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Abstract
Predictive analysis in business process monitoring aims at forecasting the future information of a running business process.
The prediction is typically made based on the model extracted from historical process execution logs (event logs). In practice,
different business domains might require different kinds of predictions. Hence, it is important to have a means for properly
specifying the desired prediction tasks, and a mechanism to deal with these various prediction tasks. Although there have been
many studies in this area, they mostly focus on a specific prediction task. This work introduces a language for specifying the
desired prediction tasks, and this language allows us to express various kinds of prediction tasks. This work also presents a
mechanism for automatically creating the corresponding prediction model based on the given specification. Differently from
previous studies, instead of focusing on a particular prediction task, we present an approach to deal with various prediction
tasks based on the given specification of the desired prediction tasks. We also provide an implementation of the approach
which is used to conduct experiments using real-life event logs.

Keywords Predictive business process monitoring · Prediction task specification language · Automatic prediction model
creation · Machine learning-based prediction

1 Introduction

Process mining [66,67] provides a collection of techniques
for extracting process-related information from the logs of
business process executions (event logs). One important area
in this field is predictive business process monitoring, which
aims at forecasting the future information of a running pro-
cess based on the models extracted from event logs. Through
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predictive analysis, potential future problems can be detected
and preventive actions can be taken in order to avoid unex-
pected situation, e.g., processing delay and service-level
agreement (SLA) violations. Many studies have been con-
ducted in order to deal with various prediction tasks such
as predicting the remaining processing time [52–54,63,69],
predicting the outcomes of a process [18,35,50,72], and pre-
dicting future events [19,24,63] (cf. [11,15,41,42,49,58]). An
overview of various works in the area of predictive business
process monitoring can be found in [20,36].

In practice, different business areas might need different
kinds of prediction tasks. For instance, an online retail com-
pany might be interested in predicting the processing time
until an order can be delivered to the customer, while for
an insurance company, predicting the outcome of an insur-
ance claim process would be interesting. On the other hand,
both of them might be interested in predicting whether their
processes comply with some business constraints (e.g., the
processing time must be less than a certain amount of time).

When it comes to predicting the outcome of a process,
business constraint satisfaction, and the existence of an unex-
pected behaviour, it is important to specify the desired out-
comes, the business constraint, and the unexpected behaviour
precisely. For instance, in the area of customer problemman-
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agement, to increase the customer satisfaction as well as to
promote efficiency, we might be interested in predicting the
possibility of “ping-pong behaviour” among the customer
service (CS) officers while handling the customer problems.
However, the definition of a ping-pong behaviour could be
varied. For instance, when a CS officer transfers a customer
problem to another CS officer who belongs into the same
group, it can already be considered as a ping-pong behaviour
since both of them should be able to handle the sameproblem.
Another possible definitionwould be to consider a ping-pong
behaviour as a situation when a CS officer transfers a prob-
lem to another CS officer who has the same expertise, and
the problem is transferred back to the original CS officer.

To have a suitable prediction service for our domain, we
need to be able to specify the desired prediction tasks prop-
erly. Thus,weneed ameans to express the specification.Once
we have characterized the prediction objectives and are able
to express them properly, we need a mechanism to create the
corresponding prediction model. To automate the prediction
model creation, the specification should be unambiguous and
machine processable. Such specification mechanism should
also allowus to specify constraints over the data, and compare
data values at different time points. For example, to charac-
terize the ping-pong behaviour, one possibility is to specify
the behaviour as follows: “there is an event at a certain time
point in which the CS officer (who handles the problem) is
different from the CS officer in the event at the next time point,
but both of them belong to the same group”. Note that here
we need to compare the information about the CS officer
names and groups at different time points. In other cases,
we might even need to involve arithmetic expressions. For
instance, consider a business constraint that requires that the
length of customer order processing time to be less than 3
hours, where the length of the processing time is the time
difference between the timestamp of the first activity and the
last activity within the process. To express this constraint, we
need to be able to specify that “the time difference between
the timestamp of the first activity and the last activity within
the process is less than 3 hours”.

The language should also enable us to specify the target
information to be predicted. For instance, in the prediction of
remaining processing time, we need to be able to define that
the remaining processing time is the time difference between
timestamp of the last activity and the current activity. We
might also need to aggregate some data values, for instance,
in the prediction of the total processing cost where the total
cost is the sum over the cost of all activities/events. In other
cases, we might even need to specify an expression that
counts the number of a certain activity. For example, in the
prediction of the amount of work to be done (workload), we
might be interested in predicting the number of the remain-
ing validation activities that are necessary to be done for
processing a client application.

In this work, we tackle those problems by proposing an
approach for obtaining the desired prediction services based
on the specification of the desired prediction tasks. This work
answers the following questions:

RQ1: How can a specification-driven mechanism for build-
ing predictionmodels for predictive process monitor-
ing look like?

RQ2: How can an expressive specification language that
allows us to express various desired prediction tasks,
and at the same time enables us to automatically
create the corresponding prediction model from the
given specification, look like? Additionally, can that
language allow us to specify complex expressions
involving data, arithmetic operations and aggregate
functions?

RQ3: Once we are able to specify the desired prediction
tasks properly, howcan amechanism to automatically
build the corresponding prediction model based on
the given specification look like?

To answer these questions, we aim at introducing a rich lan-
guage for expressing the desired prediction tasks, as well as
a mechanism to process the specification in order to build the
corresponding prediction model. Specifically, in this work,
we provide the following contributions:

1. We introduce a rich language that allows us to specify var-
ious desiredprediction tasks. In some sense, this language
allows us to specify how to create the desired prediction
models based on the event logs.We also provide a formal
semantics for the language in order to ensure a uniform
understanding and avoid ambiguity.

2. We devise a mechanism for building the corresponding
prediction model based on the given specification. This
includes the mechanism for automatically processing the
specification. Once created, the prediction model can be
used to provide predictive analysis services in business
process monitoring.

3. To provide a general idea on the capability of our lan-
guage, we exhibit how our proposal can be used for
specifying various prediction tasks (cf.Sect. 5).

4. We provide an implementation of our approach which
enables the automatic creation of prediction models
based on the specified prediction objective.

5. To demonstrate the applicability of our approach, we
carry out experiments using real-life event logs that were
provided for the Business Process Intelligence Challenge
(BPIC) 2012, 2013, and 2015.

Figure 1 illustrates our approach for obtaining prediction
services. Essentially, it consists of the following main steps:
(i) First, we specify the desired prediction tasks, (ii) sec-
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Specify the
Prediction Task

Automatically Create
the Prediction Model

Predict the Future
Information

Fig. 1 Illustration of our approach for obtaining the prediction services

ond, we automatically create the prediction models based
on the given specification, (iii) once created, we can use the
constructed predictionmodels for predicting the future infor-
mation of a running process.

Roughly speaking, we specify the desired prediction task
by specifying how we want to map each (partial) business
processes execution information into the expected predicted
information. Based on this specification, we train either a
classification or regression model that will serve as the pre-
dictionmodel. By specifying a set of desired prediction tasks,
we could obtain multi-perspective prediction services that
enable us to focus on different aspects and predict vari-
ous information of interest. Our approach is independent
with respect to the classification/regression model that is
used. In our implementation, to get the expected quality of
predictions, the users are allowed to choose the desired clas-
sification/regression model as well as the feature encoding
mechanisms (in order to allow some sort of feature engineer-
ing).

This paper extends [57] in several ways. First, we extend
the specification language so as to incorporate various aggre-
gate functions such as Max, Min, Average, Sum, Count, and
Concat. Importantly, our aggregate functions allow us not
only to perform aggregation over some values but also to
choose the values to be aggregated. Obviously, this exten-
sion increases the expressivity of the language and allows us
to specify many more interesting prediction tasks. Next, we
add various new showcases that exhibit the capabilities of our
language in specifying prediction tasks. We also extend the
implementation of our prototype in order to incorporate those
extensions. To demonstrate the applicability of our approach,
more experiments on different prediction tasks are also con-
ducted and presented. Apart from using the real-life event log
that was provided for BPIC 2013 [62], we also use another
real-life event logs, namely the event logs that were provided
for BPIC 2012 [70] andBPIC 2015 [71]. Notably, our experi-
ments also exhibit the usage of a deepLearning approach [30]
in predictive process monitoring. In particular, we use deep
feed-forward neural network. Though there have been some
works that exhibit the usage of deep learning approach in
predictive processmonitoring (cf. [19,23,24,38,63]), herewe
consider the prediction tasks that are different from the tasks
that have been studied in those works. We also add more
thorough explanation on several concepts and ideas of our
approach so as to provide a better understanding. The discus-
sion on the related work is also extended. Last but not least,
several examples are added in order to support the expla-

nation of various technical concepts as well as to ease the
understanding of the ideas.

The remainder of this paper is structured as follows: In
Sect. 2, we provide the required background on the concepts
that are needed for the rest of the paper. Having laid the
foundation, in Sect. 3, we present the language that we intro-
duce for specifying the desired prediction tasks. In Sect. 4,
we present a mechanism for building the corresponding pre-
diction model based on the given specification. In Sect. 5,
we continue the explanation by providing numerous show-
cases that exhibit the capability of our language in specifying
various prediction tasks. In Sect. 6, we present the implemen-
tation of our approach aswell as the experiments that we have
conducted. Relatedwork is presented in Sect. 7. In Sect. 8,we
present various discussions concerning this work, including
a discussion on some potential limitations, which pave the
way towards our future direction. Finally, Sect. 9 concludes
this work.

2 Preliminaries

We will see later that we build the prediction models by
using machine learning classification/regression techniques
and based on the data in event logs. To provide some back-
ground concepts, this section briefly explains the typical
structure of event logs as well as the notion of classification
and regression in machine learning.

2.1 Trace, event, and event log

We follow the usual notion of event logs as in process
mining [67]. Essentially, an event log captures historical
information of business process executions. Within an event
log, an execution of a business process instance (a case) is
represented as a trace. In the following, wemay use the terms
trace and case interchangeably. Each trace has several events,
and each event in a trace captures the information about a
particular event/activity that happens during the process exe-
cution. Events are characterized by various attributes, e.g.,
timestamp (the time when the event occurred).

We now proceed to formally define the notion of event
logs as well as their components. Let E be the event uni-
verse (i.e., the set of all event identifiers), andA be the set of
attribute names. For any event e ∈ E , and attribute name
n ∈ A, #n(e) denotes the value of attribute n of e. For
example, #timestamp(e) denotes the timestamp of the event
e. If an event e does not have an attribute named n, then
#n(e) = ⊥ (where ⊥ is undefined value). A finite sequence
over E of length n is a mapping σ : {1, . . . , n} → E , and we
represent such a sequence as a tuple of elements of E , i.e.,
σ = 〈e1, e2, . . . , en〉 where ei = σ(i) for i ∈ {1, . . . , n}.
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The set of all finite sequences over E is denoted by E∗. The
length of a sequence σ is denoted by |σ |.

A trace τ is a finite sequence over E such that each event
e ∈ E occurs at most once in τ , i.e., τ ∈ E∗ and for
1 ≤ i < j ≤ |τ |,wehave τ(i) 	= τ( j),where τ(i) refers to
the event of the trace τ at the index i . Let τ = 〈e1, e2, . . . , en〉
be a trace, τ k = 〈e1, e2, . . . , ek〉 denotes the k-length trace
prefix of τ (for 1 ≤ k < n).

Example 1 For example, let {e1, e2, e3, e4, e5, e6, e7} ⊂ E
be some event identifiers, then the sequence τ = 〈e3, e7, e6,
e4, e5〉 ∈ E∗ is an example of a trace. In this case, we have
that |τ | = 5, and τ(3) refers to the event of the trace τ at the
index 3, i.e., τ(3) = e6. Moreover, τ 2 is the prefix of length
2 of the trace τ , i.e., τ 2 = 〈e3, e7〉. �

Finally, an event log L is a set of traces such that each
event occurs at most once in the entire log, i.e., for each
τ1, τ2 ∈ L such that τ1 	= τ2, we have that τ1 ∩ τ2 = ∅,
where τ1 ∩ τ2 = {e ∈ E | ∃i, j ∈ Z

+ . τ1(i) = τ2( j) = e}.
An IEEE standard for representing event logs, called XES

(eXtensible Event Stream), has been introduced in [32]. The
standard defines the XML format for organizing the struc-
ture of traces, events, and attributes in event logs. It also
introduces some extensions that define some attributes with
pre-defined meaning such as:

1. concept:name, which stores the name of event/trace;
2. org:resource, which stores the name/identifier of the

resource that triggered the event (e.g., a person name);
3. org:group, which stores the group name of the resource

that triggered the event.

Event logs that obey this IEEE standard for event logs are
often called XES event logs.

2.2 Classification and regression

In machine learning, a classification and regression model
can be seen as a function f : �X → Y that takes some input
features/variables �x ∈ �X and predicts the corresponding tar-
get value/output y ∈ Y . The key difference is that the output
range of the classification task is a finite number of discrete
categories (qualitative outputs), while the output range of
the regression task is continuous values (quantitative out-
puts) [28,31]. Both of them are supervised machine learning
techniques where the models are trained with labelled data.
That is, the inputs for the training are pairs of input vari-
ables �x and (expected) target value y. This way, the models
learn how to map certain inputs �x into the expected target
value y.

3 Specifying the desired prediction tasks

This section elaborates our mechanism for specifying the
desired prediction tasks. In predictive business process mon-
itoring, we are interested in predicting the future information
of a running process. Thus, the input of the prediction is
information about the process that is currently running, e.g.,
what is the sequence of activities that have been executed
so far, who executes a certain activity, etc. This information
is often referred to as a (partial) business process execution
information or a (partial) trace, which consists of a sequence
of events that have occurred during the process execution.
On the other hand, the output of the prediction is the future
information of the process that is currently running, e.g., how
long is the remaining processing time, whether the process
will comply to a certain constraint, whether an unexpected
behaviour will occur, etc. Based on these facts, here we intro-
duce a language that can capture the desired prediction task
in terms of the specification for mapping each (partial) trace
in the event log into the desired prediction results. In some
sense, this specification language enables us to specify the
desired prediction function that maps each input (partial)
trace into an output that gives the corresponding predicted
information. Such specification can be used to train a classi-
fication/regression model that will be used as the prediction
model.

To express the specification of a prediction task, we intro-
duce the notion of analytic rule. An analytic rule R is an
expression of the form:

R = 〈 Cond1 �⇒ Target1,
Cond2 �⇒ Target2,

...

Condn �⇒ Targetn,
DefaultTarget 〉,

where (i) Condi (for i ∈ {1, . . . , n}) is called condition
expression; (ii) Targeti (for i ∈ {1, . . . , n}) is called target
expression. (iii) DefaultTarget is a special target expres-
sion called default target expression. (iv) The expression
Condi �⇒ Targeti is called conditional-target expression.

Section 3.1 provides an informal intuition on our lan-
guage for specifying prediction tasks. It also gives some
intuitive examples that illustrate the motivation of some of
our language requirements. In Sect. 3.2, we elaborate several
requirements that guide the development of our specification
language. Throughout Sects. 3.3 and 3.4, we introduce the
language for specifying the condition and target expressions
in analytic rules. Specifically, Sect. 3.4 introduces a language
called First-Order Event Expression (FOE), while Sect. 3.3
elaborates several components that are needed to define such
language. We will see later that FOE can be used to formally
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specify condition expressions and a fragment of FOE can be
used to specify target expressions. Finally, the formalization
of analytic rules is provided in Sect. 3.5.

3.1 Overview: prediction task specification
language

An analytic rule R is interpreted as a mapping that maps
each (partial) trace into a value that is obtained by evaluating
the target expression in which the corresponding condition
is satisfied by the corresponding trace. Let τ be a (partial)
trace, such mapping R can be illustrated as follows:

R(τ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

eval(Target1) if τ satisfies Cond1,
eval(Target2) if τ satisfies Cond2,

...
...

eval(Targetn) if τ satisfies Condn ,
eval(DefaultTarget) otherwise

where eval(DefaultTarget) and eval(Targeti ) consecu-
tively denote the results of evaluating the target expression
DefaultTarget and Targeti , for i ∈ {1, . . . , n}. (The formal
definition of this evaluation operation is given later.)

We will see later that a target expression specifies either
the desired prediction result or expresses the way to obtain
the desired prediction result from a trace. Thus, an analytic
rule R can also be seen as a means to map (partial) traces into
either the desired prediction results, or to obtain the expected
prediction results of (partial) traces.

To specify condition expressions in analytic rules, we
introduce a language called First-Order Event Expression
(FOE). Roughly speaking, an FOE formula is a First-Order
Logic (FOL) formula [61] where the atoms are expressions
over some event attribute values and some comparison oper-
ators, e.g., ==, 	=, >, ≤. The quantification in FOE is
restricted to the indices of events (so as to quantify the time
points). The idea of condition expressions is to capture a
certain property of (partial) traces. To give some intuition,
before we formally define the language in Sect. 3.4, consider
the ping-pong behaviour that can be specified as follows:

Cond1 = ∃i .(i > curr ∧ i + 1 ≤ last ∧
e[i]. org:resource 	= e[i + 1]. org:resource ∧
e[i]. org:group == e[i + 1]. org:group)

where (i) e[i + 1]. org:group is an expression for getting
the org:group attribute value of the event at index i + 1
(similarly for e[i]. org:resource, e[i + 1]. org:resource, and
e[i]. org:group), (ii) curr refers to the current time point, and
(iii) last refers to the last time point.

The formula Cond1 basically says that there exists a time
point i that is greater than the current time point (i.e., in
the future), in which the resource (the person in charge) is

different from the resource at the time point i + 1 (i.e., the
next time point), their groups are the same, and the next
time point is still not later than the last time point. As for
the target expression, some simple examples would be some
strings such as “ping-pong” and “not ping-pong”. Based on
these, we can create an example of an analytic rule R1 as
follows:

R1 = 〈Cond1 �⇒ “ping-pong”, “not ping-pong”〉,

where Cond1 is as above. In this case, R1 specifies a task
for predicting the ping-pong behaviour. In the prediction
model creation phase,wewill create a classifier that classifies
(partial) traces based on whether they satisfy Cond1 or not
(i.e., a trace will be classified into “ping-pong” if it satisfies
Cond1, otherwise it will be classified into “not ping-pong”).
During the prediction phase, such classifier can be used to
predict whether a given (partial) trace will lead to ping-pong
behaviour or not.

The target expression can be more complex than merely
a string. For instance, it can be an expression that involves
arithmetic operations over numeric values such as1

TargetremainingTime =
e[last]. time:timestamp − e[curr]. time:timestamp,

where e[last]. time:timestamp refers to the timestamp of
the last event and e[curr]. time:timestamp refers to the
timestamp of the current event. Essentially, the expression
TargetremainingTime computes the time difference between the
timestamp of the last event and the current event (i.e., remain-
ing processing time). Then, we can create an analytic rule:

R2 = 〈curr < last �⇒ TargetremainingTime, 0〉,

which specifies a task for predicting the remaining processing
time, because R2 maps each (partial) trace into its remaining
processing time. In this case, during the prediction model
creation phase, we will create a regression model for pre-
dicting the remaining processing time of a given (partial)
trace. Section 5 provides more examples of prediction tasks
specification using our language.

3.2 Specification language requirements

Driven by various typical prediction tasks that are studied
in the area of predictive process monitoring (see [20,36] for
an extensive overview), in the following, we elaborate sev-
eral requirements for our language as well as the motivation

1 Note that, as usual, a timestamp can be represented as milliseconds
since Unix epoch (i.e., the number of milliseconds that have elapsed
since Jan 1, 1970 00:00:00 UTC).
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for each requirement. These requirements guide the devel-
opment of our language.

As can be seen from the illustrative examples in Sect. 3.1,
the output of the prediction could be either numerical or non-
numerical (categorical) values. This immediately gives the
first requirement of our language as follows:

Req. 1: The language should support the specification of
prediction tasks in which the outputs could be either
numerical or non-numerical values/information.

One of our goals is to have a mechanism for automatically
processing the prediction task specification so as to build the
corresponding predictionmodel. Consequently, our language
should fulfil the following requirement:

Req. 2: The language should allow us to automatically build
the corresponding prediction model from the given
specification.

When it comes to predicting the outcome of a process, the
existence of an unexpected behaviour, as well as the satisfac-
tion of business constraints, we need to be able to precisely
specify the desired outcomes, the corresponding unexpected
behaviour, and the corresponding business constraint. As
can be seen from the example in Sect. 3.1, these kinds of
tasks often require us to express complex properties involv-
ing events data (attribute values). Additionally, wemight also
need to be able to universally or existentially quantify dif-
ferent event time points (e.g., saying that there exist a time
point where a certain condition holds) and to compare differ-
ent event attribute values at different time points (e.g., saying
that the person in charge at time point i is different from the
person in charge at time point i + 1). As a consequence, this
gives us the following requirement:

Req. 3: The language should allow us to express com-
plex constraints/properties over sequence of events
by also involving the corresponding events data
(attribute values). This includes the capability to
universally/existentially quantify different event
time points and to compare different event attribute
values at different time points.

In Sect. 1, we have seen that we might even need to specify
a business constraint that requires that the length of cus-
tomer order processing to be less than 3 hours. Obviously,
this requires us to specify an arithmetic expression involving
the data. On the other hand, we might also need to specify a
constraint saying that the total cost of all validation activities
should be less than 100 Eur. In order to be able to specify
this constraint, we need to be able to aggregate (sum up) the

cost of each validation activity, and only to sum up those val-
idation activities. Thus, we need to be able to aggregate some
particular attribute values. All of these give us the following
requirement:

Req. 4: The language should allow us to specify arithmetic
expressions aswell as aggregate functions involving
the data. Additionally, the language should allow us
to do selective aggregation operations (i.e., selecting
the values to be aggregated).

In the example of predicting the remaining processing time
in Sect. 3.1, we also need to be able to specify the target
information to be predicted. This often requires us to spec-
ify the way to obtain a certain value. For instance, to obtain
the remaining processing time, we need to take the difference
between the timestamp of the last event and the current event.
Hence, we need to be able to specify that the remaining pro-
cessing time is the difference between the timestamp of the
last event and the current event. This gives us the following
requirement:

Req. 5: The language should allow us to specify the target
information to be predicted, and this might include
the way to obtain a certain value (which might
involve some arithmetic expressions).

3.3 Towards formalizing the condition and target
expressions

This section is devoted to introduce several components that
are needed to define the language for specifying condition
and target expressions in Sect. 3.4.

As we have seen in Sect. 3.1, we often need to refer to a
particular index of an event within a trace. Recall the expres-
sion e[i +1]. org:group that refers to the org:group attribute
value of the event at the index i +1, and also the expression
e[last]. time:timestamp that refers to the timestamp of the
last event. The former requires us to refer to the event at the
index i + 1, while the latter requires us to refer to the last
event in the trace. To capture this, we introduce the notion of
index expression idx defined as follows:

idx :: = i | pint | last | curr | idx1+idx2 | idx1 − idx2

where (i) i is an index variable. (ii) pint is a positive integer
(i.e., pint ∈ Z

+). (iii) last and curr are special indices in
which the former refers to the index of the last event in a
trace, and the latter refers to the index of the current event
(i.e., last event of the trace prefix under consideration). For
instance, given a k-length trace prefix τ k of the trace τ , curr is
equal to k (or |τ k |), and last is equal to |τ |. (iv) idx+ idx and
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idx − idx are the usual arithmetic addition and subtraction
operations over indices.

The semantics of index expression is defined over traces
and considered trace prefix length. Since an index expression
can be a variable, given a trace τ and a considered trace pre-
fix length k, we first introduce a variable valuation ν, i.e., a
mapping from index variables into Z

+. We assign meaning
to index expression by associating with τ , k, and ν an inter-
pretation function (·)τ,kν whichmaps an index expression into
Z

+. Formally, (·)τ,kν is inductively defined as follows:

(i)τ,kν = ν(i)
(pint)τ,kν = pint ∈ Z

+
(curr)τ,kν = k
(last)τ,kν = |τ |

(idx1 + idx2)τ,kν = (idx1)τ,kν + (idx2)τ,kν

(idx1 − idx2)τ,kν = (idx1)τ,kν − (idx2)τ,kν

The definition above says that the interpretation function
(·)τ,kν interprets index expressions as follows: (i) Each vari-
able is interpreted based on how the variable valuation ν maps
the corresponding variable into a positive integer in Z

+; (ii)
each positive integer is interpreted as itself, e.g., (2603)τ,kν =
2603; (iii) curr is interpreted into k; (iv) last is interpreted
into |τ |; and (v) the arithmetic addition/subtraction operators
are interpreted as usual.

To access the value of an event attribute, we introduce so-
called event attribute accessor, which is an expression of the
form

e[idx]. attName

where attName is an attribute name and idx is an index
expression. To define the semantics of event attribute acces-
sor, we extend the definition of our interpretation function
(·)τ,kν such that it interprets an event attribute accessor expres-
sion into the attribute value of the corresponding event at the
given index. Formally, (·)τ,kν is defined as follows:

(e[idx]. attName)τ,kν =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

#attName(e) if (idx)τ,kν = i,
1 ≤ i ≤ |τ |,
and e = τ(i)

⊥ otherwise

Note that the above definition also says that if the event
attribute accessor refers to an index that is beyond the valid
event indices in the corresponding trace, then we will get
undefined value (i.e., ⊥).

As an example of event attribute accessor, the expres-
sion e[i]. org:resource refers to the value of the attribute
org:resource of the event at the position i .

Example 2 Consider the trace τ = 〈e1, e2, e3, e4, e5〉, let
“Bob” be the value of the attribute org:resource of the event
e3 in τ , i.e., #org:resource(e3) = “Bob”, and e3 does not have
any attributes named org:group, i.e., #org:group(e3) = ⊥. In
this example, we have that (e[3]. org:resource)τ,kν = “Bob”,
and (e[3]. org:group)τ,kν = ⊥. �

The value of an event attribute within a trace can be either
numeric (e.g., 26, 3.86) or non-numeric (e.g., “sendOrder”),
and we might want to specify properties that involve arith-
metic operations over numeric values. Thus, we introduce the
notion of numeric expression and non-numeric expression as
follows:

nonNumExp ::= true | false | String |
e[idx].NonNumericAttribute

numExp ::= number | idx |
e[idx].NumericAttribute |
numExp1 + numExp2 |
numExp1 − numExp2

where (i) true and false are the usual boolean values, (ii)
String is the usual string (i.e., a sequence of characters), (iii)
number is a real number, (iv) e[idx].NonNumericAttribute
is an event attribute accessor for accessing an attribute
with non-numeric values, and e[idx].NumericAttribute is
an event attribute accessor for accessing an attribute with
numeric values, (v) numExp1 + numExp2 and numExp1 −
numExp2 are the usual arithmetic operations over numeric
expressions.

To give the semantics for numeric expression and non-
numeric expression, we extend the definition of our interpre-
tation function (·)τ,kν by interpreting true, false, String, and
number as themselves, e.g.,

(3)τ,kν = 3,

(“sendOrder”)τ,kν = “sendOrder”,

and by interpreting the arithmetic operations as usual, e.g.,

(26 + 3)τ,kν = (26)τ,kν + (3)τ,kν = 26 + 3 = 29,

(86 − 3)τ,kν = (86)τ,kν − (3)τ,kν = 86 − 3 = 83.

Formally, we extend our interpretation function as follows:

(true)τ,kν = true

(false)τ,kν = false

(String)
τ,k
ν = String

(number)τ,kν = number

(numExp1 + numExp2)
τ,k
ν = (numExp1)

τ,k
ν + (numExp2)

τ,k
ν

(numExp1 − numExp2)
τ,k
ν = (numExp1)

τ,k
ν − (numExp2)

τ,k
ν
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Note that the value of an event attribute might be undefined,
i.e., it is equal to⊥. In this case, we define that the arithmetic
operations involving ⊥ give ⊥, e.g., 26 + ⊥ = ⊥.

We now define the notion of event expression as a com-
parison between either numeric expressions or non-numeric
expressions. Formally, it is defined as follows:

eventExp ::= true | false |
numExp1 == numExp2 |
numExp1 	= numExp2 |
numExp1 < numExp2 |
numExp1 > numExp2 |
numExp1 ≤ numExp2 |
numExp1 ≥ numExp2 |
nonNumExp1 == nonNumExp2 |
nonNumExp1 	= nonNumExp2

where (i) numExp is a numeric expression; (ii) nonNumExp
is a non-numeric expression; (iii) the operators == and 	=
are the usual logical comparison operators, namely equality
and inequality; (iv) the operators<,>,≤, and≥ are the usual
arithmetic comparison operators, namely less than, greater
than, less than or equal, and greater than or equal.

Example 3 The expression

e[i]. org:resource 	= e[i + 1]. org:resource

is an example of an event expression which says that the
resource at the time point i is different from the resource at
the time point i + 1. As another example, the expression

e[i]. concept:name == “OrderCreated”

is an event expression saying that the value of the attribute
concept:name of the event at the index i is equal to
“OrderCreated”. �

We interpret each logical/arithmetic comparison operator
(i.e., ==, 	=, <, >, etc) in the event expressions as usual.
For instance, the expression 26 ≥ 3 is interpreted as true,
while the expression “receivedOrder” == “sendOrder” is
interpreted as false. Additionally, any comparison involving
undefined value (⊥) is interpreted as false. It is easy to see
how to extend the formal definition of our interpretation func-
tion (·)τ,kν towards interpreting event expressions; therefore,
we omit the details.

3.3.1 Adding aggregate functions

We now extend the notion of numeric expression and
non-numeric expression by adding several numeric and non-
numeric aggregate functions. A numeric (resp. non-numeric)

aggregate function is a function that performs an aggrega-
tion operation over some values and return a numeric (resp.
non-numeric) value. Before providing the formal syntax and
semantics of our aggregate functions, in the following we
illustrate the needs of having aggregate functions and we
provide some intuition on the shape of our aggregate func-
tions.

Suppose that each event in each trace has an attribute
named cost. Consider the situation where we want to specify
a task for predicting the total cost of all activities (from the
first until the last event) within a trace. In this case, we need
to sum up all values of the cost attribute in all events. To
express this need, we introduce the aggregate function sum
and we can specify the notion of total cost as follows:

sum(e[x]. cost; where x = 1 : last).

The expression above computes the sum of the values of
e[x]. cost for all x ∈ {1, . . . , last}. In this case x is called
aggregation variable, the expression e[x]. cost specifies the
aggregation source, i.e., the source of the values to be
aggregated, and the expression x = 1 : last specifies the
aggregation range by defining the range of the aggregation
variable x .

In some situation, we might only be interested to compute
the total cost of a certain activity, e.g., the total cost of all
validation activities within a trace. To do this, we introduce
the notion of aggregation condition, which allows us to select
only some values that wewant to aggregate. For example, the
expression

sum(e[x]. cost; where x = 1 : last;
and e[x]. concept:name == “Validation”)

.

computes the sum of the values of the attribute e[x]. cost for
all x ∈ {1, . . . , last} in which the expression

e[x]. concept:name == “Validation”

is evaluated to true. Therefore, the summation only considers
the values of x in which the activity name is “Validation”,
and we only compute the total cost of all validation activities.
As before, e[x]. cost specifies the source of the values to be
aggregated, the expression x = 1 : last specifies the aggre-
gation range by defining the range of the aggregation variable
x , and the expression e[x]. concept:name == “Validation”
provides the aggregation condition.

The expression for specifying the source of the values to
be aggregated can be more complex, for example when we
want to compute the average activity running time within a
trace. In this case, the running time of an activity is specified
as the time difference between the timestamp of that activity
and the next activity, i.e.,
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e[x + 1]. time:timestamp − e[x]. time:timestamp.

Then, the average activity running time can be specified as
follows:

avg(e[x + 1]. time:timestamp − e[x]. time:timestamp;
where x = 1 : last)

.

Essentially, the expression above computes the average of the
time difference between the activity at the time point x + 1
and x , where x ∈ {1, . . . , last}.

In other cases, we might not be interested in aggregating
the data values, but we are interested in counting the num-
ber of a certain activity/event. To do this, we introduce the
aggregate function count. As an example, we can specify an
expression to count the number of validation activities within
a trace as follows:

count(e[x]. concept:name == “validation”;
where x = 1 : last)

where e[x]. concept:name == “validation” is an aggre-
gation condition. The expression above counts how many
times the specified aggregation condition is true within the
specified range. Thus, in this case, it counts the number of
the events between the first and the last event, in which the
activity name is “validation”.

Wemight also be interested in counting the number of dif-
ferent values of a certain attributewithin a trace. For example,
we might be interested in counting the number of differ-
ent resources that are involved within a trace. To capture
this, we introduce the aggregate function countVal. We can
then specify the expression to count the number of different
resources between the first and the last event as follows:

countVal(org:resource; within 1 : last)

where (i) org:resource is the name of the attribute in which
we want to count its number of different values; and (ii) the
expression “within 1 : last” is the aggregation range.

We will see later in Sect. 5 that the presence of aggregate
functions allows us to express numerous interesting pre-
diction tasks. Towards formalizing the aggregate functions,
we first formalize the notion of aggregation conditions. An
aggregation condition is an unquantified First-Order Logic
(FOL) [61] formula where the atoms are event expressions
and may use only a single unquantified variable, namely
the aggregation variable. The values of the unquantified/free
variable in aggregation conditions are ranging over the
specified aggregation range in the corresponding aggregate
function. Formally, aggregation conditions are defined as fol-
lows:

aggCond ::= eventExp | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

where eventExp is an event expression, and the semantics
of aggCond is based on the usual FOL semantics. Formally,
we extend the definition of our interpretation function (·)τ,kν

as follows:

(¬ψ)
τ,k
ν = true, if (ψ)

τ,k
ν = false

(ψ1 ∧ ψ2)
τ,k
ν = true, if (ψ1)

τ,k
ν = true, and (ψ2)

τ,k
ν = true

(ψ1 ∨ ψ2)
τ,k
ν = true, if (ψ1)

τ,k
ν = true, or (ψ2)

τ,k
ν = true

With this machinery in hand, we are ready to define the
syntax and the semantics of numeric and non-numeric aggre-
gate functions. We first extend the syntax of the numeric and
non-numeric expressions by adding the numeric and non-
numeric aggregate functions as follows:

nonNumExp ::=
true | false | String | e[idx].NonNumericAttribute |
concat(nonNumSrc; where x = st : ed; and aggCond)

numExp ::= number | idx | e[idx].NumericAttribute |
numExp1 + numExp2 | numExp1 − numExp2 |
sum(numSrc; where x = st : ed; and aggCond) |
avg(numSrc; where x = st : ed; and aggCond) |
min(numSrc; where x = st : ed; and aggCond) |
max(numSrc; where x = st : ed; and aggCond) |
min(numExp1,numExp2) | max(numExp1, numExp2)|
count(aggCond; where x = st : ed) |
countVal(attName; within st : ed)

where (i) number, idx, e[idx].NumericAttribute,
e[idx].NonNumericAttribute, numExp1 + numExp2, and
numExp1 − numExp2 are as before; (ii) st and ed are either
positive integers (i.e., st ∈ Z

+ and ed ∈ Z
+) or special

indices (i.e., last or curr), and st ≤ ed; (iii) x is a vari-
able called aggregation variable, and the range of its value
is between st and ed (i.e., st ≤ x ≤ ed). The expressions
where x = st : ed and within st : ed are called aggregation
variable range; (iv) numSrc and nonNumSrc specify the
source of the values to be aggregated. The numSrc is speci-
fied as numeric expression, while nonNumSrc is specified as
non-numeric expression. Both of themmay and can only use
the corresponding aggregation variable x , and they cannot
contain any aggregate functions; (v) aggCond is an aggre-
gation condition over the corresponding aggregation variable
x and no other variables are allowed to occur in aggCond;
(vi) attName is an attribute name; (vii) for the aggregate
functions, as the names describe, sum stands for summa-
tion, avg stands for average,min stands for minimum,max
stands for maximum, count stands for counting, countVal
stands for counting values, and concat stands for concate-
nation. The behaviour of these aggregate functions is quite
intuitive. Some intuition has been given previously, and we
explain their details behaviour while providing their formal
semantics below. The aggregate functions sum, avg, min,
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max, concat that have aggregation conditions aggCond are
also called conditional aggregate functions.

Notice that a numeric aggregate function is also a numeric
expression and a numeric expression is also a component of
a numeric aggregate function (either in the source value or
in the aggregation condition). Hence, it may create some
sort of nested aggregate function. However, to simplify the
presentation, in this workwe do not allow nested aggregation
functions of this form, but technically it is possible to do that
under a certain care on the usage of the variables (similarly
for the non-numeric aggregate function).

To formalize the semantics of aggregate functions, we first
introduce some notations. Given a variable valuation ν, we
write ν[x �→ d] to denote a new variable valuation obtained
from the variable valuation ν as follows:

ν[x �→ d](y) =
{
d if y = x
ν(y) if y 	= x

Intuitively, ν[x �→ d] substitutes each variable x with d,
while the other variables (apart from x) are substituted the
same way as ν is defined. Given a conditional summation
aggregate function

sum(numSrc; where x = st : ed; and aggCond),

a trace τ , a considered trace prefix length k, and a vari-
able valuation ν, we define its corresponding set Idx of valid
aggregation indices as follows:

Idx = {d ∈ Z
+ | st ≤ d ≤ ed, (aggCond)

τ,k
ν[x �→ d] = true,

and (numSrc)τ,kν[x �→ d] 	= ⊥}.

basically, Idx collects the values within the given aggrega-
tion range (i.e., between st and ed), in which, by substituting
the aggregation variable x with those values, the aggrega-
tion condition aggCond is evaluated to true and numSrc is
not evaluated to undefined value⊥. For the other conditional
aggregate functions avg, max, min, and concat, the cor-
responding set of valid aggregation indices can be defined
similarly.

Example 4 Consider the trace τ = 〈e1, e2, e3, e4〉, let
“validation” be the value of the attribute concept:name of
the event e2 and e4 in τ , i.e.,

#concept:name(e2) = #concept:name(e4) = “validation”.

Moreover, let #concept:name(e1) = “initialization” and
#concept:name(e3) = “assembling”. Suppose that the cost
of each activity is the same, let say it is equal to 3, i.e.,

#cost(e1) = #cost(e2) = #cost(e3) = #cost(e4) = 3,

and we have the following aggregate function specification:

sum(e[x]. cost; where x = 1 : last; and true),

and

sum(e[x]. cost; where x = 1 : last;
and e[x]. cost == “validation”)

The former computes the total cost of all activities, while the
latter computes the total cost of validation activities. In this
case, the corresponding set of the valid aggregation indices
(with respect to the given trace τ ) for the first aggregate func-
tion is Idx1 = {1, 2, 3, 4}, while for the second aggregate
function we have Idx2 = {2, 4} because the second aggre-
gate function requires that the activity name (i.e., the value
of the attribute concept:name) to be equal to “validation” and
it is only true when x is equal to either 2 or 4. �

Having this machinery in hand, we are now ready to
formally define the semantics of aggregate functions. The
formal semantics of the conditional aggregate functions sum,
avg, max, min is provided in Fig. 2. Intuitively, the aggre-
gate function sum computes the sum of the values that
are obtained from the evaluation of the specified numeric
expression numSrc over the specified aggregation range (i.e.,
between st and ed). Additionally, the computation of the
summation ignores undefined values and it only considers
those indices within the specified aggregation range in which
the aggregation condition is evaluated to true. The intuition
for the aggregate functions avg,max,min is similar, except
that avg computes the average,max computes themaximum
values, and min computes the minimum values.

Example 5 Continuing Example 4, the first aggregate func-
tion is evaluated to 12 because we have that Idx1 =
{1, 2, 3, 4}, and

∑

d∈Idx1
(e[x]. cost)τ,kν[x �→ d] = (e[x]. cost)τ,kν[x �→ 1] +

(e[x]. cost)τ,kν[x �→ 2] +
(e[x]. cost)τ,kν[x �→ 3] +
(e[x]. cost)τ,kν[x �→ 4]

= 12.

On the other hand, the second aggregate function is evaluated
to 6 because we have that Idx2 = {2, 4}, and

∑

d∈Idx2
(e[x]. cost)τ,kν[x �→ d] = (e[x]. cost)τ,kν[x �→ 2] +

(e[x]. cost)τ,kν[x �→ 4]
= 6

�
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Fig. 2 Formal semantics of aggregate functions sum, avg,max,min in the presence of aggregation conditions

The aggregate functionmax(numExp1,numExp2) com-
putes the maximum value between the two values that are
obtained by evaluating the specified two numeric expressions
numExp1 and numExp2. It gives undefined value ⊥ if one
of them is evaluated to undefined value ⊥ (similarly for the
aggregate function min(numExp1,numExp2) except that it
computes the minimum value). The detailed formal seman-
tics of these functions is provided in Appendix A.

The formal semantics of the aggregate function count is
provided below

(count(aggCond; where x = st : ed))
τ,k
ν =

|{d ∈ Z
+ | st ≤ d ≤ ed, and (aggCond)

τ,k
ν[x �→ d] = true}|

Intuitively, it counts how many times the aggCond is eval-
uated to true within the given range, i.e., between st and
ed. This aggregate function is useful to count the number of
events/activities within a certain range that satisfy a certain
condition, for example to count the number of the activity
named “modifying delivery appointment” within a certain
range in a trace.

Notice that count is a syntactic variant of sum. It is easy
to see that we could express

count(aggCond; where x = st : ed)

as

sum(1; where x = st : ed; and aggCond).

Both of the expressions above count how many times the
aggCond is evaluated to true within the given range. How-
ever, since expressing the counting aggregation using sum

is a bit less intuitive, we choose to explicitly introduce the
aggregate function count.

The semantics of the aggregate function countVal is for-
mally defined as follows:

(countVal(attName; within st : ed))τ,kν =
|{v | (e[x]. attName)τ,kν[x �→ d] = v, and st ≤ d ≤ ed}|.

Intuitively, it counts the number of all possible values of the
attribute attName within all events between the given start
and end time points (i.e., between st and ed).

The aggregate function concat concatenates the values
that are obtained from the evaluation of the given non-
numeric expression under the valid aggregation range (i.e.,
we only consider the valuewithin the given aggregation range
in which the aggregation condition is satisfied). Moreover,
the concatenation ignores undefined values and treats them
as empty string. The detailed formal semantics of the aggre-
gate function concat is provided in Appendix A.

Notice that, for convenience, we could easily extend our
language with unconditional aggregate functions by adding
the following:

sum(numSrc; where x = st : ed)

avg(numSrc; where x = st : ed)

min(numSrc; where x = st : ed)

max(numSrc; where x = st : ed)

concat(nonNumSrc; where x = st : ed)

In this case, they simply perform an aggregation computation
over the values that are obtained by evaluating the specified
numeric/non-numeric expression over the specified aggrega-
tion range. However, they do not give additional expressive
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power since they are only syntactic variant of the current
conditional aggregate functions. This is the case because
we can simply put “true” as the aggregation condition, e.g.,
sum(numSrc; where x = st : ed; and true). Based on
their semantics, we get the aggregate functions that behave
as unconditional aggregate functions. That is, they ignore
the aggregation condition since it will always be true for
every values within the specified aggregation range. In the
following, for the brevity of presentation, when aggregation
condition is not important we often simply use the uncondi-
tional version of aggregate functions.

3.4 First-Order Event Expression (FOE)

Finally, we are ready to define the language for specifying
condition expression, namely First-Order Event Expression
(FOE). A part of this language is also used to specify target
expression.

An FOE formula is a First-Order Logic (FOL) [61]
formula where the atoms are event expressions and the quan-
tification is ranging over event indices. Syntactically, FOE is
defined as follows:

ϕ ::= eventExp | ¬ϕ | ∀i .ϕ | ∃i .ϕ |
ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2

where (i) eventExp is an event expression; (ii)¬ϕ is negated
FOE formula; (iii) ∀i .ϕ is an FOE formula where the vari-
able i is universally quantified; (iv) ∃i .ϕ is an FOE formula
where the variable i is existentially quantified; (v) ϕ1∧ϕ2 is a
conjunction of FOE formulas; (vi) ϕ1 ∨ϕ2 is a disjunction of
FOE formulas; (vii) ϕ1 → ϕ2 is an FOE implication formula
saying that ϕ1 implies ϕ2; (viii) The notion of free and bound
variables is as usual in FOL, except that the variables inside
aggregate functions, i.e., aggregation variables, are not con-
sidered as free variables; (ix) the aggregation variables cannot
be existentially/universally quantified.

The semantics of FOE constructs is based on the usual
FOL semantics. Formally, we extend the definition of our
interpretation function (·)τ,kν as follows2:

(¬ϕ)τ,kν = true, if (ϕ)τ,kν = false

(ϕ1 ∧ ϕ2)
τ,k
ν = true, if (ϕ1)

τ,k
ν = true, and (ϕ2)

τ,k
ν = true

(ϕ1 ∨ ϕ2)
τ,k
ν = true, if (ϕ1)

τ,k
ν = true, or (ϕ2)

τ,k
ν = true

(ϕ1 → ϕ2)
τ,k
ν = true, if (ϕ1)

τ,k
ν = true, implies

(ϕ2)
τ,k
ν = true

2 We assume that variables are standardized apart, i.e., no two quanti-
fiers bind the same variable (e.g., ∀i .∃i .(i > 3)), and no variable occurs
both free and bound (e.g., (i > 5) ∧ ∃i .(i > 3)). As usual in FOL,
every FOE formula can be transformed into a semantically equivalent
formula where the variables are standardized apart by applying some
variable renaming [61].

(∃i .ϕ)τ,kν = true, if for some c ∈ {1, . . . , |τ |}, we have
that (ϕ)

τ,k
ν[i �→ c] = true

(∀i .ϕ)τ,kν = true, if for every c ∈ {1, . . . , |τ |}, we have
that (ϕ)

τ,k
ν[i �→ c] = true

As before, ν[i �→ c] substitutes each variable i with c,
while the other variables are substituted the same way as
ν is defined. When ϕ is a closed formula, its truth value does
not depend on the valuation of the variables, and we denote
the interpretation of ϕ simply by (ϕ)τ,k . We also say that the
trace τ and the prefix length k satisfy ϕ, written τ, k |� ϕ,
if (ϕ)τ,k = true. With a little abuse of notation, sometimes
we also say that the k-length trace prefix τ k of the trace τ

satisfies ϕ, written τ k |� ϕ, if τ, k |� ϕ.

Example 6 An example of a closed FOE formula is as fol-
lows:

∀i .(e[i]. concept:name == “OrderCreated” →
∃ j .( j > i ∧ e[i]. orderID == e[ j]. orderID ∧

e[ j]. concept:name == “OrderDelivered” ∧
(e[ j]. time:timestamp − e[i]. time:timestamp) ≤
10.800.000

)

)

which essentially says that whenever there is an event where
an order is created, eventually there will be an event where
the corresponding order is delivered and the time difference
between the two events (the processing time) is less than or
equal to 10.800.000 milliseconds (3 hours). �

In general, FOE has the following main features: (i) It
allows us to specify constraints over the data (attribute val-
ues); (ii) it allows us to (universally/existentially) quantify
different event time points and to compare different event
attribute values at different event time points; (iii) it allows
us to specify arithmetic expressions/operations involving the
data as well as aggregate functions; (iv) it allows us to do
selective aggregation operations (i.e., selecting the values
to be aggregated). (v) The fragments of FOE, namely the
numeric and non-numeric expressions, allow us to specify
the way to compute a certain value.

Notice that herewe opt for FOL-style syntax for providing
themechanism to refer to a certain event attribute at a particu-
lar time point as well as to compare the event attribute values
at two different time points. Another possible alternative for
expressing properties that involve time points would be to
adopt the LTL-style syntax [51] by using the temporal oper-
ators. For instance, we could roughly express the following
property:

∀i .(e[i]. org:resource 	= “Bob”)
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which says that, at every time points, it is always be the case
that the value of the attribute ‘org:resource’ is not equal to
’Bob’, as

G(org:resource 	= “Bob”)

where G is the usual LTL temporal operator that is typically
called ‘Global’. However, when we want to compare the val-
ues of two attributes at two different time points, e.g.,

∃i .(e[i]. org:resource == e[i + 3]. org:resource)

we cannot easily do it using the usual LTL-style syntax, and
the expression might become less intuitive since we cannot
easily refer to a particular time point (by explicitly saying the
corresponding time points). Similarly, we also cannot easily
specify an arithmetic expression that involves event attributes
at two different time points, e.g.,

e[i + 1]. time:timestamp − e[i]. time:timestamp

Therefore, in order to have a more intuitive language, we opt
for FOL-style syntax.

3.4.1 Checking whether a closed FOE formula is satisfied

We now proceed to introduce several properties of FOE for-
mulas that are useful for checking whether a trace τ and a
prefix length k satisfy a closed FOE formula ϕ, i.e., to check
whether τ, k |� ϕ. This check is needed when we create the
predictionmodel based on the specification of prediction task
provided by an analytic rule.

Let ϕ be an FOE formula, we write ϕ[i �→ c] to denote
a new formula obtained by substituting each variable i in ϕ

by c. In the following, Theorems 1 and 2 show that while
checking whether a trace τ and a prefix length k satisfy a
closed FOE formula ϕ, we can eliminate the presence of
existential and universal quantifiers.

Theorem 1 Given a closed FOE formula ∃i .ϕ, a trace τ , and
a prefix length k,

τ, k |� ∃i .ϕ iff τ, k |�
∨

c∈{1,...|τ |} ϕ[i �→ c]

Proof By the definition of the semantics of FOE, we have
that τ and k satisfy ∃i .ϕ (i.e., τ, k |� ∃i .ϕ) iff there
exists an index c ∈ {1, . . . , |τ |}, such that τ and k sat-
isfy the formula ψ that is obtained from ϕ by substituting
each variable i in ϕ with c (i.e., τ, k |� ψ where ψ is
ϕ[i �→ c]) Thus, it is the same as satisfying the disjunctions
of formulas that is obtained by considering all possible sub-
stitutions of the variable i in ϕ by all possible values of c
(i.e.,

∨
c∈{1,...|τ |} ϕ[i �→ c]). This is the case because such

disjunctions of formulas can be satisfied by τ and k if and
only if there exists at least one formula in that disjunctions
of formulas that is satisfied by τ and k. ��

Theorem 2 Given a closed FOE formula ∀i .ϕ, a trace τ , and
a prefix length k,

τ, k |� ∀i .ϕ iff τ, k |�
∧

c∈{1,...|τ |}
ϕ[i �→ c]

Proof The proof is quite similar to Theorem 1, except that
we use the conjunctions of formulas. Basically, we have that
τ and k satisfy ∀i .ϕ (i.e., τ, k |� ∀i .ϕ) iff for every c ∈
{1, . . . , |τ |}, we have that τ, k |� ψ , where ψ is obtained
from ϕ by substituting each variable i in ϕ with c. In other
words, τ and k satisfy each formula that is obtained from ϕ

by considering all possible substitutions of variable i with all
possible values of c. Hence, it is the same as satisfying the
conjunctions of those formulas (i.e.,

∧
c∈{1,...|τ |} ϕ[i �→ c]).

This is the case because such conjunctions of formulas can
be satisfied by τ and k if and only if each formula in that
conjunctions of formulas is satisfied by τ and k. ��

To check whether a trace τ and a prefix length k satisfy a
closed FOE formula ϕ, i.e., τ, k |� ϕ, we could perform the
following steps:

1. First, we eliminate all quantifiers. This can be done easily
by applying Theorems 1 and 2. As a result, each quanti-
fied variable will be instantiated with a concrete value;

2. Evaluate all aggregate functions as well as all event
attribute accessor expressions basedon the event attributes
in τ so as to get the actual values of the corresponding
event attributes. After this step, we have a formula that is
constituted by only concrete values composed by either
arithmetic operators (i.e., + or −), logical comparison
operators (i.e.,== or 	=), or arithmetic comparison oper-
ators (i.e., <, >, ≤, ≥, == or 	=);

3. Last, we evaluate all arithmetic expressions as well as
all expressions involving logical and arithmetic com-
parison operators. If the whole evaluation gives us true
(i.e., (ϕ)τ,k = true), then we have that τ, k |� ϕ, other-
wise τ, k 	|� ϕ (i.e., τ and k do not satisfy ϕ).

The existence of this procedure gives us the following theo-
rem:

Theorem 3 Given a closed FOE formula ϕ, a trace τ , and a
prefix length k, checking whether τ, k |� ϕ is decidable.

This procedure has been implemented in our prototype as
a part of the mechanism for processing the specification of
prediction task while constructing the prediction model.
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3.5 Formalizing the analytic rule

With this machinery in hand, we can formally say how to
specify condition and target expressions in analytic rules,
namely that condition expressions are specified as closed
FOE formulas,while target expressions are specified as either
numeric expression or non-numeric expression, except that
target expressions are not allowed to have index variables.
Thus, they do not need variable valuation. We require an
analytic rule to be coherent, i.e., all target expressions of an
analytic rule should be either only numeric or non-numeric
expressions. An analytic rule in which all of its target expres-
sions are numeric expressions is called numeric analytic rule,
while an analytic rule in which all of its target expressions
are non-numeric expressions is called non-numeric analytic
rule.

We can now formalize the semantics of analytic rules as
illustrated in Sect. 3.1. Formally, given a trace τ , a considered
prefix length k, and an analytic rule R of the form

R = 〈 Cond1 �⇒ Target1,
Cond2 �⇒ Target2,

...

Condn �⇒ Targetn,
DefaultTarget 〉,

R maps τ and k into a value obtained from evaluating the
corresponding target expression as follows:

R(τ, k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(Target1)
τ,k if τ, k |� Cond1,

(Target2)
τ,k if τ, k |� Cond2,

...
...

(Targetn)
τ,k if τ, k |� Condn ,

(DefaultTarget)τ,k otherwise

where (Targeti )
τ,k is the application of our interpretation

function (·)τ,k to the target expression Targeti in order to
evaluate the expression and get the value. Checking whether
the given trace τ and the given prefix length k satisfy Condi ,
i.e., τ, k |� Condi , can be done as explained in Sect. 3.4.1.
We also require an analytic rule to be well defined, i.e., given
a trace τ , a prefix length k, and an analytic rule R, we say that
R is well defined for τ and k if R maps τ and k into exactly
one target value, i.e., for every condition expressions Condi
and Cond j in which τ, k |� Condi and τ, k |� Cond j ,
we have that (Targeti )

τ,k = (Target j )
τ,k . This notion of

well-definedness can be easily generalized to event logs as
follows: Given an event log L and an analytic rule R, we say
that R is well defined for L if for every possible trace τ in
L and every possible prefix length k, we have that R is well
defined for τ and k. Note that such condition can be easily
checked for the given event log L and an analytic rule R since

the event log is finite. This notion of well defined is required
in order to guarantee that the given analytic rule R behaves
as a function with respect to the given event log L , i.e., R
maps every pair of trace τ and prefix length k into a unique
value.

Compared to enforcing that each condition in analytic
rules must not be overlapped, our notion of well defined
gives us more flexibility in making a specification using our
language while also guaranteeing reasonable behaviour. For
instance, one can specify several characteristics of ping-pong
behaviour in a more convenient way by specifying several
conditional-target expressions, i.e.,

Cond1 �⇒ “Ping-Pong”,
Cond2 �⇒ “Ping-Pong”,

...

Condm �⇒ “Ping-Pong”

(where each condition expressionCondi captures a particular
characteristic of a ping-pong behaviour), instead of using
disjunctions of these several condition expressions, i.e.,

Cond1 ∨ Cond2 ∨ . . . ∨ Condm �⇒ “Ping-Pong”

which could end up into a very long specification of a con-
dition expression.

4 Building the predictionmodel

Oncewe are able to specify the desired prediction tasks prop-
erly, how can we build the corresponding prediction model
based on the given specification? In this case, we need a
mechanism that fulfils the following requirement: For the
given specification of the desired prediction task provided
in our language, it should create the corresponding reliable
prediction function, which maps each input partial trace into
the most probable predicted output.

Given an analytic rule R and an event log L , our aim is
to create a prediction function that takes (partial) trace as
the input and predict the most probable output value for the
given input. To this aim, we train a classification/regression
model inwhich the input is the features that are obtained from
the encoding of all possible trace prefixes in the event log L
(the training data). If R is a numeric analytic rule, we build
a regression model. Otherwise, if R is a non-numeric ana-
lytic rule, we build a classification model. There are several
ways to encode (partial) traces into input features for train-
ing a machine learning model. For instance, [33,60] study
various encoding techniques such as index-based encoding
and boolean encoding. In [63], the authors use the so-called
one-hot encoding of event names, and also add some time-
related features (e.g., the time increase with respect to the
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previous event). Some works consider the feature encodings
that incorporate the information of the last n-events. There
are also several choices on the information to be incorporated.
One can incorporate only the name of the events/activities,
or one can also incorporate other information (provided by
the available event attributes) such as the (human) resource
who is in charged in the activity.

In general, an encoding technique can be seen as a func-
tion enc that takes a trace τ as the input and produces a set
{x1, . . . , xm} of features, i.e., enc(τ ) = {x1, . . . , xm}. Fur-
thermore, since a trace τ might have arbitrary length (i.e.,
arbitrary number of events), the encoding function must be
able to transform these arbitrary number of trace information
into a fix number of features. This can be done, for exam-
ple, by considering the last n-events of the given trace τ or
by aggregating the information within the trace itself. In the
encoding that incorporates the last n-events, if the number
of the events within the trace τ is less than n, then typically
we can add 0 for all missing information in order to get a fix
number of features.

In our approach, users are allowed to choose the desired
encoding mechanism by specifying a set Enc of preferred
encoding functions (i.e., Enc = {enc1, . . . , encn}). This
allows us to do some sort of feature engineering (note that
the desired feature engineering approach, which might help
increasing the prediction performance, can also be added as
one of these encoding functions). The set of features of a
trace is then obtained by combining all features produced
by applying each of the selected encoding functions into the
corresponding trace. In the implementation (cf. Sect. 6), we
provide some encoding functions that can be selected in order
to encode a trace.

Algorithm 1 - Procedure for building the prediction model
Input: an analytic rule R,

an event log L , and
a set Enc = {enc1, . . . , encn} of encoding functions

Output: a prediction function P
1: for each trace τ ∈ L do
2: for each k where 1 < k < |τ | do
3: τ kencoded = enc1(τ k) ∪ . . . ∪ encn(τ k)
4: targetValue = R(τ k)

5: add a new training instance for P , where
P(τ kencoded) = targetValue

6: end for
7: end for
8: Train the prediction function P (either classification or regression

model)

Algorithm 1 illustrates our procedure for building the
prediction model based on the given inputs, namely: (i)
an analytic rule R, (ii) an event log L , and (iii) a set
Enc = {enc1, . . . , encn} of encoding functions. The algo-
rithm works as follows: for each k-length trace prefix τ k of

each trace τ in the event log L (where 1 < k < |τ |), we
do the following: In line 3, we apply each encoding function
enci ∈ Enc into τ k , and combine all obtained features. This
step gives us the encoded trace prefix. In line 4, we com-
pute the expected prediction result (target value) by applying
the analytical rule R to τ k . In line 5, we add a new training
instance by specifying that the prediction function P maps
the encoded trace prefix τ kencoded into the target value com-
puted in the previous step. Finally, we train the prediction
function P and get the desired prediction function.

Observe that the procedure above is independent with
respect to the classification/regression model and trace
encoding technique that are used. One can plug in differ-
ent machine learning classification/regression technique as
well as use different trace encoding technique in order to get
the desired quality of prediction.

We elaborate why our approach fulfils the requirement
that is described in the beginning of this section as follows:
In our approach,wemainly rely on supervisedmachine learn-
ing technique in order to learn the desired prediction function
from the historical business process execution log (event log).
Recall that a supervised machine learning approach learns
and approximates a function that maps each input to an out-
put based on training data containing examples of input and
output pairs. Additionally, recall that a prediction task spec-
ification essentially specifies the way to map a partial trace
(input) into the corresponding desired prediction result (out-
put). As can be seen from our approach, by using the given
prediction task specification and the given event log, we can
create a training data containing various examples of inputs
and outputs. Therefore, each example of input and output in
this training data is generated based on the given prediction
task specification. Since the prediction function is built based
on this training data (which is created based on the prediction
task specification), the way the learned prediction function
maps each input to output is influenced by the given spec-
ification as well. Thus, the generated prediction function is
basically built based on the given specification of prediction
task. As for the reliability of the generated prediction func-
tions, when we apply our whole approach in our experiments
(cf. Sect. 6), the reliability of the created prediction functions
is measured by several metrics, e.g., accuracy, AUC, preci-
sion, etc.

5 Showcases andmulti-perspective
prediction service

An analytic rule R specifies a particular prediction task of
interest. To specify several desired prediction tasks, we only
have to specify several analytic rules, i.e., R1, R2, . . . , Rn .
Given a set R = {R1, R2, . . . , Rn} of analytic rules, our
approach allows us to construct a prediction model for each
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analytic rule Ri ∈ R. By having all of the constructed pre-
diction models where each of them focuses on a particular
prediction objective, we can obtain a multi-perspective pre-
diction analysis service.

In Sect. 3, we have seen some examples of prediction
task specification for predicting the ping-pong behaviour
and the remaining processing time. In this section, we
present numerous other showcases of prediction task speci-
fication using our language. More showcases can be found
in Appendix B.

5.1 Predicting unexpected behaviour/situation

We can specify the task for predicting unexpected behaviour
by first expressing the characteristics of the unexpected
behaviour.

Ping-pong Behaviour. The condition expression Cond1 (in
Sect. 3.1) expresses a possible characteristic of ping-pong
behaviour. Another possible characterization of ping-pong
behaviour is shown below:

Cond2 = ∃i . (i > curr ∧ i + 2 ≤ last ∧
e[i]. org:resource 	= e[i + 1]. org:resource ∧
e[i]. org:resource == e[i + 2]. org:resource ∧
e[i]. org:group == e[i + 1]. org:group ∧
e[i]. org:group == e[i + 2]. org:group)

In other word, Cond2 characterizes the condition where “an
officer transfers a task into another officer of the same group,
and then the task is transferred back to the original officer”.
In the event log, this situation is captured by the changes of
the org:resource value in the next event, but then it changes
back into the original value in the next two events, while the
values of org:group remain the same.

We can then create an analytic rule to specify the task for
predicting ping-pong behaviour as follows:

R3 = 〈 Cond1 �⇒ “ping-pong”,
Cond2 �⇒ “ping-pong”,

“not ping-pong”〉,

where Cond1 is the same as specified in Sect. 3.1. During the
construction of the prediction model, in the training phase,
R3 maps each trace prefix τ k that satisfies either Cond1 or
Cond2 into the target value “ping-pong”, and those prefixes
that neither satisfy Cond1 nor Cond2 into “not ping-pong”.
After training the model based on this rule, we get a classifier
that is trained for distinguishing between (partial) traces that
most likely and unlikely lead to ping-pong behaviour. This
example also exhibits the ability of our language to specify
a behaviour that has multiple characteristics.

Abnormal Activity Duration. The following expression
specifies the existence of abnormal waiting duration by stat-

ing that there exists a waiting activity in which the duration
is more than 2 hours (7.200.000 milliseconds):

Cond3 = ∃i .(i < last) ∧
e[i]. concept:name == “Waiting” ∧
(e[i + 1]. time:timestamp −

e[i]. time:timestamp) > 7.200.000

As before, we can then specify an analytic rule for predicting
whether a (partial) trace is likely to have an abnormal waiting
duration or not as follows:

R4 = 〈Cond3 �⇒ “Abnormal”, “Normal”〉.

Applying the approach for constructing the prediction model
in Sect. 4, we obtain a classifier that is trained to predict
whether a (partial) trace is most likely or unlikely to have an
abnormal waiting duration.

5.2 Predicting SLA/business constraints compliance

Using FOE, we can easily specify numerous expressive
SLA conditions as well as business constraints. Furthermore,
using the approach presented in Sect. 4, we can create the cor-
responding prediction model, which predicts the compliance
of the corresponding SLA/business constraints.

Time-relatedSLA. LetCond4 be the FOE formula inExam-
ple 6. Roughly speaking, Cond4 expresses an SLA stating
that each order that is created will be eventually delivered
within 3 hours. We can then specify an analytic rule for pre-
dicting the compliance of this SLA as follows:

R5 = 〈Cond4 �⇒ “Comply”, “Not Comply”〉.

Using R5, our procedure for constructing the prediction
model in Sect. 4 generates a classifier that is trained to predict
whether a (partial) trace is likely or unlikely to comply with
the given SLA.

Separation of Duties (SoD). We could also specify a con-
straint concerning Separation of Duties (SoD). For instance,
we require that the person who assembles the product is dif-
ferent from the person who checks the product (i.e., quality
assurance). This can be expressed as follows:

Cond5 = ∀i .∀ j .((i < last) ∧ ( j < last) ∧
e[i]. concept:name == “assembling” ∧
e[ j]. concept:name == “checking”) →

(e[i]. org:resource 	= e[ j]. org:resource).

Intuitively, Cond5 states that for every two activities, if they
are assembling and checking activities, then the resources
who are in charge of those activitiesmust be different. Similar
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to previous examples, we can specify an analytic rule for
predicting the compliance of this constraint as follows:

R6 = 〈Cond5 �⇒ “Comply”, “Not Comply”〉.

Applying our procedure for building the prediction model,
we obtain a classifier that is trained to predict whether or not
a trace is likely to fulfil this constraint.

Constraint on Activity Duration. Another example would
be a constraint on the activity duration, e.g., a requirement
which states that eachactivitymust be finishedwithin 2 hours.
This can be expressed as follows:

Cond6 = ∀i .(i < last) →
(e[i + 1]. time:timestamp −

e[i]. time:timestamp) < 7.200.000.

Cond6 basically says that the time difference between two
activities is always less than 2 hours (7.200.000 millisec-
onds). An analytic rule to predict the compliance of this SLA
can be specified as follows:

R7 = 〈Cond6 �⇒ “Comply”, “Not Comply”〉.

Notice that we can express the same specification in a differ-
ent way, for instance

R8 = 〈Cond7 �⇒ “Not Comply”, “Comply”〉

where

Cond7 = ∃i .(i < last) ∧
(e[i + 1]. time:timestamp −

e[i]. time:timestamp) > 7.200.000.

Essentially, Cond7 expresses a specification on the existence
of abnormal activity duration. It states that there exists an
activity in which the time difference between that activity
and the next activity is greater than 7.200.000 milliseconds
(2 hours). Using either R7 or R8, our procedure for building
the prediction model (cf. Algorithm 1) gives us a classifier
that is trained to distinguish between the partial traces that
most likely will and will not satisfy this activity duration
constraint.

We could even specify a more fine-grained constraint by
focusing into a particular activity. For instance, the follow-
ing expression specifies that each validation activity must be
done within 2 hours (7.200.000 milliseconds):

Cond8 = ∀i .((i < last) ∧
e[i]. concept:name == “Validation”) →

(e[i + 1]. time:timestamp −
e[i]. time:timestamp) < 7.200.000.

Cond8 basically says that for each validation activity, the
time difference between that activity and its next activity is
always less than 2 hours (7.200.000 milliseconds). Similar to
the previous examples, it is easy to see that we could specify
an analytic rule for predicting the compliance of this SLAand
create a prediction model that is trained to predict whether a
(partial) trace is likely or unlikely fulfilling this SLA.

5.3 Predicting time-related information

In Sect. 3.1, we have seen how we can specify the task for
predicting the remaining processing time (by specifying a tar-
get expression that computes the time difference between the
timestamp of the last and the current events). In the follow-
ing, we provide another examples on predicting time-related
information.

Predicting Delay. Delay can be defined as a condition when
the actual processing time is longer than the expected pro-
cessing time. Suppose we have the information about the
expected processing time, e.g., provided by an attribute
“expectedDuration” of the first event, we can specify an ana-
lytic rule for predicting the occurrence of delay as follows:

R9 = 〈Cond9 �⇒ “Delay”, “Normal”〉.

where Cond9 is specified as follows:

(e[last]. time:timestamp −
e[1]. time:timestamp) > e[1]. expectedDuration.

Cond9 states that the difference between the last event times-
tamp and the first event timestamp (i.e., the processing time)
is greater than the expected duration (provided by the value
of the event attribute “expectedDuration”). While training
the classification model, R9 maps each trace prefix τ k into
either “Delay” or “Normal” depending on whether the pro-
cessing time of the whole trace τ is greater than the expected
processing time or not.

Predicting the Overhead of Running Time. The over-
head of running time is the amount of time that exceeds
the expected running time. If the actual running time does
not go beyond the expected running time, then the over-
head is 0. Suppose that the expected running time is 3 hours
(10.800.000 milliseconds), the task for predicting the over-
head of running time can then be specified as follows:

R10 = 〈curr < last �⇒ max(Overhead, 0), 0〉.

where Overhead = TotalRunTime − 10.800.000, and

TotalRunTime =
e[last]. time:timestamp − e[1]. time:timestamp.
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In this case, R10 computes the difference between the actual
total running time and the expected total running time.More-
over, it outputs 0 if the actual total running time is less than
the expected total running time, since it takes the maximum
value between the computed time difference and 0. Applying
our procedure for creating the prediction model, we obtain a
regression model that predicts the overhead of running time.

Predicting the Remaining Duration of a Certain Event.
Let the duration of an event be the time difference between
the timestamp of that event and its succeeding event. The task
for predicting the total duration of all remaining “waiting”
events can be specified as follows:

R11 = 〈curr < last �⇒ RemWaitingDur, 0〉.

where RemWaitingDur is defined as the sum of the duration
of all remaining waiting events, formally as follows:

sum(e[x + 1]. time:timestamp − e[x]. time:timestamp;
where x = curr : last;
and e[x]. concept:name == “waiting”)

As before, based on this rule, we can create a regression
model that predicts the total duration of all remainingwaiting
events.

Predicting Average Activity Duration.We can specify the
way to compute the average of activity duration as follows:

AvgActDur =
avg(e[x + 1]. time:timestamp − e[x]. time:timestamp;

where x = 1 : last)

where the activity duration is defined as the time difference
between the timestamp of that activity and its next activity.
We can then specify an analytic rule that expresses the task
for predicting the average activity duration as follows:

R12 = 〈curr < last �⇒ AvgActDur, 0〉.

Similar to previous examples, applying our procedure for
creating the prediction model, we get a regression model that
computes the approximation of the average activity duration
of a process.

5.4 Predicting workload-related information

Knowing the information about the amount of work to be
done (i.e., workload) would be beneficial. Predicting the
activity frequency is one of the ways to get an overview of
workload. The following task specifies how to predict the
number of the remaining activities that are necessary to be
performed:

R13 = 〈curr < last �⇒
count(true; where x = curr : last), 0〉

In this case, R13 counts the number of remaining activities.
We could also provide a more fine-grained specification by
focusing on a certain activity. For instance, in the following
we specify the task for predicting the number of the remaining
validation activities that need to be done:

R14 = 〈curr < last �⇒ NumOfRemValidation, 0〉.

where NumOfRemValidation is specified as follows:

count(e[x]. concept:name == “validation”;
where x = curr : last)

NumOfRemValidation counts the occurrence of validation
activities between the current event and the last event (the
occurrence of validation activity is reflected by the fact
that the value of the attribute concept:name is equal to
“validation”). Applying our procedure for creating the pre-
diction model over R13 and R14, consecutively we get
regression models that predict the number of remaining
activities as well as the number of the remaining validation
activities.

We could also classify a process into complex or normal
based on the frequency of a certain activity. For instance, we
could consider a process that requiresmore than 25 validation
activities as complex (otherwise it is normal). The following
analytic rule specifies this task:

R15 = 〈Cond10 > 25 �⇒ “complex”, “normal”〉

where Cond10 is specified as follows:

count(e[x]. concept:name == “validation”;
where x = 1 : last)

Based on R15, we could train a model to classify whether a
(partial) trace is likely to be a complex or a normal process.

5.5 Predicting resource-related information

Human resources could be a crucial factor in the process
execution. Knowing the number of different resources that
are needed for handling a process could be beneficial. The
following analytic rule specifies the task for predicting the
number of different resources that are required:

R16 = 〈curr < last �⇒
countVal(org:resource; within 1 : last), 0〉.

During the training phase, since
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countVal(org:resource; within 1 : last)
is evaluated to the number of different values of the attribute
org:resource within the corresponding trace, R16 maps each
trace prefix τ k into the number of different resources.

To predict the number of task handovers among resources,
we can specify the following prediction task:

R17 = 〈curr < last �⇒ NumHandovers, 0〉.

where NumHandovers is defined as follows:

count(e[x]. org:resource 	= e[x + 1]. org:resource;
where x = 1 : last)

,

i.e., NumHandovers counts the number of changes on
the value of the attribute org:resource and the changes of
resources reflect the task handovers among resources. Thus,
in this case, R17 maps each trace prefix τ k into the number
of task handovers.

A process can be considered as labour intensive if it
involves at least a certain number of different resources, e.g.,
three different number of resources. This kind of task can be
specified as follows:

R18 = 〈Cond11 �⇒ “LaborIntensive”, “normal”〉

where Cond11 is as follows:

∃i .∃ j .∃k. (i 	= j ∧ i 	= k ∧ j 	= k ∧
e[i]. org:resource 	= e[ j]. org:resource ∧
e[i]. org:resource 	= e[k]. org:resource ∧
e[ j]. org:resource 	= e[k]. org:resource)

Essentially,Cond11 states that there are at least three different
events in which the values of the attribute org:resource in
those events are different.

5.6 Predicting value-added related information

Value-added analysis in BPM aims at identifying unneces-
sary steps within a process with the purpose of eliminating
those steps [22]. The steps within a process can be classified
into either value-added, business value-added, or non-value
added. Value-added steps are the steps that produce/add
values to the customer or to the final outcome/product of
the process. Business value-added steps are those steps that
might not directly add value to the customer but theymight be
necessary or useful for the business. Non-value-added steps
are those that are neither value-added nor business value-
added. Based on this analysis, typically we would like to
retain those value-added steps, and eliminate (or reduce)
those non-value-added steps. These non-value-added steps
are often also associated with wastes. An example of waste is

overprocessing waste. An overprocessingwaste occurs when
an activity is performed unnecessarily with respect to the
outcome of a process (i.e., it is performed in a way that does
not add value to the final outcome/product of the process). It
includes tasks that are performed but later found to be unnec-
essary. In this light, the work by [73] proposes an approach
for minimizing the overprocessing waste by employing pre-
diction techniques.

Using our language, we can characterize prediction tasks
that could assist in minimizing overprocessing waste. For
instance, consider the process of handing personal loan appli-
cations. Suppose that there are several checking activities that
need to be performed on each application, and these checks
can be performed in any order (each check is independent of
each other). Failure in any of these checks would make the
application rejected and the process stops immediately. Only
cases that successfully pass all checks are accepted. This
kind of process is often called a knockout process [65]. For
instance, let these checking activities be (i) Applicant’s Iden-
tity Check (IDC); (ii) Loan Worthiness Assessment (LWA);
and (iii) Applicant’s Documents Verification (DV ). In this
scenario, if we first perform the Identity Check activity and
then the Documents Verification activity, but the Document
Verification gives negative outcome (i.e., the application is
rejected), then the efforts that we have spent on performing
the Identity Check activity would be a waste. Thus, it might
be desirable to perform the Document Verification step first
so that we could reject the application immediately before
spending any efforts on any other activities.

In the situation above, it might be desirable to predict the
checking activity that most likely would lead to a negative
outcome for a certain case of a loan application.Bydoing this,
we can prioritize that activity and reduce the waste of efforts
that we spend on unnecessary activities. The analytic rule
below specifies the prediction task that predicts the activity
that most likely would lead to the negative outcome (i.e., the
rejection of the application).

R32 = 〈 Cond16 �⇒ “Identity Check (IDC)”,
Cond17 �⇒ “Loan Worthiness Assesment (LWA)”,
Cond18 �⇒ “Document Verification (DV)”,

“None”〉,

where

Cond16 = ∃i .( i > curr ∧ e[i]. concept:name == “IDC” ∧
e[i + 1]. concept:name == “Reject App.”),

Cond17 = ∃i .( i > curr ∧ e[i]. concept:name == “LWA” ∧
e[i + 1]. concept:name == “Reject App.”),

Cond18 = ∃i .( i > curr ∧ e[i]. concept:name == “DV” ∧
e[i + 1]. concept:name == “Reject App.”).
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As observed by [65], another aspect that can be considered in
prioritizing the activities in this kind of process is the effort
that needs to be spent on each activity. This effort could
be either in terms of the processing time that is needed to
perform the activity, the cost that needs to be spent, or the
amount of resources that needs to be allocated. An activity
is expensive if it requires a lot of efforts to perform (e.g., an
activity that requires a large amount of time). By knowing
this information, we could give a priority to the activity that
is less expensive, and leave those expensive activities to the
last so that they are only performed when they are really
necessary. For each checking activity, we can specify the
corresponding prediction task that predicts the required effort
for performing that activity. For instance, we can specify the
task for predicting the duration of the identity checking (IDC)
activity as follows:

R33 = 〈curr < last �⇒ DurationIDC, 0〉.

where DurationIDC is defined as follows:

sum(e[x + 1]. time:timestamp − e[x]. time:timestamp;
where x = curr : last;
and e[x]. concept:name == “IDC”)

Similarly, we can specify the tasks for predicting the dura-
tion of the Loan Worthiness Assessment (LWA) activity and
the duration of the Document Verification (DV) activity as
follows:

R34 = 〈curr < last �⇒ DurationLWA, 0〉.

R35 = 〈curr < last �⇒ DurationDV, 0〉.

whereDurationLWA andDurationDV are defined as follows:

sum(e[x + 1]. time:timestamp − e[x]. time:timestamp;
where x = curr : last;
and e[x]. concept:name == “LWA”)

sum(e[x + 1]. time:timestamp − e[x]. time:timestamp;
where x = curr : last;
and e[x]. concept:name == “DV”)

As we have seen, all information from all of these simple
predictions could, in some sense, be combined/used in order
to help to minimize the unnecessary steps in a process, which
is one of the goals of value-added analysis.

6 Implementation and experiments

As a proof of concept, we develop a prototype that imple-
ments our approach 3 This prototype includes a parser for
our language and a program for automatically processing the
given prediction task specification as well as for building
the corresponding prediction model based on our approach
explained in Sects. 3 and 4. We also build a ProM4 plug-
in that wraps these functionalities. Several feature encoding
functions to be selected are also provided, e.g., one-hot
encoding of event attributes, time since the previous event,
plain attribute values encoding, etc. We can also choose the
desired machine learning model to be built. Our implemen-
tation uses Java and Python. For the interaction between Java
andPython,weuse Jep (JavaEmbeddedPython).5 In general,
we use Java for implementing the program for processing the
specification andwe use Python for dealingwith themachine
learning models.

The main goal of our experiments is to demonstrate the
applicability of our whole approach in a real-world setting by
applying them into some case studies over real-life data, and
to demonstrate the applicability of our approach in automat-
ically constructing reliable prediction models based on the
given specification. This includes the demonstration of the
capability of our language in specifying relevant interesting
prediction tasks based on the case study over real-life data.
Basically, our experiments answer the following questions:

1. Is the whole proposed approach applicable in practice (in
a real-life setting)?

2. In practice, can we generate reliable prediction models
by following our approach (starting from specifying the
desired prediction task)?

3. What are the factors that influence the quality of the gen-
erated prediction models?

The experimentswere conductedbyapplyingour approach
into several case studies/problems that are based on real-
life event logs. Particularly, we use the publicly available
event logs that were provided for Business Process Intelli-
gence Challenge (BPIC) 2012, BPIC 2013, and BPIC 2015.
For each event log, several relevant prediction tasks are
formulated based on the corresponding domain of the cor-
responding event log, and also by considering the available
information. For instance, predicting the occurrence of ping-
pong behaviour among support groups might be suitable for
the BPIC 13 event log, but not for BPIC 12 event log since

3 More information about the implementation architecture, the code,
the tool, and the screencast can be found at http://bit.ly/sdprom2.
4 ProM is a widely used extendable framework for process mining
(http://www.promtools.org).
5 Jep—https://pypi.org/project/jep/.
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there is no information about groups in BPIC 12 event log
(in fact, they are event logs from two different domains). For
each prediction task, we provide the corresponding formal
specification that can be fed into our tool in order to create
the corresponding prediction model.

For the experiment, we follow the standard holdout
method [31]. Specifically, we partition the data into two sets
as follows: We use the first two-thirds of the log for the train-
ing data and the last one-third of the log for the testing data.
For each prediction task specification, we apply our approach
in order to generate the corresponding prediction model, and
then we evaluate the prediction quality of the generated pre-
diction model by considering each k-length trace prefix τ k

of each trace τ in the testing set (for 1 < k < |τ |). In order
to provide a baseline, we use a statistical-based prediction
technique, which is often called Zero Rule (ZeroR). Specif-
ically, for the classification task, the prediction by ZeroR is
performed based on the most common target value in the
training set, while for the regression task, the prediction is
based on the mean value of the target values in the training
data. Although ZeroR seems to be quite naive, depending
on the data, in some cases it can outperform some advanced
machine learning models. The datasets and our source code
are available online so as to enable the replication of the
experiments 3.

Recall that our approach for building the predictionmodel
presented in Sect. 4 is independent with respect to the super-
vised machine learning model that is used. Within these
experiments, we consider several machine learning models,
namely (i) Logistic Regression, (ii) Linear Regression, (iii)
Naive Bayes Classifier, (iv) Decision Tree [10], (v) Random
Forest [9], (vi)AdaBoost [27] with Decision Tree as the base
estimator, (vii)Extra Trees [29], (viii)VotingClassifier that is
composed of Decision Tree, Random Forest, AdaBoost, and
Extra Trees. Among these, logistic regression, naive Bayes,
and voting classifier are only used for classification tasks,
and linear regression is only used for regression tasks. The
rest are used for both. Notably, we also use a deep learning
approach [30]. In particular, we use the deep feed-forward
neural network and we consider various sizes of the network
by taking into account several different depth and width of
the network. We consider different numbers of hidden lay-
ers ranging from 2 to 6 and three variants of the number of
neurons, namely 75, 100, and 150. For compactness of the
presentation, we do not show the evaluation results on all of
these network variations but we only show the best result.
The detail results are available at http://bit.ly/sdprom2 as a
supplementary material. In the implementation, we use the
machine learning libraries provided by scikit-learn [46]. For
the implementation of neural network, we use Keras6 with
Theano [64] backend.

6 https://keras.io.

To assess the prediction quality, we use the standard met-
rics for evaluating classification and regression models that
are generally used in the machine learning literature. These
metrics are also widely used in many works in this research
area (e.g., [33,35,37,63,69,72]). For the classification task,
we use accuracy, area under the ROC curve (AUC), pre-
cision, recall, and F-measure. For the regression task, we
use mean absolute error (MAE) and root mean square error
(RMSE). In the following, we briefly explain these metrics.
A more elaborate explanation on these metrics can be found
in the typical literature on machine learning and data mining,
e.g., [28,31,43].

Accuracy is the fraction of predictions that are correct. It
is computed by dividing the number of correct predictions by
the number of all predictions. The range of accuracy value is
between 0 and 1. The value 1 indicates the bestmodel,while 0
indicates the worst model. AnROC (receiver operating char-
acteristic) curve allows us to visualize the prediction quality
of a classifier. If the classifier is good, the curve should be as
closer to the top left corner as possible. A random guessing
is depicted as a straight diagonal line. Thus, the closer the
curve to the straight diagonal line, the worse the classifier.
The value of the area under the ROC curve (AUC) allows
us to assess a classifier as follows: The AUC value equal to
1 shows a perfect classifier, while the AUC value equal to
0.5 shows the worst classifier that is not better than random
guessing. Thus, the closer the value to 1, the better it is, and
the closer the value to 0.5, the worse it is. Precisionmeasures
the exactness of the prediction. When a classifier predicts a
certain output for a certain case, the precision value intu-
itively indicates how much is the chance that such prediction
is correct. Specifically, among all cases that are classified
into a particular class, precision measures the fraction of
those cases that are correctly classified. On the other hand,
recall measures the completeness of the prediction. Specifi-
cally, among all cases that should be classified as a particular
class, recall measures the fraction of those cases that can be
classified correctly. Intuitively, given a particular class, the
recall value indicates the ability of the model to correctly
classify all cases that should be classified into that particular
class. The best precision and recall value is 1. F-Measure is
harmonic mean of precision and recall. It provides a mea-
surement that combines both precision and recall values by
also giving equal weight to them. Formally, it is computed
as follows: F-Measure = (2 × P × R)/(P + R), where P
is precision and R is recall. The best F-measure value is 1.
Thus, the closer the value to 1, the better it is.

MAE computes the average of the absolute error of
all predictions over the whole testing data, where each
error is computed as the difference between the expected
and the predicted values. Formally, given n testing data,
MAE = (∑n

i=1 |yi − ŷi |
)
/n, where ŷi (resp. yi ) is

the predicted value (resp. the expected/actual value) for
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the testing instance i . RMSE can be computed as follows:

RMSE =
√(∑n

i=1(yi − ŷi )2
)
/n, where ŷi (resp. yi ) is the

predicted value (resp. the expected/actual value) for the test-
ing instance i . Compared to MAE, RMSE is more sensitive
to errors since it gives larger penalty to larger errors by using
the ‘square’ operation. For both MAE and RMSE, the lower
the score, the better the model.

In our experiments, we use the trace encoding that incor-
porates the information of the last n-events, where n is the
maximal length of the traces in the event log under considera-
tion. Furthermore, for each experimentwe consider two types
of encoding, where each of them considers different avail-
able event attributes (one encoding incorporates more event
attributes than the others). The detail of event attributes that
are considered is explained in each experiment below.

6.1 Experiment on BPIC 2013 event log

The event log from BPIC 20137 [62] contains the data from
the Volvo IT incident management system called VINST.
It stores information concerning the incidents handling pro-
cess. For each incident, a solution should be found as quickly
as possible so as to bring back the service with minimum
interruption to the business. It contains 7554 traces (process
instances) and 65533 events. There are also several attributes
in each event containing various information such as the
problem status, the support team (group) that is involved in
handling the problem, the person who works on the problem,
etc.

In BPIC 2013, ping-pong behaviour is one of the interest-
ing problems to be analyzed. Ideally, an incident should be
solved quickly without involving too many support teams.
To specify the tasks for predicting whether a process would
probably exhibit a ping-pong behaviour, we first identify and
express the possible characteristics of ping-pong behaviour
as follows:

CondE1 = ∃i .(i > curr ∧ i < last ∧
e[i]. org:group 	= e[i + 1]. org:group ∧
e[i]. concept:name 	= “Queued”)

CondE2 = ∃i .(e[i]. org:resource 	= e[i + 1]. org:resource ∧
e[i]. org:resource == e[i + 2]. org:resource)

CondE3 = ∃i .(e[i]. org:resource 	= e[i + 1]. org:resource ∧
e[i]. org:resource == e[i + 3]. org:resource)

CondE4 = ∃i .(e[i]. org:group 	= e[i + 1]. org:group ∧
e[i]. org:group == e[i + 2]. org:group)

7 More information on BPIC 2013 can be found in http://www.win.tue.
nl/bpi/doku.php?id=2013:challenge.

CondE5 = ∃i .(e[i]. org:group 	= e[i + 1]. org:group ∧
e[i]. org:group == e[i + 3]. org:group)

CondE6 = ∃i .∃ j .∃k.(i < j ∧ j < k ∧
e[i]. org:group 	= e[ j]. org:group ∧
e[i]. org:group 	= e[k]. org:group ∧
e[ j]. org:group 	= e[k]. org:group)

Roughly speaking, CondE1 says that there is a change in
the support team while the problem is not being “Queued”.
CondE2 and CondE3 state that there is a change in the person
who handles the problem, but then at some point it changes
back into the original person. CondE4 and CondE5 say that
there is a change in the support team (group) who handles
the problem, but then at some point it changes back into
the original support team. CondE6 states that the process of
handling the incident involves at least three different groups.

We then specify three different analytic rules below in
order to specify three different tasks for predicting ping-pong
behaviour based on various characteristics of this unexpected
behaviour.

RE1 = 〈CondE1 �⇒ “Ping-Pong”, “Not Ping-Pong”〉

RE2 = 〈 CondE2 �⇒ “Ping-Pong”,
CondE3 �⇒ “Ping-Pong”,
CondE4 �⇒ “Ping-Pong”,
CondE5 �⇒ “Ping-Pong”,

“Not Ping-Pong” 〉,
RE3 = 〈CondE6 �⇒ “Ping-Pong”, “Not Ping-Pong”〉

In this case, RE1 specifies the task for predicting ping-pong
behaviour based on the characteristic provided by CondE1
(similarly for RE2 and RE3). These analytic rules can be fed
into our tool in order to obtain the prediction model, and for
these cases we create classification models.

In BPIC 2013 event log, an incident can have several sta-
tuses. One of them is waiting. In this experiment, we predict
the remaining duration of all waiting-related events by spec-
ifying the following analytic rule:

RE4 = 〈curr < last �⇒ RemWaitingTime, 0〉

where RemWaitingTime is as follows:

sum(e[x + 1]. time:timestamp − e[x]. time:timestamp;
where x = curr : last;
and e[x]. lifecycle:transition == “Await.Assign.” ∨

e[x]. lifecycle:transition == “Wait” ∨
e[x]. lifecycle:transition == “Wait - Impl.” ∨
e[x]. lifecycle:transition == “Wait - User” ∨
e[x]. lifecycle:transition == “Wait - Cust.” ∨
e[x]. lifecycle:transition == “Wait - Vendor”)
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i.e., RemWaitingTime is the sum of all event duration
in which the status is related to waiting (e.g., Awaiting
Assignment, Wait, Wait-User, etc). Similarly, we predict the
remaining duration of all (exactly) waiting events by speci-
fying the following:

RE5 = 〈curr < last �⇒ RemWaitDur, 0〉

where RemWaitDur is as follows:

sum(e[x + 1]. time:timestamp − e[x]. time:timestamp;
where x = curr : last;
and e[x]. lifecycle:transition == “Wait”)

i.e., RemWaitDur is the sum of all event duration in which
the status is “wait”. Both RE4 and RE5 can be fed into our
tool, and in this case we generate regression models.

For all of these tasks, we consider two different trace
encodings. First, we use the trace encoding that incorporates
several available event attributes, namely concept:name,
org:resource, org:group, lifecycle:transition, organization
involved, impact, product, resource country, organization
country, org:role. Second,we use the trace encoding that only
incorporates the event names, i.e., the values of the attribute
concept:name. Intuitively, the first encoding considers more
information than the second encoding. Thus, the prediction
models that are obtained by using the first encoding use more
input information for doing the prediction. The evaluation
on the generated prediction models from all prediction tasks
specified above is reported in Tables 1 and 2.

6.2 Experiment on BPIC 2012 event log

The event log forBPIC20128 [70] comes from aDutch finan-
cial institute. It stores the information concerning the process
of handling either personal loan or overdraft application.
It contains 13.087 traces (process instances) and 262.200
events. Generally, the process of handling an application is
as follows: Once an application is submitted, some checks
are performed. After that, the application is augmented with
necessary additional information that is obtained by contact-
ing the client by phone. An offer will be send to the client, if
the applicant is eligible. After this offer is received back, it
is assessed. The customer will be contacted again if there is
a missing information. After that, a final assessment is per-
formed. In this experiment, we consider two prediction task
as follows:

1. One type of activity within this process is named
W_Completeren aanvraag, which stands for “Filling in

8 More information on BPIC 2012 can be found in http://www.win.tue.
nl/bpi/doku.php?id=2012:challenge.

information for the application”. The task for predicting
the total duration of all remaining activities of this type
is formulated as follows:

RE6 = 〈curr < last �⇒ RemTimeFillingInfo, 0〉

where RemTimeFillingInfo is as follows:

sum(e[x + 1]. time:timestamp−e[x]. time:timestamp;
where x = curr : last;
and e[x]. concept:name ==

“W_Completeren aanvraag”),

i.e., it computes the sum of the duration of all remaining
W_Completeren aanvraag activities.

2. At the end of the process, an application can be declined.
The task to predict whether an applicationwill eventually
be declined is specified as follows:

RE7 = 〈CondE8 �⇒ “Declined, “Not_Declined〉

where CondE8 is as follows:

CondE8 = ∃i .(i > curr ∧
e[i]. concept:name == “A_DECLINED”),

i.e., CondE8 says that eventually there will be an event in
which the application is declined.

Both RE6 and RE7 can be fed into our tool. For RE6, we
generate a regression model, while for RE7, we generate a
classificationmodel.Different from theBPIC2013 andBPIC
2015 event logs, there are not so many event attributes in this
log. For all of these tasks, we consider two different trace
encodings. First, we use the trace encoding that incorporates
several available event attributes, namely concept:name and
lifecycle:transition. Second, we use the trace encoding that
only incorporates the event names, i.e., the values of the
attribute concept:name. Thus, intuitively the first encoding
considers more information than the second encoding. The
evaluation on the generated prediction models from the pre-
diction tasks specified above is shown in Tables 3 and 4.

6.3 Experiment on BPIC 2015 event log

In BPIC 20159 [71], 5 event logs from 5 Dutch Municipal-
ities are provided. They contain the data of the processes
for handling the building permit application. In general,
the processes in these 5 municipalities are similar. Thus,
in this experiment we only consider one of these logs.

9 More information on BPIC 2015 can be found in http://www.win.tue.
nl/bpi/doku.php?id=2015:challenge.
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Table 1 The results from the experiments on BPIC 2013 event log using prediction tasks RE1, RE2, and RE3

Model First encoding (more features) Second encoding (less features)

AUC Accuracy W. Prec W. Rec F-Measure AUC Accuracy W. Prec W. Rec F-Measure

Experiments with the analytic rule RE1 (change of group while the concept:name is not ‘queued’)

RE1

ZeroR 0.50 0.82 0.68 0.82 0.75 0.50 0.82 0.68 0.82 0.75

Logistic Reg. 0.64 0.81 0.75 0.81 0.76 0.55 0.82 0.68 0.82 0.75

Naive Bayes 0.51 0.21 0.80 0.21 0.12 0.54 0.19 0.79 0.19 0.09

Decision Tree 0.67 0.78 0.80 0.78 0.79 0.68 0.82 0.76 0.82 0.77

Random Forest 0.83 0.84 0.83 0.84 0.83 0.68 0.82 0.76 0.82 0.77

AdaBoost 0.73 0.81 0.77 0.81 0.78 0.66 0.82 0.75 0.82 0.75

Extra Trees 0.81 0.83 0.81 0.83 0.82 0.68 0.82 0.76 0.82 0.77

Voting 0.81 0.81 0.81 0.81 0.81 0.68 0.82 0.76 0.82 0.77

Deep Neural Net. 0.73 0.83 0.81 0.83 0.81 0.68 0.83 0.78 0.83 0.75

Experiments with the analytic rule RE2 (change of people/group and change back to the original person/group)

RE2

ZeroR 0.50 0.79 0.63 0.79 0.70 0.50 0.79 0.63 0.79 0.70

Logistic Reg. 0.77 0.82 0.80 0.82 0.80 0.62 0.81 0.78 0.81 0.76

Naive Bayes 0.69 0.79 0.75 0.79 0.75 0.63 0.80 0.77 0.80 0.76

Decision Tree 0.73 0.82 0.82 0.82 0.82 0.76 0.82 0.80 0.82 0.80

Random Forest 0.85 0.86 0.85 0.86 0.85 0.78 0.82 0.80 0.82 0.80

AdaBoost 0.81 0.84 0.83 0.84 0.83 0.68 0.81 0.79 0.81 0.77

Extra Trees 0.85 0.86 0.85 0.86 0.86 0.78 0.82 0.80 0.82 0.80

Voting 0.85 0.86 0.85 0.86 0.85 0.77 0.82 0.81 0.82 0.81

Deep Neural Net. 0.77 0.86 0.86 0.86 0.85 0.78 0.83 0.82 0.83 0.80

Experiments with the analytic rule RE3 (involves at least three different groups)

RE3

ZeroR 0.50 0.74 0.54 0.74 0.63 0.50 0.74 0.54 0.74 0.63

Logistic Reg. 0.78 0.78 0.76 0.78 0.76 0.77 0.79 0.77 0.79 0.77

Naive Bayes 0.75 0.76 0.73 0.76 0.70 0.76 0.77 0.75 0.77 0.73

Decision Tree 0.79 0.82 0.83 0.82 0.83 0.81 0.82 0.82 0.82 0.82

Random Forest 0.92 0.87 0.87 0.87 0.87 0.83 0.82 0.82 0.82 0.82

AdaBoost 0.89 0.86 0.86 0.86 0.86 0.83 0.81 0.80 0.81 0.80

Extra Trees 0.91 0.87 0.87 0.87 0.87 0.82 0.82 0.82 0.82 0.82

Voting 0.91 0.85 0.85 0.85 0.85 0.82 0.82 0.81 0.82 0.82

Deep Neural Net. 0.85 0.85 0.84 0.85 0.84 0.83 0.83 0.82 0.83 0.82

The bold values indicate the best values that we obtained with respect to the corresponding metric. The best value is not always the highest value.
For example, when the metric measures the error (e.g., MAE or RMSE), the smallest value is the best value. However, for the metrics such as
accuracy, AUC, precision, recall, and F-measure, the highest value is the best value

There are several information available such as the activ-
ity name and the resource/person that carried out a certain
task/activity. The statistic about the log that we consider is
as follows: It has 1409 traces (process instances) and 59681
events.

For this event log, we consider several tasks related to
predicting workload-related information (i.e., related to the
amount of work/activities need to be done). First, we deal
with the task for predicting whether a process of handling
an application is complex or not based on the number of the

remaining different activities that need to be done. Specif-
ically, we consider a process is complex (or need more
attention) if there are still more than 25 different activities
need to be done. This task can be specified as follows:

RE8 = 〈NumDifRemAct ≥ 25 �⇒ “Complex”, “Normal”〉

where NumDifRemAct is specified as follows:

countVal(activityNameEN; within curr : last),
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Table 2 The results of the
experiments on BPIC 2013
event log using prediction tasks
RE4 and RE5

Model First Encoding (more features) Second Encoding (less features)

MAE (in days) RMSE (in days) MAE (in days) RMSE (in days)

Experiments with the analytic rule RE4 (the remaining duration of all waiting-related events)

RE4

ZeroR 5.977 6.173 5.977 6.173

Linear Reg. 5.946 6.901 6.16 6.462

Decision Tree 5.431 17.147 5.8 7.227

Random Forest 4.808 8.624 5.81 7.114

AdaBoost 14.011 18.349 14.181 15.164

Extra Trees 4.756 8.612 5.799 7.132

Deep Neural Net. 2.205 4.702 4.064 4.596

Experiments with the analytic rule RE5 (the remaining duration of all events in which the status is “wait”)

RE5

ZeroR 1.061 1.164 1.061 1.164

Linear Reg. 1.436 1.974 1.099 1.233

Decision Tree 0.685 5.165 1.003 1.66

Random Forest 0.713 3.396 1.016 1.683

AdaBoost 1.507 3.89 1.044 1.537

Extra Trees 0.843 3.719 1.005 1.649

Deep Neural Net. 0.37 2.037 0.683 0.927

The bold values indicate the best values that we obtained with respect to the corresponding metric. The best
value is not always the highest value. For example, when the metric measures the error (e.g., MAE or RMSE),
the smallest value is the best value. However, for the metrics such as accuracy, AUC, precision, recall, and
F-measure, the highest value is the best value

Table 3 The results of the
experiments on BPIC 2012
event log using the prediction
task RE6

Model First Encoding (more features) Second Encoding (less features)

MAE (in days) RMSE (in days) MAE (in days) RMSE (in days)

Experiments with the analytic rule RE6 (total duration of all
remaining activities named ‘W_Completeren aanvraag’)

RE6

ZeroR 3.963 5.916 3.963 5.916

Linear Reg. 3.613 5.518 3.677 5.669

Decision Tree 2.865 5.221 2.876 5.228

Random Forest 2.863 5.198 2.877 5.213

AdaBoost 3.484 5.655 3.484 5.655

Extra Trees 2.857 5.185 2.868 5.191

Deep Neural Net. 2.487 5.683 2.523 5.667

The bold values indicate the best values that we obtained with respect to the corresponding metric. The best
value is not always the highest value. For example, when the metric measures the error (e.g., MAE or RMSE),
the smallest value is the best value. However, for the metrics such as accuracy, AUC, precision, recall, and
F-measure, the highest value is the best value

i.e.,NumDifRemAct counts the number of different values of
the attribute ‘activityNameEN’ from the current time point
until the end of the process. As the next workload-related
prediction task, we specify the task for predicting the number
of remaining events/activities as follows:

RE9 = 〈curr < last �⇒ RemAct, 0〉

where RemAct = count(true; where x = curr : last), i.e.,
RemAct counts the number of events/activities from the cur-
rent time point until the end of the process.

Both RE8 and RE9 can be fed into our tool. For the former,
we generate a classification model, and for the latter, we gen-
erate a regression model. For all of these tasks, we consider
twodifferent trace encodings. First,we use the trace encoding
that incorporates several available event attributes, namely
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Table 4 The results from the experiments on BPIC 2012 event log using the prediction task RE7

Model First encoding (more features) Second encoding (less features)

AUC Accuracy W. Prec W. Rec F-Measure AUC Accuracy W. Prec W. Rec F-Measure

Experiments with the analytic rule RE7 (predict whether an application will be eventually ‘DECLINED’)

RE7

ZeroR 0.50 0.78 0.61 0.78 0.68 0.50 0.78 0.61 0.78 0.68

Logistic Reg. 0.69 0.78 0.75 0.78 0.76 0.69 0.77 0.71 0.77 0.71

Naive Bayes 0.67 0.33 0.74 0.33 0.30 0.67 0.33 0.73 0.33 0.30

Decision Tree 0.70 0.78 0.76 0.78 0.77 0.70 0.78 0.76 0.78 0.77

Random Forest 0.71 0.79 0.77 0.79 0.78 0.71 0.79 0.77 0.79 0.78

AdaBoost 0.71 0.81 0.78 0.81 0.78 0.71 0.80 0.78 0.80 0.78

Extra Trees 0.71 0.79 0.77 0.79 0.78 0.71 0.79 0.77 0.79 0.78

Voting 0.71 0.79 0.77 0.79 0.78 0.71 0.79 0.77 0.79 0.77

Deep Neural Net. 0.71 0.80 0.77 0.80 0.78 0.71 0.80 0.78 0.80 0.78

The bold values indicate the best values that we obtained with respect to the corresponding metric. The best value is not always the highest value.
For example, when the metric measures the error (e.g., MAE or RMSE), the smallest value is the best value. However, for the metrics such as
accuracy, AUC, precision, recall, and F-measure, the highest value is the best value

monitoringResource, org:resource, activityNameNL, activ-
ityNameEN, question, concept:name. Second, we use the
trace encoding that only incorporates the event names, i.e.,
the values of the attribute concept:name. As before, the first
encoding considers more information than the second encod-
ing. The evaluation on the generated prediction models from
the prediction tasks specified above is shown in Tables 5 and
6.

6.4 Discussion on the experiments

In total, our experiments involve 9 different prediction tasks
over 3 different real-life event logs from 3 different domains
(1 event log from BPIC 2015, 1 event log from BPIC 2012,
and 1 event log from BPIC 2013).

Overall, these experiments show the capabilities of our
language in capturing and specifying the desired prediction
tasks that are based on the event logs coming from real-life
situation. These experiments also exhibit the applicability
of our approach in automatically constructing reliable pre-
diction models based on the given specification. This is
supported by the following facts: First, for all prediction tasks
that we have considered, by considering different input fea-
tures and machine learning models, we are able to obtain
prediction models that beat the baseline. Moreover, for all
prediction tasks that predict categorical values, in our exper-
iments we are always able to get a prediction model that has
AUC value greater than 0.5. Recall that AUC = 0.5 indicates
the worst classifier that is not better than a random guess.
Thus, since we have AUC > 0.5, the prediction models that
we generate certainly take into account the given input and
predict the most probable output based on the given input,
instead of randomly guessing the output no matter what the

input is. In fact, in many cases, we could even get very high
AUC values which are ranging between 0.8 and 0.9 (see
Tables 1, 5). This score is very close to the AUC value for
the best predictor (recall that AUC = 1 indicates the best
classifier).

As can be seen from the experiments, the choice of the
input features and the machine learning models influence the
quality of the prediction model. The result of our experi-
ments also shows that there is no single machine learning
model that always outperforms other models on every task.
Since our approach does not rely on a particular machine
learning model, it justifies that we can simply plug in dif-
ferent supervised machine learning models in order to get
different/better performance. In fact, in our experiments, by
considering different models we could get different/better
prediction quality. Concerning the input features, for each
task in our experiments, we intentionally consider two differ-
ent input encodings. The first one includes many attributes
(hence it incorporates many information), and the second
one includes only a certain attribute (i.e., it incorporates less
information). In general, our common sense would expect
that the more information, the better the prediction quality
would be. This is simply because we thought that, by hav-
ing more information, we have a more holistic view over
the situation. Although many of our experiment results show
this fact, there are several cases where considering less fea-
tures could give us a better result, e.g., the RMSE score in
the experiment with several models on the tasks RE5, and the
scores of several metrics in the experiment RE8 show this fact
(see Tables 2, 5). In fact, this aligns with the typical observa-
tion in machine learning. Irrelevant features could decrease
the prediction performance because they might introduce
noise in the prediction. Although in the learning process a
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Table 5 The results from the experiments on BPIC 2015 event log using the prediction task RE8

Model First encoding (more features) Second encoding (less features)

AUC Accuracy W. Prec W. Rec F-Measure AUC Accuracy W. Prec W. Rec F-Measure

Experiments with the analytic rule RE8 (predicting whether a process is complex)

RE8

ZeroR 0.50 0.57 0.32 0.57 0.41 0.50 0.57 0.32 0.57 0.41

Logistic Reg. 0.92 0.83 0.85 0.83 0.83 0.90 0.84 0.84 0.84 0.83

Naive Bayes 0.81 0.72 0.82 0.72 0.71 0.93 0.68 0.81 0.68 0.66

Decision Tree 0.80 0.79 0.80 0.79 0.80 0.84 0.85 0.85 0.85 0.85

Random Forest 0.95 0.89 0.89 0.89 0.89 0.95 0.90 0.90 0.90 0.90

AdaBoost 0.92 0.87 0.87 0.87 0.87 0.93 0.88 0.88 0.88 0.88

Extra Trees 0.95 0.88 0.88 0.88 0.88 0.95 0.88 0.89 0.88 0.88

Voting 0.94 0.85 0.86 0.85 0.86 0.95 0.88 0.88 0.88 0.88

Deep Neural Net. 0.89 0.84 0.84 0.84 0.84 0.92 0.84 0.84 0.84 0.84

The bold values indicate the best values that we obtained with respect to the corresponding metric. The best value is not always the highest value.
For example, when the metric measures the error (e.g., MAE or RMSE), the smallest value is the best value. However, for the metrics such as
accuracy, AUC, precision, recall, and F-measure, the highest value is the best value

Table 6 The results of the
experiments on BPIC 2015
event log using the prediction
task RE9

Model First Encoding (more features) Second Encoding (less features)

MAE RMSE MAE RMSE

Experiments with the analytic rule RE9 (the number of the remaining events/activities)

RE9

ZeroR 11.21 13.274 11.21 13.274

Linear Reg. 6.003 7.748 14.143 18.447

Decision Tree 6.972 9.296 6.752 9.167

Random Forest 4.965 6.884 4.948 6.993

AdaBoost 4.971 6.737 4.879 6.714

Extra Trees 4.684 6.567 4.703 6.627

Deep Neural Net. 6.325 8.185 5.929 7.835

The bold values indicate the best values that we obtained with respect to the corresponding metric. The best
value is not always the highest value. For example, when the metric measures the error (e.g., MAE or RMSE),
the smallest value is the best value. However, for the metrics such as accuracy, AUC, precision, recall, and
F-measure, the highest value is the best value

goodmodel should (or will try to) give a very lowweight into
irrelevant features, the absence of these unrelated features
might improve the quality of the prediction. Additionally, in
some situation, too many features might cause overfitting,
i.e., the model fits the training data very well, but it fails to
generalize well while doing prediction with new input data.

Based on the experience from these experiments, time
constraint would also be a crucial factor in choosing the
model when we would like to apply this approach in prac-
tice. Somemodels require a lot of tuning in order to achieve a
good performance (e.g., neural network), while other models
do not need many adjustment and able to achieve relatively
good performance (e.g., Extra Trees, Random Forest).

Looking at another perspective, our experiments com-
plement various studies in the area of predictive process
monitoring in several ways. First, instead of using machine

learning models that are typically used in many studies
within this area such as Random Forest and Decision Tree
(cf. [17,18,35,72]), we also consider other machine learning
models that, to the best of our knowledge, are not typi-
cally used. For instance, we use Extra Trees, AdaBoost, and
Voting Classifier. Thus, we provide a fresh insight on the
performance of these machine learning models in predic-
tive process monitoring by using them in various different
prediction tasks (e.g., predicting (fine-grained) time-related
information, unexpected behaviour). Although this work is
not aimed at comparing various machine learning models, as
we see from the experiments, in several cases, Extra Trees
exhibits similar performance (in terms of accuracy) as Ran-
dom Forest. There are also some cases where it outperforms
theRandomForest (e.g., see the experimentwith the task RE9

in Table 6). In the experiment with the task RE7, AdaBoost
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outperforms all other models. Regarding the type of the pre-
diction tasks,we also look into the tasks that are not yet highly
explored in the literature within the area of predictive process
monitoring. For instance, while there are numerous works
on predicting the remaining processing time, to the best of
our knowledge, there is no literature exploring a more fine-
grained task such as the prediction of the remaining duration
of a particular type of event (e.g., predicting the duration
of all remaining waiting events). We also consider several
workload-related prediction tasks, which is rarely explored
in the area of predictive process monitoring.

Concerning the deep learning approach, there have been
several studies that explore the usage of deep neural network
for predictive process monitoring (cf. [19,23,24,38,63]).
However, they focus on predicting the name of the future
activities/events, the next timestamp, and the remaining pro-
cessing time. In this light, our experiments contribute new
insights on exhibiting the usage of deep learning approach in
dealing with different prediction tasks other than just those
tasks. Although the deep neural network does not always give
the best result in all tasks in our experiments, there are several
interesting cases where it shows a very good performance.
Specifically, in the experiments with the tasks RE4 and RE5

(cf. Table 2), where all other models cannot beat the RMSE
score of the baseline, the deep neural network comes to the
rescue and be the only model that could beat the RMSE score
of our baseline.

To sum up, concerning the three questions regarding this
experiment that are described in the beginning of this sec-
tion, the first two questions are positively answered by our
experiment. In our experiments of applying our approach
over three different real-life event logs and nine different
prediction tasks, we have successfully obtained (reliable)
prediction models and positively demonstrate the applica-
bility of our approach. Regarding the third question, our
experiments show that the choice of the machine learning
model and the information that is incorporated in the trace
encoding would influence the quality of the prediction.

7 Related work

This work is tightly related to the area of predictive analy-
sis in business process management. In the literature, there
have been several works focusing on predicting time-related
properties of running processes. Theworks by [52–55,68,69]
focus on predicting the remaining processing time. In [68,
69], the authors present an approach for predicting the
remaining processing time based on annotated transition sys-
tem that contains time information extracted from event logs.
The work by [54,55] proposes a technique for predicting
the remaining processing time using stochastic Petri nets.
The works by [41,49,58,59] focus on predicting delays in

process execution. In [58,59], the authors use queueing the-
ory to address the problem of delay prediction, while [41]
explores the delay prediction in the domain of transport
and logistics process. In [25], the authors present an ad hoc
predictive clustering approach for predicting process perfor-
mance. The authors of [63] present a deep learning approach
(using LSTM neural network) for predicting the timestamp
of the next event and use it to predict the remaining cycle time
by repeatedly predicting the timestamp of the next event.

Looking at another perspective, the works by [18,35,72]
focus on predicting the outcomes of a running process. The
work by [35] introduces a framework for predicting the busi-
ness constraints compliance of a running process. In [35], the
business constraints are formulated in propositional Linear
Temporal Logic (LTL), where the atomic propositions are
all possible events during the process executions. The work
by [18] improves the performance of [35] by using a cluster-
ingpreprocessing step.Anotherworkonoutcomesprediction
is presented by [50], which proposes an approach for pre-
dicting aggregate process outcomes by taking into account
the information about overall process risk. Related to pro-
cess risks, [14,15] propose an approach for risks prediction.
The work by [37] presents an approach based on evolution-
ary algorithm for predicting business process indicators of a
running process instance, where business process indicator
is a quantifiable metric that can be measured by data that
is generated by the processes. The authors of [40] present a
work on predicting business constraint satisfaction. Particu-
larly, [40] studies the impact of considering the estimation
of prediction reliability on the costs of the processes.

Another major stream of works tackle the problem of
predicting the future activities/events of a running process
(cf. [11,19,23,24,38,53,63]). The works by [19,23,24,38,63]
use deep learning approach for predicting the future events,
e.g., the next event of the current running process. Specif-
ically, [19,23,24,63] use LSTM neural network, while [38]
uses deep feed-forward neural network. In [19,53,63] the
authors also tackle the problem of predicting the whole
sequence of future events (the suffix of the current running
process).

A key difference betweenmany of those works and ours is
that, instead of focusing on dealing with a particular predic-
tion task (e.g., predicting the remaining processing time or
the next event), this work introduces a specification language
that enables us to specify various desired prediction tasks for
predicting various future information of a running business
process. To deal with these various desired prediction tasks,
we present a mechanism to automatically process the given
specificationof prediction task and to build the corresponding
prediction model. From another point of view, several works
in this area often describe the prediction tasks under study
simply by using a (possibly ambiguous) natural language.
In this light, the presence of our language complements this
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area by providing a means to formally and unambiguously
specify/describe the desired prediction tasks. Consequently,
it could ease the definition of the task and the comparison
among different works that propose a particular prediction
technique for a particular prediction task.

Regarding the specification language, unlike the proposi-
tional LTL [51], which is the basis of Declare language [47,
48] and often used for specifying business constraints over a
sequence of events (cf. [35]), our FOE language (which is part
of our rule-based specification language) allows us not only
to specify properties over sequence of events but also to spec-
ify properties over the data (attribute values) of the events,
i.e., it is data-aware. Concerning data-aware specification
language, the work by [1] introduces a data-aware specifi-
cation language by combining data querying mechanisms
and temporal logic. Such language has been used in sev-
eral works on verification of data-aware processes systems
(cf. [2,12,13,56]). Theworks by [16,34] provide a data-aware
extension of the Declare language based on the First-Order
LTL (LTL-FO). Although those languages are data-aware,
they do not support arithmetic expressions/operations over
the data which is absolutely necessary for our purpose, e.g.,
for expressing the time difference between the timestamp of
thefirst and the last event.Another interestingdata-aware lan-
guage is S-FEEL, which is part of the Decision Model and
Notation (DMN) standard [45] by OMG. Though S-FEEL
supports arithmetic expressions over the data, it does not
allow us to universally/existentially quantify different event
time points and to compare different event attribute values at
different event time points, which is important for our needs,
e.g., in specifying the ping-pong behaviour.

Concerning aggregation, there are several formal lan-
guages that incorporate such feature (cf. [5,8,21]) and many
of them have been used in system monitoring. The work
by [21] extends the temporal logic Past Time LTL with
counting quantifier. Such extension allows us to express a
constraint on the number of occurrences of events (similar
to our count function). In [8] a language called SOLOIST
is introduced and it supports several aggregate functions on
the number of event occurrences within a certain time win-
dow. Differently from ours, both [21] and [8] do not consider
aggregation over data (attribute values). The works by [5,6]
extend the temporal logic that was introduced in [4,7] with
several aggregate functions. Such language allowsus to select
the values to be aggregated. However, due to the interplay
between the set and bag semantics in their language, as they
have illustrated, some values might be lost while computing
the aggregation because they first collect the set of tuples of
values that satisfy the specified condition and then they col-
lect the bag of values to be aggregated from that set of tuples
of values. To avoid this situation, they need to make sure that
each tuple of values has a sort of unique identifier. This sit-
uation does not happen in our aggregation because, in some

sense, we directly use the bag semantics while collecting the
values to be aggregated.

Importantly, unlike those languages above, apart from
allowing us to specify a complex constraint/pattern, a frag-
ment of our FOE language also allows us to specify the
way to compute/obtain certain values from a trace, which
is needed for specifying the desired information/values to
be predicted, e.g., the remaining processing time, or the
remaining number of a certain activity/event. Our language is
also specifically tuned for expressing data-aware properties
based on the typical structure of business process execution
logs (cf. [32]), and the design is highly driven by the typi-
cal prediction tasks in business process management. From
another point of view, our work complements the works on
predicting SLA/business constraints compliance by provid-
ing an expressive language to specify complex data-aware
constraints that may involve arithmetic expression and data
aggregation.

8 Discussion

This work should be beneficial for the researchers in the
area of predictive process monitoring. As we have seen, sev-
eral works in this area often describe the prediction tasks
under study simply by using a (possibly ambiguous) natural
language. In this light, the presence of our language comple-
ments this area by providing a means to formally and unam-
biguously specify/describe the desired prediction tasks. Con-
sequently, it could ease the definition of the task and the com-
parison among different works that propose a particular pre-
diction technique for a particular prediction task. Similarly, as
for the business process analyst, the presence of our language
should help them in precisely specifying and communicating
the desired prediction tasks so as to have suitable prediction
services. The presence of ourmechanism for creating the cor-
responding prediction model would also help practitioners in
automatically obtaining the corresponding prediction model.

In the following, we provide a discussion concerning the
research questions described in Sect. 1 as well as the lan-
guage requirements in Sect. 3. Furthermore, we also provide
a discussion regarding the usability aspect. Finally, this sec-
tion also discusses potential limitations of this work, which
might pave the way towards our future direction.

8.1 Discussion on the research questions

Concerning RQ1, i.e., “How can a specification-driven
mechanism for building predictionmodels for predictive pro-
cess monitoring look like?”, as introduced in this work, our
specification-driven approach for building predictionmodels
for predictive process monitoring essentially consists of sev-
eral steps: (i) First, we have to specify the desired prediction
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tasks by using the specification language that we have intro-
duced in this work; (ii) second, we create the corresponding
prediction models based on the given specification by using
the approach that is explained in Sect. 4. (iii) Finally, once
the prediction models are created, we can use the constructed
prediction models for predicting the future information of a
running process. Notice that this approach requires a mech-
anism to express various desired prediction tasks and also a
mechanism to process the given specification so as to build
the corresponding prediction models. In this work, we pro-
vide all of these and we have also applied this approach into
some case studies based on real-life data (cf. Sect. 6).

Regarding RQ2, i.e., “How can an expressive specifi-
cation language that allows us to express various desired
prediction tasks, and at the same time enables us to auto-
matically create the corresponding prediction model from
the given specification, look like? Additionally, can that lan-
guage allow us to specify complex expressions involving
data, arithmetic operations and aggregate functions?”, as
explained in Sect. 3, the specification of a prediction task can
be expressed by using an analytic rule, which is introduced
in this work. Essentially, an analytic rule consists of several
conditional-target expressions and it allows us to specify how
we want to map each partial business processes execution
information into the expected predicted information. As can
be seen in Sects. 4 and 6, a specification provided in this lan-
guage can be used to train a classification/regression model
that can be used as the prediction model. Additionally, as a
part of analytic rules, we introduce an FOL-based language
called FOE. As can be seen from Sects. 3 and 5, FOE allows
us to specify complex expression involving data, arithmetic
operations and aggregate functions.

Concerning RQ3, i.e., “how can a mechanism to auto-
matically build the corresponding prediction model based on
the given specification look like?”, as explained in Sect. 4,
roughly speaking, our mechanism to build the corresponding
predictionmodel from the given specification in our language
consists of two core steps: (i) First, we build the training data
based on the given specification in our language; (ii) second,
we use supervised machine learning technique to learn the
corresponding prediction model based on the training data
that is generated in the first step.

8.2 Discussion on the language requirements

We now elaborate why our language fulfils all require-
ments in Sect. 3.2. For the first requirement, since the target
expression in the analytic rules can be either numeric or non-
numeric expressions, it is easy to see that the first requirement
is fulfilled. Various examples of prediction tasks specifica-
tion in Sect. 5 also confirm this fact. Our experiments in
Sect. 6 also exhibit several case studies where the predicted
information is either numeric or non-numeric values.

Concerning the second requirement, our procedure in
Sect. 4 and our experiments in Sect. 6 confirm the fact that
we can have a mechanism for automatically building the cor-
responding prediction model from the given specification in
our language.

Finally, regarding the requirements 3, 4, and 5, our lan-
guage formalism in Sect. 3 and our extensive showcases
in Sect. 5 exhibit the fact that our language fulfils these
requirements. Specifically, we are able to specify complex
expressions over sequence of events by also involving the
events data, arithmetic expressions as well as aggregate func-
tions. Additionally, from our various showcases, we can also
see that our language allows us to specify the target infor-
mation to be predicted where we might also have to specify
the way to obtain a certain value and might involve some
arithmetic expression.

8.3 Discussion on usability

The usability of the language can only be measured by out-
comes of user studies which are beyond the scope of this
work. Obviously, it is interesting to do this; therefore, we
consider doing a user study as one of our future direc-
tions. Although this is one of the limitations of our current
work, some insights regarding this aspect can be drawn from
previous studies. Taking the success story from the works
on domain-specific languages (DSLs) [39], by providing
a language in which the development is driven by or tai-
lored to a particular domain/area, DSL offers substantial
gains in expressiveness and ease of use compared to gen-
eral purpose language in their domain of application [39].
In general, DSLs were developed because they can offer
domain-specificity in better ways. In this light, our language
has a similar situation in the sense that its development is
highly driven by a particular area, namely predictive process
monitoring. Due to this fact, we expect that similar benefits
concerning this aspect could be obtained.

Another aspect of usability concerns learnability. Accord-
ing to [39], one way to design a DSL is to build it based on
an existing language. A possible benefit of this approach is
familiarity for the users. Due to this familiarity, it is expected
that the users, who are familiar with the corresponding exist-
ing language, could easily learn and use it. In this light, our
FOE language follows this approach. It is actually based
on a well-known logic-based language namely First-Order
Logic (FOL). Furthermore, choosing FOL as the basis of the
language also gives us another advantage since it is more
well known compared to other more advanced logic-based
languages, e.g., Linear Temporal Logic (LTL). This is the
case because typically FOL is a part of many foundational
courses; hence, it is taught to a wider audience than other
more advanced logics. In general, since this language is a
logic-based language, a user with pre-trained knowledge in
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logic should be able to use the language. Looking at another
perspective, the development of our language is also highly
driven by the typical structure ofXES event log. SinceXES is
a typical standard format for event logs and widely known in
the area of process mining, we expect that this fact improves
the familiarity for the users and eases the adoption/usage by
the users who are familiar with the XES standard (which
should be the typical users in this area). A possible direction
to improve the usability would be to study advanced visual
techniques and explore the possibility of having visual sup-
port (e.g., graphical notations) for creating the specification.
Having visual support is a way that has been observed in the
area of DSL as a way to improve usability [26,44]. This kind
of approach also has been seen in the literature (cf. [47,48]).

According to [44], the effectiveness of communication is
measured by the match between the intended message and
the received message (information transmitted). In this light,
the presence of the formal semantics of our language pre-
vents ambiguous interpretation that could cause a mismatch
between the intended and the understoodmeaning. In the end,
the presence of this language could be useful for BP analysts
to precisely specify the desired prediction tasks, and this is
important in order to have suitable prediction services. This
language could also be an effective means for BP analysts to
communicate the desired prediction tasks unambiguously.

8.4 Limitation and future work

This work focuses on the problem of predicting the future
information of a single running process based on the cur-
rent information of that corresponding running process. In
practice, there could be several processes running concur-
rently. Hence, it is absolutely interesting to extend the work
further so as to consider the prediction problems on concur-
rently running processes. This extension would involve the
extension of the language itself. For instance, the language
should be able to specify some patterns over multiple run-
ning processes. Additionally, it should be able to express
the desired predicted information or the way to compute
the desired predicted information, and it might involve the
aggregation of information over multiple running processes.
Consequently, themechanism for building the corresponding
prediction model needs to be adjusted.

Our experiments (cf. Sect. 6) show a possible instantia-
tion of our generic approach in creating prediction services.
In this case we predict the future information of a running
process by only considering the information from a sin-
gle running process. However, in practice, other processes
that are concurrently running might affect the execution of
other processes. For instance, if there are so many processes
running together and there are not enough employees for
handling all processes simultaneously, some processesmight
need to wait. Hence, when we predict the remaining duration

of waiting events, the current workload information might be
a factor that need to be considered and ideally these informa-
tion should be incorporated in the prediction. One possibility
to overcome this limitation is to use the trace encoding func-
tion that incorporates the information related to the processes
that are concurrently running. For instance, we can make
an encoding function that extracts relevant information from
all processes that are concurrently running, and use them
as the input features. Such information could be the num-
ber of employees that are actively handling some processes,
the number of available resources/employees, the number of
processes of a certain type that are currently running, etc.

This kind of machine learning-based technique performs
the prediction based on the observable information. Thus, if
the information to be predicted depends on some unobserv-
able factors, the quality of the predictionmight be decreasing.
Therefore, in practice, all factors that highly influence the
information to be predicted should be incorporated as much
as possible. Furthermore, the prediction model is only built
based on the historical information about the previously run-
ning processes and neglects the possibility of the existence of
the domain knowledge (e.g., some organizational rules) that
might influence the prediction. In some sense, it (implicitly)
assumes that the domain knowledge is already incorporated
in those historical data that captures the processes execution
in the past. Obviously, it is then interesting to develop fur-
ther the technique so as to incorporate the existing domain
knowledge in the creation of the prediction model with the
aim of enhancing the prediction quality. Looking at another
perspective, since the prediction model is only built based
on the historical data of the past processes execution, this
approach is absolutely suitable for the situation in which the
(explicit) process model is unavailable or hard to obtain.

As also observed by other works in this area (e.g., [69]),
in practice, by predicting the future information of a running
process, we might affect the future of the process itself, and
hence, wemight reduce the preciseness of the prediction. For
instance, when it is predicted that a particular process would
exhibit an unexpected behaviour, we might be eager to pre-
vent it by closelywatching the process in order to prevent that
unexpected behaviour. In the end, that unexpected behaviour
might not be happened due to our preventive actions, and
hence, the prediction is not happened.On theother hand, ifwe
predict that a particular process will run normally, we might
put less attention than expected into that process, and hence,
the unexpected behaviour might occur. Therefore, knowing
the (prediction of the) future might not always be good for
this case. This also indicates that a certain care need to be
done while using the predicted information.
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9 Conclusion

Wehave introduced an approach for obtaining predictive pro-
cess monitoring services based on the specification of the
desired prediction tasks. Specifically, we proposed a novel
rule-based language for specifying the desired prediction
tasks, and we devise a mechanism for automatically building
the corresponding predictionmodels based on the given spec-
ification. Establishing such language is a non-trivial task. The
language should be able to capture various prediction tasks,
while at the same time allowing us to have a procedure for
building/deriving the corresponding prediction model. Our
language is a logic-based language which is fully equipped
with a well-defined formal semantics. Therefore, it allows us
to do formal reasoning over the specification, and to have a
machine processable language that enables us to automate
the creation of the prediction model. The language allows
us to express complex properties involving data and arith-
metic expressions. It also allows us to specify the way how
to compute certain values. Notably, our language supports
several aggregate functions. A prototype that implements
our approach has been developed, and several experiments
using real-life event logs confirmed the applicability of our
approach. Remarkably, our experiments involve the usage of
a deep learning model. In particular, we use the deep feed-
forward neural network.

Apart from those that are discussed in Sect. 8, the future
work includes the extension of the tool and the language. One
possible extension would be to incorporate trace attribute
accessor that allows us to specify properties involving trace
attribute values. As our FOE language is a logic-based lan-
guage, there is a possibility to exploit existing logic-based
tools such as satisfiability modulo theories (SMT) solver [3]
for performing some reasoning tasks related to the language.
Experimenting with other supervised machine learning tech-
niques would be the next step as well, for instance by using
another deep learning approach (i.e., another type of neural
network such as recurrent neural network) with the aim of
improving the prediction quality.

Acknowledgements Open access funding provided by University of
Innsbruck and Medical University of Innsbruck. The authors thank Tri
KurniawanWijaya for various suggestions related to this work, andYas-
min Khairina for the implementation of several prototype components.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

A Extended details on the formal semantics

The aggregate function max(numExp1,numExp2) com-
putes the maximum value between the two values that are
obtained by evaluating the specified two numeric expressions
numExp1 and numExp2. It gives undefined value ⊥ if one
of them is evaluated to undefined value ⊥ (similarly for the
aggregate function min(numExp1,numExp2) except that it
computes the minimum value). Formally, the semantics of
these functions is defined as follows:

(min(numExp1,numExp2))
τ,k
ν =⎧

⎨

⎩

(numExp1)
τ,k
ν if (numExp1)

τ,k
ν ≤ (numExp2)

τ,k
ν

(numExp2)
τ,k
ν if (numExp1)

τ,k
ν > (numExp2)

τ,k
ν

⊥ otherwise

(max(numExp1,numExp2))
τ,k
ν =⎧

⎨

⎩

(numExp1)
τ,k
ν if (numExp1)

τ,k
ν ≥ (numExp2)

τ,k
ν

(numExp2)
τ,k
ν if (numExp1)

τ,k
ν < (numExp2)

τ,k
ν

⊥ otherwise

The aggregate function concat concatenates the values
that are obtained from the evaluation of the given non-
numeric expression under the valid aggregation range (i.e.,
we only consider the valuewithin the given aggregation range
in which the aggregation condition is satisfied). Moreover,
the concatenation ignores undefined values and treats them
as empty string. The formal semantics of the aggregate func-
tion concat is provided in Fig. 3.

B More showcases

In the following, we present more showcases of prediction
task specification using our language.

B.1 Cost-related prediction

Suppose that each activity within a process has its own cost
and this information is stored in the attribute named cost. The
task for predicting the total cost of a process can be specified
as follows:

R19 = 〈curr < last �⇒
sum(e[x]. cost; where x = 1 : last), 0〉,

where R19 maps each trace prefix τ k into the corresponding
total cost that is computed by summing up the cost of all
activities. We can also specify the task for predicting the
maximal cost within a process as follows:

R20 = 〈curr < last �⇒
max(e[x]. cost; where x = 1 : last), 0〉.
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Fig. 3 Formal Semantics of the aggregate function concat

In this case, R20 computes the maximal cost among the cost
of all activities within the corresponding process. Similarly,
we can specify the task for predicting the average activity
cost as follows:

R21 = 〈curr < last �⇒
avg(e[x]. cost; where x = 1 : last), 0〉.

We could also create a more detailed specification. For
instance, we want to predict the total cost of all validation
activities. This task can be specified as follows:

R22 = 〈curr < last �⇒ TotalValidationCost, 0〉.

where TotalValidationCost is as follows:

sum(e[x]. cost; where x = 1 : last;
and e[x]. concept:name == “Validation”)

In a certain situation, the cost of an activity can be bro-
ken down into several components such as human cost and
material cost. Thus, the total cost of each activity is actually
the sum of the human and material costs. To take these com-
ponents into account, the prediction task can be specified as
follows:

R23 = 〈curr < last �⇒ TotalCost, 0〉.

where TotalCost is as follows:

sum(e[x]. humanCost + e[x].materialCost;
where x = 1 : last)

One might consider a process as expensive if its total cost
is greater than a certain amount (e.g., 550 Eur), otherwise it
is normal. Based on this characteristic, we could specify a
task for predicting whether a process would be expensive or
not as follows:

R24 = 〈TotalCost > 550 �⇒ “expensive”, “normal”〉

where TotalCost = sum(e[x]. cost; where x = 1 : last).

B.2 Predicting process performance

One could consider the process that runs longer than a cer-
tain amount of time as slow, otherwise it is normal. Given a
(partial) process execution information, we might be inter-
ested to predict whether it will end up as a slow or a normal
process. This prediction task can be specified as follows:

R25 = 〈Cond12 �⇒ “Slow”, “normal”〉.
where

Cond12 = (e[last]. time:timestamp −
e[1]. time:timestamp) > 18.000.000.

R25 states that if the total running time of a process is greater
than 18.000.000 milliseconds (5 hours), then it is catego-
rized as slow, otherwise it is normal. During the training,
R25 maps each trace prefix τ k into the corresponding perfor-
mance category (i.e., slow or normal). In this manner, we get
a prediction model that is trained to predict whether a certain
(partial) trace will most likely be slow or normal.

Notice that we can specify a more fine-grained character-
istic of process performance. For instance, we can add one
more characteristic into R25 by saying that the processes that
spend less than 3 hours (10.800.000 milliseconds) are con-
sidered as fast. This is specified by R26 as follows:

R26 = 〈Cond12 �⇒ “Slow”, Cond13 �⇒ “Fast”, “normal”〉

where

Cond13 = (e[last]. time:timestamp −
e[1]. time:timestamp) < 10.800.000

One might consider that a process is performed efficiently
if there are only small amount of task handovers between
resources. On the other hand, one might consider a process
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is efficient if it involves only a certain number of different
resources. Suppose that the processes that have more than
7 times of task handovers among the (human) resources are
considered to be inefficient. We can then specify a task to
predict whether a (partial) trace ismost likely to be inefficient
or not as follows:

R27 = 〈Cond14 > 7 �⇒ “inefficient”, “normal”〉

where Cond14 is specified as follows:

count(e[x]. org:resource 	= e[x + 1]. org:resource;
where x = 1 : last)

,

i.e., Cond14 counts howmany times the value of the attribute
org:resource is changing from a one time point to another
time point by checking whether the value of the attribute
org:resource at a particular time point is different from the
value of the attribute org:resource at the next time point. Now,
suppose that the processes that involve more than 5 resources
are considered to be inefficient. We can then specify a task to
predict whether a (partial) trace ismost likely to be inefficient
or not as follows:

R28 = 〈Cond15 > 5 �⇒ “inefficient”, “normal”〉

where Cond15 = countVal(org:resource; within 1 : last),
i.e., it counts the number of different values of the attribute
org:resource. As before, using R27 and R28, we could then
train a classifier to predict whether a process will most likely
perform inefficiently or normal.

B.3 Predicting future activities/events

The task for predicting the next activity/event can be specified
as follows:

R29 = 〈curr < last �⇒ e[curr + 1]. concept:name, “”〉.

During the construction of the prediction model, R29 maps
each trace prefix τ k into its next activity name, because
e[curr + 1]. concept:name is evaluated to the name of the
next activity.

Similarly, we can specify the task for predicting the next
lifecycle as follows:

R30 = 〈curr < last �⇒ e[curr + 1]. lifecycle:transition, “”〉

In this case, sincee[curr+1]. lifecycle:transition is evaluated
to the lifecycle information of the next event, R30 maps each
trace prefix τ k into its next lifecycle.

Instead of just predicting the information about the next
activity, we might be interested in predicting more informa-
tion such as the information about the next three activities.
This task can be specified as follows:

R31 = 〈curr + 3 ≤ last �⇒ Next3Activities, RemEvents〉.

where

Next3Activities = concat(e[x]. concept:name;
where x = curr + 1 : curr + 3)

RemEvents = concat(e[x]. concept:name;
where x = curr + 1 : last)

During the construction of the prediction model, in the train-
ing phase, R31 maps each trace prefix τ k into the information
about the next three activities.

C Implementation

The implementation of our approach is visually illustrated
in Fig. 4. Essentially, we have two main phases, namely
the preparation and the prediction phases. In the prepara-
tion phase, we construct the prediction models based on the
given event log, as well as based on: (i) the prediction tasks
specification, (ii) the desired encoding mechanisms, and (iii)
the desired classification/regression models. Once the pre-
diction models are built, in the second phase, we can use the
generated models to perform the prediction task in order to
predict the future information of the given partial trace.

As a proof of concept, we have implemented two ProM
plug-ins. One plug-in is for creating the prediction models
based on the given specification, and another plug-in is for
predicting the future information of a partial trace by using
the generated predictionmodels. More information about the
implementation can be found at http://bit.ly/sdprom2.

The use case diagramof our prototype is depicted in Fig. 5.

Build Prediction Model(s)

Desired Encoding
Mechanism

Desired Classification/
Regression Models

Event Logs

Prediction Model(s) Perform Prediction

Prediction Task
Specification

Partial Trace

Prediction Results

Prediction
Phase

Preparation
Phase

Fig. 4 Illustration of the approach and the implementation
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Specify 
Prediction Task

User

Create Prediction
Model

Predict Future
Information

Choose the
Classification/

Regression Model

Choose the
Encoding

Mechanism

<<include>>

<<include>>

<<include>>

SDPROM

Fig. 5 Use case diagram of the prototype
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