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Abstract
Precision medicine is a new frontier in healthcare that uses scientific methods to customize medical treatment to the indi-
vidual genes, anatomy, physiology, and lifestyle of each person. In cardiovascular health, precision medicine has emerged 
as a promising paradigm to enable cost-effective solutions that improve quality of life and reduce mortality rates. However, 
the exact role in precision medicine for human heart modeling has not yet been fully explored. Here, we discuss the chal-
lenges and opportunities for personalized human heart simulations, from diagnosis to device design, treatment planning, and 
prognosis. With a view toward personalization, we map out the history of anatomic, physical, and constitutive human heart 
models throughout the past three decades. We illustrate recent human heart modeling in electrophysiology, cardiac mechanics, 
and fluid dynamics and highlight clinically relevant applications of these models for drug development, pacing lead failure, 
heart failure, ventricular assist devices, edge-to-edge repair, and annuloplasty. With a view toward translational medicine, 
we provide a clinical perspective on virtual imaging trials and a regulatory perspective on medical device innovation. We 
show that precision medicine in human heart modeling does not necessarily require a fully personalized, high-resolution 
whole heart model with an entire personalized medical history. Instead, we advocate for creating personalized models out 
of population-based libraries with geometric, biological, physical, and clinical information by morphing between clinical 
data and medical histories from cohorts of patients using machine learning. We anticipate that this perspective will shape 
the path toward introducing human heart simulations into precision medicine with the ultimate goals to facilitate clinical 
decision making, guide treatment planning, and accelerate device design.
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1 � A brief history of cardiac modeling

The human heart beats 100,000 times a day, 40 million 
times a year, and three billion times throughout an average 
lifetime. Four centuries BC, Aristotle recognized the heart 
as the most important organ of our body and this observa-
tion still holds true today. In the early 17th century, William 
Harvey proved the function of the heart and the circulation 
of blood, a discovery that is considered the greatest medical 
achievement of all time. Throughout the past three decades, 
our understanding of the human heart has become much 
more quantitative, made possible by the close collaboration 
between medical scientists, biologists, and mathematical 
modelers. Today, we are at a critical turning point where 
we can confidently assume that, within the next decade, we 
will be able to model and simulate anybody’s individual 
personalized history of the heart. We take this opportunity 
to revisit what is possible to model and simulate today, what 
may become reality in the near future, and how mathemati-
cal modeling will guide medical device design and clinical 
decision making in the era of precision medicine.

1.1 � History of anatomic models

The art of mathematical modeling is to reduce a problem 
to the simplest possible mathematical description that is 
still manageable and, at the same time, detailed enough to 
capture the relevant effects. Figure 1 illustrates the art of 
human heart modeling through the hierarchy of models of 
increasing complexity. The first and simplest models of the 
heart are idealized cylindrical models that only focus on 
cross-sections of the left ventricle to rapidly develop and 
test constitutive models under physiological and pathologi-
cal conditions (Guccione et al. 1991; Rodriguez et al. 1994). 
The next slightly more complex family of models are ideal-
ized elliptical left ventricular models with easy reproduc-
ibility and popular applications in benchmarking constitu-
tive models (Nielsen et al. 1991; Eriksson et al. 2013; Land 
et al. 2015). The simplest models to study the interaction 
between both ventricles are idealized elliptical biventricu-
lar models, which can illustrate the effects of pulmonary 
and systemic hypertension, while still utilizing a generic 
geometry (Göktepe and Kuhl 2010). A major advantage of 
all three types of models is that their geometric simplicity 
provides an analytical representation of the fiber orientation, 
which is relevant to realistically model cardiac contraction, 
growth, and remodeling. The next more complex class of 
models, although geometrically simpler, are axisymmetric 
left ventricular models that can be constructed by rotation-
ally sweeping a cross section of the left ventricular anterior 
free wall represented through a set of epi- and endocardial 

points with discrete fiber orientations (Guccione et al. 1995). 
More recent studies that focus on regional heterogeneities, 
for example introduced through prestrain, abandon the 
assumption of axisymmetry altogether and use full ana-
tomic left ventricular models from personalized geometries 
(Genet et al. 2015). For electrophysiological simulations, 
where we are interested in extracting electrocardiograms 
under physiological and pathological conditions, we usu-
ally have to simulate both ventricles using anatomic bi-
ventricular models (Sahli Costabal et al. 2016). Anatomic 
bi-ventricular models are also frequently used to simulate 
pressure-volume loops (Krishnamurthy et al. 2013) or to 
predict realistic excitation patterns in response to different 
treatment scenarios (Ramírez et al. 2020). The most complex 
models of the heart are undoubtedly anatomic whole heart 
models from real personalized geometries (Zygote 2014) that 
become unavoidable when studying the interaction between 
the atria and the ventricles, for example in all medical condi-
tions that involve the valves. While enormous progress has 
been made since the first anatomic heart models in the early 
1990s, creating personalized whole heart models, with all 
four chambers, the valves, the papillary muscles, and the 
chordae tendineae, with personalized excitation and contrac-
tion systems of Punkinje fibers and heart muscle fibers, and 
realistic in- and outflow conditions for the blood, remains 
one of the major challenges in bringing computational mod-
eling closer to clinical use (Smith et al. 2011).

Fig. 1   History of anatomic models. Increasing complexity of human 
heart models. Idealized cylindrical, elliptical left ventricular, and 
elliptical biventricular models allow for an analytical closed form 
expression for the fiber orientation. More realistic anatomic axisym-
metric, left ventricular, biventricular, and whole heart models are 
based on real human heart geometries and fiber orientations
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1.2 � History of physical models

Fortunately, not all simulations of the heart require complex 
whole heart modeling. The choice of the model depends 
strongly on the medical condition of interest, or, more 
precisely, on the relevant physics that govern this medical 
condition. Problems associated with the excitation of the 
heart, arrhythmias, or pacing, are represented through the 
integral equations of action potential propagation, in the 
simplest case through monodomain models (Aliev and Pan-
filov 1996). Monodomain models are usually sufficient for 
most excitation problems (Potse et al. 2006). Yet, there are 
specific conditions where differences in anisotropic conduc-
tion in the intra- and extracellular spaces are essential and 
bidomain models become necessary (Pathmanathan et al. 
2010), for example when studying the transmembrane poten-
tial during unipolar stimulation or the magnetic field at the 
wave front (Luther et al. 2011). While electrical problems 
have historically been solved on a fixed grid using finite 
difference methods, more recent studies have adopted finite 
element methods with a view toward a monolithic coupling 
of excitation and contraction (Göktepe and Kuhl 2010). 
However, the electrical excitation problem typically requires 
a much finer resolution than the mechanical contraction 
problem, both in space and in time, and usually benefits 
from simple, high-resolution, regular grids. Problems associ-
ated with the contraction of the heart, heart failure, growth 
and remodeling, and pretty much all surgical procedures 
are represented through mechanical models characterized 
through the equations of motion or Newton’s second law 
(Nash and Hunter 2000). To study how cardiac excitation 
translates into mechanical contraction, it can be useful to 
adopt electro-mechanical models of excitation-contraction 
coupling (Cherubini et al. 2017; Quarteroni et al. 2017). For 
many practical applications, especially in the healthy heart, 
it can be sufficient to couple both phenomena weakly, first 
calculate the spatio-temporal excitation pattern, and then 
simulate the mechanical contraction. Under pathological 
conditions, however, mechano-electrical feedback and fully 
coupled solutions can become critical to correctly identify 
excitation wave trajectories, for example in ablation thera-
pies (Sahli Costabal et al. 2017). Even more sophisticated 
chemo-electro-mechanical models trace the origin of the 
electrical excitation back to ionic currents across individual 
cells, for example, to understand the effects of drugs on the 
heart Sahli (Costabal et al. 2018). For many medical condi-
tions, it is sufficient to model the heart as a deformable solid 
and represent the effects of the blood through transient pres-
sure changes in both ventricles (Baillargeon et al. 2014). Yet, 
for conditions that are dominated by shear stresses, either 
across the endocardium or the heart valve leaflets, compu-
tational fluid dynamics models that represent details of the 
fluid flow become necessary (Taylor et al. 2013). However, 

fluid models alone are rarely used in cardiac simulations, 
mainly because the beating heart itself is a complex mov-
ing domain. This is why most recent studies focus on fluid-
structure interaction models that capture not only the fluid 
flow within the contracting atria and ventricles, but also its 
interplay with the endocardium and the valves (Kaiser et al. 
2020). Applications of fluid–structure interaction phenom-
ena are abundant in cardiac medicine and range from surgi-
cal procedures (Mao et al. 2016), valve replacement (Ghosh 
et al. 2020), or valve repair (Rausch et al. 2017) to improved 
medical device design (Rotman et al. 2018).

1.3 � History of constitutive models

The beauty of most constitutive models of the heart is 
that they are hierarchical and modular in nature and easy 
to expand or combine with one another. For the electrical 
behavior, the simplest phenomenological model for excit-
able cells is the Fitz Hugh-Nagumo model (FitzHugh 1961; 
Nagumo et al. 1962) and its popular modification for cardiac 
cells, the Aliev-Panfilov model (Aliev and Panfilov 1996). 
More mechanistic ionic models represent the behavior of 
individual ion channels through transient gating variables 
and ionic currents (Karma 2013; Corrado and Niederer 
2016; Fenton and Cherry 2008). The most popular model of 
this class for human ventricular cardiomyocytes is probably 
the ten Tusscher model ten (Tusscher et al. 2004) with sev-
eral more recent modifications and a prominent benchmark 
study (Niederer et al. 2011). For the mechanical behavior, 
passive myocardial models have been developed for more 
than three decades, both isotropic and anisotropic (Guccione 
et al. 1991), and a recent benchmark study compares the 
different results (Land et al. 2015). In the spirit of modu-
lar models, depending on the type of application, numerous 
studies have added active behavior, either through active 
stress (Hunter et al. 1998) or active strain (Ambrosi et al. 
2011; Göktepe et al. 2014; Rossi et al. 2012), prestrain 
((Genet et al. 2015), and growth (Rodriguez et al. 1994) 
to the baseline passive elastic response to simulate realis-
tic cardiac contraction and realistic pressure volume loops 
under physiological and pathological conditions. Interest-
ingly, calibrating these models ex vivo (Sommer et al. 2015) 
versus in vivo (Genet et al. 2014) results in material param-
eter values that can differ by an order of magnitude or more 
(Aguado-Sierra et al. 2011; Rausch et al. 2013). This differ-
ence can obviously have massive implications when translat-
ing simulations into clinical practice (Chabiniok et al. 2016).

1.4 � What’s next?

Clearly, the ultimate objective of human heart modeling is 
the individualized prediction of different treatment outcomes 
with the goal to virtually select the most promising strategy 
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within the paradigm of precision medicine (Taylor et al. 
2013). Cardiac simulations are algorithmically challeng-
ing and computationally expensive; they naturally involve 
complex tasks such as mesh refinement, preconditioning, 
optimization, and parallelization (Hurtado and Rojas 2018; 
Jilberto and Hurtado 2018; Mei et al. 2018). With the rapid 
developments in machine learning, data-driven modeling, 
and physics-based simulation (Alber et al. 2019), we can 
now risk-stratify large patient groups and improve tailored 
cardiovascular therapies using machine learning strategies 
(Bom et al. 2019; Lyon et al. 2019). Intriguingly, precision 
medicine in cardiac health does not necessarily require a 
fully personalized, high-resolution whole heart model (Tray-
anova and Winslow 2011) with an entire personalized medi-
cal history (Gray and Pathmanathan 2018). Instead, preci-
sion human heart simulation can create a personalized model 
out of a population-based library with geometric, biological, 
physical, and clinical information (Segars et al. 2019), by 
morphing between real medical and clinical data from actual 
patients encoded in a finite number of fully reconstructed 
four-dimensional human heart models. This review will 
highlight first steps in this direction, not only as a purely 
academic exercise, but also as a translational path towards 
clinical decision making in full alignment with and endorsed 
by the regulatory agencies and guidelines.

2 � Electrophysiology—The healthy heart

2.1 � Motivation

In the USA alone, over 850,000 people die as a result of car-
diovascular disease and more than 370,000 sudden cardiac 
deaths are related to arrhythmias (American Heart Associa-
tion 2020). Arrhythmias are a leading risk factor for stroke 
which, in turn, is the leading cause of long-term disability 
and the second leading cause of death worldwide (World 
Health Organization 2018). Modeling cardiac excitation is 
critical to understand the origin of heart rhythm disorders 
and their treatment through anti-arrhythmic drugs, medical 
procedures, implantable devices, and surgical procedures 
(Sahli Costabal et al. 2020). In addition to the heart muscle 
itself, a critical component of the cardiac excitation system is 
the Purkinje network (Sahli Costabal et al. 2016). Composed 
of specialized fast-conducting cells, the Purkinje network is 
located in the subendocardium, right beneath the inner lining 
of the heart. Purkinje cells are larger than cardiomyocytes, 
with fewer myofibrils and more mitochondria. They are less 
contractile than cardiomyocytes; their main function is to 
conduct the excitation wave efficiently and more rapidly than 
any other cell in the heart. A functional Purkinje network is 
essential to create synchronized contractions of the left and 

right ventricles and maintain a consistent cardiac rhythm 
(Dubin 1996). The electric activation of our heart originates 
in the sinoatrial node located in the right atrium. From here, 
it spreads through the atria and reaches the atrioventricular 
node, the only electric connection between the atria and the 
ventricles. The bundle of His connects the atrioventricular 
node to the Purkinje network, which branches from the basal 
septum into the left and right ventricles. Although Purkinje 
fibers were first observed more than a century ago (Tawara 
1906), there is still no in vivo imaging technique to fully 
reconstruct their geometry (Çetingül et al. 2011). This limi-
tation has given rise to various methods to create model sys-
tems of the Purkinje network (Cherry and Fenton 2012) for 
both visualization purposes and computational simulations 
(Ijiri et al. 2008; Bordas et al. 2011; Sebastian et al. 2013). 
However, creating a Purkinje network on an irregular endo-
cardial surface is challenging, but at the same time crucial 
for realistic physiological simulations.

2.2 � Simulation

We create the Purkinje network for rapid cardiac excita-
tion as a random fractal tree (Sahli Costabal et al. 2016). 
This fractal tree grows in the left and right endocardial 
ventricular surfaces, starting from the left posterior and 
anterior fascicles and the right bundle branch. For the elec-
trophysiology of the cardiac tissue, we adopt a bidomain 
model (Dal et al. 2012) with a modified Aliev Panfilov 
electrophysiology (Hurtado et al. 2016). We use the Liv-
ing Heart Model (Baillargeon et al. 2014) as a baseline 
geometry and discretize the ventricles with 384,371 linear 
tetrahedral elements and 82,594 nodes. Within the heart, 
we create a Purkinje network with 1,868 branches and 
1,046 terminals discretized by 10,757 line elements and 
10,758 nodes. Here, instead of using a fixed-point itera-
tion to solve the coupled problem of the myocardium and 
the Purkinje network (Landajuela et al. 2018), we directly 
connect the 1046 terminals of the Purkinje network to the 
endocardial surface using multi-point constraints (Abaqus 
2020). We use Abaqus/Standard to simulate the heart 
throughout multiple cardiac cycles and initiate excitation 
by applying an external stimulus to the Purkinje network in 
the location of the atrioventricular node. From the simula-
tion, we post-process the results to create a virtual elec-
trocardiogram by placing electrodes in the left and right 
arms and the left leg. To compare healthy and diseased 
conditions, we simulate the baseline case and the condi-
tion of right bundle branch block for which we reduce the 
conduction velocity in the right bundle branch. This allows 
us to compare the healthy and diseased activation patterns, 
side by side, and identify the organ-level effects of local 
pathological alterations.
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2.3 � Discussion

Figure 2 shows the importance of the Purkinje network in 
the electrical activity of the heart. This structure is key to 
predict a realistic activation sequence that will impact the 
mechanical response of the heart. We can see this in the 
electrocardiograms, which displays a sharp QRS complex, 
a feature that the simulation cannot capture without a fast 
conduction system. When including the Purkinje network, 
it is straightforward to simulate conduction pathologies, for 
example, right bundle branch block (Sahli Costabal et al. 
2016). An accurate prediction of the heart’s electrophysiol-
ogy under both physiological and pathological conditions 
is especially relevant when evaluating treatments such as 
cardiac ablation or resynchronization therapy, where it is 
not immediately clear which patients will benefit from the 
intervention (Strauss et al. 2011). A remaining challenge 
is the personalization of the Purkinje network. Since there 
is no method to image the Purkinje cells in a living heart, 
the identification of this structure relies on indirect elec-
trical measurements including electroanatomical maps and 

electrocardiograms (Vergara et al. 2014). Truly personal-
ized electrophysiology models would enable personalized 
treatment planning to address and prevent deadly arrhyth-
mias and improve the mechanical performance of the heart 
(Prakosa et al. 2018). A typical example is ablation in atrial 
fibrillation, a procedure that selectively scars or destroys spe-
cific tissue regions to disrupt rhythm disorders in the upper 
chambers of the heart (Narayan et al. 2012). In a hybrid 
clinical-computational study of 15 patients with persistent 
atrial fibrillation, our personalized models found rotational 
activation, which was undetectable with conventional meth-
ods. Our findings suggest that computational modeling can 
identify non-local deflections to improve activation mapping 
and explain how and where ablation can terminate persis-
tent atrial fibrillation (Sahli Costabal et al. 2018). Innovative 
technologies that enable real-time interactive simulations of 
cardiac electrophysiology (Kaboudian et al. 2019; Vascon-
cellos et al. 2020), for example based on physics-informed 
neural networks for cardiac activation mapping (Sahli Cos-
tabal et al. 2020), are an important step to translate these 
computational tools into clinical practice.

Fig. 2   Electrophysiology—The healthy heart. Transmembrane poten-
tial across the left and right ventricles. Under physiological condi-
tions, the Purkinje network excites the left and right ventricles simul-
taneously and induces synchronous ventricular contraction. Under 

pathological conditions of right bundle branch block, the left ventri-
cle excites before the right ventricle and induces asynchronous con-
traction. The electrocardiogram highlights the differences between 
the physiological and pathological excitation pattern
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3 � Electrophysiology—Drug development

3.1 � Motivation

Drugs can induce changes in cardiac electrophysiology by 
interacting with specific ionic channels. Undesirable side 
effects of some of these compounds include cardiac arrhyth-
mias. A particularly lethal type of arrhythmia is torsades 
de pointes (Dessertenne 1966), a condition associated with 
drugs that prolong the repolarization of the action potential 
(Po et al. 1999). Pro-arrhythmic risk evaluation is critical 
to avoid the introduction of potentially dangerous drugs to 
the market (Navarrete et al. 2013; Redfern et al. 2003). Yet, 
the high cost and long time needed to test new compounds 
hinders the discovery of new drugs. Current paradigms to 
evaluate cardiac safety are sensitive but not specific. This 
implies that they unnecessarily screen out potentially useful 
compounds. A recent paradigm shift to address this prob-
lem is the inclusion of high-fidelity computational models 
to quantify the effect of drugs in cardiac electrophysiology 
(Colatsky et al. 2016).

3.2 � Simulation

Multiscale modeling can help to characterize the effects of 
drugs in cardiac electrophysiology (Sahli Costabal et al. 
2019). To compute the electrical activity under differ-
ent pharmacological conditions, we adopt a monodomain 
model (Sahli Costabal et al. 2018) and simulate the exci-
tation across the ventricular geometry of the Living Heart 
Model (Baillargeon et al. 2014). The model discriminates 
between four different cell types, Purkinje cells with 14 ionic 
currents and 20 internal variables to model the fast excitation 
(Stewart et al. 2009) and cardiomyocytes of the endocar-
dium, midwall, and epicardium with 15 ionic currents and 
39 internal variables (O’Hara et al. 2011). The anatomic 
bi-ventricular model consists of a regular mesh with cubic 
elements of size 0.3 mm, resulting in a mesh with 6,878,459 
regular linear hexagonal finite elements, 7,519,918 nodes, 
and 268,259,901 internal variables. At the beginning of the 
simulation, we excite the Purkinje network in the location 
of the atrioventricular node, and use the automaticity of the 
Purkinje cells to drive the cardiac activation sequence for 
five seconds. We study the resulting activation sequence for 
three pharmacological conditions: baseline without drugs, 
and with the drugs ranolazine and quinidine. We simulate 
the effect of each drug at the cellular level by selectively 
blocking specific ionic currents using reported block-con-
centration measurements (Crumb et al. 2016). Ranolazine 
is a low-risk drug that selectively blocks the rapid delayed 

potassium rectifier current and the late component of the 
sodium current. Quinidine is a high-risk drug that blocks the 
rapid and slow delayed potassium rectifier currents and the 
transient outward potassium current (Colatsky et al. 2016).

3.3 � Discussion

Figure 3 illustrates how multi-scale modeling can provide 
insight into the emergence of drug-induced arrhythmias, 
from the subcellular scale of individual ion channels to 
the organ scale of the entire heart. The simulation predicts 
slightly altered activation patterns with prolonged QT inter-
vals for the low risk-drug ranolazine and the spontaneous 
development of torsades de pointes for the high-risk drug 
quinidine. These multi-scale simulations correlate mecha-
nistically what a pharmacologist sees in a single cell action 
potential to what a physician sees in a clinical electrocar-
diogram. They allow us to quantify the interaction between 
specific compounds and ionic currents at the cellular scale 
and compute the overall response in terms of global acti-
vation profiles and electrocardiograms at the whole organ 
scale. We validated this approach experimentally by analyz-
ing isolated cardiomyocytes exposed to the drugs dofetilide 
and nifedipine at different concentrations, predicting the 
whole heart response, and comparing the prediction against 
electrocardiograms of Langendorff perfused heart prepara-
tions exposed to both drugs (Sahli-Costabal et al. 2020). A 
major challenges of this mechanistic multiscale approach is 
the high computational cost to evaluate a single drug at a 
single concentration. We have recently embedded this model 
into a physics-based machine learning framework (Alber 
et al. 2019) to reduce the computational cost and predict 
the risk categories of 22 drugs (Sahli-Costabal et al. 2020). 
We have successfully created surrogate models that combine 
the high-fidelity three-dimensional simulations with low-
fidelity one-dimensional strands of cells and used this multi-
fidelity approach for uncertainty quantification (Mirams 
et al. 2020) and sensitivity analysis (Sahli Costabal et al. 
2019). Recently, we have extended this technique towards 
a classification setting to detect the presence or absence of 
arrhythmias (Sahli Costabal et al. 2020). On a fundamental 
level, this approach provides mechanistic insights that can 
help researchers, pharmaceutic companies, and regulatory 
agencies to accelerate drug development and design effec-
tive and safe drugs. With a view towards precision medicine, 
our technology could be used for personalized drug safety 
evaluation (Margara et al. 2020). To incorporate population 
variability, we simply need to know the individual cellular 
electrophysiology of different patients or patient popula-
tions, and can then predict their individual arrhythmic risk. 
An important immediate application would be sex-specific 
drug safety evaluation.
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4 � Cardiac mechanics—The healthy heart

4.1 � Motivation

The main function of the heart is to pump blood through 
the cardiovascular system to continuously supply all other 
organs with oxygen and nutrients while removing carbon 
dioxide and other waste products. Upon electrical depo-
larization, the muscle cells in the heart release calcium 

ions, which activate actin-myosin interaction, sarcomere 
shortening, and active muscle contraction. An in-depth 
biophysical insight into the ventricular mechanics through 
multi-scale computational modeling requires realistic 
constitutive models that characterize this nonlinear, ani-
sotropic, passive, and active tissue behavior, as well as 
the in vivo geometry, microstructural architecture, hemo-
dynamic loading, and kinematic constraints of the heart. 
With a view toward personalized simulations, we need to 
calibrate all model parameters, loads, initial conditions, 

Fig. 3   Electrophysiology—Drug development. Transmembrane 
potential profiles and electrocardiogram recordings under differ-
ent pharmacological conditions: baseline condition, treatment with 
the low-risk drug ranolazine and the high-risk drug quinidine. Gray 
arrows in the electrocardiograms indicate the time points of the ten 

excitation profiles. Compared to baseline, treatment with ranolazine 
delays the repolarization period by 50  ms. For baseline and ranola-
zine, excitation is driven by the Purkinje network, with regular 
depolarization patterns recurring every second; quinidine triggers a 
sequence of rapid, irregular activation patterns
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and boundary conditions to accurately match the physi-
ological response.

4.2 � Simulation

Figure 4 illustrates an anatomically accurate, whole heart 
model of a human heart (Baillargeon et  al. 2014) cre-
ated from high-resolution magnetic resonance images of 
a healthy, 50th percentile U.S. male (Zygote 2014). Data 
acquisition and image reconstruction were performed at 
70% diastole from 0.75-mm-thick slices using a medium 
soft-tissue kernel with retrospective electrocardiogram gat-
ing. The model includes all four chambers, the tricuspid, 
mitral, pulmonary, and aortic valves, and the chordae tendi-
nae. It also includes the major vessels, the aorta, the pul-
monary arteries, and the superior vena cava, together with 
the coronary arteries and veins and some cardiac fat tissue. 
The muscle fiber orientation follows rule-based algorithms 
motivated by histological observations and diffusion tensor 
magnetic resonance images (Lombaert et al. 2012; Bayer 

et al. 2012). To simulate the dynamic response of the heart, 
we adopt the theory of finite elasticity and characterize the 
mechanical behavior of the heart using the conservation laws 
of mass, linear momentum, and angular momentum. In addi-
tion, we introduce constitutive equations that define the rela-
tion between stress and strain, active contraction, prestrain, 
growth, and remodeling. We adopt a quasi-static approach 
and postulate that inertia and damping effects are negligible 
(Baillargeon et al. 2014). To characterize the response dur-
ing passive filling, we adopt an orthotropic invariant-based 
constitutive model (Holzapfel and Ogden 2009; Propp et al. 
2020). To describe the response during active contraction in 
the ventricles, the atria, and the chordae tendineae, we adopt 
the concept of time-varying elastance (Walker et al. 2005) 
and introduce the active stress as a function of the regional 
action potential and the cardiomyocyte stretch according to 
Frank-Starling’s law (Peirlinck et al. 2019). For simplicity, 
instead of embedding the heart in the pericardium through 
spring-type boundary conditions (Pfaller et al. 2019), we 
constrain the heart kinematically through homogeneous 

Fig. 4   Cardiac mechanics—The healthy heart. Deformed configura-
tion with fiber stretch profiles throughout the cardiac cycle. The long-
axis view illustrates the dynamically changing fiber stretch during 

active contraction and passive filling. The graphs summarize the tem-
poral inter-chamber pressure evolution for the left side of the heart, 
and the pressure-volume loop for the left ventricle
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Dirichlet boundary conditions at the outlets of the proximal 
vasculature (Peirlinck et al. 2019). To characterize the hemo-
dynamic boundary conditions, we couple the beating heart 
model to a lumped-parameter representation of the arte-
rial and venous systemic and pulmonary circulations. This 
coupling allows for a closed-loop characterization of the 
cardiovascular flow through unidirectional fluid exchanges 
driven by pressure gradients which, in turn, are a result of 
the mechanically contraction of the heart (Baillargeon et al. 
2014). Within this computational framework that describes 
the interaction between the beating heart and the circula-
tory system, we calibrate the constitutive parameters for the 
ventricles, the atria, the valves, and the proximal vascula-
ture to match the experimentally measured stiffnesses and 
global clinical metrics including the ejection fraction and 
the left ventricular twist (Peirlinck et al. 2019). Specifically, 
from magnetic resonance images of the left ventricle of five 
normal human subjects, we extract left ventricular volumes 
and compare them against strain measurements from tagged 
magnetic resonance imaging to identify the passive and 
active material parameters (Genet et al. 2014). Since the 
geometry of the heart is constructed at 70% diastole with 
the heart already hemodynamically loaded, we estimate 
the in vivo stress state at the beginning of the simulation 
using an inverse method (Gee et al. 2010; Peirlinck et al. 
2018). We simulate five consecutive cardiac cycles during 
which we initiate contraction using the electrical activation 
sequence from Sect. 2. After three cycles, the heart reaches 
a cyclic steady-state equilibrium.

4.3 � Discussion

Figure 4 illustrates the overall deformation of the heart and 
the evolution of the fiber stretch throughout a cardiac cycle. 
The graphs summarize the pressure evolution in time and 
the pressure-volume relationship. The simulated volumes 
ranging from 69-148ml and the pressures up to 122mmHg 
agree well with clinical observations (Klingensmith 2008). 
Our simulated ejection fraction of 56% agrees well with the 
physiological ranges of 50-65% (Phibbs 2007). Our maxi-
mum left-ventricular apex-base shortening of 13.4 mm is 
well in the range of commonly reported values of 11.2 ± 
3.8 mm (Rogers et al. 1991) and the left ventricular twist of 
10.9◦  agrees with reported ranges of 7.7 ± 3.5◦ (Takeuchi 
et  al. 2006). This suggests that we can confidently and 
robustly model the physiology of the healthy beating human 
heart. In a next step, we can use this simulation tool to probe 
pathological conditions and guide device design and treat-
ment planning in cardiac diseases such as stenosis (Wisneski 
et al. 2020), regurgitation, ischemia (Sack et al. 2020), or 
heart failure (Peirlinck et al. 2019). With a view towards 
precision medicine, it would be relatively straightforward, 
although probably time intensive, to personalize the heart 

geometry from individual magnetic resonance images. It 
would be more complex, but possible, to personalize sim-
ple sets of material parameters (Genet et al. 2014). While 
personalizing more complex features like fiber directions, 
prestrain, or growth might not be entirely possible non-
invasively with the available acquisition techniques today, 
it remains questionable whether this level of personalization 
is really necessary to improve treatment planning.

5 � Cardiac mechanics—Pacing lead failure

5.1 � Motivation

For patients who suffer from arrhythmias, an irregular or 
abnormal beating of the heart, implantable cardioverter defi-
brillators and artificial pacemakers continue to be life-saving 
devices. While implantable cardioverter defibrillators treat 
fast or chaotic rhythm disorders (Luther et al. 2011), pace-
makers generally correct heart beats that are too slow or out 
of synch. They require a battery-powered unit that is placed 
in the chest, underneath the skin, where it is easily accessible 
for battery replacement (Kotsakou et al. 2015). Pacemaker 
leads are electrodes that connect the device to the regions 
within the heart that require the additional stimulus. As such, 
they are permanent implants that are expected to perform 
for many years, in an environment that contracts 100,000 
times a day, without failure (Trohman et al. 2004). Naturally, 
the durability of the leads is of critical importance. Current 
research seeks to design soft devices with properties similar 
to the surrounding tissues to optimize seamless integration 
and minimize damage (Sim et al. 2020). Mechanical dam-
age can result in pacing lead failure and the loss of electrical 
function (Mulpuru et al. 2017). However, it is difficult to 
measure the deformations and forces of the pacemaker leads 
in vivo. Simulating pacemaker leads in the living heart pro-
vides unique insight into the mechanical deformation of the 
electrodes throughout the cardiac cycle (Zhou et al. 2017). 
Knowing this mechanical deformation is critical to access 
the long-term durability of the implant. The noninvasive 
nature of this assessment provides a physiologically accurate 
method to test new and existing devices without exposing 
the patient to unnecessary risk.

5.2 � Simulation

The pacemaker lead is a long flexible wire of a length on 
the order of 150 mm. In a finite element setting, we can 
represent it with beam elements. It has a cross sectional 
area of 3.0 mm, which is magnified in Fig. 5 for illustra-
tive purposes. The lead’s moment of inertia is 0.5 mm4 , the 
axial stiffness is 9 N/mm, the bending stiffness is 17 Nmm2 , 
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and the torsional stiffness is 30 Nmm/rad. To simulate the 
mechanical deformation that the pacemaker lead experi-
ences during the cardiac cycle, we adopt the Living Heart 
model from Sect. 4. The simulation uses Abaqus/Explicit 
(Abaqus 2020) and begins with filling the heart with blood 
up to 70% of the diastolic phase. During this process, which 
lasts 0.3 seconds, we virtually insert the pacemaker from 
the right atrium into the right ventricle through the superior 
vena cava. To facilitate the positioning of the pacemaker 
lead, we introduce an axial connector element between the 
distal end of the lead and the epicardial surface of the right 
ventricular apex. This location marks the region of the heart 
where the electrical stimulus is needed. We guide the place-
ment through a rigid tubular structure which ensures that the 
lead follows a natural insertion path. By shortening the con-
nector element to a final length close to 0 mm, we effectively 
pull the pacemaker lead tip from the superior vena cava to 
the right ventricular apex. Figure 5 illustrates the placement 
of the pacemaker lead within the beating heart. Once the 
insertion process is complete, we fix the distal end of the 
lead to the epicardial surface and pin the proximal end. We 
then simulate three consecutive cardiac cycles to establish 
a cyclic steady-state equilibrium. During these three beats, 
we model the interaction between the pacemaker lead and 
the heart using a general contact approach. Specifically, we 
specify contact between the pacemaker lead and the epi-
cardial surfaces of the right atrium and ventricle. In addi-
tion, we specify contact between the pacemaker lead tip and 
the pacemaker lead path structure to ensure the proper final 
location of the tip.

5.3 � Discussion

A pacemaker lead is a thin flexible wire. During the cardiac 
cycle, its main mode of mechanical deformation is bend-
ing. The pacemaker lead curvature is the primary kinematic 
quantity of interest to quantify this deformation mode. We 
can characterize the curvature through the section curvature, 
the curvature change about two orthogonal planes. Figure 5 
illustrates the curvature along the lead at various time points 
throughout the cardiac cycle. The curvature increases as 
the heart contracts. It takes maximum values of 0.03 mm−1 
in the upper third of the pacing wire. This corresponds to 
bending the wire around a sphere with a minimum radius of 
3.3 mm, about one third of the dimensions of the heart. This 
agrees well with the deformation of the wire at 400 ms and 
600 ms, in the middle two images of Fig. 5, during which 
the heart is contracting. At 200 ms and 1000 ms, when the 
heart is relaxing, the curvature in the same region decreases 
to 0.015 mm−1 , corresponding to a sphere with a radius 
of 6.6 mm, roughly on the order of the width of the heart. 
Simulating the deformation of the wire allows us to visual-
ize how the curvature, and with it the stress in the wire, 
changes along the length and throughout the cardiac cycle. It 
allows us to virtually probe how the wire deformation would 
change upon changing the wire length, diameter, stiffness, or 
material. With a view towards precision medicine, it would 
be straightforward to personalize the final pacemaker lead 
location, the length of the lead, and the dimensions of the 
heart. A better understanding of pacing wire deformations 
is critical to reduce high cycle fatigue, prevent pacing lead 

Fig. 5   Cardiac mechanics—Pacing lead failure. Curvature changes 
along the pacing wire throughout the cardiac cycle. Large curvature 
values and large curvature changes are an indicator for pacing lead 

failure. The curvature alternates between positive and negative values 
along the wire. It takes maximum values of 0.03 mm

−1 in the upper 
third of the wire during the phase of maximum contraction
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failure, and improve wire durability with the ultimate goal 
to improve the lifetime of pacemaker leads and reduce the 
need for replacement surgery.

6 � Cardiac mechanics—Heart failure

6.1 � Motivation

Heart failure is a progressive chronic condition in which 
the heart is unable to pump enough blood to meet the 
body’s oxygen demand. With a five-year mortality rate of 
50%, heart failure remains–and will remain in the foresee-
able future–one of the most common, costly, disabling, and 
deadly medical conditions worldwide (World Health Organi-
zation 2017). Most cases of heart failure result from adverse 
cardiac growth and remodeling in response to increased 
hemodynamic loading (Ambrosi et al. 2019; Göktepe et al. 
2010), for example, provoked by the leakage or stenosis of 
one of the valves or by myocardial infarction (Saez and Kuhl 
2016). In many cases, cardiac growth and remodeling is a 
compensatory, useful, and protective mechanism to restore 
homeostatic equilibrium (Cyron and Humphrey 2017). It 
some cases, however, it can become non-compensatory and 
initiate negative feedback mechanisms (Grossman 1980). 
The underlying structural response to cardiac growth and 
remodeling manifests itself in two major patterns: eccentric 
hypertrophy associated with myocyte lengthening caused 
by a chronic overload in volume and concentric hypertro-
phy associated with myocyte thickening caused by a chronic 
overload in pressure (Niestrawska et al. 2020). In both cases, 
these mechanisms lead to pathological structural altera-
tions that compromise the heart’s electrical and mechani-
cal function (Sahli Costabal et al. 2017). Despite recent 
advancements of pharmaceutical, surgical, device, and tis-
sue engineered therapeutic strategies, heart-failure-induced 
morbidity and mortality rates remain high (Udelson and Ste-
venson 2016). One of the most pertinent clinical questions 
in treatment planning is to anticipate and predict the rate of 
disease progression (Witzenburg and Holmes 2017). Cardiac 
growth models have the potential to provide mechanistic 
insight in disease onset and progression (Rausch et al. 2017) 
and guide clinical decision-making or the design of emerg-
ing therapies (Chabiniok et al. 2016). However, since dis-
ease progression is highly sensitive to the personal history, 
and with it, personal model parameters (Kassab 2009), the 
timeline of heart failure varies significantly among affected 
individuals. This suggests that, ideally, calibrating cardiac 
growth models and quantifying growth and remodeling pro-
pensity should be done on an individual, personalized basis 
(Peirlinck et al. 2019).

6.2 � Simulation

Cardiac growth models typically build on the theory of finite 
growth (Rodriguez et al. 1994), which postulates a multi-
plicative decomposition of the deformation gradient into an 
elastic tensor and a growth tensor (Göktepe et al. 2010). 
Here, we assume that the growth tensor is transversely iso-
tropic with respect to the cardiomyocyte direction and can be 
parameterized in terms of scalar longitudinal and transverse 
growth multipliers. These growth multipliers represent the 
serial deposition of new sarcomeres and the parallel depo-
sition of new myofibrils. Within the finite element setting 
(Abaqus 2020), we represent the growth multipliers as inter-
nal variables and store and update the current growth state 
locally, on the integration point level, at each point in time. 
We assume stretch-driven growth kinetics for both longi-
tudinal and transverse growth (Kerckhoffs et al. 2012). We 
simulate the timeline of these two pathologies within the 
Living Heart (Baillargeon et al. 2014) through a combina-
tion of eccentric and concentric hypertrophy triggered by 
left ventricular overload. To model the physiological end-
diastolic state and the homeostatic local stretch state, we 
apply a left ventricular and atrial pressure of 4 mmHg and a 
right ventricular and atrial pressure of 2 mmHg. To model 
systemic overload, we double the left ventricular and atrial 
pressures to 8 mmHg while keeping the right ventricular 
and atrial pressures at their baseline value of 2mmHg. We 
gradually increase the pressure, keep it at its maximum value 
to allow the ventricles to grow, and then unload the heart to 
explore the effects of eccentric or concentric hypertrophy 
Genet et al. (2016).

6.3 � Discussion

Our results in Fig. 6 not only agree qualitatively with the 
primary effects of heart failure (Göktepe et al. 2010)–ven-
tricular dilation in systolic heart failure and wall thicken-
ing in diastolic heart failure–but also allow us to predict 
characteristic secondary effects of papillary muscle disloca-
tion, mitral annular dilation, regurgitant flow, and outflow 
obstruction (Rausch et al. 2017). These results agree favora-
bly with clinical observations in patients with systolic and 
diastolic heart failure. In contrast to previous macroscopic 
growth models that prescribe a phenomenological rule to 
drive the remodeling process (Rodriguez et al. 1994), these 
personalized models induce growth as a natural consequence 
of overload, which is self-regulated and converges toward a 
homeostatic equilibrium state. This implies that the emerg-
ing growth pattern is heterogeneous, and naturally incor-
porates the regionally varying response under personalized 
baseline conditions as the homeostatic state. Implementing 
this framework in a four-chamber whole heart model allows 
us to couple primary geometric changes to secondary effects 
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that drive changing in-and out-flow conditions and enable 
predicting disease progression with its characteristic nega-
tive and positive feedback loops (Genet et al. 2016). Upon 
appropriate calibration, the cardiac growth models have the 
potential to link cell level characteristics, e.g., an increase in 
the serial sarcomere number, to whole organ form and func-
tion, e.g., an increase in end-diastolic volume and a decrease 
in ejection fraction, with the ultimate goal to estimate the 
risk of heart failure and support decision making on an 
individualized, personalized basis. We have prototyped this 
correlation by combining hierarchical modeling, Bayesian 
inference, and Gaussian process regression using an eight-
week long study of volume overload in six pigs. By correlat-
ing overload-induced alterations on the subcellular, cellular, 
and organ scales we found that the serial sarcomere num-
ber explained 88% of cardiomyocyte lengthening, which, 
in turn, explained 54% of cardiac dilation (Sahli Costabal 
et al. 2019). However, stretch-driven growth is only one of 

the many proposed mechanobiological stimuli that regulate 
cardiac hypertrophy (Opie et al. 2006). To calibrate and vali-
date the stretch-driven growth model, we analyzed chronic 
heart failure in pigs using subject-specific growth models 
and physics-based machine learning. Our study revealed that 
stretch-driven growth alone explained 52.7% of the observed 
changes in cardiomyocyte morphology (Peirlinck et  al. 
2019). With a view toward precision medicine, studies like 
these are vital to reveal the intersubject variability of growth, 
which emphasizes the importance of personalized growth 
parameters to accurately predict the timeline of heart failure 
for an individual patient. Knowing the individual timeline 
of a failing heart is critical for personalized treatment plan-
ning, as shown in Sect. 7, 8, and 9 and on ventricular assist 
devices, edge-to-edge repair, and annuloplasty.

Fig. 6   Cardiac mechanics—Heart failure. Longitudinal and trans-
verse growth during systolic and diastolic heart failure. Systolic heart 
failure is associated with eccentric hypertrophy, a serial addition of 
sarcomeres, an increase in volume, and loss of ellipticity. Diastolic 

heart failure is associated with concentric hypertrophy, a parallel 
addition of sarcomeres, an increase in wall thickness, and a preserva-
tion of ellipticity. The color codes visualize the relative lengthening 
and thickening of the heart muscle cells
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7 � Cardiac mechanics—Ventricular assist 
devices

7.1 � Motivation

A ventricular assist device is a battery-operated, mechani-
cal pump that is used for end-stage heart failure patients to 
help their left ventricle pump blood to the rest of the body 
(Rose et al. 2001). In recent years, left ventricular assist 
devices have become increasingly popular as more than 
just a bridge-to-transplant therapy. The high incidence of 
right ventricular failure following left ventricular assistance 
reflects an undesired consequence of treatment, which has 
been hypothesized to be related to the mechanical interde-
pendence between the two ventricles (Kavarana et al. 2002; 
Dang et al. 2006; Maeder et al. 2009). Although the potential 
implications of ventricular interactions on right ventricu-
lar function during left ventricular assist device support are 
well-appreciated, no study has yet proven, in any setting, that 
left ventricular unloading and septal shift can lead to right 
ventricular failure. This is because it is physically impos-
sible to separate the hemodynamic effects of the serial and 
parallel contributions of right-left ventricular interactions 
in a patient or even in experimental preclinical studies. Pre-
dictive computation models offer the potential to uncover 
the mechanisms of treatments whose actions cannot be 
easily determined by experimental or imaging techniques 
(Kerckhoffs et al. 2007; Baillargeon et al. 2014). Computa-
tional modeling is well-suited to investigate and elucidate 
the individual contributions of hemodynamic factors and 
explore left ventricular assist device complications. How-
ever, research efforts have been impeded by the substantial 
complexities involved in coupling a simulated circulatory 
system with geometrically realistic models of the heart. 
Only recently have computational models had the necessary 
sophistication to model this coupled behavior (Lim et al. 
2010; Sack et al. 2016). Consequently, very limited research 
has been undertaken to explore the effect of left ventricular 
assist device function on ventricular mechanics (Sack et al. 
2018), and no study has investigated the important issue of 
right heart failure.

7.2 � Simulation

We previously created a model of a failing left ventricle sup-
ported with partial left ventricular assistance in a four-cham-
ber generic heart model (Sack et al. 2016). We then modi-
fied this representation to include a biventricular model of a 
patient with dilated cardiomyopathy (Sack et al. 2018) using 
an explicit, dynamic, mechanical simulation with ∼ 80, 000 

ten-noded tetrahedral elements (Abaqus 2020). We simulate 
left ventricular assist device therapy using realistic pressure-
flow relations of a commonly used left ventricular assist 
device to capture assisted flow for device operation over a 
broad range of rotational speeds. By analyzing the resulting 
changes in left ventricular pressure generation, total blood 
flow, myocardial stress, and septal wall motion, we quantify 
the relative influences of these factors on right ventricular 
function (Sack et al. 2018). The model of chronic heart fail-
ure without left ventricular assist device support represents 
a critical patient with advanced heart failure (Solomon et al. 
2011). The left ventricle is substantially overloaded with 
an end-diastolic volume of 254 ml, an end-diastolic pres-
sure of 23 mmHg, and a left ventricular ejection fraction of 
12%. The support through the left ventricular assist device 
improves these functional metrics: The diastolic loading of 
the left ventricle decreases and the left ventricular ejection 
fraction increases with increasing rotational speed of the 
device. Figure 7 illustrates the overall geometry and the 
myofiber stress distributions at end diastole to showcase 
stresses and the deformed configuration at maximum volume 
loading. The four images contrast the dilated cardiomyo-
pathy state without treatment and with implanted left ven-
tricular assist device operating at rotational speeds of 8000, 
10,000, and 12,000 revolutions per minute. The resulting 
stress distributions reveal geometrically relevant stress char-
acteristics that evolve with increased left ventricular assist 
device operation. Interestingly, the large stresses in the left 
ventricular endocardium caused by volumetric loading at 
end diastole decrease with left ventricular assist device sup-
port and appear to dissipate with maximum left ventricular 
assist device operation of 12,000 revolutions per minute. 
However, a localized region of tensile myofiber stresses 
appears and grows with increased assist device support on 
the left ventricular side of the septal wall near the base. In 
addition, the assist device promotes a localized region of 
compressive myofiber stresses on the right ventricular side 
of the septal wall.

7.3 � Discussion

Computational simulations provide a window into the effects 
of left ventricular assist devices on myocardial dynamics. 
The contour plots of the free wall and septal stresses illus-
trate the potential of computational modeling to quantita-
tively compare the myofiber stress in the ventricular wall 
for varying rotational speeds of the assist device. Specifi-
cally, we have created a geometrically and physically real-
istic model of an end-stage failing heart with representative 
systolic and diastolic myocardial material properties cou-
pled to lumped parameter Windkessel-like models of the 
pulmonary and systemic circulations (Sack et al. 2018). This 
allows us to study cardiac mechanics and dynamics under 



816	 M. Peirlinck et al.

1 3

realistic loading conditions, including preload and afterload 
in both ventricles. The simulation successfully reproduces 
the effects of left ventricular assist device support and can 
be personalized by apply individualized pressure-flow 
characteristics of any commonly used device. The present 
simulation represents a significant improvement over previ-
ous modeling efforts (Sack et al. 2016) in that it precisely 
quantifies the effects of a left ventricular assist device on 
a chronically rather than acutely failing heart, based on a 
personalized anatomically accurate biventricular model and 
device-specific pressure-flow characteristics, rather than 
constant flow rates. The study shows that left ventricular 
assist device support significantly reduces the stress in the 
left ventricular wall and, to a lesser extent, the stress in the 
septal wall (Sack et al. 2018). Unexpectedly, these improve-
ments induce secondary negative effects on the right ven-
tricle, which experiences a rightward shift toward higher 
end-diastolic pressures and larger end-diastolic volumes 
with left ventricular assist device support. This keeps the 
right ventricular stresses high. Additionally, we observed 
potentially negative effects on the interventricular septum. 
Left ventricular assist device support introduces an unnatu-
ral bending of the septum, which results in increased local-
ized myofiber stresses. Such deformations are similar to 
those of a plate subjected to bending. As Fig. 7 reveals, this 
induces device-speed-dependent regions of tensile stress on 
the left ventricular side and regions of compressive stress 
on the right ventricular side of the septal wall. Chronically 
elevated stresses are critical as they can modulate important 
myocardial properties including gene expression, molecular 

makeup, structure, and function. It remains unknown to 
which extent these abnormal stresses in the myocardium or 
septum have implications for myocardial function. With a 
view towards precision medicine, it is critical to personalize 
the biventricular geometry to reflect the patient’s individual 
disease state and personalize the optimal rotational speed of 
the assist device to strike the right balance between support-
ing the heart and, at the same time, reducing device-induced 
wall stresses and septal bending.

8 � Cardiac mechanics—Edge‑to‑edge repair

8.1 � Motivation

Understanding the in vivo loading and boundary conditions 
for cardiovascular implants remains a major challenge for 
device design manufacturers. Characterizing these condi-
tions is not only critical to guide the design specifications 
for cardiac implants but also to select the optimal device 
and device placement for each individual patient. Typically, 
device design and placement are studied using benchtop 
cadaveric tests, animal studies, and clinical imaging. The 
precise quantification of the forces between the device and 
the tissue is virtually impossible, especially in the beating 
heart. Mitral regurgitation is a chronic condition of the left 
heart during which the mitral valve does not close com-
pletely in the systole and allows leakage of blood back to the 
left atrium. Edge-to-edge mitral valve leaflet approximation, 

Fig. 7   Cardiac mechanics—Ventricular assist devices. Free wall and 
septal stress distribution in dilated cardiomyopathy without treatment, 
left, and with a left ventricular assist device with increasing rota-

tional speed from 8000 to 12,000 revolutions per minute, from left to 
right. The deformed geometries and the myocardial stresses reveal the 
increasing impact of device support with increasing rotational speed
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the so-called Alfieri procedure, is often performed for 
patients with ischemic mitral regurgitation (Fucci et al. 
1995). Because of the success of this procedure, transcath-
eter devices to perform leaflet approximation are gaining 
increasing attention. Understanding the loads these implants 
have to endure under physiological conditions is critical to 
develop an effective and long-lasting device. In developing 
these implants, the Alfieri stitch tension forms an important 
design specification. Traditionally, this tension is measured 
using animal models (Nielsen et al. 2001; Timek et al. 2004) 
and benchtop simulators (Jimenez et al. 2006). Here we 
illustrate an alternative approach that uses a computational 
human heart model to estimate the forces on the mitral valve 
leaflet (Baillargeon et al. 2014, 2015). Concomitantly, this 
approach allows us to non-invasively investigate the effect of 
physiological parameters and dimensional changes associ-
ated with structural heart disease including systolic blood 
pressure, left ventricular dimension, and annular dilation.

8.2 � Simulation

We use the Living Heart Model (Baillargeon et al. 2014) 
to evaluate the leaflet approximation force F

A
 . We create a 

degenerative mitral regurgitation model by disconnecting 
several marginal chordae from the anterior leaflet. We use a 
connector element, a discrete structural element in Abaqus/
Explicit, to prescribe specific kinematic behavior between 
two nodes of the model (Abaqus 2020). When placed 
between two nodes in the A2-P2 regions of both mitral leaf-
lets, the connector element forms a simplified representation 
of a leaflet approximation device. We approximate the leaflet 
anatomy by prescribing the final length of the connector and 
represent the device’s compliance by assigning an elastic 
stiffness to the connector element. The force in the connec-
tor element throughout the entire cardiac cycle serves as an 
estimate of the approximation force F

A
 during both systole 

and diastole.

8.3 � Discussion

Figure 8 illustrates the deformation and the maximum prin-
cipal stretches of the leaflets at multiple time points through-
out the cardiac cycle. The stretch distribution during diastole 
indicates the location of elevated stresses around the A2-P2 
region as a result of leaflet approximation. From the connec-
tor element, can directly extract the simulated leaflet approx-
imation force F

A
 and compare it to experimentally measured 

forces from animal studies. The simulated approximation 
force F

A
 directly depends on the selected connector stiff-

ness that represents the stiffness of the device. For a compli-
ant device, our simulation estimates a peak diastolic force 
of 0.22 N, while an entirely rigid device results in a peak 
diastolic stitch tension of up to 0.31 N. These results are in 
good agreement with animal studies, where the peak dias-
tolic force ranges from 0.26 N (Nielsen et al. 2001) to 0.28 N 
(Timek et al. 2004). In addition, the simulations reveal a 
second peak during the systolic part of the cardiac cycle, 
whereas the animal studies only report a single peak during 
diastole. The systolic peak of the simulation occurs during 
isovolumetric contraction. This can be attributed to several 
different factors including device placement, i.e., location 
of the connector, anatomical artifacts, and device behavior. 
While experimental studies to understand the effect of these 
factors on the approximation forces are not straightforward 
to perform, computational simulations can easily screen the 
landscape of different process parameters. By using person-
alized geometries and a personalized representation of the 
current regurgitation state, we can optimize the device and 
its location for each individual patient. Using personalized 
physics-based simulations to augment benchtop and animal 
studies is critical to understand the interaction between car-
diac implants and anatomy. Simulations can provide insight 
into the in vivo device mechanics, guide the design of effi-
cient cardiovascular implants, and optimize treatment on a 
personalized basis.

Fig. 8   Cardiac mechanics—Edge-to-edge repair. Maximum principal 
stretches across the mitral leaflets at multiple time points throughout 
the cardiac cycle. Baseline model and degenerative mitral regurgita-

tion model, where the mitral clip is simulated using a connector ele-
ment between nodes on each leaflet, left, and maximum principal 
stretch in side and top views, right
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9 � Cardiac mechanics—Annuloplasty

9.1 � Motivation

In the healthy heart, the mitral valve manages unidirec-
tional blood flow from the left atrium to the left ventricle 
by opening and closing in a precisely coordinated manner. 
Functional mitral regurgitation, a back flow of blood from 
the ventricle into the atrium, is a clinical condition that can 
occur in response to myocardial infarction (Glower et al. 
2014). In this situation, even though the mitral valve leaf-
lets themselves are healthy, the valve fails to close properly 
because of geometric changes induced by the infarct such 
as papillary muscle displacement or ventricular enlarge-
ment (Rausch et al. 2017). The gold standard treatment 
to restore mitral valve function is to surgically implant an 
annuloplasty ring that constricts the mitral valve annu-
lus and ensures sufficient leaflet coaptation (Amini et al. 
2012). However, studies have shown that regurgitation 
recurs in more than half of the patients within three to five 
years after mitral valve repair (Flameng et al. 2003). A bet-
ter understanding of the parameters that affect the mitral 
valve behavior would allow for a more efficient design by 
directly addressing the patient’s needs to improve the long-
term repair outcome. The Living Heart Model (Baillargeon 
et al. 2014) allows us to simulate the integrated dynamic 
response of the heart in terms of its electrical, mechani-
cal, and flow physics response. Because of its modular 
nature, we can easily modify and adjust the healthy base-
line model to introduce personalized disease states and 
evaluate treatment opportunities by virtually implanting 
various types of devices.

9.2 � Simulation

We induce functional mitral regurgitation through myo-
cardial infarction in the Living Heart Model by modifying 
the active material properties in the infarcted region while 
leaving the passive material properties unchanged. By var-
ying the size of the modified region, we can induce degrees 
levels of myocardial infarction causing different degrees of 
mitral regurgitation. Figure 9 shows the infarcted region 
of our simulation affecting the lateral left ventricular wall. 
This type of myocardial infarction results in an asymmet-
ric behavior of the mitral valve because it selectively dis-
places a group of chordae, while others remain in their 
physiological position. In response, as Fig. 9 suggests, 
the mitral valve no longer closes properly. To virtually 
reduce the degree of regurgitation and repair the leaking 
valve, we implant an annuloplasty ring. We select a ring 
with a sub-valvular component (Baillargeon et al. 2015) to 

restore mitral valve function. We approximate the ring as 
rigid to focus on the deformation of the valve. We insert 
the ring into the 70% diastolic heart and then suture it 

Fig. 9   Cardiac mechanics—Annuloplasty. Maximum principal 
stresses in the mitral valve apparatus. On top left, the healthy baseline 
case with an appropriately closing valve is shown. On the top right, 
functional mitral regurgitation is created by simulating an infarct in 
the lateral left ventricular wall. When left untreated, this induced 
functional mitral regurgitation leads to the deformation and leakage 
shown in the mid and bottom left plots. The mid and bottom right 
plots showcase how an optimized annuloplasty ring can force the 
valve leaflets to close appropriately and counteract any serious regur-
gitation
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onto to the mitral annulus using axial connecter elements 
(Rausch et al. 2017). Following the implantation, we opti-
mize the degree of leakage using Isight to adjust three geo-
metrical parameters of the ring, the height and length of 
the subvalvular element and the radius of curved segment 
(Isight 2020). We define the degree of leakage as the num-
ber of particles passing through a threshold plane paral-
lel to the annulus using smoothed particle hydrodynamics 
simulations. Since this analysis is a post-processing step, 
the particles from the smoothed particle hydrodynamics 
simulations do not affect the behavior of the mitral valve 
and purely serve to quantify the degree of the leakage 
(Abaqus 2020). The number of passing particles defines 
the objective function, which we minimize throughout the 
optimization process.

9.3 � Discussion

Our device design study indicates that, among the three design 
variables, the strongest effect is from changing the length, 
which is likely due to different chordae being engaged with 
various lengths. This highlights the importance of identifying 
the appropriate chordae that need to be included or excluded in 
the engagement with the ring to minimize mitral regurgitation. 
Based on the myocardial infarction model and the ring design 
in this study, the engagement of marginal chordae that attach 
to the P3 scallop seems to affect the A3-P3 coaptation seg-
ment while the basal posterior chordae are engaged to improve 
the A2-P2 coaptation. After the initial optimization study, we 
selected the best design with the smallest objective function as 
the new starting point for further design optimization using the 
downhill simplex method (Isight 2020). This secondary opti-
mization constrains the three design variables within ±20% of 
their initial best design values. Figure 9 summarizes the results 
of the optimization. It suggests that the degree of mitral regur-
gitation was significantly reduced after virtually implanting 
the device with the best design. This study demonstrates that 
personalized finite element simulations–embedded in a sys-
tematic optimization algorithm–provide a powerful technology 
to better understand valvular functioning in healthy hearts and 
introduce mitral regurgitation to optimize device dimensions 
and repair efficiency. Predictive personalized simulations of 
surgical intervention, like the one we have shown here, have 
the potential to optimize surgical procedures, improve device 
design, and guide treatment planning on an individual per-
sonalized basis.

10 � Fluid–structure interaction

10.1 � Motivation

In understanding physiological and pathological condi-
tions of the human heart, high fidelity multi-physics mod-
els of hemodynamic phenomena are of critical importance. 
Depending on the type of application, it is often sufficient 
to represent the pump function of the heart through one-
dimensional fluid network models that accurately capture 
the dynamic pressure-volume changes in the intra- and 
extra-cardiac circulation (Baillargeon et al. 2014). How-
ever, when shear stresses on the cardiac wall, the leaflets, 
the annuli, or newly implanted devices play a relevant role 
(Cherubini et al. 2015), it is crucial to correctly capture 
hemodynamic phenomena and their impact on the relevant 
structures (Gizzi et al. 2011). Multiphysics simulations 
of the heart that include both solid and fluid (Nords-
letten et al. 2011) often build on technologies developed 
for other engineering applications including aerospace, 
energy, or defense. From a purely computational fluid 
dynamics perspective, the major challenges of cardiac 
simulations consist of the discretization of space and time, 
the characterization of initial and boundary conditions, 
and the large deformations associated with the contrac-
tion and relaxation of the heart. Fluid structure interac-
tion introduces additional challenges associated with 
mapping between non-conforming computational grids, 
accurate surface modeling, and computational efficiency. 
The integration of a fully Navier-Stokes based commer-
cial computational fluid dynamics software, FlowVision, 
with Abaqus/Explicit proposes several solutions for these 
challenges in cardiac simulations (Aksenov 2017). This 
approach uses a sub-grid geometry resolution method 
(Aksenov et al. 1998) from the native computational fluid 
dynamics simulation and constructs a new mesh at every 
discrete time point throughout the cardiac cycle. The time-
dependent boundary conditions follow the inlet and outlet 
conditions of the original Living Heart Model (Baillar-
geon et al. 2014). For the fluid structure interaction cal-
culations, an explicit coupling scheme is combined with 
pressure exchange surface management. For simplicity, 
the initial integration between the computational fluid 
dynamics software and the heart model does not include 
the valves. While this simplification does not impact the 
practical applicability of the model for device design or 
surgical procedures, it presents several opportunities for 
future upgrades: First a fully three-dimensional computa-
tional fluid dynamics simulation coupled with the whole 
heart model that includes mechanically deformable valves 
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(Pisano et al. 2020), which move as a result of hemody-
namic forces and second a fully coupled fluid-structure 
interaction model in which the flow causes the motion of 
the valves (Meschini et al. 2020), which move and deform 
and influence the fluid flow. Including deformable valves 
in a fully two-directional, strongly coupled approach has 
been a major milestone that made the simulated fluid-
structure interaction a readily usable tool for many scien-
tific applications (Aksenov et al. (2020).

10.2 � Simulation

In the fluid structure interaction approach (Aksenov et al. 
2006; Aksenov 2017; Sodhani et al. 2018) the solid deform-
able parts such as the heart valves are allowed to move and 
come closer together. A recent overview of blood flow 
modeling in the beating human heart (D’Souza et al. 2018) 
discusses different computational fluid dynamics strategies 
including Navier-Stokes, Lattice-Boltzman, and Smoothed 

Particle Hydrodynamics. Of these, Navier Stokes based 
approaches seem best suited for complex valve geometries 
with tiny gaps, complex mesh generation, and large defor-
mations. To simulate the heart valve dynamics in the living 
human heart we divide the computational domain dynami-
cally into two or more substructures to accurately model 
partial or full contact and closure. When the opening ratio, 
the ratio between the largest and the smallest opening sec-
tion, is too large, the computational fluid dynamics algo-
rithm encounters dimensionality problems. To accurately 
resolve the flow, the discretization needs to be extremely 
fine. To address this problem, the Navier Stokes based three-
dimensional fluid algorithm uses a reduced order approach 
referred to as Gap Model. Originally developed for screw 
compressor applications (Ozturk et al. 2019), the Gap Model 
approach has been validated under different flow conditions. 
In our simulation, when two solid structures come close to 
one another and eventually exceed the proximity threshold, 
the Gap Model is activated automatically. This allows us 

Fig. 10   Fluid–structure interaction in the heart. Velocity profiles 
illustrate the blood flow at different time points throughout the car-
diac cycle. Streamlines highlight locations of high and low veloc-

ity and provide insight into regions of high thrombogenic risk. The 
velocities are highest during systole, when they locally exceed 
400 mm/s
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to conduct fluid structure interaction studies in practically 
feasible time ranges. In Fig. 10, we combine a one-way fluid 
structure interaction to estimate myocardial movements and 
a two-way strongly coupled fluid-structure interaction to 
ensure high accuracy of the device simulations.

10.3 � Discussion

To understand the forces that act on heart valve leaflets, it 
is critical to not only study the fluid or the structure in com-
plete isolation, but to understand how the blood flow modu-
lates the shape of the leaflets and, in turn, how the motion 
of the leaflets modulates the flow conditions. A recent study 
that compared finite element analysis and fluid structure 
interaction found that, in agreement with in-vitro studies 
of artificial aortic heart valves, the fluid structure interac-
tion approach predicts higher effective stresses in the leaflet 
belly and edge regions (Sodhani et al. 2018). These higher 
stresses are a result of the hammer effect, which naturally 
cannot be captured by decoupled finite element analyses. A 
similar comparative study revealed that only the fluid struc-
ture interaction approach was able to accurately capture 
the asymmetric opening and closing of the valve (Luraghi 
et al. 2017). A recent study investigated the performance 
and complications of a fluid structure interaction approach 
in combination with the Living Heart Model to study tran-
scatheter aortic valve replacement (Ghosh et al. 2020). To 
validate the model, the study used personalized post tran-
scatheter aortic valve replacement echo Doppler measure-
ments. This suggests that we can use computer tomography 
images to reconstruct personalized models and adopt a fluid 
structure interaction approach to study the effect of valve 
deployment and positioning on stent anchorage in both self-
expanding and balloon inflated transcatheter aortic valves. 
Another important problem that requires high resolution 
fluid simulations is thrombogenicity. From a computational 
fluid dynamics perspective, characterizing thrombogenic 
risk requires an accurate prediction of wall shear stresses 
and fluid shear stresses. This is often achieved by using 
the exact finite element surface in a finite volume repre-
sentation to augment the spatial resolution (Aksenov et al. 
1998). Alternatively, several studies have proposed to use 
smoothed particle hydrodynamics (Mao et al. 2016, 2017; 
Caballero et al. 2017). These studies suggest that wall shear 
stresses and velocity gradients are not satisfactorily resolved, 
which makes this approach unsuitable for thrombogenic risk 
assessment. Other factors, including the inability to model 
incompressibility and limitations regarding flow and pres-
sure waveforms, are additional common points of criticism. 
A recent thrombogenic analysis of a 29 mm CoreValveTM 
(Medtronic, Santa Rosa), deployed at annular versus supra-
annular locations, of a personalized heart geometry found 
notable differences in the hemodynamics in the ascending 

aorta and the coronary arteries (Kandail et al. 2018). The 
study identified regions of high wall shear stresses at loca-
tions of para-valvular flow. In conclusion, the rapid devel-
opments in cardiac simulations throughout the past decade 
now enable us to perform practically suitable multiphysics 
simulations. While most the studies have been validated in 
an in-vitro setting, an urgent need remains to validation the 
simulations in vivo, for example, by using four-dimensional 
magnetic resonance imaging. The non-invasive nature and 
high resolution make four-dimensional magnetic resonance 
imaging ideally suited to personalize the fluid-structure-
interaction simulations with a view towards personalized 
thrombogenic risk assessment and personalized device 
selection.

11 � Clinical perspective—Virtual imaging 
trials

11.1 � Motivation

Coronary artery disease is the number one cause of death 
for both men and women in the United States every year 
(Go et al. 2013). Medical imaging is integral to the diag-
nosis and management of coronary artery disease fueling 
the development of new technologies and applications. As 
new techniques emerge, a major challenge is how to devise 
their most effective use to optimally benefit the patient while 
minimizing any potential harm. Clinical trials are the best 
avenue to evaluate imaging devices and methods, but the 
ever-expanding number of technologies and parameters 
make a trial for every application or protocol unfeasible, 
both pragmatically and financially. Simulation-based virtual 
imaging trials can address this growing critical need. Vir-
tual imaging trials involve the use of computational tools 
to perform experiments entirely on the computer. Such 
techniques are being widely investigated for breast imaging 
research (Das et al. 2009; Gong et al. 2006; Young et al. 
2013). In a virtual imaging trial, realistic patient models or 
phantoms are imaged with validated simulation algorithms, 
modeling the imaging process and device, to emulate imag-
ing examinations under different devices and parameters. 
From simulated images, we can investigate how differing 
patient attributes and imaging conditions impact dose, image 
quality, and the depiction of pre-defined known conditions. 
As such, virtual imaging trials can perform preclinical opti-
mization on a growing number of new technologies with 
diverse attributes, helping to identify the most promising 
systems or system parameters for further clinical validation. 
To be truly effective, virtual imaging trials require realistic 
computational models of patients to serve as the known truth 
as well as accurate imaging simulation tools with which to 
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image the virtual patients. Such tools are currently lacking in 
cardiac imaging research as existing phantoms do not real-
istically simulate variations in cardiac anatomy or function 
indicative of the population at large. In addition, current 
simulation tools are limited in their ability to model modern 
imaging devices. Our goal is to develop the essential tools to 
conduct virtual imaging trials in cardiac imaging research. 
Initially, we focus on computed tomography as it has great 
potential to provide high spatial and temporal resolution for 
the optimized evaluation of coronary artery disease.

11.2 � Simulation

To create realistic, anatomically variable computational 
phantoms to conduct virtual imaging trials in cardiac imag-
ing, we combine the Living Heart Model (Baillargeon et al. 
2014) with a four-dimensional extended cardiac-torso phan-
tom library. This library showcased in Fig. 11 left, consists 
of a population of 150 computational whole-body models 
that represent both sexes with different ages, heights, and 
weights (Segars et al. 2013, 2015). To create anatomically 
variable heart models to use with the extended cardiac-torso, 

we utilize warping methods to non-rigidly deform the origi-
nal heart model to fit diverse cardiac geometries based on 
four dimensional computed tomography patient data (Ver-
ess et al. 2019), see Fig. 11 middle. We incorporate the new 
heart models into different extended cardiac-torso phantom 
anatomies using an established mapping pipeline (Segars 
et al. 2019). The result is a library of whole-body anatomies 
with realistic, anatomically variable cardiac models with an 
added physiological basis, provided within the original Liv-
ing Heart Model framework, as described, in the previous 
sections, to simulate variations in cardiac function. To image 
the cardiac-torso virtual patients, we develop and validate 
an analytical computed tomography simulator (Segars et al. 
2008) as well as a next generation simulator, called Duke-
Sim (Abadi et al. 2019) that combines analytical and Monte 
Carlo techniques to more accurately model the geometry and 
physics of commercial computed tomography scanners. Both 
simulators can generate data from dynamic four-dimensional 
computational phantoms and enable studies in the context 
of motion. Figure 11, right, shows an example computed 
tomography simulation from such a cardiac-torso phantom 
(Segars et al. 2019). We added a plaque of 50% blockage 

Fig. 11   Clinical perspective—Virtual imaging trials. Population of 
whole-body phantoms, left. Anatomically variable human heart mod-
els are created by morphing the template Living Heart Model geom-
etry to fit segmented patient-specific computer tomography data, top 
right. The new personalized models are placed within selected phan-
toms. To simulate coronary artery disease, plaques of any given size 

or material definition can be placed within the coronary vessels. The 
phantoms models can then be imaged with our computer tomography 
simulation framework to produce imaging data under various devices 
or parameters, bottom right. Simulated computer tomography data 
with and without cardiac motion during mid-diastole illustrate the 
plaque
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within the right coronary artery of an adult male extended 
cardiac-torso model and imaged it with and without an aver-
age cardiac motion during mid-diastole. The motion of the 
heart, although reduced during mid-diastole, can still be seen 
to cause a reduction in the contrast of the plaque.

11.3 � Discussion

This study offers a major advance to enable realistic virtual 
imaging trials in cardiac imaging. Combining a prototype 
human heart model with extended cardiac-torso whole body 
models, we created a new series of realistic four dimensional 
computational phantoms. We have shown that different 
hearts can be integrated into different background anato-
mies to provide a diverse collection of phantoms capable of 
simulating a range of normal and abnormal cardiac anato-
mies and functions. To image the phantoms, we created an 
accurate computed tomography simulation package capable 
of simulating realistic cardiac computed tomography data 
from various manufacturers. This computational platform 
provides the essential tool to quantitatively optimize clinical 
cardiac technologies in terms of image quality and radia-
tion dose for more precise and personalized imaging of the 
heart. As illustrated in Fig. 11, this platform can be used 
to investigate imaging methods in comparison to a known 
ground truth, for example, the precise location and size 
of a plaque. With a view towards precision medicine, we 
can easily adjust the anatomical, physiological, and imag-
ing parameters of our model and quantify their effects by 
comparing the simulated images to the known truth defined 
within the phantom or virtual patient. Such studies are not 
feasible using real human subjects because of ethical con-
cerns over radiation exposure and the lack of a ground truth. 
Initially, this study focusses on computed tomography due 
to its potential importance in coronary artery disease evalu-
ation. Long term, our goal is to extend our platform towards 
introducing precision medicine into other cardiac conditions, 
imaging modalities, and simulation technologies.

12 � Regulatory perspective—Medical device 
innovation

12.1 � Motivation

Digital twins, virtual patients based on computational 
modeling and simulation, have advanced as an important 
technology to improve efficiency of clinical trials for new 
device designs (Madni et al. 2019; Corral-Acero et al. 
2020). In the context of cardiac device design, efforts are 
underway to explore the potential of human heart simula-
tors as a digital evidence for new cardiovascular device 
approvals. The objectives of these in silico clinical trials 

are to reduce animal testing and to minimize the number 
of required patients while still ensuring safety and efficacy 
of the novel device (Sturla et al. 2017). A major advantage 
of this new digital process is that it is more efficient and 
less expensive than current excessive clinical trials whose 
delays and costs often impede patient access to novel treat-
ments. At the same time, it is critical that the digital pro-
cess is designed without loss of rigor or confidence in the 
safety and efficacy of the new device. Regulatory agencies 
are increasingly recognizing the public health benefits of 
modeling and simulation and the potential for in silico 
clinical trials to safely advance medical products more 
efficiently, from preclinical studies through clinical trials 
to market: Modeling and simulation can help to inform 
clinical trial designs, support evidence of effectiveness, 
identify the most relevant patient groups to study, and 
assess product safety (Alber et al. 2019). In some cases, 
in silico clinical trials have already shown to produce simi-
lar results as human clinical trials. For decades, in silico 
trails have been successfully used in regulated industries 
such as aerospace and automotive. In biomedicine, we are 
now recognizing the power of virtual patients to develop 
therapies for the heart, the vasculature, or the brain by 
eliminating traditional cost and time bottlenecks (Madni 
et al. 2019).

The ENRICHMENT trial, a new in silico clinical trial 
for cardiac device design, combines digital evidence from 
simulations with physical evidence from real patients and 
assesses model credibility in accordance with engineering 
standards. Figure 12 illustrates the workflow of the trial 
based on early in silico testing in realistic human environ-
ments and later animal validation and device prototyping. 
The trial focuses on functional mitral regurgitation and its 
treatment using edge-to-edge repair (Fucci et al. 1995). 
The MitraClipTM (Abbott, Santa Clara) is currently the 
sole percutaneous device that is commercially approved to 
treat functional mitral regurgitation and more than 80,000 
patients have undergone repair with this device in the past 
decade (Abbott 2019). To reduce regurgitation, the device 
approximates the anterior and posterior mitral valve leaf-
lets to create a double-barrel mitral orifice, a process that 
is relatively straightforward to simulate in a finite element 
setting (Zhang et al. 2019). The process to assess credibil-
ity of these simulations can be classified into three catego-
ries: First, the approach should show a general agreement 
between the expected behavior and the predicted metrics. 
Second, for appropriately calibrated model parameters, the 
approach should produce agreement between model and 
experiment. Third, for general validation, the model should 
agree with the experiment for no specific context of use. 
Ultimately, this implies that the model should demonstrate 
predictive behavior for a specific context of use (Gray and 
Pathmanathan 2018).
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12.2 � Simulation

The objective of the ENRICHMENT trial is to explore the 
merits of designing and virtually testing a medical device 
in its end-use environment before building and physically 
testing prototypes. At the same time, it studies the pos-
sibility of utilizing data generated in virtual patients as 
credible evidence in a regulatory device review. The trial 
uses physics-based computational models and simula-
tions of the device, implanted within a cohort of beating 
heart models, constructed to represent the disease state 
and other inclusion criteria in a virtual patient popula-
tion. To create and validate these virtual patient models, 
the trial uses clinical information from real patients. Sta-
tistical variations from the validation set will be used to 
represent the target patient population. Initially, for proof 
of concept, the ENRICHMENT trial focuses on the con-
dition of functional mitral regurgitation and on a patient 
population that shows acute success: Patients with severe 
mitral regurgitation, small ventricles, good ejection frac-
tion, and a history with optimized medical management of 
heart failure. To accurately simulate the clinical endpoints 
of these functional mitral regurgitation patients, their com-
putational models include their annulus, their mitral valve, 
their papillary muscles, their chordae, and their left ven-
tricle simulated through the complete cardiac cycle. The 
constitutive behavior, hemodynamic loading, initial and 
boundary conditions are similar to the baseline model in 
Sect. 4. Figure 12 shows an anterolateral slice of the heart 
with its leaflets throughout the cardiac cycle. The color 

code indicates the fiber stretch. The antero-lateral view 
highlights the coaptation length and the zoom in shows the 
corresponding contact pressure on the leaflets at 250ms, at 
peak systole. The simulated mitral valve has mid-diastolic 
and mid-systolic anterio-posterior diameters of 35.4mm 
and 28.6mm, intercomissural diameters of 40.3mm and 
37.2mm, circumferences of 121mm and 110mm, and 
areas of 1132mm2 and 8562mm2 . These dimensions are 
consistent with the clinically observed norms of healthy 
patients (Grewal et al. 2010; Lee et al. 2013; Sturla et al. 
2017). The billowing and tenting heights of 1.6mm and 
4.4mm and the coaptation length of 10mm at peak systole 
also agree with the healthy reported ranges (Mihaila et al. 
2016; Sturla et al. 2017). The ENRICHMENT trial per-
sonalizes this healthy human heart model by accounting 
for each patient’s individual degree of ventricular dilation, 
ejection fraction, annular dilation, and papillary muscle 
displacement. To incorporate the backward flow of regur-
gitation, the personalized hemodynamic model accounts 
for the individual dynamics of the regurgitant orifice area 
and the shape of the mitral valve (Cohen and Gorlin 1972). 
Each personalized model undergoes a virtual edge-to-edge 
repair with the virtual device, under the guidance of a 
clinical advisory board to replicate the judgement used in 
a real clinical trial (Dabiri et al. 2019). For each virtual 
repair process, the ENRICHMENT trial evaluates the rel-
evant clinical readouts including the coaptation height, 
the residual regurgitation, the spreading force on the clip-
ping device, and the left atrial pressure. The in silico clini-
cal trial also allows access to other metrics that are not 

Fig. 12   Transformative impact—Medical device innovation. Design 
of the ENRICHMENT trial, and fiber stretch and contact pressure 
profiles of baseline model at different time points throughout the car-
diac cycle. The trial personalizes the baseline model by accounting 

for each patient’s individual degree of ventricular dilation, ejection 
fraction, annular dilation, and papillary muscle displacement. The 
trial uses early in silico testing and later animal validation and device 
prototyping
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immediately accessible in a physical clinical trial, but can 
provide valuable physiological insight to quantify the suc-
cess of the repair process.

12.3 � Discussion

The general objective of this study is to raise awareness 
and capability for others to perform in silico clinical trials, 
agnostic to the software tools. In contrast to classical clini-
cal trials that use simulation as a post-processing tool for 
data analysis, the ENRICHMENT trial uses silico testing 
early on in the workflow to put less patients at risk, save 
time and resources, and provide better designs with a faster 
turnaround time. The specific objective of the trial is to dem-
onstrate how digital evidence, in the form of virtual patients, 
can be used to significantly reduce the time, cost, and risk 
with human clinical trial data collection. On a broader scale, 
this study demonstrates that a collaborative product lifecycle 
management platform can significantly improve the robust-
ness, response time, and transparency of the medical device 
review process. It enables regulators with full digital access 
to all relevant information and people required to make 
science-based, informed regulatory decisions. Several limi-
tations of the current study design point towards potential 
future improvements. An important missing link is the lon-
gitudinal assessment of chronic disease management. From 
an analysis point of view, this involves not only simulate 
and analyze the acute changes in the stretch and stress pro-
files in response to the intervention (Zhang et al. 2019), but 
to predict and understand the chronic changes in form and 
function (Rausch et al. 2017). Another future direction is 
to integrate simulation results, animal models, and clinical 
data using physics-based machine learning towards a more 
holistic understanding of disease progression and the long-
term effects of intervention. Bringing together researchers, 
medical doctors, surgeons, device design manufacturers, and 
regulatory agencies is a first step in this direction with the 
common goal to safely improve device design, accelerate 
device approval, and, ultimately, improving human health.

13 � Conclusion

With the rapid developments in machine learning, data-
driven modeling, and physics-based simulation, we can 
confidently assume that, within the next decade, we will 
be able to simulate each person’s individual heart. Within 
this perspectives article, we show what is already possible 
today, what will be possible in the near future, and what will 
probably never be possible. We have identified the missing 
pieces to create fully personalized, high-resolution whole 
heart models that encode a fully personalized medical his-
tory. While conceptually possible, this process is technically 

cumbersome, computationally expensive, and labor inten-
sive. Instead, we propose to create personalized human heart 
models out of population-based libraries with geometric, 
biological, physical, and clinical information by morphing 
between a finite number of fully reconstructed four-dimen-
sional human heart models using machine learning. We pro-
pose to analyze these personalized human heart models by 
combining physics-based multiscale modeling and machine 
learning. This allows us to learn the underlying physics, infer 
the model parameters, analyze parameter sensitivities, and 
quantify model uncertainties. We have outlined the chal-
lenges and opportunities for precision medicine in human 
heart modeling, not only as a purely academic exercise, but 
also as a translational path towards clinical decision making 
in full alignment with the regulatory agencies. Our examples 
highlight the potential for personalized human heart simula-
tions in medical device design, clinical decision making, and 
personalizing treatment planning.
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