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Abstract We study methods to simulate term structures in order to measure inter-
est rate risk more accurately. We use principal component analysis of term structure
innovations to identify risk factors and we model their univariate distribution using
GARCH-models with Student’s t-distributions in order to handle heteroscedasticity
and fat tails. We find that the Student’s t-copula is most suitable to model co-
dependence of these univariate risk factors. We aim to develop a model that provides
low ex-ante risk measures, while having accurate representations of the ex-post real-
ized risk. By utilizing a more accurate term structure estimation method, our proposed
model is less sensitive to measurement noise compared to traditional models. We per-
form an out-of-sample test for the U.S. market between 2002 and 2017 by valuing a
portfolio consisting of interest rate derivatives.We find that ex-ante Value at Riskmea-
surements can be substantially reduced for all confidence levels above 95%, compared
to the traditional models. We find that that the realized portfolio tail losses accurately
conform to the ex-ante measurement for daily returns, while traditional methods over-
estimate, or in some cases even underestimate the risk ex-post. Due to noise inherent
in the term structure measurements, we find that all models overestimate the risk for
10-day and quarterly returns, but that our proposed model provides the by far lowest
Value at Risk measures.
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1 Introduction

Interest rate risk is an important topic for both risk management and optimal portfolio
management. The theory of measuring interest rate risk has evolved from dealing with
sensitivity to risk factors, and immunization against risk, to amoremodern view,where
a better understanding of the actual risk factors is used in order to generate possible
outcomes of risk factors. This paper takes the perspective ofmeasuring interest rate risk
by simulating future term structure scenarios, and ensuring that these properly describe
the observed realizations. Interest rate risk has not always been properly connected to
the term structure of interest rates. Bond duration, introduced byMacaulay (1938), was
originally defined as bond sensitivity to discount factors. For the sake of simplicity,
Macaulay (1938) chose to discount using yield to maturity, see Ingersoll et al. (1978)
and Bierwag et al. (1983) for further details. A significant constraint when defining
duration in terms of yield to maturity is that it cannot be used as a risk proxy unless
the term structure is flat, as shown by Ingersoll et al. (1978). The interest rate risk was
not properly linked to movements in the term structure until Fisher and Weil (1971)
provided a proof of how to construct an immunized bond portfolio by choosing the
duration of a portfolio equal to the investment horizon. This proof was carried out
through a constant parallel shift of the term structure of forward rates. The view of
interest rate risk as the sensitivity to certain perturbations in the term structure led to
many suggestions of risk factors to be used in order to handle non-parallel risk, some
of which we will describe in Sect. 4. However, modern risk concepts used in the Basel
regulations are evolving towards measuring risk as outcomes of possible shocks to the
risk factors. The way of measuring this risk is advancing, from Value at Risk (VaR), to
the similar but coherent risk measure; expected shortfall (ES), see Chang et al. (2016)
and the FRTB document from the Basel Committee on Banking Supervision (2014).
The computation of ES usually requires simulation of potential outcomes of identified
risk factors, although historical simulation might be an option. In this paper, we model
risk through estimating the univariate distribution of risk factors and using copulas in
order to model their co-dependence.

We choose to study the interest rate derivative market, instead of the bond mar-
ket, where credit risk and liquidity cause additional problems for interest rate risk
measurement. We use principal component analysis (PCA), which is a common, data
driven, way of identifying risk factors in the interest rate market, see Litterman and
Scheinkman (1991) and Topaloglou et al. (2002). We show that performing PCA on
term structures estimated by bootstrapping and Cubic spline interpolation, results in
problems of determining the systematic risk factors, which affects the results of the
risk measurement. Instead, we wish to examine the possibility of improving risk mea-
surement by utilizing an accurate method of measuring forward rate term structures,
developed by Blomvall (2017). The well-established method proposed by Nelson and
Siegel (1987) is also added for comparison. This method is commonly used in the
bond market in order to mitigate noise problems, and dynamic extensions have been
used in term structure forecasting by Diebold and Li (2006) and Chen and Li (2011).
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It has also been used for risk simulation, by Abdymomunov and Gerlach (2014) and
Charpentier and Villa (2010).

In the light of the new, and the upcoming Basel regulations, we conclude that
measuring interest rate risk through risk factor simulation is an important topic where
literature is not very extensive. We also note that most papers evaluate different risk
models using tail risk by studying thenumber of breaches in aVaRorES setting, see e.g.
Rebonato et al. (2005). While this is relevant for compliance of the regulations, it does
not reflect the entire distribution, which is of importance for other applications, such as
hedging or portfoliomanagement. This paper thus focuses on themethod of simulating
term structure scenarios in order to accurately measure interest rate risk throughout the
entire value distribution. We use VaR as a special case in order to illustrate differences
in risk levels between themodels.We find that three properties are of importance when
measuring interest rate risk. First, there should be no systematic price errors caused
by the term structure estimation method. Second, the distribution of the risk factors
must be consistent with their realizations. Third, lower risk is preferable. This paper
aims to develop models that satisfy all three properties, which proves to be a difficult
task, especially for long horizons. This was also observed by Rebonato et al. (2005),
where they had to rely on heuristic methods. In contrast, our aim is to use the extracted
risk factors for risk measurement over different horizons. However, this paper does
not focus on long term scenario generation over years or decades.

The paper is disposed as follows. In Sect. 2 we discuss how to estimate the term
structures, using the data described in Sect. 3. We use PCA to extract systematic risk
factors, and their properties are studied in Sect. 4. We use GARCH models together
with copulas to model the evolution of these risk factors, which we describe in Sects. 5
and 6. The model evaluation is carried out by simulating term structure scenarios from
different models, and using these scenarios to value portfolios consisting of interest
rate derivatives. The values of the generated scenarios for each day are compared
to portfolio values of the realized historical term structures. We describe this proce-
dure together with the statistical tests used for comparison in Sect. 7. The results are
presented in Sect. 8, followed by conclusions in Sect. 9.

2 Term structure estimation

Interest rate risk originates frommovements in the term structure of interest rates. The
term structure of interest rates is not directly observable, but has to be measured by
solving an inverse problem based on observed market prices. However, these prices
contain measurement noise, arising from market microstructure effects, as described
by Laurini and Ohashi (2015). An important aspect of a well-posed inverse problem is
that small changes in input data should result in small changes in output data. Hence,
a term structure measurement method should not be sensitive to measurement noise
in observed market prices.

Term structure measurement methods can be divided into exact methods and inex-
act methods. Exact methods will reprice the underlying financial instruments used to
construct the curve exactly, and use some interpolation method to interpolate inter-
est rates between the cash flow points belonging to those instruments. The fact that

123



300 J. Hagenbjörk, J. Blomvall

exact methods reprice all in-sample instruments exactly, makes them very sensitive to
measurement noise in the market prices, as pointed out by Blomvall (2017). Inexact
methods often assume that the term structure can be parametrized by some parametric
function, and use the least square method to find these parameters. Inexact methods
are less sensitive to measurement noise, but the limitations on the shape enforced by
the parametric functions often lead to systematic price errors. Parametric methods
include the parsimonious model by Nelson and Siegel (1987), and the extension by
Svensson (1994). A way of extending interpolation methods to deal with noise is the
recent application of kringing models by Cousin et al. (2016). This method can be
adapted both for exact interpolation, or best fitting of noisy observations.

Blomvall (2017) presents a framework for measuring term structures though an
optimization model that can be specialized to a convex formulation of the inverse
problem. The framework is a generalization of previously described methods from
literature, and is based on a trade-off between smoothness and price errors, which
is accomplished by discretization and regularizations of the optimization problem.
Blomvall and Ndengo (2013) compare this method to traditional methods, and show
that it dominates all the compared traditional methods with respect to out-of-sample
repricing errors. They also demonstrate a connection between in-sample price errors
and interest rate risk, measured by the sum of variance in the curve. From this study,
it is evident that low risk (variance) cannot be achieved in combination with low in-
sample pricing errors. Each trading desk thus faces a decision of what level of risk,
and what level of price errors should be acceptable according to laws and regulations.

The methodology in this paper will primarily be based around the generalized
framework by Blomvall (2017), which we will use to measure daily discretized for-
ward rate term structures directly. Two other term structure measurement methods will
be used as reference methods in the comparison. The first one is the dynamic exten-
sion of Nelson and Siegel (1987), which was introduced by Diebold and Li (2006),
and has been popular in literature of term structure forecasting. The other method is
bootstrapping interest rates and interpolating spot rates using natural Cubic splines,
which according to Hagan and West (2006) is commonly used by practitioners.

In order to reduce the dimensionality of the problemofmeasuring the risk inherent in
the high dimensional term structures, we will measure the risk of a portfolio consisting
of interest rate derivatives. The portfolio consists of forward rate agreements (FRA)
and is set up tomimic the behavior of the FRAbook of a bank. Forward rate agreements
are traded in huge amounts on the OTC market, where all major banks hold a trading
book of these instruments. This book is the direct result of trades with customers
who want to swap their payment streams between fixed and floating interest rates at
some point in the future. Banks act market makers for this market, making profit on
the spread between bid and ask yields. Taking on risk is an undesirable side effect
of this business. We have also been studying interest rate swaps alongside forward
rate agreements, but their pricing function only depend on spot rates, which makes
them less sensitive to forward rates due to the inherent integrating mechanism of spot
rates. Since, we we seek a model which is able to explain the interest rate risk inherit
in forward rates as well as spot rates, we do not focus on swaps in this paper. The
portfolio composition is randomly generated, and the details of this are presented in
Sect. 7.
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Fig. 1 The left panel shows portfolio values for the forward rate agreement portfolio. The portfolio values
are almost indistinguishable, and hence we show the difference in portfolio values compared to the median
portfolio value for each day in the right panel

Table 1 Portfolio volatilities based on differences of the portfolio values from left panel of Fig. 1, and
standard deviations of the series from the right panel of Fig. 1

Portfolio volatility σ (median deviations) #Days as median

Blomvall 24.53 5.431 1955

Cubic spline 29.09 12.94 1103

Nelson–Siegel 24.73 13.82 730

By using term structures estimated by the three methods described above, we price
the portfolio. For the Blomvall (2017) method, we have used the parameters of the
LSExp model described in Blomvall and Ndengo (2013), where we only penalize the
discrete version of the second order derivative with exponential weights according to

w
(2)
t =

{
e(

t
365−2) ln 4, if t ≤ 730 days,

1, if t > 730 days,
(1)

scaled with a penalty parameter P = 10. For the Nelson and Siegel (1987) model
we have fixed the parameter λ = 0.0609 as suggested by Diebold and Li (2006) and
others. The choice of this parameter is based on making the third risk factor reach its
maximum at the maturity of 30 months.

The portfolio values can be found in the left panel of Fig. 1, andwe note that all term
structure estimation methods produce values that are seemingly consistent with each
other most of the time. To further study the differences in portfolio values among these
methods, without making any presumptions, we extract the median portfolio value out
of the three methods for each day. One of the portfolios will thus equal the median
value, and we assume that this value is the “correct” portfolio value. We then compare
the value of each portfolio to this median to identify systematic price deviations, seen
in the right panel of Fig. 1. By calculating the standard deviation of these series, we get
a numeric estimate of the magnitude that each method deviates from the median value
over the entire period. These values are presented in Table 1, together with portfolio
volatilities and the number of days each method has attained the median value. We
see that the Blomvall (2017) method has the lowest portfolio volatility and by far the
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Table 2 Interest rate swaps
included in term structure
measurement

Maturity (years) 1 2 3 4 5 6 7 8 9 10

Blomvall � � � � � � � � � �
Nelson–Siegel � � � � � � � � � �
Cubic spline � � � � � � � � �

Table 3 Forward rate agreements included in term structure measurement

FRA [M×M] 1×4 2×5 3×6 4×7 5×8 6×9 7×10 8×11 9×12 12×15 15×18 18×21

Blomvall � � � � � � � � � � � �
Nelson–Siegel � � � � � � � � � � � �
Cubic spline � � � � � �

lowest median deviation volatility, while it equals the median valuation most often.
We interpret this as a sign of high consistency with market prices, which is one of our
three desired properties when measuring risk. The Nelson and Siegel (1987) has low
portfolio volatility but a high median deviation. This is due to its value drift away from
the median value during long periods at a time, which we interpret this as a sign of
systematic price errors due to the inflexible parametric nature of the model. In theory,
the volatility of the portfolios can be divided into two unobservable components. The
first, arising frommovement in the systematic risk factors, and the second, arising from
noise. The presence of both high portfolio values and high deviations for the Cubic
spline method indicates that the additional portfolio volatility is caused by noise that is
amplified by the interpolation method. These findings are also in line with the results
by Blomvall and Ndengo (2013). We will later see how this noise affects the shape of
the systematic risk factors.

3 Data

The data used for estimating term structures in this study is retrieved from Thomson
Reuters Eikon. We focus on the U.S. fixed income market due to its high liquidity and
availability of data. The data consists of time series for a 3 month USD LIBOR rate,
ten annually spaced interest rate swaps, (Table 2), and twelve forward rate agreements
(Table 3). The time series, containing bid and ask yields, range from 1996 to 2017,
and are divided into an in-sample period (1996-01-02 to 2001-12-30), used for fitting
proper models to this data, and an out-of-sample period (2002-01-04 to 2017-07-01)
used for the analysis of the interest rate risk for the portfolio. The data series have
a few gaps, where data from one or more instruments is missing. Since this has a
big impact on the estimation of term structures, we remove the dates for which the
number of missing quotes exceeds the 10-day moving average of missing quotes,
plus one. This cleaning process removes 24 out of 5512 days from the estimation.
Of the remaining days, 1599 belong to the in-sample period and 3889 belong to the
out-of-sample period.
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4 Systematic risk factors

In this section we will present our view of risk measurement as a general framework,
and how to utilize it for the purpose of measuring interest rate risk. We start by
considering a portfolio consisting of n assets, where the price of an asset Pi (Δξ)

depends on the state of m random risk factors Δξ ∈ R
m×1. A second order Taylor

approximation of the asset value around the current risk levels gives us

Pi (Δξ) ≈ Pi (0) + gTi Δξ + 1

2
Δξ T HiΔξ (2)

where

gi = ∇Δξ Pi |Δξ=0, (3)

Hi = ∇2
Δξ Pi |Δξ=0. (4)

The total value of the portfolio with holdings h ∈ R
n×1 is dependent on these risk

factors according to

V (h,Δξ) =
n∑

i=1

hi Pi (Δξ). (5)

This raises the question of which systematic risk factors to use in the analysis. A
number of options have been presented in literature. Fisher and Weil (1971) present
the duration concept in terms of a parallel shift in forward rates. By extending the
parallel shift of duration to general functions, duration vector models are formed.
One possibility here is to use polynomial functions of the form t i−1 as proposed by
Prisman and Shores (1988) and Chambers et al. (1988). Another possibility is to use
the exponential functions for level, slope and curvature from the term structure model
byNelson and Siegel (1987). This approach, which has been studied byWillner (1996)
and Diebold et al. (2004), will be used in this paper to model the risk factors of the
Nelson and Siegel (1987) model.

A different, data-driven approach for identifying systematic risk factors is principal
component analysis (PCA). This method can be used to approximate the covariance
matrix of a dataset by finding a set of orthogonal components that maximize the
variance. PCA was first applied to term structures of interest rates by Litterman and
Scheinkman (1991). This study was later followed by Knez et al. (1994) and Bliss
(1997), among others. An alternative approach for feature extraction is independent
component analysis (ICA). While PCA aims to explain the second order information,
i.e. the variance, ICA tries to maximize independence in higher orders as well. As
a result, the factors obtained from ICA will be independent; while factors obtained
from PCA only will be uncorrelated, unless the data follows a Gaussian distribution.
In contrast, ICA assumes a non-normal distribution in order to be able to separate the
independent sources since it maximizes non-Gaussianity of the components (Chen
et al. 2007). A weakness of ICA is that the factors cannot be ordered in terms of
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importance, while PCA factors are ordered in terms of explained variance. In fact,
the variance of the ICA factors cannot be determined in a unique way (Moraux and
Villa 2003). Dealing with risk is directly related to dealing with variance, and since
PCA factors are orthogonal, they also provide a natural interpretation (Molgedey and
Galic 2001). While the less restrictive assumptions of ICA are appealing for non-
Gaussian financial data, more recent applications of ICA to interest rates, especially
of higher dimensionality, are missing in literature. Hence, PCA will be used to extract
risk factors in this paper.

In order to extract risk factors using PCA, we have to discretize the term structures
to compute the covariance matrix. The output of the Blomvall (2017) method is daily
discretized forward rate term structures, ft,T , which can be used directly. For the Cubic
spline method, we perform a discretization to daily spot rates st,T . To convert term
structures between forward rates and spot rates we use

ft,T = st,T τT − st,T−1τT−1

τT − τT−1
, st,T = ft,T (τT − τT−1) + st,T−1τT−1

τT
. (6)

We have to decide whether to use the covariance matrix of spot rates or forward rates,
and whether to use the interest rate levels or their innovations. Since risk is connected
to changes in the term structure, rather than its levels, we believe that daily absolute
innovations of interest rates should be used rather than levels in order to explain
risk. We choose the covariance matrix instead of correlation since innovations are of
similar magnitude across maturities, and we seek to explain this magnitude as well as
the correlation. Forward rates contain the most local information, since spot rates are
averages of forward rates. Forward rates are also the expectation of the future short
rate, under the T -forward measure, implying that changes in forward rates should be
linked to the flow of information. Additionally, the risk factors of the central HJM
model (Heath et al. 1992), are derived in terms of forward rates and forward rate
volatility, which is why it would be ideal to use forward rates. However, performing
a PCA on forward rate innovations requires forward rate data of high quality, in
order to be able to extract realistic risk factors. Laurini and Ohashi (2015) provide
an excellent review of the topic, and highlight the problem with measurement errors
in forward rates due to market microstructure effects. They present a proposition that
the effective number of risk factors should be the same, regardless of the choice of
underlying interest type. The fact that this cannot be observed in literature provides
strong evidence for the prevalence ofmeasurement noise in the data. Instead of directly
addressing this problem of term structure measurement, Laurini and Ohashi (2015)
address the problem by introducing a technique for estimating the covariance matrix
in the presence of measurement noise, called the long-run covariance matrix.

We start by illustrating the risk factors resulting from performing a PCA on daily
absolute differences of forward rate term structures, estimated with the Blomvall
(2017) method, seen in the left panel of Fig. 2. Even though the analysis is carried out
on forward rates, the risk factors do not indicate presence of noise. The correspond-
ing forward rate risk factors, calculated for cubic spline interpolated spot rates, seem
highly unrealistic due to its oscillating appearance, as seen in right panel of Fig. 2.
The idea of explaining systematic risk using these kinds of oscillating risk factors
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Fig. 2 Risk factors for PCA carried out for forward rates
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Fig. 3 Risk factors for PCA carried out for spot rates and their implied risk factors for forward rates

is economically unappealing since there is no information that would predict such a
distinct behavior. Instead, this is an artifact of the interpolation method between the
yearly spaced knot points of the cubic spline. By performing the PCA on spot rates
directly, as illustrated in the left panel of Fig. 3, onemight believe that these risk factors
would explain the risk far better than the forward rate based risk factors seen earlier.
Fewer risk factors will indeed be needed to explain the same fraction of the covariance
matrix, but the forward rate risk factors implied by these spot rate risk factors are still
highly unrealistic, as seen in the right panel of Fig. 3.

By studying the volatility in the spot rate curves, and its implications for the forward
rate volatility, we get an understanding of what is going on under this transformation.
If C denotes the n × n covariance matrix of forward rates, we compute the vector of
term structure volatilities for each discrete maturity point as the element-wise square
root of the diagonal elements of C

σ f = √
diag(C). (7)

By approximating the covariance matrix from the first n eigenvectors, forming the
matrix E fn , and a vector containing their corresponding eigenvalues, λn , we can com-
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Fig. 4 Term structure volatilities for different representations of the data. Since we are able to explain
almost the entire covariance matrix in-sample, the long dashed lines will not be distinguishable from the
solid lines. The eigenvectors of Cubic spline spot rates are not able to explain the entire variance of the
forward rates using this limited set of risk factors

pute the forward rate volatility explained by this approximation as

σ fa =
√
diag(E fndiag(λn)E

T
fn

). (8)

Let us introduce the n × n matrix A,

Ai, j =
{
1/ i, if j ≤ i

0, otherwise,
(9)

which transforms a vector of forward rates into spot rates. In a similar way, we can
introduce B, which is the inverse of A, and transforms spot rates to forward rates.
Using B, we can compute the forward rate volatility implied by the spot rate risk
factors as

σsa =
√
diag(BEsndiag(λn)ET

sn B
T ). (10)

The result of these computations is illustrated in Fig. 4, and here it is evident that
the term structures estimated from the Cubic spline method contain a lot of noise. The
risk factors will, to a high degree, model this noise instead of the systematic risk in the
market. This can be seen by comparing its forward rate volatility, σ f , to the volatility
of the Blomvall (2017) model. Studying the spot rate volatilities, in the left panel of
Fig. 4, one gets the impression that the amount of volatility for the longer maturities
is the same for both models. Performing the analysis on spot rates does not get rid
of the noise, but rather hides it, as seen by the implied forward rate volatility σsa .
The volatility in forward rates is almost the same as when PCA is performed on the
forward rate covariancematrix. This is due to the integrating property when converting
forward rates to spot rates. For this reason, we study forward rate agreements rather
than interest rate swaps, because of their price sensitivity to forward rates.
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Fig. 5 Proportions of term structure variance explained by different risk factors

By taking this analysis one step further, we can examine what faction of the total
variance we are able to explain by different risk factors. The results are shown in
Fig. 5, and we immediately note that close to all of the in-sample variance is explained
by six risk factors for the Blomvall (2017) data. We also note that the majority of
the variance in the long end of the term structure is explained by the first three risk
factors (shift, twist and butterfly). The movements in the short end of the curve are,
on the other hand, explained by the following three components. For PCA based on
forward rates of Cubic splines, a very large proportion of the variance in the matu-
rity range between 6 months and 2 years remains unexplained by the first six risk
factors. In total, as many as 16 risk factors are needed to achieve a similar degree of
explained variance across all maturities. Performing the same analysis on spot rate
based risk factors, arising from PCA of daily discretized Cubic splines, we conclude
that ten risk factors are needed. We will thus include two Cubic spline-based models
in the risk measurement evaluation. One using 16 risk factors for forward rate inno-
vations, Δ ft,T , and another using ten risk factors for spot rate innovations, Δst,T ,
where

Δ ft,T = ft,T − ft−1,T , Δst,T = st,T − st−1,T . (11)

Both are based on the same term structures, where the bootstrapping technique is
combined with cubic spline interpolation. As explained earlier, the difference is that
the PCA will be carried out on either discretized spot rates directly, or its corre-
sponding forward rates. Modeling each risk factor using a normal distribution with a
constant variance equal to its corresponding eigenvalues would yield similar results
for these two models according to Fig. 4. However, we will use more sophisticated
volatility models and copulas to model the relationship between the components, as
described below. We will then get back to this volatility analysis using those mod-
els.
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Table 4 Tests for stylized facts from the equity market applied to the six most significant principal com-
ponent of Blomvall (2017) data

Normality Skewness Heteroscedasticity

Statistic p value Statistic p value Statistic p value

Shift 0.978 6.83e−29 4.80 1.57e−06 76.5 1.73e−33

Twist 0.887 0 − 6.44 1.20e−10 518 4.54e−207

Butterfly 0.847 0 − 5.22 1.83e−07 216 5.80e−91

4th 0.698 0 10.6 1.89e−26 322 4.22e−133

5th 0.799 0 − 2.18 0.0289 586 8.23e−232

6th 0.836 0 − 5.74 9.59e−09 366 2.80e−150

5 Volatility and scenario modeling

Volatility modeling of the equity market returns has been studied thoroughly, where
several empirical properties have been documented, see Gavrishchaka and Banerjee
(2006) and references therein. Equity returns have a very short-range autocorrelation,
within time spans as small as a fewminutes. Equity return volatility on the other hand,
is found to be clustered with a long-range memory up to several months, while being
mean-reverting. The distribution of returns is fat-tailed and leptokurtic at time frames
up to a few days. Volatilities are also found to be negatively correlated with returns,
called the leverage effect.

The above-mentioned properties imply that the classical assumption of normally
distributed returns, with constant volatility, makes an inappropriate model for equity
returns. Several models to deal with these properties have thus been proposed. Since
this paper considers interest rate risk, and not equity risk, we seek to model changes
in the interest rate risk factors rather than equity returns. We find that these properties
are present also in the principal components of interest rate innovations, yt = ETΔ ft .
Studying the most significant principal component time series, it is evident that some
of these properties are present here as well. The statistic tests that have been carried
out to confirm this are: a normality test by Shapiro and Wilk (1965), a skewness test
by Kim and White (2004) and a heteroscedasticity test by Engle (1982). The results
of these tests for the six most significant forward rate based principal components of
the Blomvall (2017) dataset are found in Table 4.

Deguillaume et al. (2013) empirically show that the interest rate volatility is depen-
dent on the interest rate levels in certain regimes. For low interest rates, below 2%, and
for high interest rates, above 6%, interest rate volatility increases proportionally to the
interest rate level. For the regime of 2–6% however, the interest rate volatility does
not seem to depend on the interest rate level. Although these are interesting findings,
we choose to model interest rate volatility separated from interest rate levels. If the
interest rate volatility is dependent on the current regime, a volatility model based
on actual principal component changes will capture this behavior for these different
regimes indirectly. This approach works regardless of the regime, even under negative
interest rates. To model the observed stylized facts of the principal component series,
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we have implemented several models of the GARCH class, primarily based on the
arch package for Python written by Sheppard (2017).

The simplest way to model volatility is the constant volatility model

σt = c. (12)

To handle the heteroscedasticity and skewness, a model based on the paper by Glosten
et al. (1993), is applied. The GJR-GARCH(p, o, q) volatility process is given by

σ 2
t = ω +

p∑
i=1

αi |yt−i |2 +
o∑
j=1

γi |yt− j |2 I{yt− j<0} +
q∑

k=1

βiσ
2
t−k . (13)

To model changes in the principal components, we propose different processes,
based on the volatility processes above. The simplest one is to model a constant, or
even assume a zero drift

yt = μ + ε, (14)

where ε is a randomnumber drawn from either the normal distribution, or the Student’s
t-distribution, which is scaled by the volatility from (Eq. 13). Our findings suggest
that the drift term is of very limited importance compared to the volatility, and that
the constants become insignificant, as we will see in Table 6 later. Autoregressive
processes are commonly used for the evolution of risk factors in the term structure
forecasting literature. Define the AR(p)-model as

yt = μ +
p∑

i=1

ΦLi yt−Li + ε, (15)

where Li is the lag of order i . Autoregressive models of order p = 1 are popular,
since an autocorrelation is usually observed at lag one for the different principal com-
ponents. However, there is no inherent mechanic in the fixed income market to justify
this behavior. This is rather an effect of term structures adapting to measurement noise
and returning back to the previous shape the following day. As a result of this, the
use of autoregressive models to model general movements in principal components
can be questioned. We believe that this autocorrelation effect should be prevented by
the term structure measurement method directly, by utilizing information from adja-
cent days. This is, however, not yet integrated in the Blomvall (2017) framework,
nor in any other term structure estimation method. We find that negative autocorre-
lations are present in the principal components, shown in Table 5. Even though this
indicates that an AR(1) would improve our results, we have not been able to show
any improvements by including autoregressive processes, which is why we do not
present any AR results. We note that principal components based on Blomvall (2017)
term structures have less autocorrelation than Cubic splines, especially in the most
significant component, which is another indication that Cubic splines contain more
noise.
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Table 5 Autocorrelation for the ten most significant principal components for different methods, together
with the proportion of the total variance explained by each eigenvector

Shift Twist PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Blomvall, 0.02 − 0.32 − 0.22 − 0.29 − 0.34 − 0.40 − 0.37 − 0.46 − 0.40 − 0.45

PC, forward 64.7% 17.8% 10.2% 3.3% 2.6% 1.1% 0.2% 0.0% 0.0% 0.0%

Cubic spline, − 0.40 − 0.12 − 0.25 − 0.42 − 0.41 − 0.48 − 0.33 − 0.37 − 0.40 − 0.26

PC forward 28.0% 19.0% 14.8% 7.9% 7.5% 6.6% 5.6% 3.3% 2.7% 1.5%

Cubic spline, 0.07 − 0.45 − 0.06 − 0.30 − 0.36 − 0.43 − 0.48 − 0.36 − 0.37 − 0.42

PC spot 70.4% 19.6% 5.1% 1.4% 0.8% 0.6% 0.5% 0.4% 0.3% 0.3%

5.1 Simulation of term structures

When the process for each principal component is given, we are able to simulate
term structures using the Monte Carlo method. Consider the discrete term structure
of forward rates ft , observed at time t , and let En denote the matrix of the n most
significant eigenvectors from the PCA. If yt represents the simulated shocks for these
n risk factors between the time point t and t + 1, the forward rate term structure
dynamics are given by

ft+1 = ft + En yt . (16)

It is worth pointing out that the Nelson and Siegel (1987) scenario generation model
uses the exact same implementation to generate yt as the principal component based
models, but applied to the parameter series (β0, β1, β2) of the parametric functions
instead. An illustration of forward rate scenarios 1 day ahead is shown in Fig. 6,
where we note a clear difference in terms of realism between the two models. When
generating scenarios more than 1 day ahead, one of two techniques can be used. The
first, and simplest one, is to forecast volatility analytically. This is carried out by setting
the shocks yt to its expected value for the time points up to our simulation horizon.
Using a zero mean model with a GARCH model, this means that we set the shocks to
yt = 0, and let the volatility mean revert over the simulation horizon.We then simulate
daily changes using this mean reverting path of the volatility, and sum the changes.
The second approach is to simulate different paths for the volatility, where we use the
simulated values yt to update the volatility process along its path for each scenario
separately. This is far more time and memory consuming, but produces better results
for simulation horizons longer than one day. Since volatility forecasting occupies only
a part of the total time, we use the simulation-based volatility forecasts for horizons
beyond one day.

5.2 Model fitting and calibration

All models are fitted using the Bayesian Information Criterion (BIC) in order to avoid
overfitting and over-parameterization. This since BIC has a higher penalty for addi-
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Fig. 6 Example of 250 1-day-ahead term structure scenarios generated using the Blomvall (2017) model
and Cubic spline model with forward rate risk factors for the date 15 January 2017. The thicker blue lines
represent the term structure of the present date

tional parameters than the Akaike Information Criterion (AIC) when the number of
observations is large. BIC is used to determine the order of the GJR-GARCH(p, o, q),
the constant and the order of lag of the autoregressive model, as well as the choice
of residual distribution among normal and Student’s t . Different risk factors may
have different model orders and use different distributions. The parameters attained
for in-sample dataset can be found in Table 6, and we can observe that the same
GARCH(1, 1)-model using a Student’s t distribution has been selected across all
models. We also note that the drift termμ is insignificant for all the displayed parame-
ters. The risk factors are estimated once, using 6 years of in-sample data between 1996
and 2001. The model parameters and copulas are recalibrated every 2 years, using new
data but keeping the data window of 6 years fixed.

To illustrate some of the stylized facts of the risk factor changes, we study in-sample
histograms for the normalized residuals for the three most significant risk factors
computed from the forward rate risk factor model by Blomvall (2017), seen in Fig. 7.
It is clear that the GARCH-type models provide a better fit constant volatility models.
This should come as no surprise, since the data tested positive for heteroscedasticity.
We also note that the Student’s t-distributed residuals have been selected over normally
distributed ones, which also holds for less significant risk factors. These findings also
confirm the stylized facts presented earlier.

6 Modeling co-dependence via copulas

We have thus far described univariate models for the principal component time series.
By construction, these series are uncorrelated for the in-sample data. If the input data
were also normally distributed, they would be independent. As argued previously, the
principal component series are not normally distributed, and hence not independent. In
addition, the out-of-sample data used in the test will still be correlated to some degree.
According to Kaut andWallace (2011), copulas are able to capture such dependencies
in non-normally distributed principal components, and we therefore apply copulas to
deal with these dependencies.
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Fig. 7 In-sample histograms during 1996–2001 for the three most significant risk factors from Blomvall
(2017) model, using a constant volatility model (top) compared to a GARCH volatility model (bottom)

Junker et al. (2006) study term structure dependence via copulas by investigating
the long end and the short end of the term structure, represented by spot rates for
1-year and 5-year maturities respectively. They find that elliptical copulas, such as
normal and Student-t copulas are not suitable for modeling this complex dependence
structure. Instead, the class of Archimedean couplas, including Frank and Gumbal
copulas, could capture this structure. Modeling two distinct interest rate levels differs
frommodeling the movement of several risk factors. We thus had very limited success
using Archimedean copulas, where they worked at all for this high dimensional data,
using the R-package by Hofert et al. (2017). The copulas are calibrated using principal
component changes normalized by the volatility from our volatility models, since they
are to be used to generate dependent random numbers used in the volatility process.
The inverse cumulative distribution function for the chosen distribution of each risk
factor is then used together with the copula, in order to generate dependent scenarios.
An in-sample estimation of different copulas, using the GARCH models described in
Sect. 5, is performed in order to find the best copula for each dataset. The likelihood
value of each copula is compared within each dataset, using the Bayesian Information
Criterion (BIC) to account for the number of parameters for each copula. The results
are displayed in Table 7, and since the Student’s t-copula provides the best information
for all datasets, we choose it to model the co-dependence across all models.

Now that we have described our scenario generation model, we take a step back to
once again study the term structure volatility. We make the same analysis as in Fig. 4,
but we use our simulation models to generate scenarios for each day and compute
empirical volatilities for the in-sample period using 1000 scenarios for each day. The
results are found in Fig. 8 and there is a striking similarity to the theoretical volatilities
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Table 7 BIC values for in-sample fitting of different copulas to different datasets

Blomvall, PC
forward

Cubic spline, PC
forward

Cubic spline, PC
spot

Nelson–Siegel

Normal Copula 456.1 566.3 768.4 679.6

t Copula 1075 1675 1638 708.2
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Fig. 8 Simulated in-sample term structure volatilities for our models compared to theoretical volatilities
from the PCA seen as thin dashed lines

from the PCA.We clearly see that ourway ofmodeling the evolution of term structures,
in order to better fit the ex-post realizations, does not affect the volatility to a high
degree. There is still a strong presence of noise in the Cubic spline models. In fact,
very similar volatilities are obtained for the out-of-sample period as well. In Sect. 8
we will see how this affects the simulated volatilities and risk measures.

7 Back-testing and evaluation procedure

Wenowwish to evaluate whichmethod ismost consistent with the realizations that can
be observed in the market during our out-of-sample period. Since we cannot directly
observe term structures in the market, we compare it to the ones estimated using the
different methods. The drawback of this approach is that it will make the realization,
and thus this evaluation procedure, dependent on the term structure method used. Fur-
thermore, it is problematic to evaluate time series of distributions of high dimensional
term structures, against high dimensional realizations of term structures. Since term
structures are primarily used to price interest rate instruments, we use portfolio values
in order to reduce the dimensionality of the evaluation problem. By pricing a random-
ized portfolio using our generated term structure scenarios and comparing them to the
historical realizations, we reduce the problem to evaluating distributions of portfolio
values, compared to realized values. Besides evaluating the fit of the distribution, we
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will also study portfolio volatilities and VaR to get a grasp of the cost of using the
different methods for measuring interest rate risk.

We use forward rate agreements (FRA) from the U.S. market to make up the portfo-
lio as described earlier. Our portfolio tries to mimic an unhedged book by containing
a randomized, normally distributed cash flow for each day. To be able to study interest
rate risk over the entire maturity span up to 10 years, we use the market quoted FRA
contracts up to 21×24 months, and in addition, we synthesize contracts for longer
maturities spanning up to 117×120 months spaced with 3 months in between. We
do this in order to capture the risk in the entire maturity span studied in Figs. 2, 3,
4, 5, 6, and 8. These figures highlight the problems to correctly estimate forward rate
risk in Cubic spline term structures. We have set up trades to the quoted market rates
when available, or the Blomvall (2017) forward rate, making the initial value of the
synthetic contract close to zero. We keep only one single cashflow per day in order to
minimize the amount of cashflows to handle when simulating over longer time peri-
ods, as described below. This is achieved by trading a normally distributed random
amount in all maturities for all trading days during 3months prior to the out-of-sample
starting date. During the back-test, the longest contract is traded in order to maintain
this structure. This results in a portfolio containing approximately 2500 instruments,
which are constantly replaced as they roll out of maturity.

The back-testing system is built in C++, using a custom built portfolio management
system forQuantLib (Ametrano andBallabio 2000), which is scripted in Python. Since
the portfolio for a given day is constant across all scenarios, the portfolio valuation pro-
cedure can be simplified. By gathering all cash flows from the instruments making up
the portfolio into one composite instrument, and pricing this single instrument across
all scenarios, a dramatic speed up is achieved. This makes it possible to simulate 2000
scenarios within approximately 2.5 s per model, using a standard desktop computer.

When simulation is carried out over a short time period, the LIBOR fixing rates
observed in themarket can be used for fixing the floating cash flows of the instruments.
Over longer evaluations, these realized fixing rates will not match the generated term
structure scenarios, as they should be a result of the realized path of the simulated
term structures. For longer simulations, a trajectory of term structures for each trading
day therefore has to be simulated. The fixing rate r f implied by a term structure for a
given day t0 can be calculated as

rt0 = d(t1)/d(t2) − 1

t
, (17)

where d(t1) is the discount factor for fixing date t1 of t0, d(t2) is the discount factor
for the date resulting from advancing t1 by the tenor period, and t is the time between
t1 and t2, measured as a year fraction by the day-counting convention used in the
market.When fixing rates differs among scenarios, portfolio compositionwill not only
differ between days, but also between scenarios. This makes the valuation procedure
substantially more computationally heavy.
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7.1 Statistical test

In order to test different scenario generating models’ ability to generate scenarios
that are consistent with historically observed realizations, we use a Wald-type test
by Giacomini and White (2006). Consider the distribution function of the portfolio
value ft (x), simulated over some time horizon starting at date t . Our goal should
be to maximize the log-likelihood function of all n independent observations xt , t =
1, . . . , n,

L(θ |x) =
n∑

t=1

ln ft (xt ). (18)

The portfolios are identical across all models, but since the portfolio values are depen-
dent on the term structuremeasurement method, our observations xt , will differ among
models.

Since we do not know the distribution function, only our simulated scenario values
xt,i for i = 1, . . . , s, we will have to have to resort to a simulation-based maximum
likelihood method. The method that we use is based on the method by Kristensen and
Shin (2012), where they present a non-parametric kernel-basedmethod to approximate
the likelihood function. We introduce a kernel density function f̂t (x), to approximate
the real probability density function. Assume our s simulated portfolio scenario values
of time t , follow the target distribution

xθ
t,i ∼ ft (·|θ). (19)

By the use of kernel-based methods, these scenarios can be used to estimate f (x |θ).
Define the kernel density estimator

f̂t (x) = 1

n

n∑
k=1

Kh
(
x − xθ

t

)
, (20)

where

Kh(z) = K (z/h)

h
. (21)

Here, K (·) is the kernel function, and Kh is the scaled kernel function, where h > 0
is the bandwidth. We use a Gaussian kernel given by

Kh(x − xθ
t ) = 1√

2πh
exp

{−(x − xθ
t )2

2h2

}
, (22)

which can be interpreted as placing a small Gaussian bell with standard deviation h,
in each xθ

t . The kernel density estimator f̂ (x) is given by the normed sum of these
bells, or more formally
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f̂t (x) = 1√
2πhs

s∑
i=1

exp

{−(x − xθ
t,i )

2

2h2

}
. (23)

It has been shown that if Gaussian kernel functions are used to approximate data where
the underlying density is Gaussian, the optimal choice for the bandwidth is given by

h =
(
4σ 5

3s

) 1
5

, (24)

where σ is the sample standard deviation of x (Silverman 1986).
Given the kernel density estimator in (23), we can replace the density function of

from (18) by f̂ (xt ) to get

L(·|θ) =
n∑

t=1

ln f̂t (xt ). (25)

By comparing these likelihood values, we can evaluate different models’ ability to
measure risk. Using Pearson’s chi-squared test, we can examinewhether the difference
between the likelihood values of a reference modelLR(·|θ) and its comparison model
LC(·|θ) of two models are separated from zero. Define

δt = ln f̂ Rt (x Rt ) − ln f̂ Ct (xCt ), and δ̄ = 1

n

n∑
t=1

δt , (26)

which gives us the test statistic

n2δ̄2∑n
t=1 δ2t

∼ χ2(1). (27)

Besides the statistical test, the kernel distribution can be used for computing VaR or
expected shortfall numerically.

8 Simulation results

In order to generate term structure scenarios that are consistent with historical observa-
tions, the univariate distribution of the changes in each risk factor have to be accurate,
even for the out-of-sample data. However, as explained in Sect. 6, consistent uni-
variate distributions do not guarantee that the scenarios are consistent in the case of
co-dependence. Since it is necessary to match the univariate distributions, we start
by showing out-of-sample QQ-plots for the three most significant risk factors for our
GJR-GARCH model, using the Blomvall (2017) data. The results shown in Fig. 9
are promising, and superior compared to similar results of constant volatility models,
which we saw perform poorly even for the in-sample period (Fig. 7). We thus turn to
the back-test described in Sect. 7 using this model with the Student’s t-copula.
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Fig. 9 Out-of-sample QQ-plot of forecasted normalized residuals of principal component innovations for
the Blomvall (2017) model, fitted 1999–2006 displaying 4 years between 2006 and 2010, thus including
the financial crisis

8.1 Back-test using a 1-day forecasting horizon

We compare our datasets, using the portfolio which values we presented in Fig. 1
earlier. In order to emphasize the fact that the choice of forward rates or spot rates
have very limited impact of the results of the Blomvall (2017) model, as indicated
by the term structure volatility displayed in Fig. 8, we also provide results using
spot rate risk factors. We also provide the results of a Cubic spline model using a
constant volatility, normally distributed residuals with an independence copula. This
represents independent scenario simulation using the results from the PCA on spot rate
innovations directly, whichwould be a basicmodel requiringminimal implementation.
The distribution of scenario volatilities, together the overall portfolio volatility is
shown in Fig. 10. Here we have capped the simulation volatilitiy values at 100, in
order to avoid unrealistic scenario outcomes, causing misrepresentation of the sample
volatilities σ̄ . In order to be able to compare the scenario volatilities to the portfolio
volatilities in Table 1, we compute them as the standard deviation with the portfolio
value from the previous day as the sample mean. We note that the capped simulated
volatilities in Fig. 10 are very close to the portfolio volatilities presented in Table 1, and
that the Blomvall (2017) models produce the lowest scenario volatilities followed by
the Nelson and Siegel (1987) model. We also note that the Cubic spline model attains
a lower portfolio volatility when spot rate risk factors are used compared to forward
rate risk factors, which is expected according to Fig. 8, where the spot rate volatilities
are lower. Low scenario volatility implies lower risk measures, which is desirable as
long as the risk measure is consistent with realized outcomes, and the model produces
prices that are consistent with market prices, without systematic errors. Systematic
price errors were investigated in Sect. 2, and consistency with realized outcomes will
now be studied using histograms together with the statistical test from Sect. 7.1.

Using the kernel to obtain a continuous distribution, we use its inverse distribution
to retrieve supposedly uniformly distributed random variables. From the inversion
principle we know that these random variables will be uniformly distributed if the
scenarios give a correct description of the realized portfolio returns. We study this
using histograms, and the result over the out-of-sample period is shown in Fig. 11.
We note that the Blomvall (2017) model display a good fit relative to the realizations.
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Fig. 10 Histogram of the out-of-sample 1-day-ahead scenario volatilities between 2002 and 2017 for the
portfolio. Values are capped at 100
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Fig. 11 Out-of-sample results between 2002 and 2017 using zero mean, GJR-GARCH and Student’s
t-copula except for the last model which has constant volatility model with an independence copula

Other models generally overestimate the risk in most cases, as indicated by higher
probability mass in the center of the distribution. This is the result of most realizations
having a smaller magnitude than the model predicts. However, all the Cubic spline
models underestimate the risk for the most extreme realizations, as indicated by the
higher bars in the tails of the distribution.

Applying the statistical test from Sect. 7.1, we get the results displayed in Table 8.
The Blomvall (2017) model obtain significantly higher likelihood values than the
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Table 8 Results for the 1-day-horizon, where δ̄ is the difference in likelihood value between the Blomvall
(2017) model and the compared model

Compared Model T δ̄ p

Blomvall, PC spot 0.463 −0.00939 0.496

Cubic spline, PC forward nan −inf 0

Cubic spline, PC spot 68.3 −1.15 1.42e−16

Const. Cubic spline, PC spot nan −inf 0

Nelson–Siegel 0.799 0.0160 0.371

A negative δ̄ indicates that the Blomvall (2017) model has a higher likelihood value. The p value is the
probability that the null hypothesis of equal likelihood values is falsely rejected

spline models. The Nelson and Siegel (1987) model obtain a higher likelihood value,
but this is not statistically significant. Two of the Cubic spline models provide outliers
that are so unlikely that their probability is equal to zero. This results in numerical
problems, butwe can interpret this as p = 0. TheCubic splinemodel based on spot rate
risk factors exhibits a better fit in the histogram and in the statistical test. In addition,
it produces lower portfolio volatility as seen earlier.

Even though we model the entire distribution, we can use the scenarios and the
kernel function to study the left tail of the distribution to compute VaR. We study
this by sorting the supposedly uniformly distributed values that we retrieve from
transforming realized portfolio values by the inverse of the kernel function. In the
left panel of Fig. 12 we can depict the ex-post realizations of how often extreme
losses occur relative to the expected frequency. We also use the kernel distribution
to numerically compute ex-ante estimations of VaR for different confidence levels,
shown in the right panel of Fig. 12.We see that theBlomvall (2017)models produce the
lowest VaR levels while having a very accurate representation of the tail distribution
(left panel). Here, we also confirm that all the Cubic spline models underestimate
the extreme tail risk, as previously seen in the histograms in Fig. 11. This causes
the constant volatility Cubic spline model to falsely perceive a relatively flat VaR
curve for increasing confidence levels (right panel). Our Cubic spline model based
on spot rate risk factors exhibits a lower VaR curve, as would be expected with the
lower volatility results of Fig. 10. However, a part of this result comes at the price
of underestimating the risk across all confidence levels displayed in the left panel of
Fig. 12. The Nelson and Siegel (1987) model overestimates the risk but still produces
lower risk estimates compared to the Cubic spline models. Even though we only
calculate VaR, the results are translated to expected shortfall as this is the expectation
of VaR below the quantile.

8.2 Back-test using a 10-day forecasting horizon

We also provide results for a 10-day horizon, since this is commonly used in Basel
regulations. For this horizon, we start to notice differences between the analytical and
the simulation based approach described in Sect. 5.1, and we thus use the simulation
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Fig. 12 Tail risk QQ and 1-day-ahead average VaR over the out-of-sample period
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Fig. 13 Histogram of the out-of-sample 10-day scenario volatilities between 2002 and 2017 for the port-
folio. Values are capped at 150

based approachwith 2000 scenarios.We chose to concentrate on themodels displaying
the best results for the 1-day simulation based on the amount of volatility and statistical
test. Hence, we chose the Cubic spline model using spot rate risk factors, together with
the Nelson and Siegel (1987) model as reference models. The scenario volatilities is
shown in Fig. 13. Here we have capped simulation volatilitiy values at 150, due to
unrealistic scenario outcomes, which mainly affects the Nelson and Siegel (1987)
model, in terms of decreased average volatility.

Studying the fit of our models in Fig. 14 we start to notice a slight overestimation
of the risk in the Blomvall (2017) model and the Nelson and Siegel (1987) model,
especially for positive returns. The Cubic spline model displays a more severe over-
estimation of the risk. Turning once again to the statistical test, we ran a separate test
where simulations were spaced equal to the simulation horizon of 10 days to ensure
that there is no dependence between observations, as required by the test. The results
can be seen in Table 9, where we find that the model by Blomvall (2017) produces sig-
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Fig. 14 Out-of-sample results for a 10-day horizon plotted against the uniform distribution

Table 9 Results for the 10-day simulation horizon, where δ̄ is the difference in likelihood value between
the reference model and the Blomvall (2017) model

Compared model T δ̄ p

Cubic spline, PC spot 25.3 − 0.766 4.95e−07

Nelson–Siegel 14.4 − 0.0907 0.000148

A positive δ̄ indicates that the reference model has a higher likelihood value. The p value is the probability
that the null hypothesis of equal likelihood values is falsely rejected
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Fig. 15 Tail risk QQ and 1-day-ahead median values for VaR over the out-of-sample period

nificantly higher likelihood values than both the Cubic spline model and the dynamic
Nelson and Siegel (1987) model.

Studying the VaR for this commonly used simulation horizon, seen in Fig. 15,
we note that the tail risk is overestimated by all models at this simulation horizon.
Due to some unrealistic scenario values of the Nelson and Siegel (1987), we have
use median values instead of average values of VaR. These measures are substan-
tially lower for the Blomvall (2017) model, especially for the lowest percentile. This
is a result of the model generating excessive noise in addition to the actual risk,
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Fig. 16 Histogram of the weekly out-of-sample one-quarter-ahead scenario volatilities between 2002 and
2017 for the portfolio. Values are capped at 500

something that would unnecessarily increase capital requirements under Basel regu-
lations.

8.3 Long-term back-testing

As pointed out by Rebonato et al. (2005), evolving yield curves over long horizons
is a difficult task, and as described earlier, long-term scenario simulation using daily
forecasts is a computationally cumbersome process. Because of this, we have limited
the test to a one-quarter-ahead simulation using 500 scenarios. We perform weekly
simulations instead of daily in order for the model to finish within 12 h. The volatility
distribution is presented in Fig. 16. Here we have capped volatility values at 250, due
to highly unrealistic scenario values. This mainly affects the Nelson and Siegel (1987)
model, but also the Cubic spline model, while the Blomvall (2017) model shows no
signs of unrealistic scenarios.

Studying the histogram in Fig. 17 we note that the Blomvall (2017) has the best
fit, while other models show more severe problems even though the fit for positive
returns is a recurring problem for all models. We perform no statistical test for this
horizon due to the limited number of independent observations. Computing the VaR
measures in Fig. 18 has to be done using median value instead of average due to
the unrealistic scenarios mentioned above. All models overestimate the risk, but the
Blomvall (2017) model shows the best fit and provides substantially lower VaR mea-
sures.

8.4 Towards accurate measurements of interest rate risk

To accurately model interest rate risk, it is necessary to ensure that the model does not
capture noise. It is evident from the right panel of Fig. 4 that, measuring interest rate
curves using cubic splines, introduces noise that may be hidden in the PCA of spot
rates. Even though adding more realistic modeling of the principal components for
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Fig. 17 Weekly Out-of-sample results between with simulation horizon of one quarter
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Fig. 18 Tail risk QQ and one-quarter-ahead median VaR for the out-of-sample period

the Cubic spline models significantly improves the results (Figs. 11, 12), it is obvious
that improved modeling will not overcome the fact that noise is being modeled. As
a direct consequence, the Cubic spline models manage to overestimate the inherent
interest rate risk ex-ante, while it simultaneously underestimates the tail risk ex-post
for the daily horizon (Fig. 12). The inherent property that Cubic spline models cannot
deal with measurement noise that creates unrealistic interest rates for the 10-day and
quarterly simulation horizons. The consequence of this is very high VaR measures
(Figs. 15, 18).

The Nelson and Siegel (1987) model creates less accurate prices (Fig. 1), but simul-
taneously improve the risk measurement both ex-ante and ex-post compared to the
Cubic spline models (Fig. 12). However, for longer horizons, also the Nelson and
Siegel (1987) model tend to increase the risk significantly (Figs. 15, 18), indicating
that this model also models noise to a large extent. Relying on a formulation of the
inverse problem that is more resilient to measurement noise, as the one suggested
by Blomvall (2017), allows for decreased VaR and expected shortfall measures. This
results in lower capital requirements for the FRTB, while having control over the
realized risk.
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9 Conclusions

This paper concerns modeling of the entire distribution of interest rate risk by mod-
eling its systematic risk factors. We find GARCH-models useful for modeling of the
volatility of principal component series. We also find that the Student’s t-copula is
the most suitable copula for modeling co-dependence between these principal compo-
nent series. Based on these findings, we construct models that are independent of the
underlying term structure measurement methods and work in all regimes, including
negative interest rates. After establishing the interconnection between the measure-
ment of interest rate risk, and the measurement of term structures, we identify three
important properties. First, there should be no systematic price errors caused by the
term structure measurement method. Second, the distribution of the risk factors must
be consistent with their realizations. Third, lower risk is preferable. We investigate
these three properties and seek a model which satisfies them all. Scenario volatility
of different models are studied in order to compare their level of risk. The ability to
generate scenarios that are consistent with realized outcomes, is studied by valuing a
portfolio containing interest rate derivatives, and compare scenario values with real-
ized outcomes. In order to reveal any weakness of the model, we choose forward rate
agreements to make up the portfolio. These instruments are sensitive to changes to
the forward rates, which is an inherent problem for traditional interest rate measure-
ment methods. We conclude that our proposed model, based on Blomvall (2017) term
structures, accurately reflects 1-day-ahead the risk in in the portfolio, while obtaining
the lowest volatility and VaR levels. For the 10-day horizon, Cubic spline models and
the Nelson and Siegel (1987) model exhibit further problems caused by the volatility
arising from noise being scaled by the increased time horizon, leading to unnecessarily
increases in capital requirements under Basel regulations. For long-term simulations
over a quarter, the Blomvall (2017) produces the by far best results. We conclude that
the term structures by the Blomvall (2017) model contain the least amount of noise,
but that the method could be improved in order to further reduce the amount of noise.
We believe that this would further reduce the measured risk, as well as improve the fit
of the risk distribution for longer simulation horizons.
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