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Abstract
Objective  To visualize the encoding capability of magnetic resonance fingerprinting (MRF) dictionaries.
Materials and methods  High-dimensional MRF dictionaries were simulated and embedded into a lower-dimensional space 
using t-distributed stochastic neighbor embedding (t-SNE). The embeddings were visualized via colors as a surrogate for 
location in low-dimensional space. First, we illustrate this technique on three different MRF sequences. We then compare 
the resulting embeddings and the color-coded dictionary maps to these obtained with a singular value decomposition (SVD) 
dimensionality reduction technique. We validate the t-SNE approach with measures based on existing quantitative measures 
of encoding capability using the Euclidean distance. Finally, we use t-SNE to visualize MRF sequences resulting from an 
MRF sequence optimization algorithm.
Results  t-SNE was able to show clear differences between the color-coded dictionary maps of three MRF sequences. SVD 
showed smaller differences between different sequences. These findings were confirmed by quantitative measures of encod-
ing. t-SNE was also able to visualize differences in encoding capability between subsequent iterations of an MRF sequence 
optimization algorithm.
Discussion  This visualization approach enables comparison of the encoding capability of different MRF sequences. This 
technique can be used as a confirmation tool in MRF sequence optimization.

Keywords  Magnetic resonance fingerprinting · T-SNE · Dictionary visualization · Encoding capability

Introduction

Magnetic resonance fingerprinting (MRF) is a rapid MRI 
technique that is used to estimate tissue relaxation times 
( T1, T2 ) and other MR-related parameters such as proton 
density ( M0 ) [1]. These parameters often reflect pathology 
such as inflammation (increased T1 ) and neurodegeneration 
(reduced T∗

2
 ). Unlike many other quantitative imaging tech-

niques [2–4], MRF simultaneously encodes T1 and T2 , such 
that the corresponding parameter maps can be obtained in an 
efficient manner. The simultaneous encoding is established 
through a variable flip angle pattern in the data acquisition 
process, which, if designed well, creates a characteristic sig-
nal evolution for each tissue in the human body. The T1 and 
T2 values for each voxel can be found by matching the meas-
ured signal curve to a pre-calculated dictionary containing 
the simulated signal evolutions as a function of the applied 
flip angle sequence for all possible ( T1, T2 ) combinations.

The quality of the resulting parameter maps substantially 
depends on the underlying MRF flip angle sequence. Recent 
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works have shown that flip angle pattern optimization can 
either improve the accuracy of parameter quantification or 
reduce the scan time that is needed to achieve the same accu-
racy [5, 6]. It is also known that increasing the length of 
the MRF sequence improves the accuracy of the parameter 
maps, in particular T2 [6, 7]. Therefore, determining the opti-
mal sequence or flip angle train is very important.

The process of optimizing a sequence is not straightfor-
ward due to the large solution space and the lack of well-
established measures of encoding quality. Moreover, the 
optimal sequence may actually be different for each appli-
cation, and therefore the application of interest and its con-
straints should ideally be taken into account. Sommer et al. 
[6] have shown how a Monte-Carlo type approach can be 
used to predict the encoding capability of different MRF 
sequences. The measures of encoding are based on the inner 
product between neighboring dictionary elements, and the 
distinction is made between local and global measures of 
encoding. Later, Cohen and Rosen [8] and Zhao et al. [5] 
formulated the sequence optimization problem as an inverse 
problem, allowing one to actually calculate the optimized 
sequence under certain constraints, using a dot product 
matrix as the encoding measure. These techniques show 
promising results in terms of optimized encoding power, 
but they often focus on a selected number of tissues and 
therefore provide little insight into how the encoding capa-
bility of the optimized sequence varies for different tissues 
in the entire dictionary.

In this work, we present a visual approach to judge the 
encoding capability of MRF sequences that provides insight 
into local as well as global capabilities of encoding. We ana-
lyze the encoding capability of an MRF sequence by looking 
at its corresponding MRF dictionary, describing the relevant 
signal evolutions for the application of interest, as was also 
done in Ref. [6]. We use the dimensionality reduction tech-
nique t-distributed stochastic neighbour embedding (t-SNE) 
[10] to transform the high-dimensional MRF dictionary into 
a 2D and a 3D space. The resulting low-dimensional rep-
resentation of the MRF dictionary in this low-dimensional 
space is referred to as an embedding. The choice of t-SNE 
is motivated by its capacity to detect small differences in 
signals while preserving the manifold structure, which 
makes it particularly useful for analyzing data with nonlin-
ear structure such as MRF dictionaries. The embedding of 
the MRF dictionary is then visualized as a color-coded dic-
tionary map, based on which the local and global encoding 
capability (as described by Sommer et al. [6]) is examined. 
The color values in these maps are a surrogate for loca-
tion in the low-dimensional space. This method provides a 
framework for comparing different MRF dictionaries and, 
hence, corresponding sequences. We first demonstrate how 
our visual representation of MRF dictionaries can be used 
to compare the encoding capability of three well-known 

MRF sequences. We then compare our results obtained with 
t-SNE to these obtained with a singular value decomposition 
(SVD). Even though SVD has not been used to visualize the 
encoding capability of MRF dictionaries before, it allows us 
to analyze the effect of a nonlinear dimensionality reduction 
technique compared to a linear one. We show that in 3D the 
differences in encoding capability observed with t-SNE are 
very similar to those observed with the SVD, while in 2D the 
differences are much more pronounced with t-SNE than with 
the SVD. Our visual observations are confirmed by standard 
quantitative measures of encoding power described in litera-
ture [8]. Finally, we show that t-SNE is sensitive enough to 
visualize differences in encoding capability between multi-
ple iterations of an MRF sequence optimization algorithm.

Materials and methods

MRF dictionaries

Four different MRF flip angle sequences were used to gener-
ate five MRF dictionaries. All sequences consist of 1000 flip 
angles and a constant TR of 15 ms. The sequence shown in 
Fig. 1A contains a smoothly varying flip angle pattern intro-
duced by Jiang et al. [11] (dictionary DJ ) and is preceded 
by a 180◦ inversion pulse. The same sequence was also ana-
lyzed without the inversion pulse (dictionary D−

J
 ) to reduce 

the T1 encoding ability. The third sequence constructed by 
Sommer et al. [6] (dictionary DS ) has a more jagged random 
pattern; see also Fig. 1A. The fourth sequence was optimized 
for encoding between white matter (WM) and gray matter 
(GM), using a similar optimization technique to the one 
described by Cohen and Rosen [8]. The first five iterations 
and the final sequence (dictionary DWM,GM

O,i
 , iteration i) are 

shown in Fig. 1B. The four MRF dictionaries were created 
by Bloch simulations using the extended phase graph for-
malism to model a fast imaging with steady state precession 
(FISP) sequence (unbalanced) [12]. T1 values ranged from 
20 to 2000 ms in steps of 30 ms and T2 values ranged from 
10 to 300 ms in steps of 10 ms. B+

1
 inhomogeneities were 

neglected. All dictionary calculations only included ( T1, T2 ) 
combinations for which T1 is larger than T2.

Dimensionality reduction

Each dictionary entry was reduced from 1000 to either 2 or 
3 elements with t-SNE, which projects higher-dimensional 
data onto a lower-dimensional manifold while preserving 
similarity (pairwise distances) between data points. This 
approach is particularly useful for analyzing data with 
nonlinear structure such as MRF dictionaries. We used 
Barnes–Hut t-SNE [13] as the particular efficient implemen-
tation of t-SNE, which makes embedding of large data sets 
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feasible in terms of computation time and allows us to ana-
lyze the dependence of the dimensionality on the obtained 
encoding capability. Embeddings were initialized with coor-
dinates resulting from the principal component analysis. To 
ensure the convergence, the number of iterations was set to 
1000. No additional data standardization (e.g. Z-scoring) 
was performed.

One of the parameters to tune in t-SNE is the perplex-
ity parameter [9, 13] that influences formation of clusters 
in the embedding and is dependent on the size of the data 
set (number of dictionary entries). Therefore, its value was 
empirically set to the same value of 750 for 2D embeddings 
and 200 for 3D embeddings, based on an experiment in 
which we tested a range of realistic perplexity values. The 
final value was chosen as a “stable” one, in which range the 
embeddings effectively did not change.

Finally, DJ , DS and D−
J
 were embedded in 2D (t-SNE-

2D) up to 1000D (t-SNE-1000D) to investigate the depend-
ence of the t-SNE dimensionality on the analyzed encoding 
capability.

Embedding stability

To confirm reproducibility of the produced embeddings, 
we performed a stability experiment, similar to the one 
described by Dzyubachyk et al. [14]. Each of the dic-
tionaries was embedded several times in 2D, using the 
aforementioned approach, and the results were compared 
to each other by registering them to the common reference 
embedding. In all cases, the embedding produced during 
the first execution (denoted as E1 ) was used as the refer-
ence. The distribution of point-wise distances between the 
corresponding dictionary entries in the low-dimensional 

embedding space was used as the quality measure. The 
minimal distance from each point in E1 to all the other 
points in this embedding is also calculated and used for 
comparison.

Registration of embeddings

To facilitate comparison between different embeddings, 
they were mapped to a common reference frame, ensuring 
consistency of the color mapping. Without loss of general-
ity, we selected the embedding E1(J) corresponding to the 
dictionary DJ as the reference for the MRF sequences. The 
registration was performed using a modification [15] of 
the Iterative Closest Point (ICP) algorithm [16] that also 
enables scale estimation. In this, we assumed that the cor-
respondence between the point pairs is known, i.e. which 
embedding point was associated with which pair of ( T1, T2 ) 
values, which allowed skipping the point matching step 
and significantly simplified the algorithm.

In the previous section, we demonstrated stability of DJ , 
DS and D−

J
 by repeating the experiment that was described 

by Dzyubachyk et al. [14] for DJ . This means that intrin-
sic stochastic effects resulting from using t-SNE can be 
neglected. In the same work, we also analyzed two ways 
of comparing two dictionaries: embedding them separately 
and jointly, in both cases followed by registration. Numeri-
cal results confirmed very similar performance of the two 
approaches, from which the conclusion was drawn that the 
former (separate embedding) is preferred for being faster. 
In this work, we used separate embedding, followed by 
registration, for all the MRF sequences.

Fig. 1   MRF flip angle patterns used. A    Smoothly varying pattern 
designed by Jiang et al. [11] (green line) and randomly varying pat-
tern designed by Sommer et al. [6] (blue line). These sequences were 
used to create the corresponding dictionaries DJ and DS . Jiang’s pat-
tern was also used to create a dictionary ( D−

J
 ) without the preceding 

inversion pulse. B  Flip angle patterns for the first five iterations of a 

sequence optimization algorithm that optimizes the encoding between 
white matter and gray matter, and the final optimized sequence (red 
curve). These sequences were used to create the corresponding dic-
tionaries DWM,GM

O,i
 for iteration i. All patterns start with an inversion 

pulse seen at flip angle number 0
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Color‑coding of embeddings

For each dictionary, we mapped the coordinates of the low-
dimensional embedding into the CIE L*a*b* color space 
[17]. Consequently, the color of each entry was mapped 
back to the dictionary space. In this way, a correspondence 
between each dictionary entry and a color was established, 
resulting in color-coded dictionary maps for each ( T1, T2 ) 
combination. In these maps, similar colors indicate similar 
structure of the corresponding low-dimensional diction-
ary elements. From these color-coded dictionary maps the 
encoding capability as a function of T1 and T2 was visually 
analyzed.

Quantitative measures

The low-dimensional embeddings, and therefore the color-
coded dictionary maps, were validated using measures based 
on standard quantitative measures described in literature 
[8]. This was done in three steps. First, matrix S, describ-
ing the similarity of each dictionary entry with respect to 
all the other entries, was calculated for all the dictionaries. 
Since the Euclidean distance was used to optimize the t-SNE 
embeddings, this similarity matrix was defined as

Note that for SVD the embedding entries �i were first nor-
malized. The similarity matrices were normalized to a maxi-
mum value of unity on its diagonal by rescaling S accord-
ing to Sij = 1 − Sij∕maxij(Sij) . Second, only the entries in 
the similarity matrix corresponding to WM ( T2 = 80 ms ) 
and GM ( T2 = 110 ms ) were selected [18], resulting in two 
similarity matrices of reduced size: SWM ∈ ℝ

64×64 and SGM 
∈ ℝ

63×63 . Note that these similarity matrices describe the 
encoding along one vertical line (of constant T2 values) in 
the color-coded dictionary maps, similar to those presented 
in Ref. [19]. Third, the distance between the similarity 
matrix and the identity matrix was used as a quantitative 
measure for WM and for GM:

with M = 64 and N = 63 being the number of elements in 
each dimension of the corresponding similarity matrices. 
We use the normalized �1 norm to assign a single number 
to the encoding capability of an embedding for a specific T2 
value. Note that these measures are low in case of a strong 

(1)Sij = ‖�i − �j‖2.

(2)�WM =
1

M
‖I − SWM‖1 and

(3)�GM =
1

N
‖I − SGM‖1.

diagonal structure of Si , indicating a good encoding capabil-
ity for tissue i.

Results

Online Resource 1 shows the results of the embedding 
stability experiment for the first three MRF dictionar-
ies. These results clearly confirm high reproducibility of 
the embeddings of these dictionaries. In addition, Online 
Resource 2 shows that the embedding structures are stable 
in the analyzed range of perplexity values.

Figure 2 shows the 2D and 3D t-SNE embeddings and 
their color-coded counterparts for the dictionaries gener-
ated for the three MRF sequences: DJ , D

−
J
 and DS . These 

sequences encode T1 and T2 simultaneously, resulting in 
embeddings that are two-dimensional and three-dimen-
sional manifolds. The same figure shows, for comparison, 
the corresponding manifolds obtained with the SVD. The 
2D embeddings corresponding to DJ and DS are very simi-
lar, while being very different from that corresponding 
to D−

J
 . This is observed both for t-SNE and for the SVD. 

One can furthermore observe that the points in the t-SNE 
point clouds are more uniformly distributed than in the 
SVD point clouds, where most of the dictionary entries 
are clustered around the location represented by the green 
color. For the 3D t-SNE embeddings the difference with 
the SVD embeddings is smaller compared to that in 2D.

Figure 3 shows the corresponding color-coded diction-
ary maps, from which the encoding capability as a func-
tion of T1 and T2 can be analyzed. Removing the inversion 
pulse from Jiang’s sequence reduces the encoding capabil-
ity, which can be observed from the smaller color variation 
in the T1 direction in its color-coded dictionary map, espe-
cially for long T1 values. The color-coded dictionary maps 
for Sommer’s ( DS ) and Jiang’s ( DJ ) sequences look very 
similar, suggesting that these sequences provide compa-
rable encoding quality. Figure 3 also shows similar results 
for the color-coded dictionary maps produced with the 
SVD. In 2D, these maps show much less color variation 
compared to the color-coded dictionary maps produced 
with t-SNE. In 3D, however, the difference between the 
color-coded dictionary maps produced with SVD and with 
t-SNE is much smaller. 

Figure 4 shows the similarity maps derived from the 
low dimensional t-SNE embeddings using Eq. (1), for T2 
values corresponding to WM ( T2 = 80 ms) and to GM ( T2 
= 110 ms). The similarity maps show minor differences 
when increasing the dimensionality of the embedding from 
2D (t-SNE-2D) to 1000D (t-SNE-1000D), both for WM 
and for GM. The similarity maps for t-SNE-1000D show 
steeper patterns compared to that of the high-dimensional 
dictionaries analyzed without t-SNE, suggesting that the 
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t-SNE analysis can increase the encoding capability of an 
MRF sequence. Similar results are shown in Fig. 5A for 
the low-dimensional SVD embeddings. In this case the dif-
ference between the similarity maps for dimensionalities 
2D and 3D is larger compared to that for t-SNE, but the 
similarity map for the 500D embedding is closer to that of 
the high-dimensional dictionary compared to the one for 
the t-SNE case. Figure 5 shows, for all dimensionalities, 
a slightly smaller color variation within each SVD simi-
larity map compared to these obtained with t-SNE. This 
indicates that the encoding capability of different MRF 
sequences is slightly better visualized with t-SNE than 
with SVD.   

Tables 1 and 2 report quantitative measures of encod-
ing capability derived from the similarity maps in Figs. 4 
and  5 using Eq.  (2). These numbers confirm that the 
encoding capability for DJ and DS is comparable, whereas 
the encoding capability for D−

J
 is lower, both for WM and 

for GM. This is the case for t-SNE and for SVD and for 
all dimensionalities. The quantitative measures for 2D 
SVD confirm that in this case the dimensionality reduc-
tion was too large to capture all the encoding information. 
The quantitative measures for the full dictionary (with-
out the t-SNE analysis) are higher than these for t-SNE-
1000D, even though the dimensionalities are the same for 
both cases. This difference is introduced by the nonlinear 
behavior of t-SNE, which is influenced by the choice of 
the perplexity value. Online Resource 3 shows that using 
lower perplexity values can reduce these differences, while 
having minimal effect on the color-coded dictionary maps. 
Note, furthermore, that the ranking of the three sequences 
is preserved both for WM and for GM. Figure 6 shows 
the color-coded dictionary maps for the first five itera-
tions of a sequence optimization algorithm that optimizes 
the encoding between WM and GM. The color-coded dic-
tionary map after the fifth iteration shows a more gradual 

Fig. 2   Comparison of 2D and 3D embeddings for three different 
MRF flip angle patterns. Two-dimensional embeddings of DJ (A,D), 
D

−
J
 (B,E) and DS (C,F) produced by t-SNE (A–C) and SVD (D–F), 

respectively. The original embeddings (in blue) were registered to 
the corresponding  embedding of DJ (in green). These embeddings 

are shown next to their colored counterparts. Embeddings for DJ and 
for DS look very similar, while both being very different from that for 
D

−
J
 . This can be observed both for t-SNE and for the SVD. Three-

dimensional embeddings t-SNE-3D (G–I) and SVD-3D (J–L) are 
also shown
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color change in all directions (but especially in the T2 
direction) compared to that after the first iteration. This 
is confirmed by a lower distance between the similarity 
matrix and the identity matrix (see Eq. (2)) for fixed T1 
values of 1331 ms (WM) and 832 ms (GM), and, therefore, 
suggesting a higher encoding capability as the iteration 
number increases: 0.818/0.839 (iteration 1) vs 0.674/0.717 
(iteration 5) for WM/GM. Note that DJ , with a distance 

between the similarity matrix and the identity matrix of 
0.743/0.734, had the worst encoding capability after five 
iterations for a T1 of 1331/832 ms. Figure 7 shows the simi-
larity maps for DWM,GM

O,i
 for the first five iterations of the 

optimization algorithm. The increasing steepness of the 
similarity pattern and the decreasing quantitative measures 
suggest that t-SNE may be able to capture the encoding 
capability in the context of MRF sequence optimization.

Fig. 3   Comparison of the color-coded dictionary maps for three dif-
ferent MRF flip angle patterns embedded in 2D (left) and 3D (right). 
Two-dimensional color-coded dictionary maps corresponding to 
the embeddings of DJ (A,D), D−

J
 (B,E) and DS (C,F) in the ( T1, T2 ) 

coordinate system. The embeddings were produced by either t-SNE 
(A–C) or SVD (D–F), respectively, and registered to that of DJ (see 
Fig. 2). In these maps, similar colors for certain ( T1,T2 ) combinations 
indicate similar structure of the corresponding low-dimensional rep-
resentations of the dictionary entries. Like the embeddings, also the 
color-coded dictionary maps for DJ and DS look very similar, both for 
t-SNE and for the SVD, suggesting comparable encoding capability. 

The sequence without the inversion pulse results in a color-coded dic-
tionary map with less color variation in the T1 direction, especially 
for long T1 values, suggesting reduced encoding capability compared 
to DJ and DS . This is much better visible with t-SNE than with the 
SVD. Similar results are also shown for t-SNE-3D (G–I) and SVD-
3D (J–L). Note that figure (B) contains visible outliers caused by the 
stochastic nature of t-SNE, which can be mitigated by averaging the 
embeddings produced by repeated t-SNE runs. The pattern-filled tri-
angle in the bottom of the color-coded dictionary maps represents the 
unsampled region for which T2 is longer than T1
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Discussion

This work has shown the feasibility of using dimensional-
ity reduction techniques such as t-SNE and SVD to visual-
ize and compare the encoding capability of different MRF 
sequences. t-SNE and SVD both resulted in comparable 
color-coded dictionary maps for DJ and DS , while that for 
D

−
J
 suggested a lower encoding power. These visual results 

were confirmed by quantitative measures of encoding capa-
bility derived from the low-dimensional embeddings. The 
nonlinear behaviour of t-SNE emphasized small differences 
in encoding capability, leading in 2D space to a larger vis-
ual difference in color-coded dictionary maps for different 
sequences compared to when using the SVD. In 3D these 
visual differences were much smaller, although still present. 

Fig. 4   Similarity maps derived from the t-SNE embeddings for dif-
ferent dimensionalities. The similarity matrices were calculated 
for a fixed T2 = 80 ms , corresponding to WM (A), and for a fixed 
T2 = 110 ms , corresponding to GM (B), using the Euclidean dis-
tance as a similarity measure. The diagonal elements of the similar-
ity matrices are equal to one by definition. The horizontal and ver-
tical axes of each similarity map represent the different possible T1 
values corresponding to the fixed T2 value. The similarity maps for 

WM and GM show very little dependency on the dimensionality 
(2–1000) of the t-SNE embedding. The nonlinear behavior of t-SNE 
can be observed from the difference between the similarity maps 
obtained from the full dictionaries and that obtained with t-SNE. For 
all dimensionalities, the similarity maps for DJ and DS show a more 
diagonal structure than that of D−

J
 , both for WM and for GM, con-

firming a higher encoding capability for DJ and DS than for D−
J
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t-SNE was therefore more effective in visualizing differences 
in the encoding capability of MRF sequences than the SVD.

As we have shown in Figs. 6 and 7, t-SNE is able to 
visualize differences in encoding capability for subsequent 
iterations of an MRF sequence optimization algorithm. 
This technique could therefore be useful in the context 
of MRF sequence optimization by providing visual infor-
mation about the encoding capability of the optimized 
sequence for all the possible tissue parameters. Often only 
a few tissue types are taken into account in the optimiza-
tion process to maintain computational efficiency. Since 
t-SNE emphasizes small differences in encoding capabil-
ity, it could also potentially be of help in MRF sequence 
optimization when used as a dictionary transform in the 

cost function. The steeper similarity maps when analyzed 
with t-SNE, shown in Fig. 4, are in line with this hypoth-
esis. Currently, calculation of a t-SNE embedding of one 
entire MRF dictionary ( 1000 × 1855 elements) takes a 
time that is in the order of minutes, from which we pre-
dict that embedding a limited number of selected tissues 
(needed during optimization) will take a time in the order 
of seconds. The feasibility of integrating t-SNE in an 
MRF sequence optimization algorithm will be explored 
in future work. In particular, we expect that GPU-based 
implementation of t-SNE [20] might be able to provide the 
required performance as it has been shown to speed-up the 
computations up to several orders of magnitude. Alterna-
tively, one could think about using t-SNE as a compression 

Fig. 5   Similarity maps derived from the SVD embeddings for dif-
ferent dimensionalities. The similarity matrices were calculated 
for a fixed T2 = 80 ms , corresponding to WM (A), and for a fixed 
T2 = 110 ms , corresponding to GM (B), using the Euclidean dis-
tance as a similarity measure. The diagonal elements of the similar-
ity matrices are equal to one by definition. The horizontal and ver-
tical axes of each similarity map represent the different possible T1 

values corresponding to the fixed T2 value. The similarity maps for 
WM obtained from the SVD embeddings are more dependent on 
the dimensionality (2D vs 3D) than these obtained from the t-SNE 
embeddings, shown in Fig.  4. The similarity maps obtained from 
the SVD embeddings show slightly less color variation compared to 
these obtained with t-SNE
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Fig. 6   Comparison of the first  five iterations of an MRF sequence 
optimization algorithm and their respective embeddings and color-
coded dictionary maps. Two-dimensional t-SNE embeddings of 
D

WM,GM

O,i
 were first registered to each other. The corresponding color-

coded dictionary map shows a more gradual color change, especially 
in the T2 direction, for the sequence in the fifth iteration compared 

to the sequence in the first iteration. Note that the color-coded map 
of the first iteration contains visible outliers caused by the stochas-
tic nature of t-SNE, which can be mitigated by averaging the embed-
dings produced by repeated t-SNE runs. The pattern-filled triangle in 
the bottom of the color-coded dictionary maps represents the unsam-
pled region for which T2 is longer than T1

Fig. 7   Comparison of the first  five iterations of an MRF sequence 
optimization algorithm and their respective similarity maps and quan-
titative measures. Similarity maps were generated from the embed-
dings shown in Fig.  6 by fixing the T1 value to 832  ms (WM) and 
1331  ms (GM), respectively. The horizontal and vertical axis of 

the similarity maps represent different T2 values. The maps show a 
steeper pattern as the iteration number increases, suggesting increased 
encoding capability. This is confirmed by the quantitative measures, 
calculated using Eq. 2, plotted as a function of the iteration number
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tool before matching the MRF data to the dictionary, as is 
sometimes done with the SVD [23]. This could potentially 
increase the accuracy of matched ( T1, T2 ) pairs for which 
the differences between elements are relatively small, such 
as for very long T1 values. Such an approach would require 
a noise-insensitive t-SNE implementation or the use of 
another noise-insensitive nonlinear dimensionality reduc-
tion technique such as self-organizing maps (SOM) [24].

High-dimensional dictionaries can be transformed into 
any n-dimensional space using t-SNE for n smaller than the 
dynamic length of the dictionary. Natural choices enabling 
straightforward visualization are n = 2 or n = 3 . In this 
work, all MRF dictionaries were preferably transformed into 
a 2D space, since 2D embeddings tend to be more stable. 

Choosing n > 3 would complicate visualization, but results 
in this work have already shown that the dependence of the 
dimensionality ( n = 21, 000 ) on the quantitative encoding 
measures (distance between the similarity matrix and the 
identity matrix) is relatively small for t-SNE. When three 
encoding parameters (among which T1 and T2 ) are analyzed, 
the low dimensional embedding should be mapped to a 3D 
color-coded dictionary map instead of a 2D map. Online 
Resource 4 shows how this works for MRF dictionaries 
with T1 , T2 and B+

1
 encoding. The same procedure could 

be used to analyze for example B0 encoding for balanced 
SSFP sequences. If adding an extra encoding parameter 
brings a highly repetitive shape to the dictionary landscape, 
low-dimensional dictionary elements will show up close 
together in the embedding space, as was observed for low 
B+
1
 fractions. When more than three encoding parameters are 

analyzed at the same time, the visualization should be split 
into multiple 3D visualizations by sequentially selecting 3D 
subvolumes from the color-coded dictionary map.

Although in this study t-SNE was used to transform the 
high-dimensional dictionaries into low-dimensional space, 
there are many other nonlinear dimensionality reduction 
techniques that could be used instead. For several benchmark 
data sets, t-SNE has been shown to produce results of supe-
rior quality compared to other non-linear transformations 
such as Isomap and Locally Linear Embedding [10]. How-
ever, these results need to be reevaluated for MRF dictionar-
ies to find out whether these conclusions hold in the context 
of quantitative MR sequences. Furthermore, the small dif-
ferences between 3D t-SNE and 3D SVD for the currently 
analyzed dictionaries suggest that linear dimensionality 
reduction techniques could also provide useful information 
about the encoding capability for visualization purposes.

In this work, we have used existing measures of encoding 
capability described in literature to validate the visual results 

Table 1   Quantitative measures 
of encoding capability for 
white matter (WM) and gray 
matter (GM) derived from 
t-SNE embeddings of different 
dimensionalities

The measures were calculated from Eqs. 2 and  3. Larger numbers indicate lower encoding capability. The 
encoding capability measures are very similar for t-SNE-2D to t-SNE-1000D. The numbers in column 
“Full” were derived directly from the original high-dimensional dictionaries. These numbers suggest that 
the dictionaries analyzed with t-SNE have a higher encoding power than the full dictionary (without the 
t-SNE analysis). This is a result of the nonlinear behavior of t-SNE and is influenced by the perplexity 
parameter, as shown in Online Resource 3. Note, however, that the ranking of the encoding capability of 
the three sequences is preserved for both WM and GM

Dictionary t-SNE-2D t-SNE-3D t-SNE-8D t-SNE-500D t-SNE-1000D Full

T2 = 80 ms (WM)
   DJ 0.743 0.742 0.740 0.701 0.703 0.755
   D−

J
0.764 0.764 0.760 0.745 0.745 0.834

   DS 0.752 0.750 0.746 0.709 0.711 0.781
T2 = 110 ms (GM)

   DJ 0.734 0.732 0.730 0.692 0.694 0.772
   D−

J
0.755 0.754 0.752 0.738 0.738 0.852

   DS 0.737 0.735 0.732 0.695 0.696 0.796

Table 2   Quantitative measures of encoding capability for white mat-
ter (WM)  and gray matter (GM)  derived from SVD embeddings of 
different dimensioalities

The measures were calculated from Eqs.  2 and   3. Larger numbers 
indicate lower encoding capability. The encoding capability measures 
are very similar for SVD-3D to SVD-500D and for the full diction-
aries. Note that the numbers in column “Full” were derived directly 
from the original high-dimensional dictionaries. The numbers are 
slightly different for SVD-2D than for higher dimensionalities, con-
firming that more than two dimensions are needed for SVD to capture 
the full encoding information

Dictionary SVD-2D SVD-3D SVD-8D SVD-500D Full

T2 = 80 ms (WM)
   DJ 0.796 0.752 0.755 0.755 0.755
   D−

J
0.868 0.835 0.833 0.834 0.834

   DS 0.843 0.778 0.781 0.781 0.781
T2 = 110 ms (GM)

   DJ 0.821 0.769 0.772 0.772 0.772
   D−

J
0.890 0.853 0.852 0.852 0.852

   DS 0.868 0.793 0.795 0.796 0.796
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obtained with t-SNE. The question of which quantitative 
measures are suitable for describing such differences most 
efficiently or which measures describe the encoding capabil-
ity best, is still open.

There are many design choices when creating MRF dic-
tionaries. Differences introduced by these design choices 
may influence the visualization of the encoding capability 
of the dictionaries. As shown in Online Resource 4, color-
coded dictionary maps and corresponding similarity maps 
for coarse and fine dictionaries look rather similar. Any 
small differences are likely caused by the need for choosing 
a different perplexity parameter due to an increased num-
ber of elements for the fine dictionary. Introducing a larger 
T2 range results in a mismatch between the structure of the 
low- and the high-dimensional dictionaries, represented by 
the differently changing patterns in the similarity maps. This 
effect can be avoided by introducing a nonuniform step size 
in the T2 dimension, to account for the intrinsic nonlinear 
behavior of the MRF data (i.e. dictionary entries for long 
T2 values are much more similar to each other than diction-
ary entries for short T2 values). These results suggest that 
the dictionaries should be constructed on the same grid 
when comparing dictionaries with t-SNE. Using a non-
uniform step size in the T1 dimension may also eliminate 
the locally steeper pattern in the similarity maps of Jiang’s 
sequence without inversion pulse, that we observe for very 
short T1 values, compared to the other two sequences. MRF 
sequences of different length (i.e. different number of flip 
angles) can easily be compared by zero-padding the shorter 
sequence as was shown by Dzyubachyk et al. [14].

In this work, we embedded each sequence individually, 
after which the point clouds were registered to each other 
using a modification of the Iterative Closest Point algo-
rithm with integrated scale estimation [15]. An alternative 
approach would be to first combine two dictionaries and treat 
them as one large dictionary in the embedding process, after 
which registration of the two point clouds corresponding 
to each of the combined dictionaries can be performed. As 
demonstrated earlier [14], both approaches provide compa-
rable registration results, and hence result in similar color-
coded dictionary maps. Since the latter approach is com-
putationally more expensive due to the two-fold increase 
in the number of high-dimensional data points, the former 
approach is more attractive in this application.

Since the t-SNE algorithm is intrinsically stochastic, 
the final embeddings may in general differ from run to run. 
Dzyubachyk et al. [14] performed a quantitative stability 
study on Jiang’s dictionary [11] and the final embedding was 
highly reproducible. Here we repeated that stability study 
for different dictionaries used in this paper and a different 
implementation of t-SNE and quantitatively concluded high 
similarity between the results corresponding to different runs 
of the algorithm.

In conclusion, t-SNE can be used to visualize the encod-
ing capability of entire MRF dictionaries. This technique 
can be used to obtain insight into the encoding principles by 
comparing different sequences, or as a confirmation tool in 
the context of MRF sequence optimization. This may sup-
port the use of this technique in clinical applications.
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