of manually 
selected ROIs for WM (white), 
GM (gray), and CSF (black); 
(middle) T

1
 values by auto-seg-

mented bin; (right) visual map 
of the auto-segmented bins. 
Mean and standard deviation of 
T
1
 are indicated for each manual 

or auto-segmented ROI. a A 
subject exhibiting a typical T

1
 

map for this study. b A subject 
with small head size showing 
lower CSF values, likely due 
to partial volume effects from 
smaller ventricles. c An exam-
ple subject with large ventricles 
and a higher CSF measurement
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useful images in harsh electromagnetic environments. It 
is not clear how the proprietary steps necessary to ensure 
good clinical image quality would affect the expected sig-
nal decay. Finally, magnitude images were used for the 
T
2
 fit which could bring a Rician noise influence into the 

data. The T
2
 model could be modified to account for Rician 

noise, or to include a constant term in the fitting. These 
modifications were not explored in this study.

In vivo measurement results

Measured in vivo relaxation values can be compared to 
relaxation values reported in literature for 0.05 T [18], 
namely for T

1
 : 0.275 s for WM, 0.327 s for GM, 3.695 s for 

CSF; and for T
2
 : 0.102 s for WM, 0.102 s for GM, 1.584 s for 

CSF. The automatic segmentation results for WM and GM 
of this study are closer to previous literature results than the 

Fig. 5   Each row shows one of 
3 example T

2
 in vivo measure-

ments for the same volunteers 
of Fig. 4: (left) T

2
 maps with 

visual indications of manually 
selected ROIS for WM (white), 
GM (gray), and CSF (black); 
(middle) T

2
 values by auto-seg-

mented bin; (right) visual map 
of the auto-segmented bins. 
Mean and standard deviation of 
T
2
 are indicated for each manual 

or auto-segmented ROI. a A 
subject exhibiting a typical T

2
 

map for this study. b A subject 
with small head size showing 
lower CSF values, likely due 
to partial volume effects from 
smaller ventricles. c An exam-
ple subject with large ventricles 
and a higher CSF measurement
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manual ROIs, with T
1
 of 0.294 s for WM and 0.46 s for GM, 

and T
2
 of 0.097 s for WM and GM.

As mentioned previously, the T
2
 measurements for CSF 

are likely underestimations of the true values due to limita-
tions of the measurement protocol. However, partial vol-
ume effects from the 5 mm slice thickness may also cause 
underestimations in both the T

1
 and T

2
 measurements. Chal-

lenges in accurately measuring CSF are known: earlier stud-
ies underestimated T

1
 relaxation in CSF due to repetition 

time settings that were too short [16, 17]. To remove par-
tial volume effects, more recent work at 0.05 T developed a 
separate protocol specifically targeted to isolate signal when 
measuring relaxation in CSF [18]. Future work is needed to 
accurately measure relaxation in CSF at 0.064 T.

In vivo skull stripping and tissue selection methods

A skull stripping protocol was developed and demonstrated 
to work effectively at removing background noise and the 
skull from in vivo quantitative maps. To calculate average 
T
1
 and T

2
 times for different tissues, two tissue selection 

methods were compared. One was an automatic segmen-
tation method and the other used manually selected ROIs. 
Similar to previous work at a similar field strength [18], 
we found that the relatively small difference between WM 
and GM relaxation parameters made it difficult to segment 
and analyze the two tissues independently, especially using 
our automatic segmentation method. An improvement to the 
study would be to acquire anatomical images during scan-
ning; however, for this study it was not possible to acquire 
anatomical images during the T

1
 protocol due to scan time 

limitations.

To compare average relaxation times using the two tis-
sue selection methods, Bland–Altman plots were used. A 
large mean difference was observed between the tissue selec-
tion methods for CSF T

2
 , likely because the highest region 

of measured T
2
 was targeted when creating manual ROIs. 

While the manually selected ROIs could introduce selec-
tion bias, the automatic segmentation method could also be 
biased because the binning method uses the underlying T

1
 

and T
2
 measurements, thus, tissue designation is determined 

from the relaxation parameter itself in the automatic seg-
mentation algorithm. Ideally a segmentation method would 
designate tissue independently from the relaxation measure-
ment of a voxel.

Conclusion

Tissue relaxation measurements for T
1
 and T

2
 at 0.064 T have 

been measured and presented for 10 healthy volunteers. Two 
ROI selection methods were used for determining mean T

1
 

and T
2
 for the volunteers. Test samples were measured on 

a 0.064 T NMR and a 0.064 T MRI system, and the meas-
urements were compared. This work will contribute to the 
growing body of research targeted at measuring and dis-
seminating qMRI properties of the human body for a wide 
range of field strengths.
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