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Abstract Assuming absolute continuity of marginals, we give the distribution for
sums of dependent random variables from some class of Archimedean copulas and the
marginal distribution functions of all order statistics.We use conditional independence
structure of random variables from this class of Archimedean copulas and Laplace
transform. Additionally, we present an application of our results to VaR estimation for
sums of data from Archimedean copulas.
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1 Introduction

Let X1, . . . , Xn be absolutely continuous random variables with the marginal cumu-
lative distribution functions (c.d.f.) Fi and the marginal densities fi , i = 1, . . . , n.
The joint distribution function of (X1, . . . , Xn) is absolutely continuous and so is the
respective copula C : [0, 1]n → [0, 1]. Then by Sklar (1959),

P (X1 ≤ x1, . . . , Xn ≤ xn) = C(F1(x1), . . . , Fn(xn))

for all (x1, . . . , xn) ∈ R
n .
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The random vector (X1, . . . , Xn) has Archimedean copula (Nelsen 1999) with
generator ϕ if

C (u1, . . . , un) = Cϕ(u1, . . . , un) = ϕ−1(ϕ(u1) + · · · + ϕ(un)), (1)

for all ui ∈ [0, 1], i = 1, . . . , n, where ϕ is a continuous strictly decreasing function
from [0, 1] to [0,∞) such that ϕ(0) = ∞, ϕ(1) = 0, and the derivatives of ϕ−1of all
order satisfying

(−1)i
di

dui
ϕ−1(u) ≥ 0

for all u ∈ (0, 1), i = 1, 2, . . . . Such a function ϕ−1 is called completely monotone.
Then from the Bernstein theorem (Bernstein 1928) there exists a random variable
Θ ≥ 0 such that ϕ−1 is the Laplace transform of Θ (Nelsen 1999),

ϕ−1(s) = E exp (−Θs) . (2)

Additionally, we assume that

P (Xi ≤ x | Θ = θ) = (Gi (x))
θ , (3)

where
Gi (x) = exp (−ϕ(Fi (x))) (4)

for i = 1, . . . , n. Under these assumptions the random variables (r.v.’s) X1, . . . , Xn

are conditionally independent given Θ = θ . This is equivalent to

Cϕ(u1, . . . , un) = EΘ

(
n∏

i=1

P

(
Xi ≤ F−1

i (ui ) | Θ
))

.

This construction has been presented in Marshall and Olkin (1988) and developped
by Frees and Valdez (1998).

In actuarial risk management analysis it is worth considering the distribution of
aggregate claims of a portfolio of single claims X1, . . . , Xn from an Archimedean
copula, i.e.

Sn =
n∑

i=1

Xi . (5)

In this way the portfolio consists of n dependent risks, where the dependence structure
is defined by the Archimedean copula. In Wüthrich (2003) and Alink et al. (2004,
2005) the asymptotic distribution of (5) with an application to Value-at-Risk (VaR)
estimation was given. More precisely if (X1, . . . , Xn) has Archimedean copula with
regularly varying generator ϕ at 0+ with index α, that is,

lim
y→0+

ϕ(yt)

ϕ(y)
= t−α for all t > 0,
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Archimedean copulas with applications to VaR estimation 271

and the common marginal c.d.f. F belongs to the Fréchet domain of attraction (F is
regularly varying at −∞ with index β), then

lim
u→∞

P (Sn ≤ −u)

P (X1 ≤ −u)
= qF

n (α, β), (6)

where the constant qF
n (α, β) depends on F, ϕ only through α and β. The form of

the constant qF
n (α, β) for n > 2 is quite complicated and it is difficult to use (6)

for n > 2. Alink et al. (2004, 2005) and Wüthrich (2003) also obtained similar
results for Gumbel or Weibull extreme-value families. Using the results by de Haan
and Resnick (1977), Barbe et al. (2006) extend (6) beyond Archimedean dependence
structures, where Xi is multivariate regularly varying (for definition see Barbe et al.
2006). For Archimedean dependence structure their result agrees with (6). Our main
result (Theorem 1) gives the non-asymptotic distribution of (5) for Archimedean cop-
ulas without additional restrictions on the generator ϕ and without the assumptions
of identical and regular distributions of Fi , i = 1, . . . , n. For n = 2 Theorem 1
is equivalent by a change of variable to the result by Cherubini et al. (2008), who
proved

P (S2 ≤ t) =
∫ 1

0
D1Cϕ

(
w, F2(t − F−1

1 (w)
)
dw,

where D1 is the partial derivative with respect to the first argument and Cϕ is the
Archimedean copula. The distribution of (5) can also be computed numerically using
the AEP algorithm (Arbenz et al. 2011). Observe that P (Sn ≤ t) = P(S(0, t)), where
P is a probability measure on Rn and the simplex S(0, t) ⊂ R

n is given by S(0, t) =
{x : xk > 0 for all k and

∑n
k=1 xk ≤ t}, for t > 0 and S(0, t) = {x : xk ≤ 0 for all k

and
∑n

k=1 xk > t} for t < 0. In the AEP algorithm the simplex is approximated by
hypercubes. Based on Theorem 1 we propose a simple Monte Carlo (MC) simulation
for the calculation of this distribution (see Remarks 1, 2, 3), which may be considered
as an alternative to the AEP algorithm, especially when n is large. The computation
cost of the AEP algorithm for n ≥ 6 is very high and in practice the AEP algorithm
is used for 2 ≤ n ≤ 5 (see Arbenz et al. 2011, p. 577). Another profit of our non-
asymptotic approach in comparison to the asymptotic results can be seen in Sect. 4.2
(see Figs. 1, 2, Remark 5 and Final Conclusions), where we consider the problem of
VaR estimation for sums of Archimedean copulas.

In the following, we consider the distribution of order statistics for Archimedean
copulas. The characterization of this distribution has been also given in (Jaworski
and Rychlik 2008). Let X1:n ≤ · · · ≤ Xn:n be order statistics. Following David and
Nagaraja (2003) and Galambos (1982), we write the distribution function of the mth
order statistic Xm:n from the sample as

P (Xm:n ≤ x) =
n∑

j=m

(−1) j−m ( j−1
m−1

) ∑
1≤i1<···<i j≤n

P
(
Xi1 ≤ x, . . . , Xi j ≤ x

)
.
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Fig. 1 Broken line for t∞, solid line for tW , bold broken line for t∗
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Fig. 2 Broken line for tγ , solid line for tW , bold broken line for t∗

If X1, . . . , Xn are exchangeable, then

P (Xm:n ≤ x) =
n∑

j=m

(−1) j−m ( j−1
m−1

)(n
j

)
P

(
X1 ≤ x, . . . , X j ≤ x

)
. (7)

Applying (1) to (7), we obtain the distribution function of the order statistics for
Archimedean copulas (see Proposition 1). When X1, . . . , Xn are independent and
identically distributed (i.i.d.) with common c.d.f. F , then we have a well-known for-
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Archimedean copulas with applications to VaR estimation 273

mula for the c.d.f. of the mth smallest order statistic:

P (Xm:n ≤ x) =
n∑

j=m

(n
j

)
(F(x)) j (1 − F(x))n− j . (8)

In Sect. 4 we present VaR estimation for sums of Archimedean copulas using the
distribution of the maximum of r.v.’s. from Archimedean copulas [lower confidence
intervals for VaR with examples and asymptotic behavior for small quantiles (Lemma
1), where the marginal distribution is subexponential (Goldie and Klüppelberg 1998)].
Using conditional independence for r.v.’s fromArchimedean copulas, in the casewhere
the marginal distribution is subgaussian, in Lemma 2 we obtain an exponentional
inequality for large deviations for sums of Archimedean copulas.

2 Distribution for sums for Archimedean copulas

In this section we consider the distribution for sums for Archimedean copulas. The
asymptotic distribution of such sums under some technical assumptions was given in
Alink et al. (2004, 2005) and Wüthrich (2003). Let Sn = ∑n

i=1 Xi .

Theorem 1 If X1, . . . , Xn come from an Archimedean copula (1)–(4), then for all
n ≥ 2,

P (Sn ≤ t) =
∫ ∞

−∞
· · ·

∫ ∞

−∞

(
ϕ−1(s)

)(n−1) ∣∣∣
s=sn−1(t)

n−1∏
i=1

ϕ
′
(F(ui )) f (ui )dui (9)

(if the integral exists) where sn−1(t) = ∑n−1
i=1 ϕ (Fi+1 (ui )) + ϕ

(
F1

(
t −

n−1∑
i=1

ui

))
,(

ϕ−1(s)
)(n−1) = dn−1

dun−1 ϕ
−1(s) and fi = F

′
i .

Proof First, we prove that for all n ≥ 2,

P (Sn ≤ t | Θ = θ) =
∞∫

−∞
· · ·

∞∫
−∞

(−1)n−1θn−1 exp (−θsn−1(t))

×
n−1∏
i=1

ϕ
′
(Fi+1(ui )) fi+1(ui )dui . (10)

Assuming (10) is true for n − 1 and using the fact that Sn−1 and Xn are conditionally
independent given Θ = θ , and

sn−1(t) = sn−2(t − un−1) + ϕ(Fn (un−1)), (11)
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we obtain

P (Sn ≤ t | Θ = θ) = P (Sn−1 + Xn ≤ t | Θ = θ)

=
∞∫

−∞
P (Sn−1 ≤ t − un−1 | Θ = θ)

× (P (Xn ≤ un−1 | Θ = θ))
′
un−1

dun−1

=
∞∫

−∞
· · ·

∞∫
−∞

(−1)n−2θn−2 exp (−θsn−2(t − un−1)) (−1)θ

× exp(−θϕ (Fn (un−1)))

n−1∏
i=1

ϕ
′
(Fi+1(ui )) fi+1(ui )dui

=
∞∫

−∞
· · ·

∞∫
−∞

(−1)n−1θn−1 exp (−θsn−1(t))

×
n−1∏
i=1

ϕ
′
(Fi+1(ui )) fi+1(ui )dui .

Then by induction, we have (10). Using (10), we obtain

P (Sn ≤ t) = E (P (Sn ≤ t | Θ))

=
∞∫

−∞
· · ·

∞∫
−∞

(−1)n−1
E

(
Θn−1 exp (−Θsn−1(t))

)

×
n−1∏
i=1

ϕ
′
(Fi+1(ui )) fi+1(ui )dui .

(12)

Obviously, the relation

E

(
Θn−1 exp (−Θsn−1(t))

)
= (−1)n−1

(
ϕ−1(s)

)(n−1)∣∣
s=sn−1(t)

now yields (9).

Popular Archimedean copulas such as the Gumbel and Clayton copulas can be
derived from the construction (2)–(4) [see Marshall and Olkin 1988]. Remarks 1, 2, 3
below are devoted to the numerical computation of (9).

Remark 1 If we simulate N times n − 1 independent variables U j
i = u j

i for
i = 1, . . . , n − 1 and j = 1, . . . , N from the distribution of density fi+1, then
MC calculation of (9) yields
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P (Sn ≤ t) ≈ 1

N

N∑
j=1

Hn

(
n−1∑
i=1

ϕ
(
Fi+1

(
u j
i

))
+ ϕ

(
F1

(
t −

n−1∑
i=1

u j
i

)))

×
n−1∏
i=1

ϕ
′ (

Fi+1

(
u j
i

))
,

where Hn (x) = (
ϕ−1(s)

)(n−1) |s=x.

Observe that, for the case of the Clayton copula, the probability P (Sn ≤ t) is given
by the following simple formula.

Corollary 1 For the Clayton copula with ϕ−1(t) = (1 + αt)−
1
α for α > 0, we have,

for all n ≥ 2,

P (Sn ≤ t)

=
∞∫

−∞
· · ·

∞∫
−∞

Γ
(
n − 1 + 1

α

)
αn−1

Γ
( 1

α

) (
n−1∑
i=1

(Fi+1(ui ))−α +
(
F1(t −

n−1∑
i=1

ui )

)−α

+ 1 − n

)n−1+ 1
α

×
n−1∏
i=1

(Fi+1(ui ))
−α−1 fi+1(ui )dui , (13)

if the integral exists.

Proof For the Clayton copula with parameter α, we have Θ ∼ Γ
( 1

α
, α

)
and ϕ(p) =

1
α

(
p−α − 1

)
, ϕ

′
(p) = −p−α−1 and

E

(
Θn−1 exp (−Θsn−1(t))

)
= Γ (n − 1 + 1/α)

Γ (1/α) α1/α (sn−1(t) + 1/α)n−1+1/α .

Therefore, from (12), we get (13).

Remark 2 For the Clayton copula, if we simulate N times n−1 independent variables
U j
i = u j

i for i = 1, . . . , n − 1 and j = 1, . . . , N from the distribution of density
fi+1, then MC calculation of (13) yields

P (Sn ≤ t)

≈ 1

N

N∑
j=1

Γ
(
n − 1 + 1

α

)
αn−1

n−1∏
i=1

(
Fi+1(u

j
i )

)−α−1

Γ
( 1

α

) (
n−1∑
i=1

(
Fi+1(u

j
i )

)−α +
(
F1(t −

n−1∑
i=1

u j
i )

)−α

+ 1 − n

)n−1+ 1
α

.
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Remark 3 For the Gumbel copula with α ≥ 1 from Remark 1 one may observe that if
we simulate N times n − 1 independent variables U j

i = u j
i for i = 1, . . . , n − 1 and

j = 1, . . . , N from the distribution of density fi+1, then MC calculation of (9) yields
(a)

P (S2 ≤ t)

≈ − 1

N

N∑
j=1

1

α
e
−

(
w1

j (t)
) 1

α (
w1

j (t)
)−1+ 1

α 1

F2
(
u j
1

)
⎛
⎝ln

⎛
⎝ 1

F2
(
u j
1

)
⎞
⎠

⎞
⎠

α−1

;

(b)

P (S3 ≤ t) ≈ 1

N

N∑
j=1

1

α2 e
−

(
w2

j (t)
)1/α (

w2
j (t)

)−2+1/α

×
(

−1+
(
w2

j (t)
)1/α+α

) 2∏
i=1

α2

Fi+1

(
u j
i

)
⎛
⎝ln

⎛
⎝ 1

Fi+1

(
u j
i

)
⎞
⎠

⎞
⎠

α−1

;

(c)

P (S4 ≤ t) ≈ 1

N

N∑
j=1

1

α3 e
−

(
w3

j (t)
)1/α (

w3
j (t)

)−3+1/α

×
(

−1 −
(
w3

j (t)
)2/α − 3(−1 + α)

(
w3

j (t)
)1/α + 3α − 2α2

)

×
3∏

i=1

−α3

Fi+1

(
u j
i

)
⎛
⎝ln

⎛
⎝ 1

Fi+1

(
u j
i

)
⎞
⎠

⎞
⎠

α−1

;

where wn
j (t) :=

n∑
i=1

ϕ
(
Fi+1

(
u j
i

))
+ ϕ

(
F1

(
t −

n∑
i=1

u j
i

))
for n = 1, 2, 3 and

ϕ(x) = (ln (1/x))α .

From Theorem 1 and Corollary 1 we have simple formulas for the distribution of
(5) for n = 2.

Corollary 2 (a) For the Clayton copula with parameter α > 0,

P (S2 ≤ t) = αΓ
(
1 + 1

α

)
Γ

( 1
α

)
∞∫

−∞

(F2(u))−α−1 f2(u)(
(F2(u))−α + (F1(t − u))−α − 1

)1+ 1
α

du.
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(b) For the Gumbel copula with parameter α ≥ 1,

P (S2 ≤ t) = − 1

α

∞∫
−∞

e−(w(t))
1
α

(w(t))−1+ 1
α

1

F2(u)

(
ln

(
1

F2(u)

))α−1

f2(u)du,

wherew(t) = ϕ (F2(u))+ϕ (F1(t − u))andϕ(x) = (ln (1/x))α . In both formulas
it is assumed that the integrals exist.

3 Order distributions for Archimedean copulas

Our main result in this section is

Proposition 1 If X1, . . . , Xn come from an Archimedean copula (1)–(2), then

P (Xm:n ≤ x) =
n∑

j=m

(−1) j−m ( j−1
m−1

)(n
j

)
ϕ−1

⎛
⎝ j∑

i=1

ϕ(Fi (x))

⎞
⎠. (14)

When X1, . . . , Xn are identically distributed with marginal c.d.f. F, then

P (Xm:n ≤ x) =
n∑

j=m

(−1) j−m ( j−1
m−1

)(n
j

)
ϕ−1 ( jϕ(F(x))). (15)

Proof Straightforward from (7).

Therefore, we get immediately

Corollary 3 (i) For the Gumbel copula with ϕ−1(t) = exp
(
−t

1
α

)
for α ≥ 1, we

have

P (Xm:n ≤ x) =
n∑

j=m

(−1) j−m ( j−1
m−1

)(n
j

)
exp

⎛
⎜⎝−

⎛
⎝ j∑

i=1

(
ln

(
1

Fi (x)

))α
⎞
⎠

1
α

⎞
⎟⎠.

When X1, . . . , Xn are identically distributed with marginal c.d.f. F, then

P (Xm:n ≤ x) =
n∑

j=m

(−1) j−m ( j−1
m−1

)(n
j

)
(F(x)) j

1
α .

(ii) For the Clayton copula with ϕ−1(t) = (1 + αt)−
1
α for α > 0, we have

P (Xm:n ≤ x) =
n∑

j=m

(−1) j−m ( j−1
m−1

)(n
j

)⎛
⎝1 +

j∑
i=1

(
(Fi (x))

−α − 1
)⎞⎠

− 1
α

.
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When X1, . . . , Xn are identically distributed with marginal c.d.f. F, then

P (Xm:n ≤ x) =
n∑

j=m

(−1) j−m ( j−1
m−1

)(n
j

) (
1 + j ((F(x))−α − 1)

)− 1
α .

4 Applications

We consider the problem of interval estimation for VaR for sums of n identically dis-
tributed random variables from Archimedean copulas. Denote
VaRγ (Sn) := D−1

n (γ ), where Dn is the distribution function of Sn given by (5).

4.1 Lower confidence intervals for VaR

In practice we are often interested in finding a level cδ such that

P (Sn > cδ) = δ

for some large δ. This is equivalent to P (Sn ≤ cδ) = 1 − δ and cδ is a quantile of
small order 1 − δ. Hence, we wish to estimate VaRγ (Sn) for small γ .

From the lower bound for VaR for sums of dependent variables in (Mesifioui and
Quessy 2005, Remark 3.3), we know that for all γ ≤ F(x∗),

VaRγ (Sn) ≥ nF−1
(γ

n

)
, (16)

where F is the marginal c.d.f. of Xi , i = 1, . . . , n, and we assume that f (x) =
dF(x)/dx is non-decreasing for all x ≤ x∗ for some fixed point x∗ (for example
a unimodal distribution with mode at x∗). We build a lower confidence interval for
VaRγ (Sn) in the form

P
(
VaRγ (Sn) ≥ nXr :n

) ≥ 1 − β,

where 1− β is the confidence coefficient. From (16) it is sufficient to find r such that

P

(
Xr :n ≤ F−1

(γ

n

))
≥ 1 − β.

By (15), note that

n∑
j=r

(n
j

)
(−1) j−r ( j−1

r−1

)
ϕ−1

(
jϕ

(γ

n

))
≥ 1 − β. (17)

Below we list max r satisfying (17) for the Gumbel and Clayton copulas for small γ
for a few parameters α for a unimodal marginal c.d.f. F .
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Remark 4 In real applications, we often do not know the function ϕ, or if we know
the formula of ϕ, we do not know the parameters of this function. Hence, we must
estimate ϕ or its parameters. Let ϕ̂ be an estimator of ϕ (nonparametric if ϕ is unknown
or parametric if only a formula of ϕ is known). Then, by replacing ϕ with ϕ̂ in (17),
we obtaine an estimator of the lower confidence interval for VaRγ (Sn).

4.2 Bound for large losses for sums of Archimedean copulas

In this subsection we assume that the losses of a portfolio of n assets are given by
S̃n = −∑n

i=1 Xi , where Xi ≥ 0 and come from Archimedean copulas (2)–(4). We
search for tγ > 0 such that

P

(
S̃n ≤ −ntγ

)
≤ γ (18)

for some small γ > 0.
Below, we consider two cases. The first is when the marginal c.d.f. F is subexpo-

nential (e.g. heavy tailed), and the second when F is subgaussian.
A c.d.f. F supported on [0,∞) belongs to the subexponentional class S if for some

(equivalently, all) n ≥ 2,

F̄∗n(x) ∼ nF̄(x) as x → ∞,

where f (x) ∼ g(x) means limx→∞ f (x)
g(x) = 1 , F̄(x) = 1 − F(x), and F∗n is

the n-fold convolution of F . Obviously for i.i.d. X1, . . . , Xn we have F̄∗n(x) =
P (X1 + . . . + Xn > x).

Lemma 1 If F ∈ S, Xi for i = 1, . . . , n are non-negative and come from
Archimedean copulas (2)–(4), then for all n ≥ 2,

P (Sn > nt) ∼ 1 − ϕ−1 (nϕ (F (nt))) as t → ∞. (19)

Proof Since X1, . . . , Xn are independent given Θ = θ , from the fact that F ∈ S (see
Goldie and Klüppelberg 1998) we have

P (Sn > nt | Θ = θ) ∼ P

(
max
1≤i≤n

Xi > nt | Θ = θ

)
as t → ∞.

Since P
(
max1≤i≤n Xi > nt | Θ = θ

)
> 0 for all θ > 0, we may write

P (Sn > nt) = EΘP (Sn > nt | Θ) ∼ EΘP

(
max
1≤i≤n

Xi > nt | Θ

)

= P

(
max
1≤i≤n

Xi > nt

)
.

Consequently, from (15), we have P
(
max1≤i≤n Xi > nt

) = P (Xn:n > nt) = 1 −
ϕ−1 (nϕ (F (nt))). Therefore, we obtain ( 19).
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280 K. Furmańczyk

From (19)wemayfind t∞ such thatP
(
S̃n ≤ −nt∞

)
= P (Sn ≥ nt∞) = γ , namely

t∞ = 1

n
F−1

(
ϕ−1

(
ϕ (1 − γ )

n

))
. (20)

Remark 5 If P(Xi > x) = L(x)x−α for α > 0, for i = 1, . . . , n, where L is a
slowly varying function as x → ∞, then F ∈ S (see Goldie and Klüppelberg 1998)
and we may apply formulas (19)–(20) for the marginal Pareto distribution where

P(Xi > x) = (
θ
x

)β
, θ , β > 0. In the case when the Archimedean generator ϕ

is regularly varying with index −α at all x (limy→x
F(yt)
F(y) = t−α for all t > 0),

Wüthrich (2003) showed that

P

(
S̃n ≤ −nt

)
∼ P (X > t) qF

n (α, β) as t → ∞, (21)

where qF
n (α, β) is some constant depending on ϕ and F [see (6)]. For n > 2 it is very

difficult to calculate qF
n (α, β) directly. If n = 2 and the marginal distribution of −Xi

is the Pareto distribution with parameters θ, β, and ϕ is regularly varying with index
−α for α = 1/β, then qF

n (α, β) = (1/2)β(1+ β). If we set β = 2, then tW such that

P

(
S̃n ≤ −ntW

)
∼ (1/2)β(1 + β)

(
θ
tW

)β = γ is given by the formula

tw = θ

2

√
3

γ
.

For the Clayton copula with α = 1/2 (regularly varying with index −α) and F the
c.d.f. of the Pareto distribution with parameters θ and β = 2, from (20) we obtain

t∞ = θ

2

1√
3γ−2+2

√
1−γ

2−γ+√
1−γ

.

In Fig. 1 we see tW and t∞ for θ = 5, β = 2 as functions of γ ∈ (0, 0.0025).
Additionally we indicate t∗ corresponding to P(S2 ≥ 2t∗) = γ , where the c.d.f. of S2
is calculated from N = 1000 MC simulation based on Remark 2 from the Clayton
copula with α = 1/2 and marginal Pareto distribution with θ = 5 and β = 2.

We say that a r.v. X is subgaussian (more precisely, b-subgaussian) if there is some
b > 0 such that for every t ∈ R one has Eet X ≤ eb

2t2/2.

Lemma 2 If the marginal distributions of Xi are b-subgaussian, non-negative for
i = 1, . . . , n and come from Archimedean copulas (2)–(4), then for all n ≥ 2 and any
t > 0,

P (Sn ≥ nt) ≤ e
− t2

2b2 . (22)
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Proof From the Markov inequality for every x > 0,

P (Sn ≥ nt | Θ = θ) ≤ e−ntx
E

(
exSn | Θ = θ

)
.

Since X1, . . . , Xn are independent given Θ = θ , we have

E

(
exSn | Θ = θ

)
=

(
E

(
exX1 | Θ = θ

))n
.

From the fact that
(
E

(
exX1 | Θ = θ

))n ≤ E
(
enx X1 | Θ = θ

)
, we obtain

P (Sn ≥ nt) = E (P (Sn ≥ nt | Θ)) ≤ e−ntx
E

(
enx X1

)
,

and since X1 is b-subgaussian,

P (Sn ≥ nt) ≤ e−ntx+b2x2n2/2.

Let G(x) = e−ntx+b2x2n2/2. By standard calculation we find that G has global mini-

mum xmin = t
b2n

, and G(xmin) = exp
(
− t2

2b2

)
, which yields (22).

As a consequence of (22)wemayfind tγ satisfying (18 ), becauseP
(
S̃n ≤ −ntγ

)
=

P
(
Sn ≥ ntγ

) ≤ exp

(
− t2γ

2b2

)
≤ γ . Hence tγ ≥ b

√
2 ln

(
1
γ

)
. In this case Wüthrich

(2003) showed that if X1, X2 have the standard normal distribution with Archimedean
generator ϕ regularly varying with index −1, then

P (X1 + X2 ≤ −2t) ∼ 0.7854√
2π

1

t
e−t2/2 (23)

as t → ∞. In Fig. 2 we see tγ , tW from (23) as functions of γ ∈ (0, 0.0025), and t∗
corresponding toP(S2 ≥ 2t∗) = γ , where the c.d.f. of S2 is calculated from N = 1000
MC simulations based on Remark 2 from the Clayton copula with α = 1 and marginal
standard normal distribution.

Final Conclusions We have obtained simple formulas for distributions for order sta-
tistics from Archimedean copulas, and the formulas have been applied to construct
non-parametric confidence intervals for VaR for sums for Archimedean copulas. From
Tables 1, 2 we can see that the lower bound of the confidence interval for VaR for
the Gumbel copula is decreasing when the parameter α is increasing. For the Clayton
copula the lower bound of the confidence interval for VaR is almost constant when α

is increasing.
Based on Fig. 1, if the marginal distribution F is Pareto for the Clayton copula

for α = 1/2, then VaRγ (S2) for very small γ is more overestimated when we use
the asymptotic formula (21) of Wüthrich (2003) than if we use the formula from
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Table 1 Maximum r satisfying
(17) for the Gumbel copula

β = 0.05 α = 1 α = 1.2 α = 2

γ = 0.01, n = 10 7 6 2

γ = 0.01, n = 20 17 17 14

γ = 0.05, n = 10 7 7 3

γ = 0.05, n = 10 17 17 15

γ = 0.1, n = 10 8 7 3

γ = 0.1, n = 20 17 17 15

Table 2 Maximum r satisfying
(17) for the Clayton copula

β = 0.05 α = 0.1 α = 0.5 α = 1

γ = 0.01, n = 10 7 7 6

γ = 0.01, n = 20 17 17 16

γ = 0.05, n = 10 7 7 7

γ = 0.05, n = 10 17 17 16

γ = 0.1, n = 10 7 7 7

γ = 0.1, n = 20 17 17 17

our Lemma 1. If the marginal distribution F is standard normal and we consider the
Clayton copula for α = 1, then from Fig. 2 we see that VaRγ (S2) for very small γ

is overestimated from formula (23) by Wüthrich (2003) and underestimated by the
formula from our Lemma 2. In Theorem 1 we gave the distribution of Sn and this
exact distribution simulated from MC samples was useful for the evaluation of the
asymptotic distribution of Sn obtained by Wüthrich (2003) and in our Lemmas 1, 2.
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