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Abstract
Although the level of digitalization and automation steadily increases in radiology, billing coding for magnetic resonance
imaging (MRI) exams in the radiology department is still based on manual input from the technologist. After the exam comple-
tion, the technologist enters the corresponding exam codes that are associated with billing codes in the radiology information
system.Moreover, additional billing codes are added or removed, depending on the performed procedure. This workflow is time-
consuming and we showed that billing codes reported by the technologists contain errors. The coding workflow can benefit from
an automated system, and thus a prediction model for automated assignment of billing codes for MRI exams based on MRI log
data is developed in this work. To the best of our knowledge, it is the first attempt to focus on the prediction of billing codes from
modality log data. MRI log data provide a variety of information, including the set of executed MR sequences, MR scanner table
movements, and given a contrast medium.MR sequence names are standardized using a heuristic approach and incorporated into
the features for the prediction. The prediction model is trained on 9754 MRI exams and tested on 1 month of log data (423 MRI
exams) from twoMRI scanners of the radiology site for the Swiss medical tariffication system Tarmed. The developed model, an
ensemble of classifier chains with multilayer perceptron as a base classifier, predicts medical billing codes for MRI exams with a
micro-averaged F1-score of 97.8% (recall 98.1%, precision 97.5%). Manual coding reaches a micro-averaged F1-score of 98.1%
(recall 97.4%, precision 98.8%). Thus, the performance of automated coding is close to human performance. Integrated into the
clinical environment, this work has the potential to free the technologist from a non-value adding an administrative task, therefore
enhance the MRI workflow, and prevent coding errors.
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Introduction

Medical coding can best be described as the translation of
unstructured, medical information into a series of codes,
with each code representing a certain diagnosis or proce-
dure [1]. It can be a tedious and time-consuming task,
which requires special training in medical coding for the
used medical code set. Medical diagnoses are primarily

encoded with the International Statistical Classification of
Diseases and Related Health Problems (ICD). In addition
to medical diagnosis coding, medical services and proce-
dures are encoded in procedure billing codes that are used
for a standardized billing process and procedure documen-
tation. Thus, procedure coding is the basis for the reim-
bursement for any medical examination. Different coun-
tries use their own procedure billing code set; for instance,
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the Current Procedural Terminology (CPT) used in the
USA, the “einheitliche Bewertungsmaßstab” and the
“Gebührenordnung für Ärzte” in Germany or Tarmed in
Switzerland [2]. Tarmed, from French tarif médical, is
the fee-for-service tariff system for all outpatient services
in Switzerland, comprising more than 4600 different bill-
ing codes. Each code describes a medical procedure or
service that is associated with a technical and a profession-
al component, which determine the reimbursement for the
code. Tarmed codes are therefore used to standardize and
exchange billing information between health care provider
and insurance [2]. All outpatient medical services and pro-
cedures are encoded in these tariffs, but Tarmed is also
used for certain services within inpatient care (e.g. radiol-
ogy services).

Although Tarmed comprises an extensive code set, not all
procedures that are routinely performed are necessarily
encoded in distinct billing codes. New examination tech-
niques evolve fast, but the process to encode a new technique
or procedure into the tariff system is slow [3]. In order to get
reimbursed for services that are not yet encoded (but are al-
ready included in the service catalogue for Swiss compulsory
health insurance), codes with similar associated complexity in
terms of workload and costs to the conducted procedure can
be charged. This is called analogous coding, which does not
necessarily follow fixed rules and can differ through the cod-
ing practice of each site.

The goal of this paper is to develop an algorithm that can
reliably predict Tarmed medical billing codes (for Tarmed
version 01.08.01). Most work on clinical coding automation
has not reached acceptable performance yet (see the “Related
work” section). In our work, we narrow our focus on MRI
exams and use internal log data from MRI scanners (MRI
log data) as data basis. MRI log data provide information
about the set of executed MR sequences, MR scanner table
movements, and given a contrast medium. The information
available in MRI log data is comparable to non-patient-related
DICOM metadata for technical information. However, MRI
logs offer an enhanced set of attributes that are unavailable in
the radiology information system (RIS) or Picture Archiving
and Communication System (PACS) [4], such as an extensive
set of MRI acquisition parameters and MRI scanner table
movements that can be used for feature extraction for the
prediction task.

A large amount of data and the fact that information about
billing codes cannot be directly retrieved from the MRI log
data, but rather exists in form of patterns, facilitate the use of a
machine learningmodel. Additionally, not all MRI procedures
are encoded in clearly defined billing codes (analogous cod-
ing), which also supports the use of a machine learning
approach.

We evaluated our approach on data from twoMRI scanners
(Siemens MAGNETOM Aera and Siemens MAGNETOM

Skyra) of a single hospital university site. In the current
workflow of this site, a technologist enters the conducted ser-
vices (in form of site-specific exam codes) and the Tarmed
billing codes for an MRI exam in the RIS, usually during or
at the end of the exam. A set of Tarmed codes is associated
with each entered exam code (e.g. the exam codes correspond-
ing to “MRHip” and “MR-guided biopsy”). An exam code is
preregistered with the respective Tarmed codes in the RIS, but
additional billing codes can be manually added or removed,
depending on the performedMRI exam. Moreover, the billing
codes for each radiological exam are reviewed by the respon-
sible person for procedure coding at the hospital.

Collected coding data represent codes reported by the tech-
nologists, but not the final billing codes submitted to the in-
surer. One goal of this work was to identify potential flaws of
the procedure coding workflow for MRI exams. By using the
coding data as reported by the technologists, we were able to
assess the error rate of technologists. The final billing codes
submitted to the insurer were not available as this process can
take several months and final billing codes are compiled and
submitted outside the RIS of the hospital site. However, in
order to evaluate the developed automated coding algorithm
properly, we generated a ground truth billing code set used for
testing.

The rest of the paper is organized as follows: the “Related
work” section presents related work on automated medical
coding and the utilization of log data from imaging modalities.
In the “Methods” section, we present the used dataset and
describe the prediction model, including feature extraction,
feature processing, and classification methods. Moreover, we
describe ground truth data generation and the reported evalu-
ation metrics. In the “Results” section, we present our assess-
ment of the performance of automated coding and manual
billing code assignment (manual coding) through the technol-
ogists. The “Discussion” section discusses the presented re-
sults, and the paper concludes with the “Conclusion” section.

Related work

Automated medical code assignment has been an active field
of research in recent years. Perotte et al. [5] studied the use of
hierarchy-based support vector machines (SVMs) for the as-
signment of ICD-9 (ninth revision) codes to discharge sum-
maries. In their results, they reported a F1-score of 39.5%.
They furthermore discovered that the supposedly ground truth
codes are not perfect, and therefore their measures, such as
recall and precision, are likely underestimated. However, they
have not assessed the error rate within their dataset and con-
sequently, their true performance cannot be determined pre-
cisely. Kavuluru et al. [6] evaluated supervised learning ap-
proaches for the assignment of ICD-9-CM (clinical modifica-
tion) to electronic medical records (EMR) dataset. They
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experimented with different problem transformation ap-
proaches (including binary relevance and ensemble of classi-
fier chains) and reported a micro F1-score of 48% overall
codes with at least 50 training examples for the dataset of
EMRs containing 1231 labels in total. Atutxa et al. [7] used
diagnostic terms to retrieve information from Electronic
Health Records (EHR). The correct ICD code among more
than 1500 possible ICD codes was found with 92% precision
for the main disease.

Moreover, earlier attempts on automated medical coding
include a hierarchical approach for ICD-9 code assignment
to medical documents [8], the use of ensemble learning for
the assignment of ICD-9-CM codes to the clinical history and
impression sections of radiology reports [9], information re-
trieval from search engines, boosting as well as rule-based
approaches [10].

Procedure codes from ICD-10 were predicted from the
clinical narratives using several levels of abstraction in [11]
with a F1-score of 48.5%.

Event logs from imaging modalities were used in [12] to
retrieve the examined body region in MRI exams from se-
quence parameters with a classification accuracy of 94.7%
and in [13] to classify interventional X-ray exams into respec-
tive procedures or examined anatomy, reaching a classifica-
tion accuracy of 92.7%.

To summarize, it can be stated that a large part of the re-
search has focused on the prediction of diagnosis codes [5–10]
rather than on procedure billing codes [11]. Additionally, the
data basis of the published methods for predicting medical
codes usually consisted of discharge summaries and free-text
reports, although there were recent attempts to utilize MRI log
data for data analytic purposes [12, 13]. Thus, this paper is one
of few works on automation of procedure coding, and to the
best of our knowledge, it is the first attempt to focus on the
prediction of procedure billing codes from data excluding
EMRs or EHRs. Billing code prediction is a sensitive task
since errors due to overcoding, i.e. reporting medical services
wrongly, or undercoding, i.e. not reporting rendered services,
lead to associated inaccuracies in revenue streams that must be
prevented.

Methods

Data

The MRI log data contain information about the set of con-
ducted sequences and associated MR sequence parameters,
approximate age of the subject, information about the MRI
scanner table movements, and contrast medium.

The billing codes are extracted from the RIS with an SQL
query. The codes were entered by the technologists and

comprise Tarmed codes for each MRI exam that serve as
target data for training the algorithm.

The datasets were stripped of any patient-identifiable infor-
mation, compliant with Swiss personal data protection laws.

Data merging and cleaning

First, the MRI logs were merged with the billing code data via
the associated time stamps and assigned to a single instance,
i.e. an MRI exam for a single subject. Logs associated with a
subject comprise the data from the time of the subject regis-
tration on the MRI host computer to the end of the last MR
sequence (see Fig. 1).

The codes also comprise non-imaging-related billing
codes. These non-imaging-related codes were excluded, as
they were not predictable with the available MRI log data.
These codes include a code for establishing intravenous access
through the technologist, a surcharge code for narcotized pa-
tients, or a physician’s service in absence of the patient.
Furthermore, technical base service codes are added in the
hospital information system, depending on the patient being
out- or (narcotized) inpatient. At the investigated radiology
site, no information about the status of the patient’s hospital
stay (out-/inpatient) was available at the MRI host computer,
and therefore, these base codes were not retrievable.

As some procedures are performed very infrequently, the
training data base was not large enough to learn features for
the prediction of all billing codes reliably—thus, codes that
occur in less than 20 instances of the training data (i.e. in less
than 0.3%) were discarded. The distribution of removed bill-
ing codes within the dataset is presented in the “Results” sec-
tion of this paper.

As found out during the analysis of the billing codes, cod-
ing errors were present in the available data. Errors that violate
Tarmed coding rules were corrected automatically in the train-
ing dataset of the algorithm: if codes were charged more than
the maximum allowed number per exam, the number of the
code was reduced to the allowed quantity. This enhances the
quality of the target data, although no ground truth level was
reached as coding errors remain in the data that can only be
corrected through manual analysis of the billing codes. The
manual correction of the codes was limited to the test dataset
(see the “Generation of ground truth data” section).

Prediction model: automated procedure coding

Feature extraction

Features were extracted from the set of executed sequences
during the MRI exam, associated sequence parameters (e.g.
field-of-view (FOV)), table movements of the MRI scanner
table, used coils, and approximate age of the subject.
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Moreover, information whether the contrast medium (CM)
was used was incorporated into the feature set.

The total acquisition time, ACQ, (i.e. sum of sequence
execution time or value-added time according to Lean Six
Sigma [14, 15]) and the user-operating time, UOP, (idle time
of the scanner, non-value-added time according to Lean Six
Sigma, i.e. exam duration minus acquisition time) were com-
puted, and the ratio of UOP-to-ACQ was calculated. The
UOP-to-ACQ ratio can be used for the identification of MR-
guided biopsies since acquisition cycles during MR-guided
biopsies makeup only a small share of the total exam duration.
During diagnostic MRI exams, the UOP-to-ACQ ratio is sig-
nificantly lower.

In order to further distinguish MRI procedures, the MR
scanner table movement was investigated. The MR scanner
table usually does not move much or in a recognizable pattern
during the exam. However, for some procedures (e.g. whole-
body exam or MR-guided biopsy), the table movement has a
distinct shape, and features from the table movement during
the examwere extracted to identify these procedures (e.g. total
table movement, min/max table position, average table move-
ment between two sequences).

Sequence name standardization

The set of executed sequences provides useful information for
the identification of the conducted exam, since different se-
quences are used for the assessment of different clinical indi-
cations. However, the names of the sequences can be adapted
individually, and therefore they are not comparable and mean-
ingful features for the characterization of an MRI exam. For
instance, the (user-defined) sequence names “t1_tse_tra_fs”
and “t1_tse_fs_tra” (t1-weighted turbo spin echo sequence
in transverse imaging direction with fat-saturation) falsely
encode two different MRI sequences and consequently also
features. Standardization will solve this problem by generat-
ing a structured sequence name.

Since sequence information is often not stored reliably in
the sequence name, it complicates the use of machine learning
to learn sequence name terms. Therefore, sequence terms were
generated heuristically based on the underlying sequence pa-
rameters (e.g. TR, TE, TI, imaging technique, imaging
orientation).

The sequence name standardization makes sequences
names comparable by unifying the structure of the sequence
name and by removing sequence terms that do not describe
intrinsic or crucial properties of the sequence. Examples are
shown in Table 1. Sequence terms in the original sequence
name, which are not part of a generic, standardized sequence
n am e , a r e , e . g . t h e s p e c i f i e d b o d y r e g i o n
(“ep2d_diff_3b_Abdomen” ) , the sl ice thickness
(“t2_haste_fs_tra_3mm_mbh”), or the time after CM injec-
tion (“t1_vibe_fs_tra_caipi_15 min”).

The standardization enables the utilization of sequence
names as features, even across different scanners and sites,
and furthermore reduces the amount of different sequence
names, increasing the generalization ability of the classifica-
tion model while decreasing the training time.

Classification

Different base classifiers were trained using the extracted fea-
tures from the MRI log data and evaluated. As a base classi-
fier, a fully connected feed-forward neural network (multilay-
er perceptron (MLP)), a SVM, and a random forest as base
classifier were applied and compared, as they have been prov-
en to be the best-performing classifiers for a variety of classi-
fication problems [16].

In traditional supervised learning, each instance, character-
ized by its features, is associated with a single label (two-class/
binary learning problem). If the label can have more than two

Table 1 Examples of original and standardized sequence name pairs

Original sequence name Standardized sequence name

ep2d_diff_3b_Abdomen ep2d_diff tra

ep2d_diff_b50_300_800_tra_4Scan_p3 ep2d_diff tra

t2_haste_fs_tra_3mm_mbh t2 haste fs tra bh

t1_vibe_fs_tra_caipi_15 min t1 vibe fs tra bh

Abbreviations: ep2d = two-dimensional (2d) echo-planar imaging; diff,
diffusion; tra, transverse; mbh, multiple breath hold

The first two sequences listed in the table represent the same diffusion
weighted sequence and are therefore mapped to the same standardized
sequence name

See http://www.revisemri.com/questions/misc/mri_abbrev for an
extensive list of common MRI abbreviations that explain the remaining
sequence terms

Instance

Exam

Start of first sequence (localizer) End of last sequence

Time

Subject registration on MRI host computerFig. 1 Time line of anMRI exam.
All logs from the subject
registration on the MRI host
computer to the end of the last
sequence describe a single
instance
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different values, it becomes a multi-class problem. In multi-
label learning, each instance is associated with a set of q dif-
ferent binary labels. Furthermore, multi-output classification
is a generalization of multi-label classification, where each
label can be multi-class (i.e. more than two different values
can be assigned to a label) [17].

The prediction of billing codes is a multi-output classifica-
tion problem, since some billing codes can be multi-class, i.e.
identical codes can be assigned multiple times to an MRI
exam—for instance, codes corresponding to a body region
of the extremities can be charged twice, or a surcharge code
for additional series can be charged for each reported main
service code.

It is assumed that interdependencies between billing codes
exist, e.g. a biopsy procedure billing code occurs more likely
in combination with an abdomen code than with a whole-body
code. To cope with label dependencies, the problem transfor-
mation method ensemble of classifier chains (ECC) [18] was
applied and compared to the binary relevance method [19].
Classifier chains arrange classifiers into a chain, whereas each
classifier incorporates the classification output of the preced-
ing classifiers as additional features. Ensembles of classifier
chains leverage the benefit of ensemble learning by combin-
ing multiple classifier chains with random label order. The
final output for each label is yielded by a majority vote of
the output of the single classifier chains. In contrast, the binary
relevance method constructs a single classifier for every label,
and therefore independence between the labels is assumed,
which makes the method computationally efficient and highly
resistant to overfitting label combinations, but neglects any
relationship between labels.

Other problem transformation methods, such as hierarchi-
cal classifier [5] or (pruned) labelsets [20] have not proven to
be beneficiary and therefore are not further reported and
assessed in the “Results” section of this paper.

Target data descriptors and evaluation metrics

In multi-output learning, the dataset is given by D = {(xi, y-
i)| 1 ≤ i ≤m}, wherem is the number of instances in the dataset.
Each multi-output instance is represented by the n-dimension-
al feature vector xi = [xi, 1, … , xi, n] and the labelset yi = [yi, 1,
… , yi, q], with q being the number of different labels, and yi,
j ∈ Υj = {1, … ,Kj}, with Kj ∈ℕ+ being the finite number of
values associated with the j-th label. The multi-output classi-
fier h(∙) is then trained to predict the set of labels h(x) = y for
an unseen instance x [17, 21].

Label cardinality, density, and diversity are computed to
characterize the complexity of the multi-output target data.
Label cardinality quantifies the average number of codes per
MRI exam. Thus, it measures the degree of multi-labeldness
of the dataset and is given by

LCard Dð Þ ¼ 1
m

∑
m

i¼1
∑
p

j¼1
yi; j: ð1Þ

Label density is defined by the label cardinality divided by
the total number of possible codes:

LDen Dð Þ ¼ 1
Υj jLCard Dð Þ: ð2Þ

Label diversity gives the number of distinct code sets in the
dataset:

LDiv Dð Þ ¼
n
yj∃x : x; yð Þ∈D

o���
���: ð3Þ

Recall, precision and F1-score are reported for the assess-
ment of the performance of the prediction model.

Since the prediction of billing codes is a multi-output clas-
sification problem, different averaging methods for the evalu-
ation measures can be computed (e.g. macro- or micro- aver-
age). Let B(∙) represent some specific binary classification
metric (e.g. B ∈ {precision; recall; F1}), depending on TPj,
FPj, TNj, FNj, class label j, classifier h. TP indicate the true
positives,FP the false positives, TN the true negatives, and FN
the false positives. The macro- and micro-average of the clas-
sification metric B(∙) are then defined as follows [17]:

Bmacro hð Þ ¼ 1

q
B TP j;FP j; TN j;FN j
� � ð4Þ

Bmicro hð Þ ¼ 1

q
B ∑

m

j¼1
TP j; ∑

m

j¼1
FP j; ∑

m

j¼1
TN j; ∑

m

j¼1
FN j;

 !
: ð5Þ

The macro-average assumes equal weight for each label,
whereas the micro-average incorporates the frequency of the
labels into the label weighting. Since some billing codes occur
in less than 1% of the available data, micro-averaged scores
are more suitable to assess the overall quality of the prediction
model, and therefore the micro-averaged recall, precision, and
F1-score are reported.

Additionally, the subset accuracy, also known as classifica-
tion or labelset accuracy, is reported. The subset accuracy is
given by

SubsetAccuracy ¼ 1

m
∑
m

i¼1
yi ¼ h xið Þk k: ð6Þ

Generation of ground truth data

Since errors in the billing codes that were reported by the
technologists were found (either codes were forgotten or false-
ly charged), the available codes cannot be considered to be
ground truth data. For the final evaluation, a held-out test set
was corrected exam-wise to generate ground truth billing
codes. Reported procedures in the RIS, the DICOM images,
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and the final report stored in the PACS were used to validate
the billing codes and ambiguous cases were additionally
discussed with the lead technologist. Therefore, the test set
establishes ground truth and can both be used to evaluate the
quality of the classification model and of the billing codes
manually entered by the technologists.

Due to a large amount of data (9754 training instances with
over 110,000 executed MRI sequences), it was not feasible to
correct the training data manually to generate ground truth.
However, although the training dataset is not ground truth
code data, its data quality after data cleaning was considered
to be sufficient for training an algorithm.

Results

Data

The dataset spans a time period of 21 months, whereas the
training set comprises 9754 instances and the test set com-
prises 423, covering a complete month of data. In total, the
target data contain 28 different Tarmed codes. After the data
cleaning process, 22 different codes remained, from which six
can also be charged twice and two can also be charged more
than twice for a singleMRI exam. The removed codes account
for only 0.1% of the total generated reimbursement within the
dataset and are therefore neglectable.

The cardinality of the training dataset is 4.1 and the label
density is 0.1. One hundred seventy-two unique combinations
of these labels (labelsets) are observed in the training dataset.
The label cardinality and density of the corrected test dataset
are identical to the training set. Due to its smaller size, its label
diversity is only 61, whereas also six labelsets in the test
dataset do not occur in the training dataset. The distribution
of the number of billing codes per MRI exam in the training
dataset is shown in Fig. 2. A total of 98.5% of the MRI exams
in the training dataset contain between two and six codes.

Assessment of automated coding

The standardization of the MR sequence names is a crucial
processing step of the prediction pipeline. Over 110,000 se-
quences were executed on the two MRI scanners during the
MRI exams comprised by the training data, with 1002 differ-
ent sequence names in total. Using the sequence name stan-
dardization, the original amount of 1002 different sequence
names were reduced to 334, which is a decrease of 67%.

Binary relevance and ensemble of classifier chains were
implemented with the base classifiers MLP, RBF SVM, and
random forest; the hyperparameters of each model were opti-
mized using 10-fold cross-validation on the training dataset
with regard to micro F1-score.

The best-performing classifiers with regard to micro-
averaged F1-score were the ECC with the multilayer
perceptron (97.8%) as a base classifier and ten classifier
chains. The classification results for the evaluated methods
are presented in Table 2. Top recall (98.1%) was also achieved
with the ECC-MLP classifier. Label cardinality and density
did not differ much across the tested classifiers.

Assessment of manual coding

The technologists’ manual coding performance reached
micro-averaged F1-score of 98.1% and a subset accuracy of
92.0%, slightly surpassing the performance of automated cod-
ing. The precision of manual coding was at 98.8% and recall
at 97.4%, which is inferior to the recall of the MLP-based
ensemble of classifier chain (98.1%). Label cardinality and
density are equal to the ground truth dataset; label diversity
is 67, thus higher than of the ground truth dataset.

Although micro-averaged F1-score and subset accuracy of
manual coding were still superior to automated coding, in a
significant share of test instances (5.6%) automated coding
was correct, whereas manual codingwas incorrect (see Fig. 3).

Discussion

The results above show not only that manual coding is prone
to errors but also that automated coding has a performance that
is similar to the performance of manual coding. In the follow-
ing, coding performance is discussed in more detail, and an
outlook for automated coding for MRI exams is given.

Automated coding

Performance comparison to other automated coding
methods is difficult, since most methods as outlined in
the “Related work” section focus on diagnosis coding.
Moreover, the performance of published methods must al-
ways be considered in the context of the underlying
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complexity in terms of the used data basis and coding sys-
tem [22]. One of the few works on automated procedure
coding presented in [11] yielded a F1-score of 48.5% on
the prediction of ICD-10-PCS codes from narrative text.
This is inferior to the performance of this work, which
shows the value of using modality log data for the retrieval
of billing codes over narrative text as data basis. However,
since no subset analysis for imaging or MRI billing codes
is provided and different coding systems are applied, a
thorough performance comparison cannot be made.

In order to evaluate the possibilities for future performance
improvements, we assessed the relationship between code prev-
alence in the training data and F1-score. Therefore, we comput-
ed the Spearman rank correlation coefficient that is a nonpara-
metric measure to quantify the statistical dependency between
two variables. We computed the coefficient between the F1-
score and code prevalence for all codes that yield imperfect
results (i.e. F1-score below 100% on the test dataset). The co-
efficient is 0.89 with a p value of < 0.0001, showing a very
strong monotonic relationship between the F1-score and the
code prevalence in the training data. This indicates that the
F1-score can potentially be further increased by incorporating
more training data.

Furthermore, the impact of errors in the test set on the final
performance evaluation was assessed by computing the per-
formancemetrics for the prediction of the ECC-MLP classifier
with respect to the uncorrected, manual coding test dataset. In
this case, the F1-score was underestimated by 1.3% and the
subset accuracy even by 4.7%, which shows the importance of
having ground truth data available for the final evaluation of
the prediction model.

Manual coding

The precision of manual coding (98.8%) was distinctively
higher than its recall (97.4%), which can be explained by the
fact that codes were usually rather forgotten by the technolo-
gists to be charged than accidentally entered. Moreover, 63%
of manual coding errors were due to Tarmed auxiliary codes
39.5010, 39.0410, and 39.5020 (constituting 45% of the total
number of assigned codes), which were added manually to the
main procedure service (i.e. the billing code for an additional
MRI series, arthrogram, or angiography). This manual process
step is the cause of the increased error rate. Thus, coding aide
focusing on auxiliary codes could help reduce coding errors
considerably. Moreover, coding errors within the test set

Table 2 Evaluation scores and label metrics for the test prediction using different classification methods

Binary relevance Ensemble of classifier chains Ensemble of classifier chains

MLP SVM RBF Random forest MLP Random forest

Micro F1-score 97.5% 95.3% 97.3% 97.8% 97.5%

Micro precision 97.4% 96.4% 97.7% 97.5% 97.5%

Micro recall 97.6% 94.3% 97.0% 98.1% 97.5%

Subset accuracy 90.8% 84.6% 90.6% 91.7% 91.3%

Label cardinality 4.1 4.0 4.1 4.1 4.1

Label density 0.2 0.2 0.2 0.2 0.2

Label diversity 57 40 47 55 55

Manual CodingAutomated Coding Ground Truth

Neither correct

2.4 %

Only Manual Coding
correct 

5.9%

Only Automated 
Coding correct 

5.6%

Manual Coding 

incorrect 

8.0%

Automated Coding 

incorrect

8.3% Manual and 
Automated 

Coding correct 

86.1%

Fig. 3 The Venn diagram
illustrates the performance
difference of automated and
manual coding with regard to the
subset accuracy. Here, the ECC-
MLP model was used for auto-
mated coding. In a significant
share of the test instances, auto-
mated coding was superior to
manual coding (5.6%)
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occurred most often for neck exams, which is likely due to the
high number of billing codes per exam (average number of six
codes) that increases the complexity of the coding process.
The remaining errors occurred evenly distributed across all
types of MRI exams. This indicates that in general manual
coding errors occur due to codes being added or forgotten
through an oversight, rather than due to insufficient coding
knowledge of the technologists for specific types of MRI
exams.

However, it is anticipated that coding performance varies
across technologists, depending, e.g. on their work experi-
ence. Due to personal data protection issues, these data were
not collected and consequently, the variance of the perfor-
mance between single technologists could not be measured.

We also assessed the impact of coding errors on generated
reimbursement. With respect to the ground truth billing code
data, coding errors by the technologists would have resulted in
a loss of 2.9% of reimbursement due to manual undercoding
errors. On the other hand, overcoding errors by the technolo-
gists would translate into falsely charged, an additional 0.8%
of reimbursement. Due to increasing cost pressure in
healthcare [21, 22], it is crucial to charge all rendered proce-
dures and services correctly by avoiding any procedure coding
errors. This can either be achieved with the current process
through a labor-intensive additional manual review or through
coding support by using automated procedure coding.

Potential application

The model was developed with the primary focus to enhance
the billing process for MRI exams. Medical billing describes
the process of submitting claims to the insurer that comprise
reported billing codes and consumed materials. Different ap-
plications of this work are conceivable in the radiology envi-
ronment that can enhance the workflow. For instance, the
prediction model can be employed as a standalone tool to
support the technologist during medical procedure coding in
form of suggesting likely billing codes for an MRI exam to
ensure that all rendered services are reported.

If the prediction model is supposed to be used in a semi-
automated (billing) setting, DICOM services (such as DICOM
Modality Performed Procedure Step (MPPS) [23]) could be
utilized as an interface between the MRI host computer/
scanner and the RIS that allows the transfer of billing codes.
Since medical billing does not only comprise encoding proce-
dures but also consumed materials, this type of billing/coding
support is only semi-automated. Materials used for MRI
exams, e.g. syringes for the injection of contrast medium or
needles for MR-guided biopsies, are also reported in the RIS
for billing. However, the automated reporting of used mate-
rials has not been investigated within the scope of this paper.
Additionally, current non-imaging related codes prevent a

fully automated procedure coding and consequently also au-
tomated billing.

Limitations and future works

In order to explore the possibilities for (fully) automated pro-
cedure coding and enhanced billing, material usage, better
information retrieval for current unpredictable codes and al-
gorithmic improvements shall be part of further research.

We used MRI logs as a data basis for our algorithm, which
are proprietary and vendor specific. A standardized, non-
proprietary alternative data basis for automated procedure
coding for MRI exams could be DICOM metadata, compris-
ing information that offers comparable content. However,
challenges with regard to processing DICOM metadata may
include efficient data retrieval from the PACS [23] and the
completeness of technical information fromDICOMmetadata
for feature processing. Therefore, future work shall investigate
how this work is transferable to DICOM metadata.

Until now, the prediction model has been tested on data
from two MRI scanners of a single site. The applicability of
the prediction model to data of more than one site shall be
evaluated in future work. Additionally, the performance of the
prediction model on different medical procedure billing sys-
tems shall be investigated. It is reasonable to expect that the
model is applicable to other procedure coding systems without
major adaption as most systems have a similar coding struc-
ture (e.g. modality-based, body region, and procedure-specific
coding).

Moreover, the presented work may also be transferred to
other medical (imaging) modalities by utilizing modality
event logs to predict billing codes for billing purposes. For
instance, the examined anatomy of interventional X-ray
exams was already successfully retrieved from modality log
data in [13]. Extending this work by training a prediction
model with corresponding billing code data and tailoring the
feature extraction process to this imaging modality may en-
able automated procedure billing coding for interventional X-
ray systems. Additionally, automated procedure coding from
modality log data may also be transferable to other imaging
modalities, such as computed tomography.

Conclusion

Medical procedure coding is the basis for reimbursement and
therefore crucial for the financial situation of the clinical site.
At the investigated radiology site, procedure coding for MRI
exams is still based on manual input from the technologist and
thus prone to user errors. The billing codes are currently
reviewed manually by the responsible person for procedure
coding to prevent coding errors, which is a time- and cost-
intensive process. In this paper, we presented a method for
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automated procedure coding for MRI exams on the basis of
MRI log data. We developed a method for sequence name
standardization that increases both the generalization ability
and training speed of the prediction model. We showed that
automated coding, requiring no user input, reached almost the
same performance (micro F1-score, 97.8%) as manual coding
through the technologist (micro F1-score, 98.1%).

Thus, automated procedure coding has the potential to op-
timize reimbursement and reduce the workload for the tech-
nologists. It is therefore anticipated to support digitalization
and workflow optimization in the radiology department.
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