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Abstract This paper first establishes consistency of the exponential series density
estimator when nuisance parameters are estimated as a preliminary step. Convergence
in relative entropy of the density estimator is preserved, which in turn implies that
the quantiles of the population density can be consistently estimated. The density
estimator can then be employed to provide a test for the specification of fitted density
functions. Commonly, this testing problem has utilized statistics based upon the empir-
ical distribution function, such as the Kolmogorov-Smirnov or Cramér von-Mises,
type. However, the tests of this paper are shown to be asymptotically pivotal having
limiting standard normal distribution, unlike those based on the edf. For comparative
purposes with those tests, the numerical properties of both the density estimator and
test are explored in a series of experiments. Some general superiority over commonly
used edf based tests is evident, whether standard or bootstrap critical values are used.

Keywords Goodness-of-fit - Nonparametric likelihood ratio - Nuisance parameters
and series density estimator

Mathematics Subject Classification 62G07 - 62G10 - 62E10

1 Introduction

Testing whether a sample of data has been generated from a hypothesized distribution
is one of the fundamental problems in statistics and econometrics. Traditionally such
tests have been constructed from the empirical distribution function (edf). Even under
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the simplest of sampling schemes such tests are known to be not asymptotically pivotal,
e.g. see Stephens (1976), Conover (1999) and Babu and Rao (2004). Moreover, under
more sophisticated sampling schemes such tests can become prohibitively complex,
see Bai (2003) and Corradi and Swanson (2006).

Instead, this paper provides tests based on a generalization of the consistent series
density estimator of Crain (1974) and Barron and Sheu (1991) . Consistency is main-
tained when nuisance parameters are estimated as a preliminary step. This, when
applied to the infinite dimensional likelihood ratio test of Portnoy (1988) generalizes
the tests of Claeskens and Hjort (2004) and Marsh (2007) to test for specification.

The proposed procedure offers three advantages over those tests based on the edf.
First they are asymptotically pivotal, and numerical experiments are designed and
reported in support of this. This also implies automatic validity, including second-
order as in Beran (1988), of bootstrap critical values. Valid bootstrap critical values
for the non-pivotal edf based tests, e.g. as in Kojadinovic and Yan (2012), do not
benefit from this. Second, they are generally more powerful than the most commonly
used edf based tests. Again numerical evidence is presented to support this. Lastly,
because they are based on a consistent density estimator, in the event of rejection the
density estimator itself can be used to, for instance, consistently estimate the quantiles
of the underlying variable.

The plan for the paper is as follows. The next section presents the density estima-
tor and demonstrates that it converges in relative entropy to the population density.
A corollary provides consistent quantile estimation, with accuracy demonstrated in
numerical experiments. Section 3 provides the nonparametric test, establishes that it
is asymptotically pivotal and consistent against fixed alternatives. A corollary estab-
lishes validity of bootstrap critical values. Numerical experiments are presented in
support of these results as well as demonstrating some superiority over edf based
tests. Section 4 concludes while two appendices present the proofs of two theorems
and tables containing the outcome of the experiments, respectively.

2 Consistent nonparametric estimation of possibly misspecified densities
2.1 Theoretical results

Suppose that our sample y = {¥;}i_; consists of independent copies of a random
variable Y having distribution, G (y) = Pr[Y < y] and density g (v) = dG (y) /dy.
For this sample we fit the parametric likelihood, L = []/_, f (¥;; B) for some chosen
density function f (y; B8), where B is an unknown k x 1 parameter. Denote the (quasi)
maximum likelihood estimator for 8 by ,3”.

In this context the hypothesis to be tested is:

Hy: G(y) = F (y; Bo) » (D

where F (y; B) = f Y oo J (z; B) dz and for some (unknown) value By. Tests for Hy
will be detailed in the next Section. First, however, we assume the following, whether
or not Hy holds:
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Assumption 1

(i) The density f (y; B) is measurable in y for every 8 € B, a compact subset of
p—dimensional Euclidean space, and is continuous in 8 for every y.

(i) G (y) is an absolutely continuous distribution function, £ [log[g (y)]exists and
[log f (v, B)| < v (y) forall B where v (.) is integrable with respect to G (.) .

(ii1) Let
g / [ g () }
1) =E|l — |1 ,
® [HL@ﬂJ] 7o Y

then 7 (B)has a unique minimum at some S, € B. (iv) F (Y; B) is continuously
differentiable with respect to 8, such that H (8) = o F (Y;, B) /9B is finite, for
all B in a closed ball of radius € > 0, around B,. (v) Both log[g (y)] and
log[f (v; B)] have r > 2 derivatives in y which are absolutely continuous and
square integrable.

Immediate from White (1982, Theorems 2.1, 2.2 and 3.2) is that under Assumption
1(i-iii) B, exists and

Bu = B+ 0112,

That is ,3,, is a 4/n consistent Quasi maximum likelihood estimator for the pseudo-true
value B,. Note that under Hy we have 8, = By. To proceed denote X;=F (Yi, ,3”)
having mean value expansion,

)A(,' = F(Y,‘, /3*) + (,én _ﬂ*)/H(/BJr) ’

where B lies on a line segment joining B, and B. As a consequence we can write

A

Xi=X; +e, (2)

where X; = F (Y;, B;) and by construction and as a consequence of Assumption 1

(iv),
cie(-1.1) & ¢ =0, (n*‘/z), 3)

that is e; is both bounded and degenerate.

Since the X; are IID denote their common distribution and density function by
U((x)=Pr [)_( < x] and u (x) = dU (x) /dx, respectively. Here we will apply the
series density estimator of Crain (1974) and Barron and Sheu (1991) to consistently
estimate u (x) and thus quantiles of U (x), from which the quantiles of G (y) can
be consistently recovered. Application of the density estimator requires choice of
approximating basis, here we choose the simplest polynomial basis, similar to Marsh
(2007).
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We will approximate u (x) via the exponential family,

m 1 m
px(0) = exp {Zkak - wm} . Um (0) = lnf exp {Zkak} dx, (4
0 k=1

k=1

where ¥, (0) is the cumulant function, defined so that fol px(@)dx = 1.

From Assumption 1 log [u (x)] has, at least, » — 1 absolutely continuous derivatives
and its r'* derivative is square integrable. According to Barron and Sheu (1991) there
exists a unique O,y = (01, ..., O) satisfying

1 1
/Oxkpx(e(m))dxz,uszo xku(x)dx fork=1,2,...,m, 5)

and, as m — 00, py (G(m)) converges, in relative entropy, to u (x) at rate m2,

meaning that

u (x) /1 u (x) o
Eylln| ———— = In|{ ——— dx =0 ,
U |:n (px (9(m))>] ; n (px (9(171))> u(x)dx <m )

asm — oo. Moreover, if a sample { X; }| were available then if m/n — 0 and letting
O(n) be the unique solution to

1 B nooxk
/(;xkpx(e(m))dng fork=1,2,...,m, (6)

n

then p, (é(m)) converges in relative entropy to u (x),

u (x) /1 ( u (x) ) m _or
Ey|In| —— = In| ——|u(x)dx=0,(—+m ,
Y [ (Px (Oom) )} o \2x(bum) ! (” )

see Theorem 1 of Barron and Sheu (1991).

n

Here, however, the sample {)_( i }1

N n
is not available, instead we only observe {X i }1
and consequently have é(m) as the unique solution to

1 . no Xk
/Oxkpx<9(m)>dx:% fork=1,2,...,m. @)

Note that the Egs (5), (6) and (7 ) define one-to-one mappings between the sam-
ple space £2¢,) € R™ and the parameter space @,y € R” in the exponential
family, see Barndorff-Nielsen (1978). We can therefore define three pairs of m
dimensional parameter and statistics, respectively as {(u) : L(m) } » {Oom) : X(m)} and

@ Springer
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{é(m) i )2(,,,)}, where pum = {feys Xon = {n7' S0 X)L, and Xy =

N m
{n’l Yo X lk }kzl . Generically these mappings can be expressed via

1
{9&1) : {/L,’i}'ln} where / xkpx (9(*m)> dx =pup, k=1,....m. ®)
0

The uniqueness of these mappings can be exploited in the following Theorem,
proved in Appendix A, to show that the density estimator p, (é(m)> converges in

relative entropy at the same rate as py (O(n)) -

Theorem 1 Let é(m) denote the estimated exponential parameter determined by (7)
then under Assumption 1 and for m,n — oo withm?>/n — 0,

1
Ey|In LGNS :/ In IO u(x)dx =0 (ﬁ+m_2r>.

pe (fon) (9m)

According to Theorem 1, in terms of the density estimator, at least, the effect
of observing {)2 Lo X n} rather than {X1, ..., X,} is asymptotically negligible
under Assumption 1 and for either choice of basis. Moreover, if the goal were only
nonparametric estimation of the density, then the optimal choice of the dimension m
is the same as when no parameters are estimated, i.e. mqp; nﬁ (with a mini-
max rate of m) = O (n’l/ 5) , since r > 2 by assumption). The optimal rate the
rate of convergence of the estimator remains of order O, (n_l%b> . It should not be

surprising that the rate of convergence is unaffected when parameters are replaced by
/1 consistent estimators. Theorem 1 thus generalises the results of Crain (1974) and
Barron and Sheu (1991), as summarized in Lemma 1 of Marsh (2007), by permitting
estimation of nuisance parameters as a preliminary step.

Additionally, we may recover the quantiles of ¥ from those implied by the approx-
imating series density estimator. This is captured in the following Corollary, which
follows immediately since convergence in relative entropy implies convergence in law.

Corollary 1 Let ﬁl,m € (0,1) be a random variable having density function
Di (é(m)> where Oy is defined by (7), then

T, —>)_(,
n,m‘c

asn,m— 00, m3/n — 0. Le. Ty 1 converges in law to the random variable X .
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82 P. Marsh

2.2 Numerical application of a quantile estimator

The consequence of Corollary 1 is that the quantiles associated with T, ,, converge
to those of Y, i.e. letting g4 (;r), for 0 < w < 1, denote the quantile function of the
random variable A, we have

Tpt(fyifn) ) = 9 O F0p (). ©

The following set of experiments compare the Mean Square Errors (MSE) of esti-
mators for the quantiles of Y based on those of f‘n,m for m = 3,9 and for quantiles
calculated at the probabilities, # = .05, .25, .50, .75, .95. We also compare the accu-
racy of estimated quantiles when unknown parameters are estimated against cases
where they are not.

First suppose that Y; ~ IIDY := t«4 but we estimate the Gaussian likelihood
implied by N (i, 0%). Define

1 L Y, — 5
X; =l +erf(¥)] & X,~:§|:1+erf( i y)} i=1,....n

o

the first obtained from the (misspecified) Gaussian model imposing zero mean and unit
variance, and the second from the Gaussian model with estimated mean and variance.

Following the development above, as well as that of Barron and Sheu (1991) , let
9(*m) and é(m) and denote the estimated parameters for the exponential series density

A n
estimators for the samples {X l*}'ll and {X i}l’ respectively. Let 7./, have density
Di (9(""1)) (note that this is just straight forward application of the original set-up of
Barron and Sheu 1991) and let fnm have density p; (é(m)) , as in Corollary 1. The
pairs of estimated quantiles for ¥ are then constructed as in

g} (1) = 2erf™! (2%% (1) — 1) and Gy () = 7 + 6+/2erf™! (2qu (r) — 1) .

The MSE of these quantiles, for each probability 7, are presented in Appendix B,
Tables 1a for m = 3 and 1b form = 9.
Next suppose that Y; ~ IIDY := I' (1.2, 1) and define

Xf=1-eb & Xi=1-e07 i=1,...,n

Analogous to above let Tn’ﬁm and f"n,m have densities p; (9;;1)> and p; (é(m)) and so
pairs of estimated quantiles for Y are constructed via,

gy =M (1-gr;, () and Gy (m) =5 (1-gz ().

The MSE of these quantiles, for each probability 7, are presented in Table 1c (m = 3)
and 1d (m =9).
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Nonparametric series density estimation and testing 83

The consistency of the quantiles obtained from, in particular, f"m,n is illustrated
clearly in Table 1. More relevant, however, is that estimating the parameters of the
fitted model as a preliminary step produces quantile estimators that can be superior,
as the sample size becomes large, to those obtained by simply imposing parameter
values, as can be clearly seen by comparing the right and left panels in Table 1. Note
also that although the larger value of m yields more accurate quantile estimates in
these cases, this is at some computational cost and, in other cases, potential numerical

A n
instability. Although this latter possibility is greatly mitigated, since the {X i } | are
bounded. .

3 Consistent, asymptotically pivotal tests for goodness of fit
3.1 Main results

Here we provide a test of the null hypothesis that the fitted likelihood is correctly
specified as in (1).The previous section generalized the Barron and Sheu (1991) series
density estimator and the resulting nonparametric likelihood ratio test then generalizes
the test of Marsh (2007).

To proceed note that when Hj is true then in Assumption 1, 8, = Bp and in (2)
X, = F(;, Bo) ~ IIDU [0, 1]. Direct generalization of the principle in Marsh
(2007) means that (1) can be tested via,

H() . m]Lm(X) Q(m) = O(m), (10)

in the exponential family (4), where 6, is the solution to (5) and Oy, is an m x 1
vector of zeros.
The likelihood ratio test of Portnoy (1988) applied via the density estimator of

Crain (1974) and Barron and Sheu (1991)obtained from the sample {X Lovens X } is

i = 2Zlog M —2n [égm)f((m) — Ym (é(m))] ,

%, (Oam)

The null hypothesis is rejected for large values of .

Under any fixed alternative H; : G (y) # F (y; Bo) the distribution of X; =
F; (Yi; Bs) will not be uniform, i.e. 6,y # Oy . For every fixed alternative distribution
for Y there is a unique alternative distribution for X on (0, 1) and associated with that
distribution will be another consistent density estimator given by say, py (0(1,”)). In
practice, of course, Q(Im will be neither specified nor known. The following Theorem,
again proved in Appendix A, gives the asymptotic distribution of the likelihood ratio
test statistic both under the null hypothesis (10) and also demonstrates consistency
against any such fixed alternative.
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84 P. Marsh

N n
Theorem 2 Suppose that Assumption 1 holds, we construct {X i } 1 as described in
=
(2), and we let m, n — o0 with m3/n — 0, then:
(i) Under the null hypothesis, Hy : G (y) = F (y; Bo) ,

A Ap —m
Ay = —4 N(O, 1).
m m d
(ii) Under any fixed alternative Hy : G (y) # F (y; B) , for any B, and for any finite

K,
Pr [Am > K] — 1.

Theorem 2 generalizes the test of Marsh (2007) establishing asymptotic normality
and consistency against fixed alternatives when g has to be estimated. Via Claeskens
and Hjort (2004) it is demonstrated that as n — oo with m3/n — 0, then the test A,,
(i.e. the, here, unfeasible test based on the notional sample { X }") has power against

local alternatives parametrized by 6(m) — Om) = ¢/ ¥~ Jm with ¢'c = 1. Heuristically,

implicit from the proof of Theorem 2 the properties of the test follow from; A,, — A, =
0, <\/;) , and s0 A,, has power against that same rate of local-alternatives.

3.2 Testing for normality or exponentiality

The likelihood ratio test A,, is asymptotically pivotal, specifically standard normal.
Competitor tests, such as KS, CM and AD (these tests are mathematically detailed in
Stephens 1976 or Conover 1999)) are not pivotal, although asymptotic critical values
are readily available for all cases of testing for Exponentiality and Normality.

First we will demonstrate that indeed asymptotic critical values for nonparametric
likelihood tests do have close to nominal size for large values of n and m. We are
interested in testing the null hypotheses

HE :Y ~Exp(l) & HY:Y~N(,1),

with nominal significance levels 10, 5 and 1% and based on sample sizes n =
25,50, 100 and 200. Letting y, and &2 be the estimated mean and variance (i.e.

Bn = v, for HOE and g, = (yn, n) for H V') then the tests are constructed from the
mapping to (0, 1) ;

Xi=1—e Vil (11)

s [rren(752)]
X, =-|1+erf , (12)
2 oy,

to test HOE , and

to test HON .
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Table 2 in Appendix B provides rejection frequencies for the tests constructed for
values of m = 3,5,7,9, 11, 17. The left hand panel of numbers correspond to testing
H{ and the right to HZY, critical values at the 1, 5 and 10% significance level from
the standard normal distribution are used throughout.

The purpose of these experiments is only to demonstrate that the finite sample
performance of the tests clearly improves as both n and m increase, as predicted by
Theorem 2(i). Note the use of three significance levels to better illustrate convergence
for large values of both m and n.

Although competitor tests are not asymptotically pivotal (and therefore no compar-
isons under the null are made) instead Table 3 compares the 5% size corrected powers
of two variants of the tests, with m = 3 and m = 9 with the three direct competitors
for a single sample size of n = 100. Table 3a and b present rejection frequencies for
these tests and the KS, CM and AD tests for testing H({V under alternatives that the
data is instead drawn from,

H{ Y ~ tq, HIb:YNX(Zv)—v.

Table 3c, d and e, consider alternatives where the moments of the data are not
correctly specified, i.e.

Hi :Yi|Yi—1 ~ N (vYi—1, 1),
H v~ N (014072,
H{:Yi~N@x1@>[n/2]),1),

where 1 (.) denotes the indicator function. These latter three alternatives represent
simplistic variants of common types of misspecification in econometric or financial
data, i.e. misspecification of a conditional mean, variance or the possibility of a break
in the mean (here half way through the sample). Note that these models imply that
(2) will not be IID on (0, 1), but ergodicity implies the sample moments will still
converge. Finally, Table 3f considers instead testing H(f against the alternative

H vy ~ra,v).

In each table the left hand panel corresponds to the case where we construct the
test imposing the parameter values specified in the null rather than estimating them
(i.e. using the, unfeasible, test of Marsh 2007)). The right hand panel has the rejection
frequencies for tests based on estimated values, i.e. using (11) and (12), respectively.

The outcomes in Table 3 imply the following broad conclusions. The nonparametric
likelihood test based A3 is the most powerful almost uniformly, across all alternatives
and whether parameters are estimated or not. The observed lack of power of the
most commonly used test, KS, is particularly evident, it is consistently the poorest
performing test. The other edf based tests and Ag are broadly comparable in terms of
their rejection frequencies, although AD is perhaps on average slightly more powerful
and CM less powerful.
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86 P. Marsh

3.3 Bootstrap critical values

The proposed tests require a choice of dimension, m. The results presented in Tables
2 and 3 suggest an inevitable compromise, larger values of m imply tests having size
closer to nominal, while smaller values of m imply tests having greater power. In
order to overcome this compromise we can instead consider the properties of these
tests when bootstrap critical values are instead employed.

For these tests the bootstrap procedure is as follows: On obtaining the MLE 3,, and
calculating /13, as described above;

1. Generate bootstrap samples Yl-b ~IIDF (y; ,3,,) fori=1,...,n.
Estimate, via ML, ,33 and construct )A(lb =F (Yib; 35) fori=1,...,n.

Repeat 1 and 2 B times, obtaining bootstrap versions of the test A’%.
AL(f—a)B/lOOJ
3 .

il

Order the /ig so the bootstrap critical value at size o is kg =
1if Ay >«f }

5. Denote the indicator function /4 = o
B {O if A <«lB

We then reject Hy if i é‘ = 1. First, however, the required asymptotic justification for

the bootstrap is automatic given that Apm =4 N0, 1) giving the following corollary
to Theorem 2.

Corollary 2 Under Assumption 1 and if n, m — oo withm>/n — 0, then
. A
i) Pr [IB —1 |H0] >,

ii) Pr[i,g‘ = 1|H1] Sl

Here we will compare the performance of bootstrap critical values for Az with those
of CM and AD by repeating many of the experiments of Kojadinovic and Yan (2012).
In this sub-section all experiments described in this sub-section are performed on the
basis of B = 200 bootstrap replications. All nuisance parameters were estimated via
maximum likelihood using Mathematica 8’s own numerical optimization algorithm.

The first set of experiments mimic those presented in Kojadinovic and Yan (2012,
Table 1). Specifically we define the following Normal, Logistic, Gamma and Weibull
Distributions;

N* ~ N (10,1), L*~ L(10,0.572),
I'* ~ T (98.671,1/9.866) & W* ~ W (10.618, 10.452). (13)

The specific parameter values for L*, I'* and W* are chosen to minimize relative
entropy (I (B8) in Assumption 1(iii)) for each family to the distribution of N*. Sample
sizes of n = 25, 50, 100, 200 are used in the experiments described below.

Table 4a contains the finite sample size of each test. It is clear that, under Hy, the
parametric bootstrap provides highly accurate critical values for all of the tests. On
size alone there is nothing to choose between them. It is however, worth reporting, the
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computational time of each bootstrap critical value. For the A3 test critical values were
obtained after 2.0 and 3.2 seconds for sample sizes n = 100 and 200, respectively.
The times for the other tests were similar to each other, taking around 0.9 and 2.9
seconds, respectively.

Table 4b and c contain the finite sample rejection frequencies under various alter-
native hypotheses, covering all pairwise permutations of the distributions in (13). As
with the finite sample sizes it is not possible to pick a clear winner, moreover where
they overlap the results are in line with those of Kojadinovic and Yan (2012). There
is, of course, no uniformly most powerful test of goodness-of-fit so it is not surprising
that the power of Az isnot always the largest. However its performance over this range
of nulls and alternatives is far less volatile and in no circumstance is the test dominated
by any of the other two.

4 Conclusions

This paper has generalized the series density estimator of Barron and Sheu (1991) to
cover the case where parameters are estimated in the context of misspecified models.
The nonparametric likelihood ratio tests of Marsh (2007) can be thus extended to
cover the case of estimated parameters. The general aim has been to provide a testing
procedure which overcomes the three main criticisms of edf based tests, i.e. that they
are not pivotal, have low power, and offer no direction in case of rejection.

Instead the tests of this paper are shown to be asymptotically standard normal and
they have power advantages over edf tests, whether critical values are size corrected
or obtained by a consistent bootstrap. This suggests the proposed tests will be much
simpler to generalize to the settings of Bai (2003) or Corradi and Swanson (2006).
Finally, in the event of rejection, the series density estimator upon which the tests are
built may be employed to consistently estimate the quantiles of the density from which
the sample is taken.
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A Appendix A: Proofs

In order to avoid any ambiguity throughout this appendix the order of magnitude
symbol O(.) is defined by,

An,m

anm = O (bum) & lim < ¢ < 00,

mn—oo ; m3/n—0bym
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and analogously for the probabilistic versions O,(.) and 0, (.). If the quantity under
scrutiny does not depend upon the dimension 7 then the condition m3 /n — 0becomes
redundant.

Proof of Theorem 1:
First recall the definitions note ,

A m /
A S XK _ S Xk _
X<m>={# Xy = (=) and e = E [Xan].

n n
k=1

The Euclidean distance between the two polynomial sufficient statistics satisfies,

Taking the j* element and noting X; = X; + ¢j,then
IS (o) = Ly (3 i zi
F5 (- 5) =1 (e - 7)
:lzi< Xf”—Xf)
n sI(j —sh)

i=1 s=0
1 <L
—S s
= — e. .
Since X; € (0, 1) while, asin (3), ¢; = O,(n""/?) and ¢; € (—1, 1) then,
Jj! Sj—s s J* j-s s J? Jj— _5/2)
WXI €; < Hcl e, = —'Cl 0,;( s (14)

where ¢; < 1. For finite j (14)is O (n’s/z) whileas j — oo (14)iso (1) O, (nfs/z)
and so,

j' vIi=S s _ 7s/2)
g o 4 =0 (),

implying that

j .
,ss ~1/2y,
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uniformly in j, and hence,

n n J

1 oo 1 TR B
S (=K = | S g K e | = o,

1(j — s!
i=1 i=1 \s=I SIG —sh

Consequently, and also from the definition of Euclidean distance, we have,

m n 2
|%on = Zn| = |32 (% > (%/ - le)) =0y <\/g> .1y

J=1

Consider now (), then from the triangle inequality,

A - N - m
Xm) — M(m)‘ = [Xomy = om| + ‘x(,,,) - X(m)( =0p <\/;>, (16)

which follows from (15) and noting the same order of magnitude applies for the first
distance, as in Barron and Sheu (1991, eq. 6.5), which represents the distance in the

-\
case that the sequence (X lj )1 were observed directly.

We thus have ‘X(m) — /L(m)‘ = Op (\/%) and ‘)A((m) — ,bL(m)) = Op (\/%) , SO
that utilizing the respective MLEs and extending the decomposition of the Kullback-

Leibler divergence of Barron and Sheu (1991, eq. 6.9) we obtain,

u(x) |: ( u(x) >i| |: (Px(e(m))):|
Ey|In| —— ) |=Ev|ln(—— ||+ Ev|In| ——
Y |: ! (Px (Q(m))>:| vt Px(Oam)) vt PxOm))
+Ey | In (—p)‘(ef’”))> : (17)
px(g(m))

Given that Assumption 1 assures the required conditions of Barron and Sheu (1991,
Theorem 1) are met then the first two terms in (17) are, respectively, O(m~%") and
Op(m/n), noting that under Assumption 1, log[u(x)] € W;. Application of Barron
and Sheu (1991, Lemma 5), which holds for any two values in £2,, C R™, here
uniquely defined by Eqgs (6) and ( 7), implies that

px(é(m)) (A S
O|E In — =0 Xm _Xm
(0| (225=2) ) = 01 (80~

)-o2)
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and hence

Ey |:ln (pxu((TAx(,Z,))>:| =0om )+ 0, (%) +0, (%>
= Op (m—zr + %)’

as required. O

Proof of Theorem 2:

Consider the problem of testing Hy : 6y, = Oy) against the alternative H; :
Oy # Oy when n,m — oo, but m/n — 0. For notational convenience and
comparisons with Portnoy (1988) and Barron and Sheu (1991), expressions involving
Oy will not be immediately resolved.

Part (i): To proceed we have defined,

Jom = 2n [(9(»11) - 0<m))/ff<m) - (wm (é<m>) — Ym (0<m>))} ;

where é(m) solves (7), or equivalently,

3Ym (Oom))

Vi (Bom) = P0m = Xm)-
m

9()71) :é(m)
Similarly the value Oy, defines,
I/fr/rl (0("1)) = MK(m) = E()_((m))-

The exponential log-likelihood is strictly convex so that the mapping, v/,, (9(,,,)) =
I (m) 1s one-to-one between the parameter space ®,, C R" and sample space §2,,, C
R™, similar to (8). Application of Barron and Sheu (1991, eq. 5.6) and also (16) thus
gives,

Op (’ém) - 0<m)’) =0p (‘ff(m) - u(m)D =0p (@) : (18)

As a consequence of both (18) and (16) we have that,

Op (‘éw) - 0<m>‘) = 0 (|fm = 0um]) &

o )

and note that the expansions provided in the provided in the proofs of Theorems 3.1
and 3.2 of Portnoy (1988) apply for any two pairs of values, here (G(m), O(m)) and

(X(m)’ /L(m)) :

X = t1en|) = 0p (| Xmy = 1timy

@ Springer



Nonparametric series density estimation and testing 91

To continue, noting expectations under the null hypothesis can be written here as
Ey[.]since X ~ U := U [0, 1], the uniform distribution with density PO x)=1,
we then have expansions analogous to Portnoy (1988, eq. 3.5 and 3.6),

2 2
A 2 A r 1 A ! m
1Om) = Oem |~ = (9<m) - 0<m)) X = 5 Evy [(9(m> - 0(m>) U] +0p (ﬁ) ,

and (19)
A ., NN | A 1 \? -, m?
(6’(m) —O(m)) Xmy = 1Xom " = 5 Evg ((9<m) —0<m>) U) XU |+ 0p (72)
(20)

Subtracting (20) from (19) and applying arguments identical to those given below
Portnoy (1988, Theorem 3.1, eq. 3.7) yields,

A~ A m
10n) = Oom)y = Xyl = Op (;) :

From the definition of the likelihood ratio test we therefore have,
A ~ / A ~
Am =2n |:<9(m) - O(m)) Xm) — (‘ﬁm (9(m)) —Vm (O(m))):|
S 2 12 0 s o, 1 5 "\
=1\ X" = 10 = Oy = Xem ™ + = Eoy (9(m> —0<m)) v

m2
+0,,< ) 1)

n

as in Portnoy (1988, eq. 3.12). Let & = X (m) — X (m) then from the proof of Theorem
1, we have

N - _ - m
R l? = 1%y + 2 = X + 0 (*). 22)

Now define the m x 1 random variable V,, = 1//,; (O(m))_l/2 ()E -y, (O(m))) ,
having density py (9(‘;)), so that E[V] = O¢y) and Var[V,] = I,. Since the
likelihood ratio statistic is parameterization invariant the likelihood ratio test based on
observations on V,, would be identical to that based on X (m)- Rather than defining a
new triple of values, analogous to those in (5), (6) and (7) , in both the parameter space
©,, (note that in particular the hypothesized value would no longer satisfy 6,y = O(n))
and sample space £2,, we will instead, and without any loss of generality assume a
parameterization in which both E [)_( (m)] =0and V [)_( (m)] = I,,. Note, however,
that it is the unobserved X which is assumed to be standardized not the observed X (m)-

In this parameterization the asymptotic distribution of first |X,)|?> and hence
|)2' (m) |2 (via (22)) and then via (21) for Ap = Mﬁ follows exactly as in Portnoy
(1988, Theorem 4.1). O
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Part (ii): Under any fixed alternative the density of X;=F (Yi; By) is

g (F71(x; BY)
f(F1(x; o)

and so let G(Im) be the unique solution to,

up (x) =

1 1
/xfph(e(lm))dxzf Wouy(xyde 5 j=1,....m. (23)
0 0

The uniqueness of solutions to (23) imply Q(Im) # Ogn).-
To take the least favorable case, define

/
Oy = (911, 01, ...,9,}1)

and suppose that le # 0 for some finite £ but that 6 ]1 = 0 for all j # k. The series

density estimator is consistent for O(Im), under H1, in that ‘é(m) — O(Im)‘ =0, ( / %) ,
analogous to (18) above, and so we can write,

1 (G = O Ry = [(é(m) — 0t 5 + (31 %isz" (f(i)} |
We can therefore write the likelihood ratio as )
i =20 [ (B = 000) S~ (9 () ~ v (O)
=2 [(é(m) ) Ko = (¥ (om) = ¥ (9(‘,,,)))]
o (o a8) £ 35 (o (1) v 0)|
=3 +2n [(el ~00) 3 &~ (v (64) — ¥ (0<m>))} ,

where i},l is the likelihood ratio for testing Hy : 0(y) = 0<1m).
Thus, under H;, we can write

A )»m —m 5» 2” I:(le - 91?) % er'lzl )A(lk - (wm (Q(Im)> - 1»[/m (O(m))>]
toVam F V2m '

Immediate from Part (i) of this theorem is that as m, n — oo , with m3/n — 0,

~

L —
- —>a N (@O, 1),

V2m
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i.e. ():,‘n — m) /~/2mis Op (1) . However, since ¥, (.) is a uniquely defined cumulant
function then

Vin (80my) = ¥m (60)) # 0.
and since 0 < X; < 1 then % Y )A(f‘ = 0, (1) and positive. Consequently,
~ n
AmZOp(1)+0p ﬁ — 00,

since m>/n — 0 and hence Pr [/im > K] — 1, as required. O

B Appendix B: Tables

See Tables 1, 2, 3, and 4.

Table 1 Mean Square Errors of Quantiles

n q;r q;r q;r q;r dyr dyr Gyr Gyr
b4 25 50 100 200 25 50 100 200

a: MSE of estimated quantiles for ¥ ~ #(4), m = 3.

.05 .1266 .0906 .0774 0718 1309 .0731 .0506 .0389
25 .0450 .0227 .0127 .0066 .0446 0218 0119 .0058
.50 .0397 .0183 .0101 .0049 .0348 .0159 .0087 .0042
75 .0442 .0222 .0126 .0074 .0445 .0215 0117 .0066
.95 1293 .0976 .0768 .0693 1333 .0806 .0505 .0375

b: MSE of estimated quantiles for ¥ ~ L4y, m = 9.
.05 .1408 1270 1179 1159 .1060 .0551 .0354 .0240
25 .0308 .0187 .0139 0116 .0513 .0244 .0138 .0064

.50 0175 .0089 .0053 .0023 .0411 .0182 .0105 .0052
5 0313 .0194 .0138 .0113 .0512 .0253 0123 .0065
.95 1441 1271 1186 1155 1077 .0599 .0344 .0228

c: MSE of estimated quantiles for Y ~ I" (1.2, 1), m = 3.
.05 .0025 .0014 .0012 .0012 .0035 .0012 .0005 .0004
25 0157 .0083 .0046 .0027 .0202 .0099 .0049 .0022
.50 .0451 .0235 .0127 .0077 .0563 .0246 .0120 .0061
75 .0890 .0487 .0279 .0188 1381 .0601 .0348 .0172
.95 .3088 2109 1644 .1449 .0538 2364 1378 .0709
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Table 1 continued
n qyr 9yr ayr ayr Gyr Gyr Gyr dyr
bd 25 50 100 200 25 50 100 200
d: MSE of estimated quantiles for Y ~ I" (1.2, 1), m = 9.
.05 .0006 .0004 .0003 .0003 .0002 .0001 .0001 .0000
25 .0094 .0065 .0051 .0042 .0033 .0017 .0009 .0004
.50 .0494 .0375 .0335 .0310 .0156 .0073 .0037 .0019
75 2085 1676 1583 1532 .0626 .0276 .0146 .0078
95 4456 3352 2380 1395 2180 .1093 .0527 .0267
T T AT 7
n o .10 .05 .01 .10 .05 .01
m
n=
3 .035 .016 .003 .030 .013 .003
5 .050 .025 .004 .041 .019 .002
7 .062 .033 .006 .049 .024 .004
9 .064 .034 .006 .051 .023 .004
13 .069 .037 .006 .050 .028 .009
17 .063 .031 .005 .055 .023 .003
n =50
3 .044 .019 .003 .034 .017 .005
5 .047 .023 .005 .041 .023 .004
.063 .030 .005 .051 .027 .004
.067 .032 .006 .059 .028 .004
13 .074 .035 .004 .065 .031 .005
17 .069 .029 .006 .066 .029 .006
n =100
3 .051 .026 .004 .035 .019 .003
5 .056 .028 .006 .043 .021 .004
7 .068 .035 .008 .056 .028 .005
9 .073 .040 .007 .065 .031 .005
13 .085 .047 .008 .075 .038 .007
17 .091 .043 .009 .081 .041 .009
n =200
3 .051 .023 .005 .045 .021 .004
5 .061 .037 .006 .053 .029 .007
7 071 .043 .008 .063 .031 .006
9 .081 .045 011 .078 .040 .006
13 .095 .047 .009 .086 .045 .009
17 .097 .048 011 .095 .049 011
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Table 3 Rejection frequencies under various alternatives. The left hand panels corresponds parameter
values imposed, while for the right had panels they are estimated

aPower Hy : Y ~ N (0,1) vs. Hy:Y ~1q).

v 4 6 8 10 12 4 6 8 10 12
Ay 935 705 386 267 114 605 294 166 127 097
Ay 856 563 254 159 087 494 241 133 11 081
KS 614 206 091 055 049 217 114 075 0359 052
CM 722 309 165 092 061 296 132 087 075 066
AD 767 361 182 115 065 530 240 139 .103 .090

bPower Hy : Y; ~ N (0,1) vs. Hy:Y; ~ X(ZU) —v.

v 12 20 28 36 44 12 20 28 36 44
Ay 859 660 577 476 422 572 274 189 146 114
Ay 796 641 546 427 377 388 189 158 A11 .096
KS 717 568 443 388 350 238 151 106 .093 075
CM 837 663 563 463 403 274 176 131 .100 091
AD 843 647 529 439 388 286 165 117 .098 083

cPower Hy: ¥; ~N(0,1) vs. Hy:Yi~N(v¥i_j,1).

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
Ay 694 592 386 161 .093 902 736 510 271 101
Ay 688 483 351 141 071 847 683 461 235 091
KS 592 458 254 091 053 579 359 207 122 058
CM  .690 585 362 140 066 648 448 273 162 083
AD 691 580 371 138 057 866 704 471 242 089

dPower Hy:Y; ~N(0,1) vs. Hy:Y; ~N (o, 1+ in{l) .

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
AP a2 514 276 116 079 869 729 493 225 106
Ay 704 503 263 113 074 864 740 460 225 094
KS 568 361 161 063 052 509 350 201 112 .080
CM 709 497 255 109 075 511 352 185 115 073
AD 708 494 246 088 054 849 721 451 215 088

ePower Hy : ¥; ~N(0,1) vs. Hy:Y;i ~N (vl;=i7,2).1).

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
Ay 754 563 349 196 079 653 495 274 141 .080
Ay 738 525 311 173 064 592 442 256 139 066
KS 256 189 127 088 052 542 349 185 078 059
CM 362 291 164 103 066 601 445 260 130 078
AD 750 539 321 185 075 625 467 258 11 067
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Table 3 continued

f: Power Hy : Y; ~ Exp[1] vs. Hy:Y; ~T (v,1).

v 1.10 1.15 1.20 1.25 1.30 1.10 1.15 1.20 1.25 1.30
/i3 115 121 238 .305 428 191 .298 .585 769 .866
Ag .103 .106 179 277 .398 177 285 .550 712 .825
KS .066 .069 136 .200 252 .096 193 404 .616 147
CM .094 .099 179 237 .343 174 .280 551 7132 .853
AD .097 .109 227 .303 419 182 .299 .589 770 .884

Table 4 Rejection frequencies

at 5% level under a the

respective null hypotheses b, ¢

various alternatives

@ Springer

a: Rejection frequencies at 5% level under the respective null

hypotheses
n 25 50 100 200
() HY : ¥ ~ N*
Az 064 065 058 044
CcM 064 058 057 054
AD .060 059 062 058
(i) HL ¥ ~ ¥
Az 062 056 049 046
cM 068 .060 065 061
AD 065 055 052 061
(i) H)' Y ~ W*
Az 067 055 055 047
cM 063 058 056 058
AD 055 066 065 057
(iv) HE ~ L~
Az 065 062 050 042
cM 071 066 059 055
AD 062 054 055 055
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Table 4 continued

b: Rejection frequencies at 5% level under various alternatives

n 25 50 100 200
() Hy:Y~N*vs.H : Y ~T*

Am 069 088 116 175

CcM 078 094 123 185

AD .069 .090 .108 161
Gi))Hy:Y~T*vs.H :Y ~N*

Am 068 085 .099 129

cM 055 066 079 088

AD 076 085 092 113
(i) Hy: Y ~ N*vs. H : Y ~ W*

Am 196 364 584 897

CcM 094 192 465 776

AD 183 315 550 806
(iv)Hy:Y ~W*vs. H : Y ~ N*

Am 101 164 351 690

cM 107 233 388 580

AD .098 164 334 602
(V)Hy:Y ~N*vs.H :Y ~L*

Am 173 249 393 458

cM 111 152 212 358

AD 131 .190 246 417
(Vi)Hy: Y ~L*vs. Hy : Y ~ N*

n 25 50 100 200

Am 046 055 065 101

CcM 036 054 073 .109

AD 041 046 070 .108
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Table 4 continued c: Rejection frequencies at 5% level under various alternatives

n 25 50 100 200

() Hy:Y~T*vs.Hy:Y~L*

Am 091 122 .188 253
CcM 078 081 122 193
AD .105 128 174 257

Gi))Hy:Y ~T*vs.Hy : Y ~W*

Am 285 448 709 937
cM 320 476 781 970
AD 155 306 638 938
(i) Hy: Y ~W*vs. Hy : Y ~ T'*
n 25 50 100 200
Am 197 355 719 945
cM 200 315 534 836
AD 117 219 482 851
Gv)Hy:Y ~W*vs.H : Y ~ L*
n 25 50 100 200
Am 172 327 620 867
cM 215 343 542 797
AD 159 277 .500 816

(W Hy:Y ~L*vs.Hj :Y ~T*

Am 059 082 120 152
cM 059 081 130 161
AD 051 059 101 148

(ViyHy : Y ~L*vs. H : Y ~ W*

Am 243 343 592 892
CcM 124 241 519 882
AD 204 325 583 912
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