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Abstract This paper first establishes consistency of the exponential series density
estimator when nuisance parameters are estimated as a preliminary step. Convergence
in relative entropy of the density estimator is preserved, which in turn implies that
the quantiles of the population density can be consistently estimated. The density
estimator can then be employed to provide a test for the specification of fitted density
functions. Commonly, this testing problem has utilized statistics based upon the empir-
ical distribution function, such as the Kolmogorov-Smirnov or Cramér von-Mises,
type. However, the tests of this paper are shown to be asymptotically pivotal having
limiting standard normal distribution, unlike those based on the edf. For comparative
purposes with those tests, the numerical properties of both the density estimator and
test are explored in a series of experiments. Some general superiority over commonly
used edf based tests is evident, whether standard or bootstrap critical values are used.

Keywords Goodness-of-fit · Nonparametric likelihood ratio · Nuisance parameters
and series density estimator

Mathematics Subject Classification 62G07 · 62G10 · 62E10

1 Introduction

Testing whether a sample of data has been generated from a hypothesized distribution
is one of the fundamental problems in statistics and econometrics. Traditionally such
tests have been constructed from the empirical distribution function (edf). Even under

B Patrick Marsh
Patrick.Marsh@nottingham.ac.uk

1 School of Economics, University of Nottingham, Nottingham NG7 2RD, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10260-018-00432-y&domain=pdf
http://orcid.org/0000-0002-6322-4736


78 P. Marsh

the simplest of sampling schemes such tests are known to be not asymptotically pivotal,
e.g. see Stephens (1976), Conover (1999) and Babu and Rao (2004). Moreover, under
more sophisticated sampling schemes such tests can become prohibitively complex,
see Bai (2003) and Corradi and Swanson (2006).

Instead, this paper provides tests based on a generalization of the consistent series
density estimator of Crain (1974) and Barron and Sheu (1991) . Consistency is main-
tained when nuisance parameters are estimated as a preliminary step. This, when
applied to the infinite dimensional likelihood ratio test of Portnoy (1988) generalizes
the tests of Claeskens and Hjort (2004) and Marsh (2007) to test for specification.

The proposed procedure offers three advantages over those tests based on the edf.
First they are asymptotically pivotal, and numerical experiments are designed and
reported in support of this. This also implies automatic validity, including second-
order as in Beran (1988), of bootstrap critical values. Valid bootstrap critical values
for the non-pivotal edf based tests, e.g. as in Kojadinovic and Yan (2012), do not
benefit from this. Second, they are generally more powerful than the most commonly
used edf based tests. Again numerical evidence is presented to support this. Lastly,
because they are based on a consistent density estimator, in the event of rejection the
density estimator itself can be used to, for instance, consistently estimate the quantiles
of the underlying variable.

The plan for the paper is as follows. The next section presents the density estima-
tor and demonstrates that it converges in relative entropy to the population density.
A corollary provides consistent quantile estimation, with accuracy demonstrated in
numerical experiments. Section 3 provides the nonparametric test, establishes that it
is asymptotically pivotal and consistent against fixed alternatives. A corollary estab-
lishes validity of bootstrap critical values. Numerical experiments are presented in
support of these results as well as demonstrating some superiority over edf based
tests. Section 4 concludes while two appendices present the proofs of two theorems
and tables containing the outcome of the experiments, respectively.

2 Consistent nonparametric estimation of possibly misspecified densities

2.1 Theoretical results

Suppose that our sample y = {Yi }ni=1 consists of independent copies of a random
variable Y having distribution, G (y) = Pr[Y ≤ y] and density g (y) = dG (y) /dy.
For this sample we fit the parametric likelihood, L = ∏n

i=1 f (Yi ;β) for some chosen
density function f (y;β) ,where β is an unknown k×1 parameter. Denote the (quasi)
maximum likelihood estimator for β by β̂n .

In this context the hypothesis to be tested is:

H0 : G(y) = F (y;β0) , (1)

where F (y;β) = ∫ y
−∞ f (z;β) dz and for some (unknown) value β0. Tests for H0

will be detailed in the next Section. First, however, we assume the following, whether
or not H0 holds:
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Nonparametric series density estimation and testing 79

Assumption 1

(i) The density f (y;β) is measurable in y for every β ∈ B, a compact subset of
p−dimensional Euclidean space, and is continuous in β for every y.

(ii) G (y) is an absolutely continuous distribution function, E
[
log[g (y)

]
exists and

|log f (y, β)| < v (y) for all β where v (.) is integrable with respect to G (.) .

(iii) Let

I (β) = E

[

ln

[
g (y)

f (y, β)

]]

=
∫

y
ln

[
g (y)

f (y, β)

]

g (y) ,

then I (β)has a unique minimum at some β∗ ∈ B. (iv) F (Y ;β) is continuously
differentiable with respect to β, such that H (β) = ∂F (Yi , β) /∂β is finite, for
all β in a closed ball of radius ε > 0, around β∗. (v) Both log [g (y)] and
log [ f (y;β)] have r ≥ 2 derivatives in y which are absolutely continuous and
square integrable.

Immediate fromWhite (1982, Theorems 2.1, 2.2 and 3.2) is that under Assumption
1(i–iii) β̂n exists and

β̂n = β∗ + O(n−1/2).

That is β̂n is a
√
n consistent Quasi maximum likelihood estimator for the pseudo-true

value β∗. Note that under H0 we have β∗ = β0. To proceed denote X̂i = F
(
Yi , β̂n

)

having mean value expansion,

X̂i = F (Yi , β∗) +
(
β̂n − β∗

)′
H
(
β+) ,

where β+ lies on a line segment joining β̂n and β∗. As a consequence we can write

X̂i = X̄i + ei , (2)

where X̄i = F (Yi , β∗) and by construction and as a consequence of Assumption 1
(iv),

ei ∈ (−1, 1) & ei = Op

(
n−1/2

)
, (3)

that is ei is both bounded and degenerate.
Since the X̄i are IID denote their common distribution and density function by

U (x) = Pr
[
X̄ < x

]
and u (x) = dU (x) /dx, respectively. Here we will apply the

series density estimator of Crain (1974) and Barron and Sheu (1991) to consistently
estimate u (x) and thus quantiles of U (x), from which the quantiles of G (y) can
be consistently recovered. Application of the density estimator requires choice of
approximating basis, here we choose the simplest polynomial basis, similar to Marsh
(2007).
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80 P. Marsh

We will approximate u (x) via the exponential family,

px (θ) = exp

{
m∑

k=1

θk x
k − ψm

}

, ψm (θ) = ln
∫ 1

0
exp

{
m∑

k=1

θk x
k

}

dx, (4)

where ψm (θ) is the cumulant function, defined so that
∫ 1
0 px (θ)dx = 1.

FromAssumption 1 log [u (x)] has, at least, r−1 absolutely continuous derivatives
and its r th derivative is square integrable. According to Barron and Sheu (1991) there
exists a unique θ(m) = (θ1, . . . , θm)′ satisfying

∫ 1

0
xk px

(
θ(m)

)
dx = μk =

∫ 1

0
xku (x) dx for k = 1, 2, . . . ,m, (5)

and, as m → ∞, px
(
θ(m)

)
converges, in relative entropy, to u (x) at rate m−2r ,

meaning that

EU

[

ln

(
u (x)

px
(
θ(m)

)

)]

=
∫ 1

0
ln

(
u (x)

px
(
θ(m)

)

)

u (x) dx = O
(
m−2r

)
,

asm → ∞.Moreover, if a sample
{
X̄i
}n
1 were available then ifm

3/n → 0 and letting
θ̄(m) be the unique solution to

∫ 1

0
xk px

(
θ̄(m)

)
dx =

∑n
i=1 X̄

k
i

n
for k = 1, 2, . . . ,m, (6)

then px
(
θ̄(m)

)
converges in relative entropy to u (x) ,

EU

[

ln

(
u (x)

px
(
θ̄(m)

)

)]

=
∫ 1

0
ln

(
u (x)

px
(
θ̄(m)

)

)

u (x) dx = Op

(m

n
+ m−2r

)
,

see Theorem 1 of Barron and Sheu (1991).

Here, however, the sample
{
X̄i
}n
1 is not available, instead we only observe

{
X̂i

}n

1
and consequently have θ̂(m) as the unique solution to

∫ 1

0
xk px

(
θ̂(m)

)
dx =

∑n
i=1 X̂

k
i

n
for k = 1, 2, . . . ,m. (7)

Note that the Eqs (5), (6) and (7 ) define one-to-one mappings between the sam-
ple space Ω(m) ∈ R

m and the parameter space Θ(m) ∈ R
m in the exponential

family, see Barndorff-Nielsen (1978). We can therefore define three pairs of m
dimensional parameter and statistics, respectively as

{
θ(m) : μ(m)

}
,
{
θ̄(m) : X̄(m)

}
and
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Nonparametric series density estimation and testing 81

{
θ̂(m) : X̂(m)

}
, where μ(m) = {μk}mk=1, X̄(m) = {

n−1∑n
i=1 X̄

k
i

}m
k=1 and X̂(m) =

{
n−1∑n

i=1 X̂
k
i

}m

k=1
. Generically these mappings can be expressed via

{
θ∗
(m) : {μ∗

k

}m
1

}
where

∫ 1

0
xk px

(
θ∗
(m)

)
dx = μ∗

k , k = 1, . . . ,m. (8)

The uniqueness of these mappings can be exploited in the following Theorem,

proved in Appendix A, to show that the density estimator px
(
θ̂(m)

)
converges in

relative entropy at the same rate as px
(
θ̄(m)

)
.

Theorem 1 Let θ̂(m) denote the estimated exponential parameter determined by (7)
then under Assumption 1 and for m, n → ∞ with m3/n → 0,

EU

⎡

⎣ln

⎛

⎝ u (x)

px
(
θ̂(m)

)

⎞

⎠

⎤

⎦ =
∫ 1

0
ln

⎛

⎝ u (x)

px
(
θ̂(m)

)

⎞

⎠ u (x) dx = Op

(m

n
+ m−2r

)
.

According to Theorem 1, in terms of the density estimator, at least, the effect

of observing
{
X̂1, . . . , X̂n

}
rather than {X1, . . . , Xn} is asymptotically negligible

under Assumption 1 and for either choice of basis. Moreover, if the goal were only
nonparametric estimation of the density, then the optimal choice of the dimension m

is the same as when no parameters are estimated, i.e. mopt ∝ n
1

1+2r (with a mini-
max rate of m∗

n = O
(
n−1/5

)
, since r ≥ 2 by assumption). The optimal rate the

rate of convergence of the estimator remains of order Op

(
n− 2r

1+2r

)
. It should not be

surprising that the rate of convergence is unaffected when parameters are replaced by√
n consistent estimators. Theorem 1 thus generalises the results of Crain (1974) and

Barron and Sheu (1991), as summarized in Lemma 1 of Marsh (2007), by permitting
estimation of nuisance parameters as a preliminary step.

Additionally, we may recover the quantiles of Y from those implied by the approx-
imating series density estimator. This is captured in the following Corollary, which
follows immediately since convergence in relative entropy implies convergence in law.

Corollary 1 Let T̂n,m ∈ (0, 1) be a random variable having density function

pt
(
θ̂(m)

)
where θ̂(m) is defined by (7), then

T̂n,m →
L

X̄ ,

as n,m → ∞,m3/n → 0. I.e. T̂n,m converges in law to the random variable X̄ .
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82 P. Marsh

2.2 Numerical application of a quantile estimator

The consequence of Corollary 1 is that the quantiles associated with Tn,m converge
to those of Y, i.e. letting qA (π) , for 0 < π < 1, denote the quantile function of the
random variable A, we have

q
F−1

(
T̂n,m ;β̂n

) (π) = qY (π) + op (1) . (9)

The following set of experiments compare the Mean Square Errors (MSE) of esti-
mators for the quantiles of Y based on those of T̂n,m for m = 3, 9 and for quantiles
calculated at the probabilities, π = .05, .25, .50, .75, .95. We also compare the accu-
racy of estimated quantiles when unknown parameters are estimated against cases
where they are not.

First suppose that Yi ∼ I I D Y := t(4) but we estimate the Gaussian likelihood
implied by N

(
μ, σ 2

)
. Define

X∗
i = 1

2
[1 + erf (Yi )] & X̂i = 1

2

[

1 + erf

(
Yi − ȳ

σ̂

)]

, i = 1, . . . , n,

the first obtained from the (misspecified) Gaussianmodel imposing zeromean and unit
variance, and the second from the Gaussian model with estimated mean and variance.

Following the development above, as well as that of Barron and Sheu (1991) , let
θ∗
(m) and θ̂(m) and denote the estimated parameters for the exponential series density

estimators for the samples
{
X∗
i

}n
1 and

{
X̂i

}n

1
, respectively. Let T ∗

n,m have density

pt
(
θ∗
(m)

)
(note that this is just straight forward application of the original set-up of

Barron and Sheu 1991) and let T̂n,m have density pt
(
θ̂(m)

)
, as in Corollary 1. The

pairs of estimated quantiles for Y are then constructed as in

q∗
Y (π) = √

2erf−1
(
2qT ∗

n,m
(π) − 1

)
and q̂Y (π) = ȳ + σ̂

√
2erf−1

(
2qT̂n,m

(π) − 1
)

.

The MSE of these quantiles, for each probability π, are presented in Appendix B,
Tables 1a for m = 3 and 1b for m = 9.

Next suppose that Yi ∼ I I D Y := Γ (1.2, 1) and define

X∗
i = 1 − e−Yi & X̂i = 1 − e−Yi /ȳ, i = 1, . . . , n.

Analogous to above let T ∗
n,m and T̂n,m have densities pt

(
θ∗
(m)

)
and pt

(
θ̂(m)

)
and so

pairs of estimated quantiles for Y are constructed via,

q∗
Y (π) = − ln

(
1 − qT ∗

n,m
(π)
)

and q̂Y (π) = −ȳn ln
(
1 − qT̂n,m

(π)
)

.

TheMSE of these quantiles, for each probability π, are presented in Table 1c (m = 3)
and 1d (m = 9).
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Nonparametric series density estimation and testing 83

The consistency of the quantiles obtained from, in particular, T̂m,n is illustrated
clearly in Table 1. More relevant, however, is that estimating the parameters of the
fitted model as a preliminary step produces quantile estimators that can be superior,
as the sample size becomes large, to those obtained by simply imposing parameter
values, as can be clearly seen by comparing the right and left panels in Table 1. Note
also that although the larger value of m yields more accurate quantile estimates in
these cases, this is at some computational cost and, in other cases, potential numerical

instability. Although this latter possibility is greatly mitigated, since the
{
X̂i

}n

i=1
are

bounded.

3 Consistent, asymptotically pivotal tests for goodness of fit

3.1 Main results

Here we provide a test of the null hypothesis that the fitted likelihood is correctly
specified as in (1).The previous section generalized the Barron and Sheu (1991) series
density estimator and the resulting nonparametric likelihood ratio test then generalizes
the test of Marsh (2007).

To proceed note that when H0 is true then in Assumption 1, β∗ = β0 and in (2)
X̄i = F (Yi , β0) ∼ I I DU [0, 1] . Direct generalization of the principle in Marsh
(2007) means that (1) can be tested via,

H0 : lim
m→∞ θ(m) = 0(m), (10)

in the exponential family (4), where θ(m) is the solution to (5) and 0(m) is an m × 1
vector of zeros.

The likelihood ratio test of Portnoy (1988) applied via the density estimator of

Crain (1974) and Barron and Sheu (1991)obtained from the sample
{
X̂1, . . . , X̂n

}
is

λ̂m = 2
n∑

i=1

log

⎡

⎣
pX̂i

(
θ̂(m)

)

pX̂i

(
0(m)

)

⎤

⎦ = 2n
[
θ̂ ′
(m) X̂(m) − ψm

(
θ̂(m)

)]
,

The null hypothesis is rejected for large values of λ̂m .

Under any fixed alternative H1 : G (y) �= F (y;β0) the distribution of X̄i =
Fi (Yi ;β∗)will not be uniform, i.e. θ(m) �= 0(m).For every fixed alternative distribution
for Y there is a unique alternative distribution for X on (0, 1) and associated with that
distribution will be another consistent density estimator given by say, px (θ1(m)). In

practice, of course, θ1(m) will be neither specified nor known. The following Theorem,
again proved in Appendix A, gives the asymptotic distribution of the likelihood ratio
test statistic both under the null hypothesis (10) and also demonstrates consistency
against any such fixed alternative.
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84 P. Marsh

Theorem 2 Suppose that Assumption 1 holds, we construct
{
X̂i

}n

i=1
as described in

(2), and we let m, n → ∞ with m3/n → 0, then:

(i) Under the null hypothesis, H0 : G (y) = F (y;β0) ,

Λ̂m = λ̂m − m√
2m

→d N (0, 1).

(ii) Under any fixed alternative H1 : G (y) �= F (y;β) , for any β, and for any finite
κ,

Pr
[
Λ̂m ≥ κ

]
→ 1.

Theorem 2 generalizes the test of Marsh (2007) establishing asymptotic normality
and consistency against fixed alternatives when β has to be estimated. Via Claeskens
and Hjort (2004) it is demonstrated that as n → ∞ with m3/n → 0, then the test Λ̄m

(i.e. the, here, unfeasible test based on the notional sample
{
X̄i
}n
1) has power against

local alternatives parametrized by θ(m) − 0(m) = c
√√

m
n with c′c = 1. Heuristically,

implicit from the proof of Theorem2 the properties of the test follow from; Λ̂m−Λ̄m =
Op

(√
m
n

)
, and so Λ̂m has power against that same rate of local-alternatives.

3.2 Testing for normality or exponentiality

The likelihood ratio test Λ̂m is asymptotically pivotal, specifically standard normal.
Competitor tests, such as KS, CM and AD (these tests are mathematically detailed in
Stephens 1976 or Conover 1999)) are not pivotal, although asymptotic critical values
are readily available for all cases of testing for Exponentiality and Normality.

First we will demonstrate that indeed asymptotic critical values for nonparametric
likelihood tests do have close to nominal size for large values of n and m. We are
interested in testing the null hypotheses

HE
0 : Y ∼ Exp (1) & HN

0 : Y ∼ N (0, 1) ,

with nominal significance levels 10, 5 and 1% and based on sample sizes n =
25, 50, 100 and 200. Letting ȳn and σ̂ 2

n be the estimated mean and variance (i.e.
β̂n = ȳn for HE

0 and β̂n = (
ȳn, σ̂ 2

n

)′
for HN

0 ) then the tests are constructed from the
mapping to (0, 1) ;

X̂i = 1 − e−Yi /ȳn , (11)

to test HE
0 , and

X̂i = 1

2

[

1 + erf

(
Yi − ȳn

σ̂n

)]

, (12)

to test HN
0 .
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Nonparametric series density estimation and testing 85

Table 2 in Appendix B provides rejection frequencies for the tests constructed for
values of m = 3, 5, 7, 9, 11, 17. The left hand panel of numbers correspond to testing
HE
0 and the right to HN

0 , critical values at the 1, 5 and 10% significance level from
the standard normal distribution are used throughout.

The purpose of these experiments is only to demonstrate that the finite sample
performance of the tests clearly improves as both n and m increase, as predicted by
Theorem 2(i). Note the use of three significance levels to better illustrate convergence
for large values of both m and n.

Although competitor tests are not asymptotically pivotal (and therefore no compar-
isons under the null are made) instead Table 3 compares the 5% size corrected powers
of two variants of the tests, with m = 3 and m = 9 with the three direct competitors
for a single sample size of n = 100. Table 3a and b present rejection frequencies for
these tests and the KS, CM and AD tests for testing HN

0 under alternatives that the
data is instead drawn from,

Ha
1 : Y ∼ t(v), Hb

1 : Y ∼ χ2
(v) − v.

Table 3c, d and e, consider alternatives where the moments of the data are not
correctly specified, i.e.

Hc
1 : Yi |Yi−1 ∼ N (vYi−1, 1) ,

Hd
1 : Yi |Yi−1 ∼ N

(
0, 1 + vY 2

i−1

)
,

He
1 : Yi ∼ N (v × 1 (i > n/2�) , 1) ,

where 1 (.) denotes the indicator function. These latter three alternatives represent
simplistic variants of common types of misspecification in econometric or financial
data, i.e. misspecification of a conditional mean, variance or the possibility of a break
in the mean (here half way through the sample). Note that these models imply that
(2) will not be IID on (0, 1), but ergodicity implies the sample moments will still
converge. Finally, Table 3f considers instead testing HE

0 against the alternative

H f
1 : Y ∼ Γ (1, v) .

In each table the left hand panel corresponds to the case where we construct the
test imposing the parameter values specified in the null rather than estimating them
(i.e. using the, unfeasible, test of Marsh 2007)). The right hand panel has the rejection
frequencies for tests based on estimated values, i.e. using (11) and (12), respectively.

The outcomes in Table 3 imply the following broad conclusions. The nonparametric
likelihood test based Λ̂3 is the most powerful almost uniformly, across all alternatives
and whether parameters are estimated or not. The observed lack of power of the
most commonly used test, KS, is particularly evident, it is consistently the poorest
performing test. The other edf based tests and Λ̂9 are broadly comparable in terms of
their rejection frequencies, although AD is perhaps on average slightly more powerful
and CM less powerful.
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3.3 Bootstrap critical values

The proposed tests require a choice of dimension, m. The results presented in Tables
2 and 3 suggest an inevitable compromise, larger values of m imply tests having size
closer to nominal, while smaller values of m imply tests having greater power. In
order to overcome this compromise we can instead consider the properties of these
tests when bootstrap critical values are instead employed.

For these tests the bootstrap procedure is as follows: On obtaining the MLE β̂n and
calculating Λ̂3, as described above;

1. Generate bootstrap samples Yb
i ∼ I I D F

(
y; β̂n

)
for i = 1, . . . , n.

2. Estimate, via ML, β̂b
n and construct X̂b

i = F
(
Yb
i ; β̂b

n

)
for i = 1, . . . , n.

3. Repeat 1 and 2 B times, obtaining bootstrap versions of the test Λ̂b
3.

4. Order the Λ̂b
3 so the bootstrap critical value at size α is κB = Λ̂

(1−α)B/100�
3 .

5. Denote the indicator function ÎΛ
B =

{
1 if Λ̂3 > κB

α

0 if Λ̂3 ≤ κB
α

}

.

We then reject H0 if ÎΛ
B = 1. First, however, the required asymptotic justification for

the bootstrap is automatic given that Λ̂m →d N (0, 1) giving the following corollary
to Theorem 2.

Corollary 2 Under Assumption 1 and if n,m → ∞ with m3/n → 0, then

i)Pr
[
ÎΛ
B = 1 | H0

]
→ α,

ii) Pr
[
ÎΛ
B = 1 | H1

]
→ 1.

Herewewill compare the performance of bootstrap critical values for Λ̂3 with those
of CM and AD by repeating many of the experiments of Kojadinovic and Yan (2012).
In this sub-section all experiments described in this sub-section are performed on the
basis of B = 200 bootstrap replications. All nuisance parameters were estimated via
maximum likelihood using Mathematica 8’s own numerical optimization algorithm.

The first set of experiments mimic those presented in Kojadinovic and Yan (2012,
Table 1). Specifically we define the following Normal, Logistic, Gamma and Weibull
Distributions;

N∗ ∼ N (10, 1) , L∗ ∼ L (10, 0.572) ,

Γ ∗ ∼ Γ (98.671, 1/9.866) & W ∗ ∼ W (10.618, 10.452) . (13)

The specific parameter values for L∗, Γ ∗ and W ∗ are chosen to minimize relative
entropy (I (β) in Assumption 1(iii)) for each family to the distribution of N∗. Sample
sizes of n = 25, 50, 100, 200 are used in the experiments described below.

Table 4a contains the finite sample size of each test. It is clear that, under H0, the
parametric bootstrap provides highly accurate critical values for all of the tests. On
size alone there is nothing to choose between them. It is however, worth reporting, the
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computational time of each bootstrap critical value. For the Λ̂3 test critical values were
obtained after 2.0 and 3.2 seconds for sample sizes n = 100 and 200, respectively.
The times for the other tests were similar to each other, taking around 0.9 and 2.9
seconds, respectively.

Table 4b and c contain the finite sample rejection frequencies under various alter-
native hypotheses, covering all pairwise permutations of the distributions in (13). As
with the finite sample sizes it is not possible to pick a clear winner, moreover where
they overlap the results are in line with those of Kojadinovic and Yan (2012). There
is, of course, no uniformly most powerful test of goodness-of-fit so it is not surprising
that the power of Λ̂3 is not always the largest. However its performance over this range
of nulls and alternatives is far less volatile and in no circumstance is the test dominated
by any of the other two.

4 Conclusions

This paper has generalized the series density estimator of Barron and Sheu (1991) to
cover the case where parameters are estimated in the context of misspecified models.
The nonparametric likelihood ratio tests of Marsh (2007) can be thus extended to
cover the case of estimated parameters. The general aim has been to provide a testing
procedure which overcomes the three main criticisms of edf based tests, i.e. that they
are not pivotal, have low power, and offer no direction in case of rejection.

Instead the tests of this paper are shown to be asymptotically standard normal and
they have power advantages over edf tests, whether critical values are size corrected
or obtained by a consistent bootstrap. This suggests the proposed tests will be much
simpler to generalize to the settings of Bai (2003) or Corradi and Swanson (2006).
Finally, in the event of rejection, the series density estimator upon which the tests are
built may be employed to consistently estimate the quantiles of the density fromwhich
the sample is taken.
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A Appendix A: Proofs

In order to avoid any ambiguity throughout this appendix the order of magnitude
symbol O(.) is defined by,

an,m = O
(
bn,m

) ⇐⇒ lim
m,n→∞ ; m3/n→0

an,m

bn,m
≤ c1 < ∞,

123

http://creativecommons.org/licenses/by/4.0/


88 P. Marsh

and analogously for the probabilistic versions Op(.) and op(.). If the quantity under
scrutiny does not depend upon the dimensionm then the conditionm3/n → 0 becomes
redundant.

Proof of Theorem 1:
First recall the definitions note ,

X̂(m) =
{∑n

i=1 X̂
k
i

n

}m

k=1

, X̄(m) =
(∑n

i=1 X
k
i

n

)′
and μ(m) = E

[
X̄(m)

]
.

The Euclidean distance between the two polynomial sufficient statistics satisfies,

∣
∣
∣X̂(m) − X̄(m)

∣
∣
∣ =

∣
∣
∣
∣
∣

1

n

(
n∑

i=1

(
X̂i − X̄i

)
, . . . ,

n∑

i=1

(
X̂m
i − X̄m

i

)
)′∣∣
∣
∣
∣

≤
m∑

j=1

∣
∣
∣
∣
∣

1

n

n∑

i=1

(
X̂ j
i − X̄ j

i

)
∣
∣
∣
∣
∣
.

Taking the j th element and noting X̂i = Xi + ei ,then

1

n

n∑

i=1

(
X̂ j
i − X̄ j

i

)
= 1

n

n∑

i=1

((
X̄i + ei

) j − X̄ j
i

)

= 1

n

n∑

i=1

j∑

s=0

(
j !

s!( j − s!) X̄
j−s
i esi − X̄ j

i

)

= 1

n

n∑

i=1

j∑

s=1

j !
s!( j − s)! X̄

j−s
i esi .

Since X̄i ∈ (0, 1) while, as in (3), ei = Op(n−1/2) and ei ∈ (−1, 1) then,

j !
s!( j − s)! X̄

j−s
i esi ≤ j s

s! c
j−s
1 esi = j s

s! c
j−s
1 Op

(
n−s/2

)
, (14)

where c1 < 1. For finite j (14) is Op
(
n−s/2

)
while as j → ∞ (14) is o (1) Op

(
n−s/2

)

and so,

sup
j∈N

j !
s!( j − s)! X̄

j−s
i esi = Op

(
n−s/2

)
,

implying that

j∑

s=1

j !
s!( j − s)! X̄

j−s
i esi = Op(n

−1/2),
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uniformly in j, and hence,

1

n

n∑

i=1

(
X̂ j
i − X̄ j

i

)
= 1

n

n∑

i=1

⎛

⎝
j∑

s=1

j !
s!( j − s!) X̄

j−s
i esi

⎞

⎠ = Op(n
−1/2).

Consequently, and also from the definition of Euclidean distance, we have,

∣
∣
∣X̂(m) − X̄(m)

∣
∣
∣ =

√
√
√
√
√

m∑

j=1

(
1

n

n∑

i=1

(
X̂ j
i − X̄ j

i

)
)2

= Op

(√
m

n

)

. (15)

Consider now μ(m), then from the triangle inequality,

∣
∣
∣X̂(m) − μ(m)

∣
∣
∣ ≤ ∣

∣X̄(m) − μ(m)

∣
∣+

∣
∣
∣X̂(m) − X̄(m)

∣
∣
∣ = Op

(√
m

n

)

, (16)

which follows from (15) and noting the same order of magnitude applies for the first
distance, as in Barron and Sheu (1991, eq. 6.5), which represents the distance in the

case that the sequence
(
X̄ j
i

)n

1
were observed directly.

We thus have
∣
∣
∣X̂(m) − μ(m)

∣
∣
∣ = Op

(√
m
n

)
and

∣
∣
∣X̂(m) − μ(m)

∣
∣
∣ = Op

(√
m
n

)
, so

that utilizing the respective MLEs and extending the decomposition of the Kullback-
Leibler divergence of Barron and Sheu (1991, eq. 6.9) we obtain,

EU

[

ln

(
u(x)

px (θ̂(m))

)]

= EU

[

ln

(
u(x)

px (θ(m))

)]

+ EU

[

ln

(
px (θ(m))

px (θ̄(m))

)]

+EU

[

ln

(
px (θ̄(m))

px (θ̂(m))

)]

. (17)

Given that Assumption 1 assures the required conditions of Barron and Sheu (1991,
Theorem 1) are met then the first two terms in (17) are, respectively, O(m−2r ) and
Op(m/n), noting that under Assumption 1, log[u(x)] ∈ Wr

2 . Application of Barron
and Sheu (1991, Lemma 5), which holds for any two values in Ωm ⊂ R

m, here
uniquely defined by Eqs (6) and ( 7), implies that

O

(

EU

[

ln

(
px (θ̄(m))

px (θ̂(m))

)])

= Op

(∣
∣
∣X̂(m) − X̄(m)

∣
∣
∣
2
)

= Op

(m

n

)
,
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and hence

EU

[

ln

(
u(x)

px (θ̂(m))

)]

= O(m−2r ) + Op

(m

n

)
+ Op

(m

n

)

= Op

(
m−2r + m

n

)
,

as required. ��
Proof of Theorem 2:

Consider the problem of testing H0 : θ(m) = 0(m) against the alternative H1 :
θ(m) �= 0(m) when n,m → ∞, but m3/n → 0. For notational convenience and
comparisons with Portnoy (1988) and Barron and Sheu (1991), expressions involving
θ(m) will not be immediately resolved.

Part (i): To proceed we have defined,

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
X̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
0(m)

))
]

,

where θ̂(m) solves (7), or equivalently,

ψ ′
m

(
θ̂(m)

)
= ∂ψm

(
θ(m)

)

∂θ(m)

∣
∣
∣
∣
∣
θ(m)=θ̂(m)

= X̂(m).

Similarly the value 0(m) defines,

ψ ′
m

(
0(m)

) = μ(m) = E(X̄(m)).

The exponential log-likelihood is strictly convex so that the mapping, ψ ′
m

(
θ(m)

) =
μ(m) is one-to-one between the parameter space Θm ⊂ R

m and sample space Ωm ⊂
R
m , similar to (8). Application of Barron and Sheu (1991, eq. 5.6) and also (16) thus

gives,

Op

(∣
∣
∣θ̂(m) − 0(m)

∣
∣
∣
)

= Op

(∣
∣
∣X̂(m) − μ(m)

∣
∣
∣
)

= Op

(√
m

n

)

. (18)

As a consequence of both (18) and (16) we have that,

Op

(∣
∣
∣θ̂(m) − 0(m)

∣
∣
∣
)

= Op
(∣
∣θ̄(m) − 0(m)

∣
∣
)

&

Op

(∣
∣
∣X̂(m) − μ(m)

∣
∣
∣
)

= Op
(∣
∣X̄(m) − μ(m)

∣
∣
)
,

and note that the expansions provided in the provided in the proofs of Theorems 3.1
and 3.2 of Portnoy (1988) apply for any two pairs of values, here

(
θ̄(m), 0(m)

)
and

(
X̄(m), μ(m)

)
.
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To continue, noting expectations under the null hypothesis can be written here as
EU [.] since X̄ ∼ U := U [0, 1], the uniform distribution with density p0(m)

(x) = 1,
we then have expansions analogous to Portnoy (1988, eq. 3.5 and 3.6),

|θ̂(m) − 0(m)|2 =
(
θ̂(m) − 0(m)

)′
x̂(m) − 1

2
EU0

[(
θ̂(m) − 0(m)

)′
U

]2
+ Op

(
m2

n2

)

,

and (19)
(
θ̂(m) − 0(m)

)′
x̂(m) = |X̂(m)|2 − 1

2
EU0

[((
θ̂(m) − 0(m)

)′
U

)2

X̂ ′
(m)U

]

+ Op

(
m2

n2

)

.

(20)

Subtracting (20) from (19) and applying arguments identical to those given below
Portnoy (1988, Theorem 3.1, eq. 3.7) yields,

|θ̂(m) − θ(m) − X̂(m)| = Op

(m

n

)
.

From the definition of the likelihood ratio test we therefore have,

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
X̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
0(m)

))
]

= n

[

|X̂(m)|2 − |θ̂(m) − θ0(m) − X̂(m)|2 + 1

6
Eθ0

((
θ̂(m) − 0(m)

)′
U

)3
]

+Op

(
m2

n

)

, (21)

as in Portnoy (1988, eq. 3.12). Let ē = X̂(m) − X̄(m) then from the proof of Theorem
1, we have

|X̂(m)|2 = |X̄(m) + ē|2 = |X̄(m)|2 + Op

(m

n

)
. (22)

Now define the m × 1 random variable Vm = ψ
′′
m

(
0(m)

)−1/2 (
x̄ − ψ ′

m

(
0(m)

))
,

having density pV
(
θV
(m)

)
, so that E [V ] = 0(m) and Var [Vm] = Im . Since the

likelihood ratio statistic is parameterization invariant the likelihood ratio test based on
observations on Vm would be identical to that based on X̄(m). Rather than defining a
new triple of values, analogous to those in (5), (6) and (7) , in both the parameter space
Θm (note that in particular the hypothesized valuewould no longer satisfy θ(m) = 0(m))
and sample space Ωm we will instead, and without any loss of generality assume a
parameterization in which both E

[
X̄(m)

] = 0 and V
[
X̄(m)

] = Im . Note, however,

that it is the unobserved X̄ which is assumed to be standardized not the observed X̂(m).

In this parameterization the asymptotic distribution of first |X̄(m)|2 and hence

|X̂(m)|2 (via (22)) and then via (21) for Λ̂m = λ̂m−m√
2m

follows exactly as in Portnoy
(1988, Theorem 4.1). ��
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Part (ii): Under any fixed alternative the density of X̄i = F (Yi ;β∗) is

u1 (x) = g
(
F−1 (x;β∗)

)

f
(
F−1 (x;β∗)

) ,

and so let θ1(m) be the unique solution to,

∫ 1

0
x j ph

(
θ1(m)

)
dx =

∫ 1

0
h j u1 (x) dx ; j = 1, . . . ,m. (23)

The uniqueness of solutions to (23) imply θ1(m) �= 0(m).

To take the least favorable case, define

θ1(m) =
(
θ11 , .θ12 , . . . , θ1m

)′

and suppose that θ1k �= 0 for some finite k but that θ1j = 0 for all j �= k. The series

density estimator is consistent for θ1(m), under H1, in that
∣
∣
∣θ̂(m) − θ1(m)

∣
∣
∣ = Op

(√
m
n

)
,

analogous to (18) above, and so we can write,

n
(
θ̂(m) − 0(m)

)′
X̂(m) = n

[
(
θ̂(m) − θ1(m)

)′
x̂(m) +

(
θ1k

) 1

n

n∑

i=1

φk

(
X̂i

)
]

.

We can therefore write the likelihood ratio as

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
X̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
0(m)

))
]

= 2n

[(
θ̂(m) − θ1(m)

)′
X̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
θ1(m)

))]

+2n

[
(
θ1k − θ0k

) 1

n

n∑

i=1

X̂ k
i −

(
ψm

(
θ1(m)

)
− ψm

(
0(m)

))
]

= λ̂1m + 2n

[
(
θ1k − θ0k

) 1

n

n∑

i=1

X̂ k
i −

(
ψm

(
θ1(m)

)
− ψm

(
0(m)

))
]

,

where λ̂1m is the likelihood ratio for testing H1 : θ(m) = θ1(m).

Thus, under H1, we can write

Λ̂m = λ̂m − m√
2m

= λ̂1m − m√
2m

+
2n
[(

θ1k − θ0k

) 1
n

∑n
i=1 X̂

k
i −

(
ψm

(
θ1(m)

)
− ψm

(
0(m)

))]

√
2m

.

Immediate from Part (i) of this theorem is that as m, n → ∞ , with m3/n → 0,

λ̂1m − m√
2m

→d N (0, 1) ,
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i.e.
(
λ̂1m − m

)
/
√
2m is Op (1) .However, sinceψm (.) is a uniquely defined cumulant

function then

ψm

(
θ1(m)

)
− ψm

(
θ0(m)

)
�= 0,

and since 0 < X̂i < 1 then 1
n

∑n
i=1 X̂

k
i = Op (1) and positive. Consequently,

Λ̂m = Op (1) + Op

(
n√
m

)

→ ∞,

since m3/n → 0 and hence Pr
[
Λ̂m > κ

]
→ 1, as required. ��

B Appendix B: Tables

See Tables 1, 2, 3, and 4.

Table 1 Mean Square Errors of Quantiles

n q∗
YΓ q∗

YΓ q∗
YΓ q∗

YΓ q̂YΓ q̂YΓ q̂YΓ q̂YΓ

π 25 50 100 200 25 50 100 200

a:MSE of estimated quantiles for Y ∼ t(4), m = 3.

.05 .1266 .0906 .0774 .0718 .1309 .0731 .0506 .0389

.25 .0450 .0227 .0127 .0066 .0446 .0218 .0119 .0058

.50 .0397 .0183 .0101 .0049 .0348 .0159 .0087 .0042

.75 .0442 .0222 .0126 .0074 .0445 .0215 .0117 .0066

.95 .1293 .0976 .0768 .0693 .1333 .0806 .0505 .0375

b:MSE of estimated quantiles for Y ∼ t(4), m = 9.

.05 .1408 .1270 .1179 .1159 .1060 .0551 .0354 .0240

.25 .0308 .0187 .0139 .0116 .0513 .0244 .0138 .0064

.50 .0175 .0089 .0053 .0023 .0411 .0182 .0105 .0052

.75 .0313 .0194 .0138 .0113 .0512 .0253 .0123 .0065

.95 .1441 .1271 .1186 .1155 .1077 .0599 .0344 .0228

c:MSE of estimated quantiles for Y ∼ Γ (1.2, 1), m = 3.

.05 .0025 .0014 .0012 .0012 .0035 .0012 .0005 .0004

.25 .0157 .0083 .0046 .0027 .0202 .0099 .0049 .0022

.50 .0451 .0235 .0127 .0077 .0563 .0246 .0120 .0061

.75 .0890 .0487 .0279 .0188 .1381 .0601 .0348 .0172

.95 .3088 .2109 .1644 .1449 .0538 .2364 .1378 .0709
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Table 1 continued

n q∗
YΓ q∗

YΓ q∗
YΓ q∗

YΓ q̂YΓ q̂YΓ q̂YΓ q̂YΓ

π 25 50 100 200 25 50 100 200

d:MSE of estimated quantiles for Y ∼ Γ (1.2, 1), m = 9.

.05 .0006 .0004 .0003 .0003 .0002 .0001 .0001 .0000

.25 .0094 .0065 .0051 .0042 .0033 .0017 .0009 .0004

.50 .0494 .0375 .0335 .0310 .0156 .0073 .0037 .0019

.75 .2085 .1676 .1583 .1532 .0626 .0276 .0146 .0078

.95 .4456 .3352 .2380 .1395 .2180 .1093 .0527 .0267

Table 2 Sizes of tests for both
HE
0 and HN

0 for different m and
n

HE
0 HN

0

α .10 .05 .01 .10 .05 .01
m

n = 25

3 .035 .016 .003 .030 .013 .003

5 .050 .025 .004 .041 .019 .002

7 .062 .033 .006 .049 .024 .004

9 .064 .034 .006 .051 .023 .004

13 .069 .037 .006 .050 .028 .009

17 .063 .031 .005 .055 .023 .003

n = 50

3 .044 .019 .003 .034 .017 .005

5 .047 .023 .005 .041 .023 .004

7 .063 .030 .005 .051 .027 .004

9 .067 .032 .006 .059 .028 .004

13 .074 .035 .004 .065 .031 .005

17 .069 .029 .006 .066 .029 .006

n = 100

3 .051 .026 .004 .035 .019 .003

5 .056 .028 .006 .043 .021 .004

7 .068 .035 .008 .056 .028 .005

9 .073 .040 .007 .065 .031 .005

13 .085 .047 .008 .075 .038 .007

17 .091 .043 .009 .081 .041 .009

n = 200

3 .051 .023 .005 .045 .021 .004

5 .061 .037 .006 .053 .029 .007

7 .071 .043 .008 .063 .031 .006

9 .081 .045 .011 .078 .040 .006

13 .095 .047 .009 .086 .045 .009

17 .097 .048 .011 .095 .049 .011
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Table 3 Rejection frequencies under various alternatives. The left hand panels corresponds parameter
values imposed, while for the right had panels they are estimated

a Power H0 : Y ∼ N (0, 1) vs. H1 : Y ∼ t(v).

v 4 6 8 10 12 4 6 8 10 12

Λ̂3 .935 .705 .386 .267 .114 .605 .294 .166 .127 .097

Λ̂9 .856 .563 .254 .159 .087 .494 .241 .133 .111 .081

KS .614 .206 .091 .055 .049 .217 .114 .075 .059 .052

CM .722 .309 .165 .092 .061 .296 .132 .087 .075 .066

AD .767 .361 .182 .115 .065 .530 .240 .139 .103 .090

b Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ χ2
(v)

− v.

v 12 20 28 36 44 12 20 28 36 44

Λ̂3 .859 .660 .577 .476 .422 .572 .274 .189 .146 .114

Λ̂9 .796 .641 .546 .427 .377 .388 .189 .158 .111 .096

KS .717 .568 .443 .388 .350 .238 .151 .106 .093 .075

CM .837 .663 .563 .463 .403 .274 .176 .131 .100 .091

AD .843 .647 .529 .439 .388 .286 .165 .117 .098 .083

c Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N
(
vYi−1, 1

)
.

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂3 .694 .592 .386 .161 .093 .902 .736 .510 .271 .101

Λ̂9 .688 .483 .351 .141 .071 .847 .683 .461 .235 .091

KS .592 .458 .254 .091 .053 .579 .359 .207 .122 .058

CM .690 .585 .362 .140 .066 .648 .448 .273 .162 .083

AD .691 .580 .371 .138 .057 .866 .704 .471 .242 .089

d Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N
(
0, 1 + vY 2

i−1

)
.

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂P
3 .722 .514 .276 .116 .079 .869 .729 .493 .225 .106

Λ̂9 .704 .503 .263 .113 .074 .864 .740 .460 .225 .094

KS .568 .361 .161 .063 .052 .509 .350 .201 .112 .080

CM .709 .497 .255 .109 .075 .511 .352 .185 .115 .073

AD .708 .494 .246 .088 .054 .849 .721 .451 .215 .088

e Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N
(
v1t>T/2�, 1

)
.

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂3 .754 .563 .349 .196 .079 .653 .495 .274 .141 .080

Λ̂9 .738 .525 .311 .173 .064 .592 .442 .256 .139 .066

KS .256 .189 .127 .088 .052 .542 .349 .185 .078 .059

CM .362 .291 .164 .103 .066 .601 .445 .260 .130 .078

AD .750 .539 .321 .185 .075 .625 .467 .258 .111 .067
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Table 3 continued

f: Power H0 : Yi ∼ Exp [1] vs. H1 : Yi ∼ Γ (v, 1) .

v 1.10 1.15 1.20 1.25 1.30 1.10 1.15 1.20 1.25 1.30

Λ̂3 .115 .121 .238 .305 .428 .191 .298 .585 .769 .866

Λ̂9 .103 .106 .179 .277 .398 .177 .285 .550 .712 .825

KS .066 .069 .136 .200 .252 .096 .193 .404 .616 .747

CM .094 .099 .179 .237 .343 .174 .280 .551 .732 .853

AD .097 .109 .227 .303 .419 .182 .299 .589 .770 .884

Table 4 Rejection frequencies
at 5% level under a the
respective null hypotheses b, c
various alternatives

a: Rejection frequencies at 5% level under the respective null
hypotheses

n 25 50 100 200

(i) HN
0 : Y ∼ N∗

Λ̂3 .064 .065 .058 .044

CM .064 .058 .057 .054

AD .060 .059 .062 .058

(ii) HΓ
0 : Y ∼ Γ ∗

Λ̂3 .062 .056 .049 .046

CM .068 .060 .065 .061

AD .065 .055 .052 .061

(iii) HW
0 : Y ∼ W∗

Λ̂3 .067 .055 .055 .047

CM .063 .058 .056 .058

AD .055 .066 .065 .057

(iv) HL
0 ∼ L∗

Λ̂3 .065 .062 .050 .042

CM .071 .066 .059 .055

AD .062 .054 .055 .055
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Table 4 continued b: Rejection frequencies at 5% level under various alternatives

n 25 50 100 200

(i) H0 : Y ∼ N∗ vs. H1 : Y ∼ Γ ∗

Λ̂m .069 .088 .116 .175

CM .078 .094 .123 .185

AD .069 .090 .108 .161

(ii) H0 : Y ∼ Γ ∗ vs. H1 : Y ∼ N∗

Λ̂m .068 .085 .099 .129

CM .055 .066 .079 .088

AD .076 .085 .092 .113

(iii) H0 : Y ∼ N∗ vs. H1 : Y ∼ W∗

Λ̂m .196 .364 .584 .897

CM .094 .192 .465 .776

AD .183 .315 .550 .806

(iv) H0 : Y ∼ W∗ vs. H1 : Y ∼ N∗

Λ̂m .101 .164 .351 .690

CM .107 .233 .388 .580

AD .098 .164 .334 .602

(v) H0 : Y ∼ N∗ vs. H1 : Y ∼ L∗

Λ̂m .173 .249 .393 .458

CM .111 .152 .212 .358

AD .131 .190 .246 .417

(vi) H0 : Y ∼ L∗ vs. H1 : Y ∼ N∗
n 25 50 100 200

Λ̂m .046 .055 .065 .101

CM .036 .054 .073 .109

AD .041 .046 .070 .108
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Table 4 continued c: Rejection frequencies at 5% level under various alternatives

n 25 50 100 200

(i) H0 : Y ∼ Γ ∗ vs. H1 : Y ∼ L∗

Λ̂m .091 .122 .188 .253

CM .078 .081 .122 .193

AD .105 .128 .174 .257

(ii) H0 : Y ∼ Γ ∗ vs. H1 : Y ∼ W∗

Λ̂m .285 .448 .709 .937

CM .320 .476 .781 .970

AD .155 .306 .638 .938

(iii) H0 : Y ∼ W∗ vs. H1 : Y ∼ Γ ∗
n 25 50 100 200

Λ̂m .197 .355 .719 .945

CM .200 .315 .534 .836

AD .117 .219 .482 .851

(iv) H0 : Y ∼ W∗ vs. H1 : Y ∼ L∗
n 25 50 100 200

Λ̂m .172 .327 .620 .867

CM .215 .343 .542 .797

AD .159 .277 .500 .816

(v) H0 : Y ∼ L∗ vs. H1 : Y ∼ Γ ∗

Λ̂m .059 .082 .120 .152

CM .059 .081 .130 .161

AD .051 .059 .101 .148

(vi) H0 : Y ∼ L∗ vs. H1 : Y ∼ W∗

Λ̂m .243 .343 .592 .892

CM .124 .241 .519 .882

AD .204 .325 .583 .912
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