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Abstract
The global financial crisis in 2008, and the European sovereign debt crisis in 2010,
highlighted how credit risk in banking sectors cannot be analysed from a uniquely
micro-prudential perspective, focused on individual institutions, but it has instead to
be studied and regulated from amacro-prudential perspective, considering the banking
sector as a complex system. Traditional risk management tools often fail to account
for the complexity of the interactions in a financial system, and rely on simplistic
distributional assumptions. In recent years machine learning techniques have been
increasingly used, incorporating tools such as text mining, sentiment analysis, and
network models in the risk management processes of financial institutions and super-
visors. Network theory applications in particular are increasingly popular, as they
allow to better model the intertwined nature of financial systems. In this work we
set up an analytical framework that allows to decompose the credit risk of banks and
sovereign countries in the European Union according to systematic (system-wide and
regional) components. Then, the non-systematic components of risk are studied using
a network approach, and a simple stress-test framework is set up to identify the poten-
tial transmission channels of distress and risk spillovers. Results highlight a relevant
component of credit risk that is not explained by common factors, but can still be a
potential vehicle for the transmission of shocks.We also show that due to the properties
of the network structure, the transmission of shocks applied to different institutions
is quite diversified, both in terms of breadth and speed. Our work is useful to both
regulators and financial institutions, thanks to its flexibility and its requirement of data
that can be easily available.
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1 Introduction

The global financial crisis in 2008, and the European sovereign debt crisis in 2010,
highlighted how credit risk in banking sectors cannot be analysed from a uniquely
micro-prudential perspective, focused on individual institutions, but it has instead to
be studied and regulated from amacro-prudential perspective, considering the banking
sector as a complex system. Forecasting the development of systemic banking crises,
and understanding the mechanisms that lead to such extreme scenarios (i.e. managing
systemic risk), is fundamental for setting up macro-prudential supervisory policies
and reducing the likelihood and intensity of such manifestations.

A first stream of literature aimed at assessing risk from a systemic perspective,
focuses on the identification of common risk drivers, measuring the role of differ-
ent factors in the determination of risk for different institutions using econometric
techniques (see e.g. Ang and Longstaff 2013; Fontana et al. 2016; Fabozzi et al.
2016; Pianeti and Giacometti 2015; Alter and Schüler 2012; De Bruyckere et al.
2013; Kalbaskaa and Gatkowskiba 2012; Manzo and Picca 2020). Other works aim
to quantify the systemic risk contribution or exposure for individual banks, among the
most relevant, we can cite CoVaR (Adrian et Al. 2016), Systemic Expected Shortfall
(Acharya et al. 2010), and Component Expected Shortfall (CES) (Dumitrescu et al.
2014).

Such approaches have the drawback of failing to account for the complexity of
the interaction that happen in the financial system. Several contribution indeed stress
the role of transmission of shocks across institutions, measuring contagion and risk
spillovers (see e.g. Schwarcz 2008; Freixas et al. 2015; Covi et al. 2019). Moreover,
these econometric approaches often rely on simplistic distributional assumptions, and
do not allow to incorporate in the analysis the large amount of data available to practi-
tioners and regulators. To tackle these issues,machine learning techniques can be used.
In recent years many applications have been developed in the field of systemic risk and
financial riskmanagement (seeKou et al. 2019 for an extended review). Several contri-
butions are focused on the inclusion of big data in riskmanagement processes using text
mining and sentiment analysis (O’Halloran et al. 2015; Cerchiello and Giudici 2016),
on the parsing of large amount of financial and non-financial data to improve risk man-
agement in financial institutions (Lichters et al. 2014), or in the analysis of regulatory
policies to manage systemic risk (O’Halloran et al. 2019). The most relevant machine
learning applications to systemic risk and contagion analysis however is related to
network models: the intertwined nature of financial systems makes indeed network
analysis a fundamental tool to identify the most relevant institutions in a system and
to study the exposures that are more relevant in the generation and the transmission
of systemic risk. Several contributions use regulatory data and epidemiological meth-
ods to assess the diffusion of shocks in complex financial systems (Gai and Kapadia
2010; Puliga 2014; Covi et al. 2019). Yu et al. (2020) simulate an interbank network
using balance sheet data of banks to identify if the financial institutions have sufficient
capital reserves to prevent risk contagion and identify the synthetic features of the
network. Moreover, in absence of granular bilateral data, other works aim to estimate
the network structure using the market prices of traded securities. Examples are Billio
et al. (2012) that use Granger-causality networks to identify and forecast financial
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instability periods, Diebold and Yılmaz (2014) that consider variance decomposition
to track the interconnectedness of major US companies, and Anufriev and Panchenko
(2015) and Torri et al. (2018) that rely on partial correlation networks to characterize
the structure of the banking systems. The adoption of network models is high on the
agenda of regulators: the Basel Committee on Banking Supervision (in the following
BCBS) has identified the “excessive interconnectedness among systemically impor-
tant banks” as one of the weakness of the European financial system and it has made
addressing the systemic risk created by this interconnectedness a cornerstone of Basel
III. Indeed Basel III established a higher loss absorbency requirement for institutions
deemed to be global systemically-important banks (G-SIBs), (see BCBS 2011). The
development of methodologies to estimate the network structure and assess the trans-
mission of risk becomes then increasingly relevant. In this work we aim to study the
systemic dimension of credit risk in the European banking sector, considering both
the presence of systematic risk components (system-wide and regional), and the role
of direct transmission of shocks adopting a network perspective, after controlling for
the systematic components. More in detail, we first apply the model of Farina et al.
(2019) to credit default swaps (CDS) spreads data for European banks to identify the
systematic components using Marshall–Olkin multivariate distribution(Marshall and
Olkin 1967), and then we analyze the interactions of the idiosyncratic components to
consider the potential spillovers of risk by considering network indicators and a con-
tagion model for the transmission of distress inspired to Puliga (2014). Conceptually,
our framework is related to the analysis of Brownlees et al. (2018), that studies the
network structure of a panel of American blue chips by using equity returns, first fitting
a linear factor model to the returns, and then estimating partial correlation networks on
the residuals, in order to avoid measuring spurious connections. Differently from such
work, our analysis does not rely on Gaussian assumption, and in our opinion is there-
fore more suitable for the analysis of credit spreads. Moreover, instead of considering
principal components, our factor analysis focuses on meaningful country and industry
sectors, allowing a greater intepretability of the results. This framework allows us to
investigate credit risk in a systemic perspective, measuring both the role of common
factor and the network structure of the non-systematic component, going beyond tra-
ditional econometric analysis and focusing on the network structure of the system. The
analysis is conducted on eight countries in the European Union (EU), whose banking
system is modelled using a set of twenty-nine representative banks.1 We assume that
the default of each country can be due to three possible systematic factors or com-
ponents: a common EU factor, a banking/country specific component and a country
specific factor. After controlling for these factors, we identify a residual components,
that is used to construct correlation-based networks. The main contribution of this
paper is the development of a unified framework to study systemic and systematic
risk in a banking system, considering non-Gaussian distributional assumption, and
network models.

1 Banking and financial system refer respectively to the services provided by banking and non-banking
financial institutions. The main difference between the two is that non-banking financial institutions cannot
take deposits from customers like traditional banks do. On the contrary financial companies provide other
services than banking institutions, which include asset management and insurance services. In this paper,
while still aware of the difference, we use financial system as a synonymous of banking system.
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The paper is structured as follows: in Sect. 2 we present our model and introduce
the network analysis framework. In Sect. 2.1 we describe the data and discuss the
results. Section 2.2 provides our conclusions.

2 The proposedmethodology

The main purpose of this section is to illustrate the methodology used to decompose
the credit risk of the most representatives banks in EU. Credit risk is attributed to
systematic components, related to system-wide and regional factors, and a residual
non-systematic (idiosyncratic) component is identified. For the decomposition we
assume a Marshall–Olkin distribution (Marshall and Olkin 1967) to attribute risk
according to different kinds of shock.

2.1 The risk decompositionmodel

A framework suitable to describe such system of shocks is the Marshall–Olkin mul-
tivariate distribution (see e.g. Giesecke 2003; Mai et al. 2016). In our framework, we
consider a reduced-for model where the components are private and public entities,
and the failures are default events involving the entire system, the sovereign states, the
national banking systems or combinations of these. The model, described in greater
details in Farina et al. (2019), extends Baglioni and Cherubini (2013) to a multivariate
framework and introduces a new cross country component that identifies the system-
atic EU-wide risk, related to shocks that affect the entire financial system and cannot
be diversified.

Let introduce the proposed framework with a toy example. Assume that there are
n = 2 entities and p = 3 possible shocks. Shock k is modeled as an independent
Poisson process Nk , with intensity λk . The two entities are usually indicated as 1 and
2 and the three shocks are indicated as 1, 2 and {1, 2}.

The marginal random variables are exponentially distributed with λ1 + λ{1,2} and
λ2+λ{1,2} being the rates of failure of the two entities. The default times are positively
correlated with a Spearman correlation coefficient2 computed as:

ρs = 3λ{1,2}
2λ1 + 2λ2 + 3λ{1,2}

. (1)

Let’s indicate with τ j the default time of entity i and with F̄i its survival function,

F̄i (t) = P
[
Ni (t) + N{1,2}(t) = 0

] = e−(λi+λ{1,2})t . (2)

and the joint survival probability is

F̄(t, s) = P [τ1 > t, τ2 > s] = e−λ1t · e−λ2s · e−λ{1,2} max(t,s). (3)

2 Spearman correlation coefficient ρ is a measure of non-parametric rank correlation, that assesses how
well the relationship between two variables can be described using a monotonic function (see Wayne 1990,
pp. 358–365).
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Table 1 Classes of shocks and
risk components

Type of shock Risk component

Idiosyncratic default of public sector of
country j

λC j

Default of the financial system of country j λFj

Joint default of banking system and public
sector of country j

λ{Fj ,C j }

Idiosyncratic default of the bank i λBi, j

Systemic event common to all countries and
financial systems in EU

λEU

Assume now that there are n ≥ 2 entities; in this case, the number of all possible
shocks is 2n − 1. However, from a parsimonious point of view we concentrate our
attention on a set with cardinality p of shocks that are meaningful from an economic
point of view and the dependency among the n entities is explicitly modelled by
the common exposure to some of the shocks rather than introducing a dependency
structure upon the shocks themselves. In order to determine which shock will affect
which entity, let us introduce a matrix

[
a j,k

]
n×m where j = 1, . . . , n, k = 1, . . . , p

whose elements have binary values, i.e. a j,k = 1 if entity j is affected by shock k
otherwise zero.

The time to default of entity j can be written as

τ j = inf

{

t ≥ 0 :
p∑

k=1

a j,k Nk(t) > 0

}

,

meaning that entity j defaults as soon as any of the Poisson processes for which
a j,k �= 0 exhibits a jump.

Using the independence assumptions among the shocks, it can be seen that entity
j has a default intensity equal to

∑p
k=1 a j,kλk or

F̄j (t) = e−∑p
k=1 a j,kλk t ,

whereλk denotes the rates of failure of the kth combination of entities. Themultivariate
joint survival probability is instead given by

F̄(t1, . . . , tn) = e−∑p
k=1 λk ·max(a1,k t1,...,an,k tn). (4)

Within this framework, we model the EU as a set of n countries and the related n
banking systems, where the j th system is composed of m j banks. We consider five
different classes of shocks, each one associated with a component of credit risk, as
presented in Table 1.

Considering these shocks and their decompositionwemodel the survival probability
of countries, banks and national financial systems (see Farina et al. 2019). In this
paper we concentrate our attention at banking level since we want to analyse the bank
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interconnectedness once that we have removed the systematic components. In other
words, before investigating the network of banks we need to isolate the idiosyncratic
components of risk.

Analysing country j , we have m j banks which, collectively, can be seen as rep-
resentative of its entire financial system. The marginal survival probability of the i th
bank in country j , Bi, j with i = 1 : m j is:

P
[
τBi, j > t

] = e−λ̂Bi, j t , (5)

where

λ̂Bi, j := λBi, j + λFj + λ{Fj ,C j } + λEU . (6)

Hence the default intensity of each bank Bi, j is related respectively to the idiosyncratic
default of the bank λBi, j , the default of the financial system of the country λFj , the
joint default of national banking and sovereign λ{Fj ,C j } and a common credit event in
all EU i.e. λEU .

Moreover we identify the possible shocks of the country j and its financial sector
defining the default intensities as

λ̂C j := λC j + λ{Fj ,C j } + λEU , (7)

λ̂Fj := λFj + λ{Fj ,C j } + λEU . (8)

The economic interpretation is that a country and its financial sector can experience a
default for three reasons: the country (or respectively its financial sector) is individually
in default, the country and its financial system are jointly in default or all the countries
in the EU experience a common default.

Equations (6), (7) and (8) are the principal relationships in our decomposition
model which we apply to isolate the idiosyncratic components λBi, j of each bank
from all the possible other components in order to avoid spurious correlation effects.
The estimation procedure is described in “Appendix A”.

2.2 Network analysis

The risk decomposition presented so far is based on the assumption that all the possible
shocks in the financial system belong to one of the categories listed in Table 1. This
restriction is necessary for the interpretability of the results and for the estimation of
the model: if we considered all the possible combinations, the number of different
shock types would amount to 2n+m − 1, where n is the number of banks in the sample
and m the number of countries.

Thedifferent non-systematic components identifiedby themodel are not necessarily
independent and, on the contrary, they include relevant information related to systemic
risk in terms of contagion and spillover effects.
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We analyze these features using network theory, representing banks as nodes of a
network G constructed using the correlation of idiosyncratic components λBi, j of each
bank.

Let G = (V, E) be a graph where V is the vertex or node set of cardinality N and
E is the set of the edges. We assume that the network is a proxy of interdependencies
among banks where each bank is a node and we assign a link or edge between a pair
of banks at time t if the co-movements of the two time series of intensity variations
show a significant Spearman correlation.

Let B be the adjacency matrix where each entry bi, j records the existence of the
link between nodes i and j . The matrix B is assumed to be symmetric (i.e. the graph is
undirected) and the elements are equal to the Spearman correlation coefficient between
each pairs of banks within and between each couples of countries.

We then characterize the network using a set of indicators, in particular we consider
the density of the network (defined as the number of edges in the network divided by
all the possible ones) and two centrality indicators (strength centrality and eigenvector
centrality). A centrally located bank is likely to be systemically important, as it has the
potential to affect a large part of the network directly or indirectly in case of a shock.

There is a range of ways to quantify the nodes centrality. Degree centrality is the
simplest way tomeasure the importance of nodes, as it relies only on the local structure
around them; it is computed as the number of links a node has. A natural extension of
degree centrality is the strength centrality. The strength centrality indicator assumes
that the node importance is given by the sum of weights of the links connected to it.

Another measure of centrality of a node is the eigenvector centrality. It is a feed-
back centrality measure, based on the idea that some nodes are more relevant than
others. It is indeed based on the principle that connections to few high scoring nodes
contribute more to the score than connections to low scoring nodes. Formally the i th
node centrality score xi is proportional to the sum of the scores of all the nodes which
are connected to it. The centrality score xi of the i th node is defined as:

xi = 1

λ

N∑

j=1

bi, j x j , (9)

where N is the number of nodes in the graph, N (i) ⊆ V is the set of neighbours of i
and λ is a constant.

Equation (9) can be rewritten in a more compact form as the eigenvector equation:

Bx = λx . (10)

Assuming that the graph is connected, it follows from the Perron–Frobenius theorem
that for λ being the largest eigenvalue of the adjacencymatrix B, and x the correspond-
ing eigenvector, all the entries of x are non-negative and correspond to the centralities
of the nodes (see Newman 2010, p. 169).

The eigenvector centrality differs from the previous centrality indicators: a node
receiving many links does not necessarily have a high eigenvector centrality (it might
be that all linkers have low or null eigenvector centrality). Moreover, a node with high
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eigenvector centrality is not necessarily characterized by a large number of edges (the
node might have few but important links).

Finally we perform a stress-test based on DebtRank (see Puliga 2014). DebtRank
allows to estimate the systemic impact of a shock to a node in the network. In this
work, we focus on a small shock hitting individual banks and we want to measure the
final effect, due to the shock reverberations through the network.

We define the impact of node i on node j as α · bi, j , where bi, j is the weight of the
link in the network and α is a parameter that controls the intensity of the impact. The
impact of i on its first neighbours is

∑
j bi, jv j , where v j is a measure of the economic

size of j . Similarly to Puliga (2014) we take v j = 1, ∀ j .
We associate to each node two state variables: a continuous variable hi ∈ [0, 1] and

a discrete variable si ∈ {U , D, I } i.e. with 3 possible states: undistressed, distressed,
inactive.

Denoting by S f the set of nodes in distress at time 1, the initial conditions are:

• hi (1) = � ∀i ∈ S f and hi (1) = 0 ∀i /∈ S f ,

• si (1) = D ∀i ∈ S f and si (1) = U ∀i /∈ S f .

where the parameter � measures the initial level of distress, � ∈ [0, 1] with � = 1
meaning default.

The dynamics is defined as follows for all i :

hi (t) = min

{
1, hi (t − 1) +

∑

j∈J
(b ji )

+h j (t − 1)

}
, (11)

where J is the set of nodes j with s j (t − 1) = D and

si (t) =

⎧
⎪⎨

⎪⎩

D if hi (t) > 0, si (t − 1) �= I , si (t − 1) �= D

I if si (t − 1) = D

si (t − 1) otherwise

, (12)

where b+
j i is defined as max{0, b ji } and denotes the positive edges in the network.3

After a finite number of steps T the dynamics stop and all the nodes in the network
are either in state U or I.

The DebtRank of the set S f is then defined as

R =
∑

j

h j (T )v j −
∑

j

h j (1)v j . (13)

It can be interpreted as the amount of distress induced in the system by the rever-
beration of the initial shock.

3 Note that we are using a slight modification of the model in Puliga (2014). The difference is that in this
work we considered only the positive edges in the network as a channel for the diffusion of distress. This
is motivated by the fact that, in case of a sudden shock hitting of a bank, it would make poor economic
sense to model a reduction in other banks distress, even if historically they have an edge (connection) with
a negative sign.
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In our work we analyse the effect of shocks hitting individual banks, in particular
we consider small shocks with magnitude α = 0.1. This framework could be used also
for the simulations of shocks of different magnitudes and to shocks hitting multiple
institutions.

3 Decomposition results and network analysis

In this sectionwepresent the data and the results obtained applying themodel described
in Sect. 2. In particular, we first analyse the intensity of the common factor λEU and
then move to allocate risk to the different components. Finally we investigate the
network of banks constructed using the idiosyncratic components of risk.

3.1 Data

A credit default swap (CDS) is a bilateral a contract, with the credit protection buyer
paying a periodic fee in return for receiving compensation in case the reference entity
should experience a credit event during the contract’s life. Hence CDSs allow to isolate
and price the credit risk of the reference entity. In order to perform our analysis on
credit risk attribution in EU, we consider CDS data where the reference entities are
the following countries: UK, Germany, France, Netherlands, Italy, Portugal, Greece
and Spain.

This country selection is in line with previous researches (see e.g. Reboredo and
Ugolini 2015; Fabozzi et al. 2016; Pianeti and Giacometti 2015; Alter and Schüler
2012; Baglioni and Cherubini 2013; Kalbaskaa and Gatkowskiba 2012).We also point
out that our banks’ selection is consistent with the European BankingAuthority (EBA)
stress-test excercise, proving that our data are representative of the banking system of
the relative countries.4

We divide the countries in two subsets: northern countries composed by UK, Ger-
many, France, Netherlands, and southern countries: Italy, Portugal, Greece and Spain.
For each country we consider the banking system which is composed, at least, by two
banks.5

Our sample consists of daily observations of 5-years CDS quotes for European
sovereign and banks’ CDS from 06-Nov-2008 to 18-Sep-2014 (1532 observations
in total) downloaded from Datastream. We perform our analysis on both daily and
weekly data but report the result for weekly data for brevity (307 observations in
total). Data series of sovereign CDS are plotted in Fig. 1. In Tables 2 and 3 we report
the descriptive statistics for each country and the relative banks used as proxies of
the banking systems. We observe that, apart from Greece, the average sovereign CDS
quotes are smaller than the banks’ ones, with a smaller standard deviation. In general,
the behaviour of the banks in a country is very heterogeneous.

4 We observe that apart from Rabo Bank Group in Netherlands, Espirito Santo in Portugal and Caja Madrid
in Spain, all the others were involved in the last stress-test exercise of the European Banking Authority.
5 We respected this constraint in the selection of the countries from the available dataset and we discarded
the countries with less then two banks because we cannot apply the estimation procedure described in Farina
et al. (2019).
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Fig. 1 Cds quotes for 5Y maturity for the period included in the study for the northern countries (top) and
southern ones (bottom)

3.2 Banking risk attribution

One of the main advantages of using the modeling framework introduced in Sect. 2 is
the ability to allocate risk to the different components in an intuitive way, thanks to the
additive nature of each of the introduced relationships (Eqs. 6, 7, 8). In this paper we
focus our analysis on banking level. By looking at Eq. (6) it is possible to split the indi-
vidual bank risk in four components: idiosyncratic, banking and public sector,specific
financial sector and common EU components. Table 4 reports the average weights for
these decompositions (grouped at national level). Two things can be noticed: (i) a low
weight assigned to the common EU component and a high relevance of individual
default, (ii) a different composition of risk between northern and southern countries.

The former suggests that the preeminent source of risk at banking level is related to
countries and idiosyncratic factors more than to common shocks. The latter suggests
that northern banks have a higher exposition to either idiosyncratic or banking system
shocks without affecting the country. Southern banks are more exposed to a joint
default of the banking system and country, suggesting a deeper link between public
and private sectors.

Figure 2 reports the evolution over time of the average decomposition for individual
banks, computed on rolling windows of 50 days. The graph highlights how in the
crisis period (2009–2012), the relevance of idiosyncratic component is on average
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Table 2 Descriptive statistics—northern countries

Country Bank Mean SD Skewness Kurtosis

Germany 30.23 16.29 1.03 3.85

Bayerische L. Bank 367.49 154.54 1.33 4.32

Nordbank 217.99 63.96 1.07 3.51

Commerz Bank 358.07 195.09 0.93 3.25

Deutsche Bank 192.23 74.96 1.07 3.61

France 58.13 33.70 1.14 3.63

Societè General 267.87 164.23 1.17 3.38

Credit agricole 269.71 155.23 0.96 2.99

BNP 213.59 130.83 1.30 3.68

UK 56.77 26.91 1.05 4.72

Lloyds 325.38 155.09 0.76 2.91

Barclays 242.57 107.71 0.79 2.70

HSBC 138.36 48.73 0.98 3.21

Royal Bank of Scotland 290.27 133.65 0.54 2.81

Netherlands 57.07 27.94 1.11 3.04

SNS Bank 392.48 155.47 0.45 2.58

RABO Bank 133.18 43.85 0.89 3.12

ING Bank 203.15 91.59 0.91 3.08

lower while the importance of public and banking factor is higher when compared
to the rest of the period. These two trends are more marked for southern countries,
indicating that in the crisis period, banks in southern countries were more exposed to a
joint default of public and banking sector. One important aspect to underline is that, in
general, the exposure to common and country shocks can not fully explain the credit
risk of banks, since the idiosyncratic component accounts on average for more than
40% of the CDS spread. This consideration, together with the fact that idiosyncratic
components are not independent, motivates the next section of the paper, in which we
analyse the interdependence structure using a network approach.

3.3 Network analysis: banks interconnectedness

Assuming that co-movements between idiosyncratic λBi, j are proxies of interdepen-
dencies amongfinancial institutions,we examine the network properties of the banking
system.

We represent banks as the nodes of the network. For each week t , we assign a link
between a pair of banks if the co-movements of the two time series of length T show
a significant correlation in the period [(t − T ), (t − 1)], with T = 75 weeks. For the
statistical validation of the edges we rely on the empirical distribution of the correla-
tions in the network. In particular we calculate the 97.5th and 2.5th percentile of the ρ

distribution of samples obtained randomly extracting 10,000 sample of size 75 from
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Table 3 Descriptive statistics—southern countries

Country Bank Mean SD Skewness Kurtosis

Italy 186.69 106.36 1.09 3.32

UBI 365.39 228.92 0.87 2.75

MPS 566.31 364.72 0.35 1.68

Intesa 327.41 208.60 0.88 2.77

Unicredit 388.05 226.71 0.85 2.79

Portugal 411.01 342.86 1.11 3.10

Espirito Santo 643.52 389.44 0.62 2.62

Comr Portugues 723.22 521.62 0.78 2.57

Greece 7407.16 6874.71 0.10 1.09

Alpha 1443.61 1001.99 1.13 3.41

Ergasias 1287.25 573.13 − 0.54 1.62

National Bank 1208.38 516.78 − 0.35 1.98

Spain 184.60 101.45 0.70 2.79

Bankinter 331.77 175.70 1.03 3.25

Sabadell 587.67 322.37 0.90 3.03

Popular Espn 1016.35 645.20 0.50 1.71

Caja Madrid 680.66 325.95 2.19 9.86

BBVA 339.95 191.52 0.64 2.44

Santander 311.18 166.90 0.57 2.26

Table 4 Aggregated banks decomposition (summary)

ωλB j
(%) ωλ{Fj ,C j } (%) ωλFj

(%) ωλEU (%)

Germany 60.79 2.27 29.84 7.10

France 15.90 15.08 60.77 8.25

UK 49.04 8.67 34.43 7.86

Netherland 50.87 12.99 28.11 8.03

North 44.15 9.75 38.29 7.81

Italy 26.89 35.16 32.10 5.85

Portugal 8.45 42.77 45.36 3.43

Greece 42.29 43.60 12.50 1.61

Spain 68.92 15.84 11.19 4.04

South 36.64 34.34 25.29 3.73

Total 40.39 22.04 31.79 5.77

Columns 1, 2,3 and 4 show the average weights of the different components of the banks risk for northern
and southern countries (see Eq. 6)
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Fig. 2 Evolution over time of banks’ risk decomposition. The three graphs show, in order, the average over
the entire system, over northern countries and southern ones

the original populations. The correlation between two time series to be significant
must be larger than 97.5th percentile or below the 2.5th percentile. We obtain 235 cor-
relation matrices and we study the evolution over time of the set of interconnectedness
indicators: density, group DebtRank, strength and eigenvector centrality.

We construct the network on the idiosyncratic λs since we expect they would reflect
more accurately the real interdependence structure of the banks.

Networks based on raw data would fail to proxy the channel of diffusion of conta-
gion, since they would be influenced by the common exposures to the same factors.6

We assume that exposures to commonassets is captured by the different components
of λs that we identified previously, leaving the residual idiosyncratic components as
more reliable proxies of the channels for contagion.

For comparative purposes we also build and analyse networks using intensity of
default λ̂Bi, j directly derived by bootstrapping the banks CDSs (in this section of the
paper we refer to these as raw data networks, in alternative to idiosyncratic networks).

Figure 3 reports the evolution over time of some relevant network indicators (for
easier interpretation we grouped banks according to their country).

We notice that the idiosyncratic networks are less dense compared to the raw data
networks, and their nodes have on average a smaller strength. This is in line with our
assumption that a part of the interaction between banks is captured by the common
and country factors.

6 The exposures to common assets according to Hurd (2015) may have the effect of weakening the stability
of the system, but do not exhibit the amplification effect that characterizes contagion.

123



562 R. Giacometti et al.

Fig. 3 Banks interconnectedness indicators computed on idiosyncratic components (left) and raw data
(right)

The raw data networks show a clear decreasing pattern in terms of mean strength
and network density, while the idiosyncratic networks do not. An interpretation is that
the higher interconnectedness registered during the crisis in raw data networks can
be explained considering the exposures to external risk factors such as sovereign risk,
and not to an increased mutual exposure of the banks.

We notice that the Greek banks have the lowest strength, both considering the
idiosyncratic λs and the raw ones. This could be consistent with a negative expectation
on the creditworthiness of Greek banks, that lead to a small influence on the financial
system of a potential default. In the idiosyncratic networks Dutch and French banks
tend to have a lower-than-average strength, while Spanish, German and UK banks are
the most connected in terms of strength.

Finally, considering eigenvector centrality, we note that Greek and Dutch banks
score generally lower than the average while German and Spanish banks are usually
above it. The pattern however is less clear.

The properties of the banking network can be further analysed conducting simu-
lated stress-tests inspired by DebtRank framework (Puliga 2014). In particular, we
hit individual banks with small shocks and we analyse the diffusion over the entire
network.

Although the stress-test methodology is largely simplified, as it does not take into
consideration parameters such as the relative size of the banks in the system or the
composition of their balance sheets, this methodology allows to separate the network
effects from other factors and uses readily available data, allowing banks and reg-
ulators to monitor the risks more accurately and implement effective precautionary
measures. We focus our analysis on two periods: Jan 2010–Jun 2011 (within the Euro-
pean sovereign crisis) and Jan 2013–Jun 2014 (after the most acute phase of the crisis).
For brevity we consider only shocks hitting four different banks:Alpha Bank (Greece),
Unicredit (Italy), ING (Netherlands) and Deutsche Bank (Germany).

Figure 4 reports the effects of a small shock hitting individual banks and propagating
through the network: height of the bars represents the amount of distress and colour
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Fig. 4 DebtRank stress-test. The graphs represent the amount of distress transmitted to the system as a
consequence of a small shock hitting a single bank. The shocked bank is highlighted in red. Dark color
indicates distress transmitted in the early phases of the contagion (color figure online). Graphs on the left
refer to the period 2010–Jun 2011, while graphs on the right to Jan 2013–Jun 2014

represent the temporal diffusion (darker parts denotes distress transmitted in early
stages). Figure 5 reports the amount of total distress at different time stages of the
stress-test.

We see that the amount of distress created in the system varies a lot across different
time periods. During the crisis period the contagion is much more intense and is more
acute for Mediterranean countries, while in the post-crisis the diffusion is less intense
and more spread across geographical regions. From Fig. 5 we can also notice different
diffusion patterns: for instance in the crisis period the shock hitting Deutsche Bank
causes little distress in the first stages of diffusion, but then explodes in the fourth
stage. On the other hand, according to the model, a shock hitting Unicredit has a faster
but less intense propagation. This framework can therefore help to identify the most
risky banks for the financial contagion both in terms of entity of the impact and speed
of the diffusion, providing interesting insights in terms of regulation policies.

4 Conclusions

In this work we present a modeling framework for assessing the role of systematic
components in CDS sovereign and banking markets, concentrating our attention on
the banking level, and to estimate the network structure of the non-systematic com-
ponent of risk. The methodology is highly tractable and customizable by virtue of
using Marshall–Olkin distribution, and allows to go beyond the ubiquitous Gaussian
assumptions.Moreover, the usage of network analysis for studying the non-systematic
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Fig. 5 Evolution of shocks in Debt Rank stress-test. We hit four different banks and we measure the amount
of distress added to the system by the reverberation in the network. The x-axis represent the stages of the
contagion process and y-axis the total level of distress. The graphs refer respectively to the periods Jan
2010–Jun 2011 and Jan 2013–Jun 2014

components links this work with the growing literature that uses machine learning
techniques to study financial stability and systemic risk.

The analysis of systematic risk components highlights that in southern countries the
risk affecting the banking system is largely related to both idiosyncratic components
and joint country and financial factors, highlighting the role of country specific factors
for financial stability, especially during the European sovereign crisis. In contrast, for
banks in northern countries the role of joint country and financial shocks is limited,
with financial and indiosyncratic shocks playing a more prominent role. The EU-wide
factor is proportionally more relevant for northern countries.

In addition to the identification of systematic components, this work studies the
non-systematic risk in a network perspective, estimating the network structure from
CDS spreads data after controlling for systematic factors. The results show that banks
maintain a relevant level of interconnectivity, and Spanish, German and UK banks
are the most central in the system both during and after the Europaen sovereign debt
crisis.We also study the potential of shock transmission by considering a simple stress-
test based on the DebtRank methodology, showing that the potential for transmission
was higher in the crisis period compared to the post-crisis. Moreover, the analysis
highlights the fact that the structure of the network has an effect on the patterns of
shock transmission. As a example, according to our contagion model a shock applied
to the Italian bank Unicredit transmits faster to the rest of the system, but has a smaller
overall impact compared to a shock applied to the German Deutsche Bank.

Overall, we believe that the framework proposed here could be valuable for deci-
sion makers in both regulatory bodies and financial institutions’ risk management
departments, allowing to decompose risk and run stress tests starting from inputs data
easily available and minimal distributional assumptions. This general framework can
be extended at a worldwide granular level opening a new stream of research where the
intensive use of machine learning algorithms is required to approximate the centrality
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measures in order to overcome the computational complexity of these indicators in
large complex networks.
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Appendix: Calibration procedure

The calibration of the model is a multi-step procedure.

• In the first phase of the process, we calibrate country and individual banks default
intensities (λ̂C j j = 1, . . . , N and λ̂Bi, j for every bank i belonging to the country
j , respectively) via a bootstrapping algorithm that uses CDS 5Y quotes.

• In the second phase we estimate the intensities of the common shocks with the
inversion method. For example, if we consider two countries ( j, k), we have that
their joint distribution according to ourmodel is a bivariate exponential distribution
(BVE) where the default intensity of the common shock is λEU . According to
Eq. (1), starting from their historical correlationρ j,k , and usingEq. (1),we estimate
λEU as:

λEUC ( j, k) = 2(λ̂C j + λ̂Ck )ρ j,k

3(1 − ρ j,k)
(14)

Note that the notation λEUC ( j, k) stresses that the estimate depends on the pair of
countries considered. In general, different pairs of countries determine different
estimates for λEUC .We follow the approach used in Baglioni and Cherubini (2013)
and compute a statistic on the set of estimates. Following Farina et al. (2019), in
the rest of the paper we present our results based on taking the minimum possible
common component. This approach is rather conservative as it possibly underes-
timates the importance of common shocks. The calibration procedure is repeated
for every date included in the dataset.

• In the last phase of the calibration, we retrieve the values for λ̂Fj j = 1, . . . , N ,
according to Eq. (8).

For further details on the estimation procedure we refer the reader to Farina et al.
(2019). The choice of calibrating the common components by matching implied cor-
relation coefficients to historical ones for Marhsall–Olkin copulas finds it theoretical
soundness in the work byMazo et al. (2014) where the authors show that the statistical
properties of estimators built using this strategy are robust.
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