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Abstract
Primary cutaneous T-cell lymphomas (CTCL), which include mycosis fungoides (MF) and Sézary syndrome (SS), are a 
group of lymphoproliferative disorders characterized by clonal accumulation of neoplastic T-lymphocytes in the skin. Severe 
pruritus, one of the most common and distressing symptoms in primary CTCL, can significantly impair emotional well-being, 
physical functioning, and interpersonal relationships, thus greatly reducing quality of life. Unfortunately, effectively managing 
pruritus remains challenging in CTCL patients as the underlying mechanisms are, as of yet, not fully understood. Previous 
studies investigating the mechanisms of itch in CTCL have identified several mediators and their corresponding antagonists 
used for treatment. However, a comprehensive overview of the mediators and receptors contributing to pruritus in primary 
CTCL is lacking in the current literature. Here, we summarize and review the mediators and receptors that may contribute 
to pruritus in primary CTCL to explore the mechanisms of CTCL pruritus and identify effective therapeutic targets using 
the PubMed and Web of Science databases. Studies were included if they described itch mediators and receptors in MF and 
SS. Overall, the available data suggest that proteases (mainly tryptase), and neuropeptides (particularly Substance P) may be 
of greatest interest. At the receptor level, cytokine receptors, MRGPRs, and TRP channels are most likely important. Future 
drug development efforts should concentrate on targeting these mediators and receptors for the treatment of CTCL pruritus.
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TSLP  Thymic stromal lymphopoietin
VEGF  Vascular endothelial growth factor

Introduction

Per definition, primary cutaneous lymphomas are non-
Hodgkin lymphomas in the skin without evidence of extra-
cutaneous disease at the time of diagnosis [1]. The group 
of cutaneous lymphomas consists of primary cutaneous T 
cell lymphoma (CTCL) and primary cutaneous B cell lym-
phoma (CBCL) subtypes, with CTCL accounting for about 
75–80% of all cutaneous lymphomas worldwide [1]. Among 
all CTCL, mycosis fungoides (MF) is the most common var-
iant, representing approximately 60% of all cases [1]. Vari-
ants of MF include folliculotropic MF, pagetoid reticulosis, 
and granulomatous slack skin [2, 3]. The other classic type 
of CTCL, Sézary syndrome (SS), accounts for less than 3% 
of all CTCL [1], and is a rare, aggressive leukemic subtype 
of CTCL of slow onset [4, 5]. CBCL, constituting ∼20% 
to 25% of all primary cutaneous lymphomas, is subdivided 
into three main subtypes, marginal zone B-cell lymphoma, 
follicle center lymphoma and diffuse large B-cell lymphoma 
[6]. Even though about 40% of CBCL patients report local-
ized pruritus [7], the clinical significance of itch seems to be 
of less importance in CBCL patients than in CTCL patients.

Pruritus is among the most severe and challenging clini-
cal symptoms in CTCL patients [8–11]. It affects up to 
88% of all CTCL patients, 61% of MF patients, and 94% of 
patients with SS [9, 12]. The average pruritus intensity, as 
assessed by a visual analogue scale ranging from 0 (no itch) 
to 10 (unbearable itch) is reported to increase in MF with 
progression of the disease from 3.4 in early stage disease 
(Ia-IIa) to 6.6 in late stage (IIb-IVb), and 7.7 in SS patients 
[9]. Pruritus in CTCL is usually long lasting and refractory 
to standard treatment with topical steroids or oral antihista-
mines [6, 13–15]. Overall, it has been shown that pruritus is 
one of the main factors affecting the health-related quality 
of life and mental health of patients with CTCL [16–18].

While the mechanisms underlying pruritus in CTCL are 
still poorly understood, the increasing information on pru-
ritus-associated mediators and receptors allows to speculate 
on their possible roles on pruritus in CTCL. In this review, 
we aim to summarize published evidence on mediators and 
receptors that are potentially involved in CTCL-associated 
pruritus and could serve as antipruritic targets.

Methods

PubMed and Web of Science were searched using the terms 
‘itch’, ‘pruritus’, ‘cutaneous T-cell lymphomas’, ‘Mycosis 
Fungoides’ and ‘Sézary syndrome’. All relevant published 

papers available from 1950 to May 2023 were included. Fig-
ure 1 represents the flowchart of inclusion and exclusion 
criteria considered to select the relevant references.

Cytokines and chemokines

Interleukin‑4 and interleukin‑13

Interleukin (IL)-4 and IL-13 are cytokines that have overlap-
ping secondary structural features and share 25% sequence 
homology [19, 20]. They can be produced and released by 
various cells, including CD4 + T cells, basophils, eosino-
phils, mast cells, natural killer T cells, and group 2 innate 
lymphoid cells [21, 22]. IL-4 signals via type I or type II 
receptors, consisting either of IL-4Rα paired with com-
mon γ-chain (type I; IL-4Rα/ γc) or IL-4Rα paired with 
IL-13Rα1 (type II; IL-4Rα/IL-13Rα1). While the IL-4Rα/ 
γc receptor complex only binds IL-4, IL-4Rα/IL-13Rα1 
can also interact with IL-13, which also binds and signals 
through IL-13Rα2 [22–24] (Fig. 2).

It has been shown that transgenic mice overexpressing 
IL-4 in the epidermis spontaneously develop a pruritic 
inflammatory skin disease [25]. Importantly, IL-4 as well 
as IL-13 have also been found to directly activate a subset 
of sensory neurons, thereby sensitizing them for subsequent 
stimulation with pruritogenic mediators such as IL-31, hista-
mine, thymic stromal lymphopoietin (TSLP) or chloroquine 
[26]. Consistent with these findings, clinical trials in patients 
with moderate to severe atopic dermatitis (AD) have shown 
that the monoclonal antibody to IL-4Rα, dupilumab, effec-
tively reduces pruritus [27–29], and the anti-IL-13 antibod-
ies lebrikizumab and tralokinumab lead to an improvement 
of pruritus in moderate to severe AD [30–32] (Table 1). In 
chronic prurigo and chronic pruritus of unknown origin, 
dupilumab has also been proven to be efficacious in a large 
number of case reports and case series [33]. Furthermore, 
patients suffering from chronic pruritus of unknown origin 
or AD benefit from inhibition of JAK1, which is the major 
signaling component in type I and type II IL-4R signaling 
[26]. All together, these findings suggest that IL-4 and IL-13 
can contribute to and promote chronic pruritus.

In CTCL, studies have shown that IL-4 may be an early 
indicator of disease progression. The levels of IL-4 in 
peripheral blood mononuclear cells (PBMC) of patients 
with SS and erythrodermic MF were significantly higher 
than those in control groups [34, 35]. The expression level 
of IL-13 mRNA in the lymph nodes of SS patients was sig-
nificantly higher than that in other lymphomas, including 
diffuse large cell lymphomas, follicular lymphomas, periph-
eral T-cell lymphomas, anaplastic large cell lymphomas, 
and tumor-free reactive lymph nodes [36]. Recent reports 
on patients with CTCL indicate that dupilumab treatment 
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can improve pruritus in CTCL [37, 38]. It has to be noted, 
however, that several studies reported about the development 
or exacerbation of CTCL after dupilumab treatment [39–49]. 
One suggested mechanism for the potential acceleration of 
CTCL progression by dupilumab involves an increase in the 

availability of IL-13 for binding at the IL-13 receptor (IL-
13R) α2 site due to the indirect blockade of the IL-13Rα1 
site by dupilumab [42]. CTCL cells have been observed to 
produce higher levels of IL-13 and IL-13Rα2 compared to 
normal skin, resulting in self-sustaining growth signals for 

Fig. 1  Flow diagram representing the inclusion and exclusion criteria considered to select the relevant references. Abbreviations: CTCL, cutane-
ous T-cell lymphomas



4180 Clinical and Experimental Medicine (2023) 23:4177–4197

1 3

tumors [42]. The blocking of the α subunit of the IL-4R by 
dupilumab effectively enhances the pool of available IL-13, 
which can then contribute to the promotion of tumorigenic 
pathways [42, 50]. Another hypothesis suggests that the 
worsening of CTCL might be linked to the direct advance-
ment of malignant T-cell clones, which correlates with the 
depletion of tumor-suppressive, tumor-infiltrating lympho-
cytes [41]. Moreover, tumor cells may develop resistance to 
the effects of dupilumab, leading to the emergence of a clone 
that is no longer responsive to treatment [41]. Therefore, 

in CTCL patients, the potential symptomatic benefit of 
dupilumab must be weighed against the risk of disease pro-
gression [50, 51].

Interleukin‑5

Interleukin-5 belongs to the common β chain (βc) signal-
ing cytokine family including IL-3 and GM-CSF, which 
share the βc for signaling, while the IL-5R specifically 
interacts with IL-5 [52–54]. The major cellular sources of 

Fig. 2  Cytokines, chemokines, and their receptors potentially involved 
in CTCL pruritus. mAbs as treatment are shown in red with blocking 
symbol. All cells releasing the cytokines or express the receptors are 
shown for each subsection. Abbreviations: CCL, Chemokine C–C motif 

ligand; CCR, CC chemokine receptor; IL, Interleukin; ILC-2, Group 2 
innate lymphoid cells; TSLP, Thymic stromal lymphopoietin
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IL-5 are Th2 cells, Tc2 cells, mast cells, eosinophils, and 
γδT cells [55]. In addition, group 2 innate lymphoid cells 
can produce high levels of IL-5 when properly stimulated 

[56]. While the IL-5R subunit is strongly expressed by 
eosinophils and basophils, mast cells exhibit a rather low 
expression [52, 57]. (Fig. 2).

Table 1  Potential drivers of itch and therapeutic targets for the treatment of pruritus in CTCL

AD, atopic dermatitis; CCL, chemokine C–C motif ligand; CPUO, chronic pruritus of unknown origin; CTCL, cutaneous T-cell lymphomas; 
EGFRi, epidermal growth factor receptor inhibitors; IL, Interleukin; KLK5, Kallikrein-related peptide 5; MRGPRs, mas-related G protein-cou-
pled receptors; NGF, nerve growth factor; PAR-2, protease-activated receptor 2; PN, prurigo nodularis; SP, substance P; TRP Channels, transient 
receptor potential channels; TSLP, thymic stromal lymphopoietin

Mediator Drug Effects on pruritus Effect on pruritus in CTCL

Cytokines and chemokines
 IL-4 Dupilumab Significant relief in AD [27–29] Significant relief [37, 38], No improvement [40–43, 47, 49]
 IL-13 Lebrikizumab Significant relief in AD [28, 30] Unknown
 IL-13 Tralokinumab Significant relief in AD [28, 31, 32] Unknown
 IL-5 Reslizumab Significant relief in hypereosinophilic syndrome [62] Unknown
 IL-5 Mepolizumab Significant relief in hypereosinophilic syndrome [63] and 

Wells syndrome [64]
Unknown

 IL-25 None available Unknown Unknown
 IL-31 Nemolizumab Significant relief in AD [90–92] and prurigo nodularis [93, 

94]
Unknown

 CCL-1 None available Unknown Unknown
 CCL-26 None available Unknown Unknown
 TSLP Tezepelumab Minor improvement in AD [119] Unknown

Neuropeptides and neurotrophins
 NGF CT327 Significant relief in psoriasis [132] Unknown
 SP Aprepitant Significant relief in PN-associated itch [145], brachioradial 

pruritus [146, 152], drugs [147–149], paraneoplastic 
pruritus [150], psoriasis [151], solid tumors [152], systemic 
diseases [153] such as chronic kidney disease, hyperurice-
mia, iron deficiency. No improvement in PN [154] and AD 
[155]

Significant relief [165–170], No improvement [171]

 SP Serlopitant Significant relief in PN [156] psoriasis [157, 158], CPUO 
[160]. No improvement in epidermolysis bullosa [146]

Unknown

 SP Tradipitant Significant relief in AD [161] Unknown
 SP Orvepitant Significant relief in EGFRi-induced intense pruritus [163] Unknown

VEGF Bevacizumab Significant relief in chronic pruritus [179] Unknown
Proteases
 KLK5 None available Unknown Unknown
 Tryptase MTPS9579A Unknown (ongoing phase 2 trial in CSU, NCT05129423) Unknown

Itch associated receptors and ion channels
 MRGPRs None available Unknown Unknown
 Opioid Naltrexone Significant relief in uremia [216], psoriasis [216, 221], 

PN [216], cholestatic itch [216, 219] and lichen simplex 
chronicus [221]

Significant relief [216, 248–250], No improvement [251]

 Opioid Nalmefene Significant relief in AD [217, 218], chronic urticaria [217, 
218]

Unknown

 Opioid Morphine Elicits pruritus [226, 227] Unknown
 Opioid Difelikefalin Significant relief in chronic kidney disease [228–230] Unknown
 Opioid Nalfurafine Significant relief in hemodialysis patients [231, 233–235] and 

chronic liver disease [232, 235, 236]
Unknown

 Opioid Nalbuphine Significant relief in morphine-induced pruritus [237, 238], 
PN [239] and uremia [240, 241]

Unknown

 Opioid Butorphanol Significant relief in morphine-related pruritus [242, 243], 
cholestatic pruritus [244], postherpetic itch [245], PN 
[246], systemic diseases-related pruritus [246, 247]

Unknown

 Opioid Naloxone Significant relief in cholestatic pruritus [222–224] Significant relief [251]
 PAR-2 None available Unknown Unknown
 TRP channels PAC-14028 Significant relief in AD [276, 277] Unknown
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IL-5 plays a key role in the production and function of 
eosinophils. Monoclonal antibodies against IL-5 (mepoli-
zumab, reslizumab) and IL-5R (benralizumab) have been 
reported to dramatically decrease blood eosinophil counts 
in asthma patients [58–60] and in patients with hypere-
osinophilic syndrome (HES) [61]. HES patients with skin 
involvement usually present with severe pruritus. Treat-
ment of HES patients with mepolizumab and reslizumab 
has been shown to lead to a reduction of itch intensity 
along with decreased eosinophil counts [62, 63]. Similar 
effects were observed in a patient with Wells syndrome, 
another eosinophilic skin disease [64]. (Table 1).

Currently, there is only little data available for a poten-
tial role of eosinophil-mediated pruritus in CTCL. Never-
theless, eosinophil infiltration was detected in the skin of 
MF patients who presented with pruritus, but not in those 
without pruritus [65]. Furthermore, the group of patients 
with intense pruritus exhibited a significantly higher 
number of eosinophils that infiltrated the MF skin [65]. 
In addition, a positive correlation was observed between 
the presence of eosinophils in MF lesions and the dis-
ease stage [66]. Eosinophil presence is rare in the early 
stages of MF, but becomes a common characteristic in 
advanced stages [66]. The efficacy of biologics targeting 
IL-5 or IL-5R has not yet been explored in the treatment 
of CTCL-associated pruritus.

Interleukin‑25

Interleukin-25, also known as IL-17E, belongs to the fam-
ily of IL-17 cytokines along with IL-17A-F [67, 68]. It is 
produced by activated Th2 cells, eosinophils, basophils, 
mast cells, and macrophages [69]. IL-25 signals through a 
heterodimer complex consisting of IL-17 receptor A (IL-
17RA) and IL-17 receptor B (IL-17RB) [70, 71]. The IL-
17RB mRNA expression seen in naïve T cells, Th2 and 
Th9 cells indicates that these cells may be IL-25 targets 
[70, 72]. In addition, skin macrophages, in particular of 
the M2 phenotype, and keratinocytes are also targets of 
IL-25 [73]. (Fig. 2).

IL-25 has been suggested to be involved in pruritus 
in AD by mutual upregulation with endothelin-1 [74], 
a potent pruritogen in human and mice [75–78]. In line 
with this, plasma endothelin-1 and serum IL-25 levels 
have been found to strongly positively correlate with itch 
intensity in AD and to be significantly elevated as com-
pared to healthy control subjects [79, 80].

There is not much known about the connection of IL-25 
and itch in CTCL. In patients with advanced disease, 
expression of IL-25 in keratinocytes and serum levels of 

IL-25 were significantly higher than in healthy control 
subjects [81], which also correlated with serum lactic acid 
dehydrogenase levels, a disease severity marker of MF 
and SS [81, 82]. However, the relationship between IL-25 
levels in the lesions or serum of CTCL patients and the 
severity of pruritus is, as of yet, unknown.

Interleukin‑31

Interleukin-31 is a member of the IL-6 cytokine family and 
is thought to be mainly produced by activated Th2 cells, 
but also by other cells such as mast cells, macrophages, and 
dendritic cells [83, 84]. IL-31 signals via a heterodimeric 
receptor complex, which is composed of IL-31RA and 
the oncostatin M receptor β (OSMRβ) [85]. The IL-31R 
complex is expressed by many cell types, including T cells, 
keratinocytes, dendritic cells, eosinophils, macrophages, and 
dorsal root ganglia [86]. (Fig. 2).

IL-31 is thought to be importantly involved in the patho-
physiology of chronic pruritus associated with various der-
matological diseases. For example, in both stasis dermatitis 
and scabies, increased numbers of IL-31-producing M2 
macrophages in the lesion have been linked to the severe 
pruritus in these patients [87, 88]. Furthermore, in patients 
with allergic contact dermatitis, serum levels of IL-31 are 
significantly higher as compared to healthy controls and 
correlate with the severity of pruritus [89]. A monoclonal 
antibody targeting the IL-31RA, nemolizumab, has been 
studied in AD and prurigo nodularis and was very effective 
in reducing pruritus in these patients [90–94]. (Table 1).

The information on the pruritogenic role of IL-31 in 
CTCL is conflicting. Some studies found serum levels of 
IL-31 to be significantly elevated compared to healthy con-
trols [95–97], whereas another study showed that transla-
tional and transcriptional expression levels of IL-31 were 
very low or undetectable in CTCL patients [98]. One of the 
studies reporting increased serum IL-31 in CTCL did not 
observe a correlation with itch intensity [96], whereas the 
other two did [97, 99]. For example, Abreu et al. reported 
that, in CTCL patients with itch, IL-31 levels are higher 
than in those without and that the highest levels of IL-31 
are found in those patients with severe itch (visual analogue 
scale of 6 or higher) [97]. Also, the level of IL-31 mRNA in 
peripheral blood mononuclear cells of CTCL patients have 
been found to be significantly increased and to correlate with 
the intensity of itch [99]. Additionally, the expression levels 
of IL-31, IL-31RA and OSMRβ in skin lesions of CTCL 
patients have been found to be increased, and the expression 
levels of IL-31 correlate with pruritus intensity [100]. The 
efficacy of nemolizumab has not yet been explored in the 
treatment of CTCL pruritus.
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CCL‑1 and CCL‑26

Chemokine CC motif ligand (CCL)-1 (also known as 
thymus-derived chemotactic agent 3) is a small glyco-
protein and a typical chemokine, belonging to CC-type 
chemokines. CCL-26 (eotaxin-3) belongs to the eotaxin 
family, a CC chemokine subfamily that also includes CCL-
11 (eotaxin-1) and CCL-24 (eotaxin-2) [101, 102]. CCL-1 
is secreted by monocytes, activated macrophages and T 
lymphocytes. It is also expressed by dermal microves-
sels and epidermal antigen-presenting cells [103, 104]. 
CCL-26 is mainly produced by resident skin cells, includ-
ing fibroblasts and smooth muscle cells, and is generally 
expressed only in non-hematopoietic cells [105]. CC 
chemokine receptor (CCR) 8 is the specific receptor of 
CCL-1, which most T cells in normal human skin express. 
It is also expressed by nerve cells and glial cells [103, 
106]. CCR3, the receptor of CCL-26 [107], is highly 
expressed by eosinophils, with noted expression in baso-
phils, Th2 cells, mast cells, and airway epithelial cells 
[108]. (Fig. 2).

Compared with healthy controls, serum CCL-1 and CCL-
26 levels were significantly higher in patients with AD and 
bullous pemphigoid, both pruritic diseases [109–111].

In CTCL patients, serum CCL-1 and CCL-26 levels 
were significantly increased, especially in advanced cases 
[111, 112]. There is, furthermore, a significant correlation 
between serum levels of CCL1 and CCL26 with itch inten-
sity in CTCL patients [113]. In addition, the expression of 
CCL26 mRNA in fibroblasts from skin lesions of CTCL 
patients is higher than in normal skin [112]. Currently, there 
are no therapeutic options available for testing the effects 
of CCL-1 and -26 targeted treatment of pruritus in CTCL.

Thymic stromal lymphopoietin

Thymic stromal lymphopoietin (TSLP) is a member of the 
IL-2 cytokine family [114] and is mainly expressed by cells 
forming barrier surfaces, i.e. epithelial cells and keratino-
cytes [115]. The TSLP receptor is a heterodimeric recep-
tor consisting of an IL-7 receptor α-chain and a common 
receptor-γ chain [116]. TSLP receptor mRNA has been 
found on many immune cell types, including dendritic cells, 
T cells, B cells, mast cells, natural killer T cells, and mono-
cytes [117] (Fig. 2).

TSLP is held to be involved in the pathogenesis of pru-
ritus in various dermatological diseases. For example, in 
dermatitis herpetiformis, skin-derived TSLP was shown 
to correlate with the intensity of pruritus [118]. A human 
monoclonal antibody specific for TSLP, tezepelumab, dem-
onstrated significant but minor improvement in pruritus in 

moderate to severe AD patients as compared to placebo 
[119] (Table 1).

Compared with healthy controls, the expression level of 
TSLP in serum and lesions were significantly increased in 
CTCL patients, especially in the early-stage of the disease 
[120, 121]. However, the relationship between TSLP expres-
sion levels and CTCL pruritus are, as of yet, unclear and 
need further exploration. The efficacy of tezepelumab has 
not yet been explored in the treatment of CTCL pruritus.

Neuropeptides and neurotrophins

Nerve growth factor

Nerve growth factor (NGF), together with brain-derived 
neurotrophic factor, neurotrophin-3 and neurotrophin-4/5, 
belongs to the family of neurotrophins [122, 123]. The 
production and maturation of NGF are accredited to a vari-
ety of cell types, such as keratinocytes, neurons and mast 
cells [124]. NGF binds to tropomyosin receptor kinase 
A (TrkA) with high affinity and to the p75 neurotrophin 
receptor (p75NTR) with low affinity [125]. In addition to 
nerve cells, many immune cells such as macrophages and 
mast cells also express NGF receptors and respond to NGF 
stimulation to induce a variety of effects that can be pro- or 
anti-inflammatory [126] (Fig. 3).

In patients with pruritic skin diseases including AD, 
prurigo nodularis and psoriasis, the levels of NGF in the 
plasma and expression of its receptors TrkA and p75NTR 
in lesional skin were significantly higher and associated 
with strong pruritus [127–129]. In line with this, signifi-
cantly higher expression levels of NGF and TrkA were 
found in psoriasis patients with pruritus as compared to 
patients without pruritus, and the expression levels of NGF 
and TrkA were associated with pruritus severity [130, 
131]. Furthermore, treatment of patients with psoriasis 
with the topical TrkA inhibitor CT327 was associated with 
a significant reduction of pruritus [132] (Table 1).

As for CTCL, patients with SS were reported to exhibit 
higher serum NGF levels as compared to healthy controls 
[113]. In addition, NGF-positive dermal nerve fibers were 
increased in the skin of these patients, while they were 
rarely detected in MF patients as well as healthy controls 
[113]. The efficacy of topical CT327 or of other NGF-
targeting therapies has not yet been explored in the treat-
ment of CTCL pruritus.

Substance P

Substance P (SP) is a highly conserved peptide neuro-
transmitter that belongs to the tachykinin family [133]. 
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Although mainly expressed by neurons, it is also expressed 
by non-neuronal cell types, such as microglia and immune 
cells [134]. The specific receptor of SP is neurokinin-1 
receptor (NK-1R), a G protein-coupled receptor (GPCR). 
NK-1R is expressed by a variety of cells, including neu-
rons, smooth muscle cells, fibroblasts, mast cells, T cells, 
B cells, and NK cells [135]. In addition, SP strongly acti-
vates Mas-related G-protein coupled receptor member X2 
(MRGPRX2), a member of the Mas-related gene family, 
which is expressed in sensory neurons, mast cells, and 
keratinocytes [136–138] (Fig. 3).

SP and its receptors are thought to be involved in various 
dermatological and non-dermatological pruritic conditions. 
For example, plasma concentrations of SP were found to be 
elevated in AD patients as compared to healthy controls, and 
to correlate with pruritus intensity in these patients [139]. 
In patients with psoriasis, SP levels have also been shown 
to be elevated, and the number of SP-positive nerve fibers 
in lesional skin correlated with the severity of pruritus in 
these patients [131, 139, 140]. Compared to healthy skin 
and non-lesional skin, the number of SP-positive nerve 
fibers and expression of NK-1R were also significantly 

Fig. 3  Neuropeptides, growth factors, and other substances and 
receptors potentially involved in CTCL pruritus. mAbs as treat-
ment are shown in red with blocking symbol. All cells releasing the 
cytokines or express the receptors are shown for each subsection. 
Abbreviations: KLK5, Kallikrein Related Peptidase 5; KOR, k-type 
opioid receptor; MOR, µ -type opioid receptor; MRGPRX4, Mas-

related G-protein coupled receptor member X4; NGF, Nerve growth 
factor; NK-1R, Neurokinin-1 receptor; PAR, Protease-activated 
receptor; SP, Substance P; TrkA, Tropomyosin receptor kinase A; 
TRP channels, Transient receptor potential channels; VEGF, Vascular 
endothelial growth factor
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increased in other itchy diseases, such as chronic prurigo 
and chronic pruritus associated with internal diseases, drug-
induced pruritus, brachioradial pruritus, and chronic pruri-
tus of unknown origin. Levels of SP are also significantly 
increased in the blood of patients with chronic spontaneous 
urticaria [140–144].

Aprepitant, an NK-1R antagonist, has been reported 
to be an effective anti-pruritic drug in many case reports 
and case-series. Aprepitants’ antipruritic effects have been 
shown in patients with chronic pruritus, prurigo nodularis, 
brachioradial pruritus, drug-induced pruritus, paraneoplastic 
pruritus, and pruritus associated with systemic diseases such 
as chronic kidney disease, hyperuricemia and iron deficiency 
[145–153]. In randomized controlled trials in patients with 
chronic prurigo, microbial eczema, AD, pruritus and eczema 
craquelé, aprepitant, however, failed to significantly improve 
pruritus [154, 155]. Another NK-1R antagonist, serlopitant, 
was tested for the treatment of pruritus associated with pru-
rigo nodularis (phase 2 trial positive, phase 3 negative), pru-
ritus associated with psoriasis (phase 2 trial positive), CPUO 
(phase 2 trial positive), and pruritus associated with epider-
molysis bullosa (phase 2 trial negative) [156–160]. Other 
NK-1R antagonists in clinical investigations as antipruritic 
drugs are tradipitant, which has shown some antipruritic 
effects in patients with mild AD [161], and orvepitant [162, 
163] (Table 1).

In CTCL, serum levels of SP expression are significantly 
increased in patients as compared to healthy controls, and 
positively correlate with disease severity in MF patients 
[164]. The correlation of itch intensity and SP levels has, as 
of yet, not been assessed. Nevertheless, the efficacy of the 
NK-1R antagonist aprepitant has been explored in the treat-
ment of CTCL pruritus and has shown a significant antipru-
ritic effect in many case reports and case series [165–170] 
(Table 1). In SS, the results of a small randomized, double-
blind, placebo-controlled crossover study did not support 
the antipruritic efficacy of aprepitant [171]. The authors 
acknowledged, however, that this study had several limita-
tions, with one notable limitation being the recruitment of 
only 5 patients [171]. Furthermore, they attributed the dif-
ferences in clinical response compared to previous studies 
to changes in disease activity and external factors, such as 
ambient temperature and humidity, which have the potential 
to influence the scoring of pruritus using the visual analog 
scale in patients with SS [171].

Vascular endothelial growth factor

Vascular endothelial growth factors (VEGFs), also known 
as vascular permeability factors, are a family of growth fac-
tors, which consists of seven members, VEGF-A, -B, -C, -D, 
-E, and -F, and PlGF [172]. There are three types of VEGF 

receptors: VEGFR-1, 2, and 3, and different VEGFs have 
different affinities to different receptors [173].

Especially for VEGF-A, several observations support 
a role in pruritus in different conditions. For example, in 
psoriasis patients, expression of VEGF-A in lesional skin 
of patients with severe pruritus was higher than in those 
without pruritus [174]. In patients with AD, expression of 
VEGF-A in the epidermal stratum corneum was increased, 
and levels of VEGF were significantly higher in the serum 
and correlated with pruritus [175–177]. In chronic prurigo, 
VEGF-A immunoreactivity was markedly increased in the 
epidermis, dermis, and subcutis, which was associated with 
a marked increase in the number of blood vessels and epi-
dermal thickness of prurigo lesions [178].

Bevacizumab, a VEGF-A inhibitor, was found to be 
effective in a patient with chronic prurigo, where it reduced 
pruritus [179] (Table 1). In addition, axitinib, an inhibitor 
of VEGFR-1-3, inhibits the scratching behavior seen in 
imiquimod-induced psoriasis mouse models [174].

In erythrodermic MF and SS, serum VEGF-A levels were 
significantly higher than those in healthy controls, and the 
levels significantly decreased after treatment, including topi-
cal and oral corticosteroids, ultraviolet phototherapy, oral 
etretinate, oral vorinostat and/or systemic chemotherapy. 
Furthermore, serum VEGF-A levels were significantly 
associated with the severity of pruritus in MF/SS patients 
[180]. However, the efficacy of bevacizumab has not yet 
been explored in the treatment of CTCL pruritus.

Proteases

Kallikreins

Kallikreins (KLKs) are a group of secreted serine proteases 
[181, 182]. In the skin, KLKs are mainly expressed in the 
upper stratum granulosum and stratum corneum [183, 184] 
(Fig. 3). There are at least 11 KLKs expressed in the epider-
mis, of which KLK5 is most abundant in the skin and may 
play an important role in itch [185, 186]. KLK5 can activate 
protease-activated receptor (PAR)-2, a GPCR expressed in 
a variety of skin cells, including sensory nerves, keratino-
cytes, and mast cells, which are thought to be involved in the 
elicitation of pruritus [187–189].

KLK5 activity was found to be increased in the skin of 
AD patients, and protein expression levels were significantly 
higher than those in healthy controls [190, 191]. In an ani-
mal experiment, mice injected with KLK5 exhibited sig-
nificantly increased scratching behavior relative to vehicle 
controls [192].

KLK5 may also be involved in MF-associated pruri-
tus. A study with 37 MF patients showed that the protein 
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expression levels of KLK5 increased with the severity of 
pruritus [65].

Tryptase

Tryptase is one of the major serine-proteinases and is 
secreted mainly by tissue mast cells and, to a lesser extent, 
also basophils [193, 194] (Fig. 3). Two main types of mast 
cell tryptase have been described, α- and β-tryptase. While 
α-tryptase is constitutively released by mast cells as an 
inactive pro-enzyme, β-tryptase is stored in mast cell gran-
ules and is released upon their activation [195]. β-tryptase 
cleaves several extracellular substrates including extracel-
lular matrix proteins, activates PARs, in particular PAR-2, 
and it is a useful serum marker for mast cell activation in 
anaphylaxis and anaphylactoid reactions [195, 196].

Tryptase is thought to be involved in pruritus associated 
with various diseases. For example, serum tryptase levels 
were increased in renal disease with pruritus, and the inten-
sity of pruritus correlated significantly with tryptase levels 
[197]. Tryptase level were also increased in AD patients 
with moderate to severe pruritus [198]. The connection 
of tryptase and pruritus is further supported by the corre-
lation of blood tryptase reduction in AD patients treated 
with fexofenadine, an antihistamine, with pruritus improve-
ment [199] (Fig. 3) Enhanced levels of tryptase release and 
tryptase activity are related to itch in chronic dermatitis, 
P-phenylenediamine-induced itch, and ovalbumin allergy-
induced itch in mice [200–202]. Nafamostat mesilate, an oral 
serin protease inhibitor, inhibits itch-associated responses 
in mice mainly through the inhibition of mast cell tryptase 
[203].

However, although there is strong evidence in support 
of a direct connection between tryptase and itch from vari-
ous diseases, there is currently only one study that involved 
a small group of patients with MF. This study observed 
numerically higher serum levels of tryptase in MF patients 
with pruritus compared to those without pruritus [204]. Fur-
thermore, since tryptase is a marker of mast cell activation, 
any association between pruritus and tryptase may reflect 
the role of mast cell activation and the consecutive release 
of other pruritus associated mediators. Studies on the role of 
tryptase and mast cells are needed and should be performed.

Itch associated receptors and ion channels

Mas‑related G protein coupled receptors

MRGPRs, including MRGPRA to -H and MRGPRX, com-
prise a large family of seven transmembrane-domain recep-
tors mainly expressed in sensory neurons of the dorsal root 
and, importantly, on mast cells [205–207]. Of these, the 

MRGPRX receptors (MRGPRX1-4) are primarily expressed 
in humans and held to induce pruritus [208] (Fig. 3).

MRGPRs can be activated by a large variety of sub-
stances and mediators, including numerous synthetic drugs 
and a number of neuropeptides. For example, chloroquine, 
a widely used anti-malarial drug, activates MRGPRX1 and 
induces itch [209]. IPDef1, a tick salivary peptide, can 
evoke itch by activating MRGPRX1 on dorsal root gan-
glion neurons, and the concentration of PAMP1-20, an 
MRGPRX2 agonists, was found to be elevated in the skin 
in allergic contact dermatitis [210]. Levels of MRGPRX2 
mRNA were increased in pruritic skin of patients with AD 
and psoriasis [141]. MRGPRX4 is thought to be impli-
cated in the transmission of cholestatic itch where biliru-
bin excites peripheral sensory neurons and elicits pruritus 
through binding to and activation of MRGPRX4 [211]. 
Transgenic mice expressing human MRGPRX4 scratched 
more upon injection of bile acids, which are increased in 
the blood of cholestatic patients [205].

The role and relevance of MRGPRs in CTCL pruritus 
is, as of yet, entirely unclear and needs to be investigated.

Opioids

The endogenous opioid system is one of the human innate 
pain-relief systems and uses specialized opioid receptors 
[212]: µ-type opioid receptors (MOR) for endorphins, 
k-type opioid receptors (KOR) for dynorphins, and δ–type 
opioid receptors for enkephalins [213]. Interestingly, 
opioid receptors have been found to differently connect 
with itch. For example, KOR signaling suppresses itch, 
whereas MOR signaling can stimulate itch [214, 215] 
(Fig. 3). These findings are derived from experiments 
with selective agonists and antagonists for the individual 
receptors. For instance, MOR antagonists, such as nal-
trexone, nalmefene, and naloxone, can significantly relieve 
severe itching caused by several different diseases, includ-
ing AD, uremia, psoriasis, chronic prurigo, cholestatic 
itch and lichen simplex chronicus [216–224]. Intrathe-
cal injection of the MOR agonists morphine or DAMGO 
elicited dose-dependent scratching and pruritus in mice 
and humans [225–227]. KOR agonists, such as difelike-
falin and nalfurafine, can markedly improve pruritus in 
chronic kidney disease patients undergoing dialysis and 
pruritus in chronic liver disease [228–236]. Nalbuphine, a 
KOR agonist and MOR antagonist, can prevent intrathecal 
morphine-induced pruritus and be effective against pru-
ritus in prurigo nodularis and uremia [237–241]. Butor-
phanol, another KOR agonist and MOR antagonist, has 
been reported to reduce chronic pruritus associated with 
various dermatological, internal, and neurological diseases 
[242–247] (Table 1).
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In almost all lymph nodes of patients with SS, in con-
trast to all other lymphoma patients, MORs were found 
to be highly expressed [36]. Naltrexone, an orally sem-
isynthetic MOR antagonist, was demonstrated to be 
effective in suppressing pruritus in patients with CTCL 
[216, 248–250], and another MOR antagonist, naloxone, 
improved pruritus in a patient with MF [251]. In the same 
patient, however, exacerbation of pruritus occurred after 
treatment with naltrexone, which may reflect the complex-
ity of the opioid system [251].

Protease‑activated receptor‑2

PAR-2, a G-protein coupled receptor (GPCR), is activated by 
serine proteases such as trypsin and tryptase [252, 253]. It 
belongs to the group of PARs which also includes PAR-1, -3, 
and -4 [254]. PAR-2 is expressed by epithelial, endothelial, 
and smooth muscle cells, as well as by cells of the immune 
and nervous systems [255, 256] (Fig. 3).

PAR-2 is involved in the pathophysiology of many inflam-
matory diseases, including AD. In the skin of patients with 
AD, the number of PAR-2 positive nerve fibers is signifi-
cantly increased, and intracutaneous injection of endogenous 
PAR-2 agonists causes enhanced and prolonged itch [198]. 
Interestingly, skin of patients with AD has been found to 
be presensitized for protease-induced itch [257]. In mice, 
PAR-2 agonists can also induce scratching behavior [200, 
258]. Mice with epidermal overexpression of PAR-2 develop 
an enhanced spontaneous scratching [259, 260], whereas 
inhibition of PAR-2 activation by PAR2 inhibitors such as 
SAM-11 and PZ-252 suppresses scratching behaviour [200, 
202, 261].

Immunohistochemistry demonstrated that the expression 
of PAR-2 in the skin of MF patients is higher than in healthy 
controls. However, there was no difference of PAR-2 expres-
sion in MF patients with different degrees of pruritus [65].

Transient receptor potential channels

Transient receptor potential channels (TRP channels) are 
non-selective calcium-permeable cation channels that 
compose the TRP ion channel superfamily located on the 
cell membrane [262–265]. TRP channels are divided into 
seven subgroups based on protein homology: TRPC, TRPV, 
TRPM, TRPA, TRPN, TRPP, and TRPML. Among them, 
five have been proposed to play a role in itch: TRPA1, 
TRPV1, TRPV3, TRPV4, and TRPM8 [266, 267]. They 
are expressed in different cell types in the skin and nerv-
ous system, such as keratinocytes and dorsal root ganglion 
neurons [268] (Fig. 3).

TRPA1 is considered to be an important mediator for 
itch signaling in mice and humans [262, 264, 269–272]. 
Burn patients with pruritus had increased TRPA1 mRNA 

compared to burn patients without pruritus, and TRPA1 
mRNA expression showed a positive correlation with the 
intensity of post-burn pruritus [273]. Overexpression of 
TRPV 1 in pruritic skin was found to be positively correlated 
with itch intensity ratings in both AD and psoriasis patients 
[141]. Numerous clinical trials have confirmed that topical 
application of capsaicin – a TRPV1 agonist – is effective in 
reducing chronic pruritus of unknown origin [274, 275], and 
PAC-14028, a TRPV1 antagonist, showed a trend towards 
improvement of pruritus in AD patients in a phase 2b clini-
cal trial [276, 277] (Table 1).

TRPV3 is implicated in itch in many skin diseases, 
including Olmsted syndrome and AD [278–280]. TRPV3 
mRNA expression is higher in AD patients with pruritus 
than AD patients without pruritus and healthy controls [281, 
282]. In burn patients, TPRV3 was significantly elevated in 
the epidermis of burn scars with pruritus when compared 
with burn scars without pruritus and was positively corre-
lated with the intensity of pruritus [273]. A TRPV3 activa-
tor, carvacrol, has been reported to cause pruritus in humans 
[283, 284].

TRPV4 is also involved in a variety of pruritic conditions 
[285–287]. Like TRPV3, TRPV4 mRNA expression was 
increased in burn patients with pruritus compared to burn 
patients without pruritus and normal skin, and is positively 
correlated with the intensity of pruritus [273]. In numerous 
mouse disease models (psoriasis, allergic contact dermatitis 
and dry skin) and models using pruritus-inducing substances 
and TRPV4 agonists, a role for TRPV4 in itch induction has 
been confirmed [268, 285, 288–293].

Activation of TRPM8 induces a long-lasting cooling 
effect in the skin, and the application of cold is a well-known 
remedy for pruritus in many conditions [294]. TRPM8 ago-
nists such as cryosim-1, menthoxypropanediol, and icilin 
can significantly improve recalcitrant pruritus associated 
with many diseases, including eczema, urticaria, AD, lichen 
sclerosus et atrophicus, and scalp itch [295–299].

TRP channels may also be involved in CTCL-asociated 
pruritus. The use of a CTCL mouse model demonstrated that 
one of the itch mediators in CTCL, miR-711, induced itching 
through direct activation of TRPA1 on sensory neurons, and 
this pruritus was decreased in TRPA1-knockout mice [300]. 
The efficacy of PAC-14028 or other TRP antagonists has not 
yet been explored in the treatment of CTCL pruritus.

Conclusion

Chronic pruritus is complex, involves different pathways, 
and is likely to be different between diseases [301–303]. 
Although remarkable progress is being made in exploring 
the pathogenesis of pruritus, the underlying pathophysiology 
in CTCL-associated itch remains largely elusive. Here, we 
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summarized and discussed the published evidence for a vari-
ety of mediators and receptors held be involved in itch asso-
ciated with CTCL. In some instances, the evidence is rather 
circumstantial and requires investigations in CTCL patients 
or mouse models. In others, a relevant role in CTCL is sup-
ported by correlations of itch intensity and mediator levels. 
Although it is too early to say which mediators and recep-
tors that drive pruritus in CTCL, the significant involve-
ment of proteases (primarily tryptase), and neuropeptides 
(mainly SP) in the development and severity of pruritus in 
various dermatological diseases, including CTCL, suggests 
their potential as key players in this context. At the receptor 
level, cytokine receptors, MRGPRs and TRP channels are 
most likely important, and future drug development should 
target these receptors for the treatment of CTCL pruritus.

Currently, CTCL-associated itch is difficult to treat and 
has substantial impact on quality of life in these patients [8, 
10, 304, 305]. Therefore, novel, effective and safe treatment 
options for pruritus in CTCL are desperately needed. The 
publication of further case reports and series is encouraged, 
but what we really need are controlled clinical trials.
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