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Abstract
Cell migration plays an essential role in cancer metastasis. In cancer invasion through confined spaces, cells must undergo
extensive deformation, which is a capability related to their metastatic potentials. Here, we simulate the deformation of
the cell and nucleus during invasion through a dense, physiological microenvironment by developing a phenomenological
computational model. In our work, cells are attracted by a generic emitting source (e.g., a chemokine or stiffness signal),
which is treated by using Green’s Fundamental solutions. We use an IMEX integration method where the linear parts and
the nonlinear parts are treated by using an Euler backward scheme and an Euler forward method, respectively. We develop
the numerical model for an obstacle-induced deformation in 2D or/and 3D. Considering the uncertainty in cell mobility,
stochastic processes are incorporated and uncertainties in the input variables are evaluated using Monte Carlo simulations.
This quantitative study aims at estimating the likelihood for invasion and the length of the time interval in which the cell
invades the tissue through an obstacle. Subsequently, the two-dimensional cell deformation model is applied to simplified
cancer metastasis processes to serve as a model for in vivo or in vitro biomedical experiments.

Keywords Cell deformation · Nucleus deformation · Monte Carlo simulations · Cancer metastasis · Cell-based model

1 Introduction

Cell locomotion is closely involved in various physiologi-
cal and pathological processes. For example, migration of
leukocytes is important for the inflammatory response and
movement of fibroblasts and also vascular endothelial cells
are essential for wound healing (Lauffenburger and Horwitz
1996). On the contrary, cell migration can play a detrimen-
tal role during cancer metastasis, where the dissemination
of cancer cells initializes the invasion-metastasis cascade as
introduced by Chambers et al. (2002b), Fidler (2003), Lam-
bert et al. (2017).
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The diversity of cancers exceeds 200 distinct disease enti-
ties, which have differences in the normal cells of origin and
similarities in subsequent cancer metastasis. Compared to
primary tumors, metastatic cancers cause the overwhelm-
ing majority of cancer-associated deaths as high as 90%
(Lambert et al. 2017; Seyfried and Huysentruyt 2013; Gupta
and Massagué 2006). During the metastatic spreading of
tumors, cancer cells can undergo transitions between two
forms of movement, which are the amoeboid mode and the
mesenchymal mode to optimize their invasiveness (Paňková
et al. 2010; Sahai and Marshall 2003). Moreover, Pinner
and Sahai (2008) observe that cancer cells are able to move
quickly (up to 15µm/min) like some leukocytes and rapidly
change their shapes and directions of migration in an amoe-
boidmanner with intravital confocal microscopy technology.
Amoeboid movement could happen in the absence of matrix
protease (Wolf et al. 2003; Wyckoff et al. 2006) where can-
cer cells alternatively generate large contractile force pushing
fibers ofmatrix away and squeeze between small paths. How-
ever, if the contractile force is insufficient to deform the stiff
extracellular matrix (ECM), the matrix metallo-proteases
(MMP’s) will be secreted by cancer cells to degrade the ECM
and thereby invade further (Kalebic et al. 1983; Wolf et al.
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2013). In summary, cancer cells frequently chemically and/or
mechanically ‘dig’ their ways through ECM in order to reach
the distinct parts of the body.

When a single cancer cell is metastasizing through a nar-
row cavity, it must deform its morphology by extending its
membrane into an elongated protrusion; this is often driven
by external signals such as chemotaxis, durotaxis or ten-
sotaxis. Large cell deformations will also induce changes
in the nucleus morphology. Extensive deformation of the
nucleus can induce damage, and reduce the nuclear enve-
lope integrity, see for instance the work by Denais et al.
(2016). However, the cancer cell is also capable of repair-
ing its ruptured nuclear envelope and damaged DNA after
the penetration. Then, the cell may be able to further pro-
mote cancer development. Thus, as noted by Denais et al.
(2016), the stage of nuclear envelop rupture could represent
a particularly fragile point, thereby providing an opportunity
to develop new anti-metastatic cancer drugs to inhibit DNA
repair and increase cell death. Cell deformation during cancer
metastasis has been difficult to study in detail both in vivo and
vitro, and further understanding of cell deformation mecha-
nisms is crucially important. In cases where the pore sizes
are much smaller than the size of the nucleus, the nucleus
mostly arrests and fails to penetrate the pore due to a defective
nuclear deformability. On the contrary, with pore diameters
above a threshold, e.g., 7 µm in the work (Wolf et al. 2013),
MMP-independent migration in dense ECM relies on the
hourglass-shaped deformation of the nucleus. Hence, in our
current work, we develop a mathematical model to investi-
gate the correlation between the deformation of a cell and of
its nucleus, and show the dynamic changes in cell mechanos-
tructure that occur during the invasion process.

Mathematicalmodelinghas been shown tobe an important
tool to quantify the relations in many biomedical processes
such as wound healing, cell migration and tumor progression
in various scales. Cell deformation and migration models
exist in the colony scale, e.g., in the works by Rey and
Garcia-Aznar (2013), Byrne and Drasdo (2009), and Ver-
molen and Gefen (2012), where the cell geometry is fixed
to be circular or spherical, respectively, in two- and three-
dimensional simulations. On a smaller scale, one looks at
the deformation of individual cells, and to this extent, cellu-
lar automatamodels have been developed and combinedwith
finite-element strategies by Borau et al. (2014) andOers et al.
(2014). Other cell deformation models are based on phase-
field models, like in the work by Marth and Voigt (2014),
or on viscoelasticity with moving meshes as in (Madzva-
muse and George 2013). A phenomenological approach to
cell migration and deformation is proposed in Vermolen and
Gefen (2013) and Vermolen et al. (2014), wherein the latter
work cell migration and deformation have been modeled in
relationwith the immune response systemwherewhite blood
cells migrate out of the venules and transmigrate through

the venule walls to chase and engulf pathogens. Moreover,
Odenthal et al. (2013) introduce a deformable cell model to
describe the mechanical communication among the interact-
ing cells and between the cell and its environment. Another
deformable model regarding the interactions with empha-
sis on the relationship between varying matrix geometries
and adhesion, contractility as well as cell velocity can be
found in (Tozluoğlu et al. 2013). In terms of the nucleus
deformable models, Moussavi-Baygi et al. (2011) establish a
coarse-grainedmodel of the nuclear pore complex to simulate
the nucleocytoplasmic transport. As the increasing attention
in the cell mechanics, agent-based models are booming, see
(van Liedekerke et al. 2015), where three types agent-based
models are described.

Cao et al. (2016) develop a chemomechanical model to
investigate the impacts of transmigration through confined
interstitial spaces on the geometrical and mechanical fea-
tures of the cell nuclei. In their model, the shape alterations
of the cell and nucleus during the transendothelial migration
driven by actomyosin contraction force can perturb genomic
organization, which in turn affects the behavior of the cells.
More nuclear profiles regarding chromatin deformations and
nuclear envelope deformations during transmigration are
further investigated. This mechanical model successfully
predicts the morphological evolution when one cell trans-
migrate an endothelial gap (Cao et al. 2016). In comparison,
our model extends the process and behavior of cell transmi-
gration driven by a chemical/stiffness signal during cancer
metastasis, whereas the most inner cellular mechanical prop-
erties are neglected for sake of simplicity.

None of the aforementioned studies, however, have taken
into account theMonteCarlo uncertainty quantification in the
cell deformation modeling. Our work aims at modeling the
interaction between cell deformation (due to migration) and
the deformation of the nucleus as well as quantitative anal-
ysis of unknown parameters by Monte Carlo simulations.
We quantify the correlation between nuclear deformation
relaxation and the cell’s ability to penetration through narrow
passages,which is important in the context ofmetastatic inva-
sion. Section 2 describes the mathematical model in terms of
the equations, subsequently, the numerical method is pre-
sented in Sect. 3, which is followed by the description of the
results in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Themathematical model

This section introduces the model in terms of the mathe-
matical relations. We start with the deformation of cell and
its nucleus in two dimensions and extend the formalism to
three spatial dimensions subsequently. Moreover, the model
is applied to simplified physiological transmigration of can-
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Table 1 Comparison of CPU time and the cell penetration time τ

N 10 30 50 100

CPU time (s) 2.43 5.07 7.81 14.85

τ (h) 0.3771 0.3735 0.3812 0.3906

cer cells and six parameters are studied by Monte Carlo
simulations.

2.1 Themodel in two dimensions

The nucleus must move in coordination with the cell
cytoskeletal dynamics at the front edge and rear end (Friedl
et al. 2011). Tomimic this cell’s cytoskeleton, a cell is treated
as a collection of 30 parallel nodal points that are located on
the cell membrane and on the outer boundary of the cell
nucleus. We have compared the number of nodal points N
(N = 10, 30, 50, 100) and we found that if the cell is freely
moving that the pattern is hardly influenced by the number of
springs, whereas the CPU time increases proportionally with
the number of springs. If the number of springs is very large,
then the time step needs to be adjusted if the cell is in contact
with an obstacle. In particular, it may happen if the resolution
is too high that the nodal points on the cell boundary over-
take each other when they are in (partial) contact with a rigid
boundary. Taking the model in Fig. 6 as an example (no per-
turbation of the randomwalk), the CPU time and penetration
time τ are compared with various N in Table 1. The table
shows that CPU time increases, whereas the cell penetration
time τ is comparable with the increase of N . Each node on
the cell membrane is connected to its corresponding node
on the surface of the cell nucleus. On each of the nodes on
the cell membrane surface, an external signal, such as a con-
centration gradient in the case of chemotaxis or durotaxis, is
computed. This signal determines the movement of the nodal
point. Next to this signal, the migration of the nodal point is
determined by its position relative to its corresponding point
of the nucleus boundary via the deformation relaxation of the
cell’s cytoskeleton. In this way, the deformation and migra-
tion of the cell is modeled and sketched in Fig. 1.

We consider a generic signal, of which the gradient deter-
mines the migration of the nodal points on the cell boundary
membrane. This signal could be the extracellular stiffness
or the concentration of a chemoattractant or a light intensity
for instance. In the work by Massalha and Weihs (2017), the
gel-stiffness-dependent differences among cells with various
metastatic potentials havebeenobserved tobe correlatedwith
cancer invasiveness, where the metastatic cells apply a wide
spectrum of traction forces (100–600nN) for their adhesion
to a stiffer gel. For the sake of presentation, we denote the
intensity of the signal by c(t, x), where t and x, respectively,

Fig. 1 A schematic of the distribution of the nodal points on the cell
boundary membrane and the surface of the nucleus. The cytoskeleton
is represented as a collection of springs. The red dots, xi , xni and xc,
denote nodal points on the cell membrane, nucleus surface and x coor-
dinate of the cell center of mass, respectively. The vectors x̂i and x̂ni are
represented in red arrows

denote time and spatial position. The signal, as well as its
gradient, can be obtained from a given relationship in which
the gradient is determined either analytically or numerically.
A numerical evaluation in a finite-element framework could
be carried out by for instance gradient recovery techniques or
by mixed finite-element formulations. In the present paper,
we consider a chemical attractant, such as a generic growth
factor that attracts the cells. For the sake of illustration, we
consider a point source since this allows for a simple treat-
ment using Green’s Fundamental solutions. To this extent,
let the emitting source of the chemoattractant by positioned
on xS , then on an unbounded domain, we solve

−D�c = γSδ(x(t) − xS(t)). (1)

Here, D and γS represent the diffusion coefficient of the
chemokine and the secretion rate of the source. Moreover, δ
is the Delta Dirac function, while x(t) and xS(t) denote posi-
tions of the nodal points on the cell membrane and the source.
The fundamental solution to this equation in an unbounded
domain is used in two spatial dimensions as follows,

c(t, x) = − γS

2πD
ln(x(t) − xS(t)). (2)

In the presence of multiple cells, the superposition princi-
ple is used to construct the solution. We note that the signal
canbe taken as generic as onewishes. The above equation just
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serves as an illustration.Note that the above equation predicts
negative values for the concentration if the distance between
the point of observation and the source is too large. In our
simulations, the distances are such that the above expres-
sion predicts nonnegative values only. Let the set xi (t) and
xni (t), respectively, denote the nodal points on the cell bound-
ary membrane and on the surface of the nucleus of the cell.
Then, the migration of the nodal points on the cell boundary
membrane is determined by

dxi (t) =β∇c(t, xi(t))dt + α
(
xni (t) + x̂i − xi (t)

)
dt

+ ηdW(t), i ∈ {1, . . . , N }. (3)

Here x̂i represents the vector connecting the initial position
of nodal point i on the cell boundary membrane to the ini-
tial position of point i on the cell nucleus (see Fig. 1). This
vector defines the equilibrium cell shape. In this text, we
only consider circular and spherical cells, however, this for-
mulation allows to consider cells of generic shapes such
as dendritic shapes. Furthermore, β stands for the cell’s
response to external signals, and α > 0 denotes the cell’s
deformation relaxation. Over a spectrum of cell types, the
mobility of the cell boundary has a locally persistent random
character (Lauffenburger and Horwitz 1996), thus the last
term takes care of the randomness movements of each node,
where η is a constant and dW(t) denotes a vector Wiener
process with independent samples from a normal distribu-
tion with zero mean and variance dt . The above equation
warrants convergence to the equilibrium cell shape if there
is no external stimulus for the deformation and migration of
the cell.

Next, we introduce the equation of motion for the nodal
points on the surface of the nucleus. We proceed similarly to
the previous treatment of the nodal points on the cell bound-
ary membrane, where we link the positions of the nodal
points on the surface of the nucleus to their counterparts on
the boundary membrane as well as to the position of the
midpoint of the cell nucleus. To this extent, we obtain for
i ∈ {1, . . . , N }

dxni (t) = αn (
xc(t) + x̂ni − xni (t)

)
dt−

α
(
xni (t) + x̂i − xi (t)

)
dt + ηdW(t).

(4)

Here αn , xc and x̂ni , respectively, stand for the deformation
relaxation of the nucleus, the position of the center of the
nucleus and the vector connecting the initial position of point
i on the surface of the nucleus to the initial center of the
nucleus (see Fig. 1). Furthermore, the random character of
the mobility of the boundary of the nucleus has been taken
into account. This treatment of the points on the surface of the
nucleus provides the interaction between the nucleus and the
cell membrane. However, this interaction such that the defor-

Fig. 2 An example of movement and polarity of the cell

mation of the nucleus is delayed and damped with respect to
the deformation of the membrane.

In order to maintain the right orientation of the cell, we
also introduce the rotation matrix after rotation of an angle
φ relative to the x-axis:

B(φ) =
(
cos(φ) − sin(φ)

sin(φ) cos(φ)

)
, (5)

which transforms a vector x ∈ R
2 to

x −→ B(φ)x. (6)

The rotation matrix B(φ) is used to determine the new
equilibrium points of the cell boundary membrane and of the
surface of the nucleus. Therefore, one cell is able to converge
to its initial shape as well as to its rotation as a result of its
migration to simulate the cell morphological polarization,
see Fig. 2 for a sketch. The angle φ is determined such that
it is closest to the current position of all the nodal points on
the cell boundary membrane:

φ = argmin
φ∈[0,2π)

(
N∑

i=1

||B(φ̃)x̃i − xi (t)||2
)

, (7)

where x̃i represents the initial position of the i-th node on the
cell membrane surface with the cell center position at time t .
After the above problem has been solved, then the angle of
rotation of the cell with respect to the x-axis is known. This
angle, φ, is substituted into the equations of motion for all
nodal points on the cell membrane surface and on the surface
of the cell nucleus, which gives for i ∈ {1, . . . , N }:

dxi (t) = β∇c(t, xi(t))dt

+ α
(
xni (t) + B(φ)x̂i − xi (t)

)
dt + ηdW(t),

(8)
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and

dxni (t) = αn (
xc(t) + B(φ)x̂ni − xni (t)

)
dt−

α
(
xni (t) + B(φ)x̂i − xi (t)

)
dt + ηdW(t).

(9)

Next we consider the treatment of an obstacle. Imagine
that the surface or contour (in 2D) of the obstacle is given
by ∂� and let the unit normal vector be given by n, then we
require that the component of the migration vector, dxi (t)
has no component in the normal direction of the obstacle’s
surface, hence we require that the inner product of dxi (t) and
n vanishes, that is

(dxi (t),n(xi (t))) = 0, if xi (t) ∈ ∂�. (10)

From this we subtract the component of dxi (t) in the direc-
tion of n, hence this gives the following adjustment

dxi (t) ←− dxi (t) − (dxi (t),n(xi (t)))n(xi (t)),

if xi (t) ∈ ∂�.
(11)

Note that herewith the obstacle slows down the migration of
the cells. This principle is also applied if cells are colliding
into each other. The current model simplifies the mechanics
of the cell considerably. Inertial effects would change equa-
tions (3, 4, 8, 9) into second order equations with respect to
the time derivative. The first term with the first-order time
derivative is generally associated with friction or damping.
Since in most studies inertia is neglected compared to fric-
tion terms (Galle et al. 2005; Drasdo et al. 1995; Odell et al.
1980), we are faced with a system of first-order differen-
tial equations. Note that the incorporation of more complex
mechanics also increases the parameter space of the model,
where input parameters are often hard to get.

2.2 Extension to three spatial dimensions

Chemotaxis migration is modeled by using the Green’s func-
tion as a solution of Eq. (1). However, compared to the 2D
model, the Green’s functions in 3D changes to,

c(t, x) = γS

4πD‖x(t) − xs(t)‖2 , (12)

where both of x(t) and xs(t) have x , y and z components.
The surface of the outermembrane and the nuclear surface

are divided into mesh points. For this case, superpositions
of the three-dimensional Green’s Fundamental solutions are
used, as well as the same principles for collision with obsta-
cles and other cells. Further, the rotation can be imposed
around all the three coordinate axes, and to this extent, the
rotation matrix B(φ), entailing a rotation about the z-axis,
where φ denotes the angle with respect to the x-axis, we

extent the rotation matrix to all three coordinate axes:

B(φx , φy, φz) = Bx (φx ) · By(φy) · Bz(φz). (13)

Here Bq(φq) denotes the rotation matrix about the q–axis
(q ∈ {x, y, z}), given by

Bx (φx ) =
⎛

⎝
1 0 0
0 cos(φx ) − sin(φx )

0 sin(φx ) cos(φx )

⎞

⎠ ,

By(φy) =
⎛

⎝
cos(φy) 0 − sin(φy)

0 1 0
sin(φy) 0 cos(φy)

⎞

⎠ ,

Bz(φz) =
⎛

⎝
cos(φz) − sin(φz) 0
sin(φz) cos(φz) 0

0 0 1

⎞

⎠ .

(14)

All other principles remain the same and rotation is deter-
mined using a minimization with respect to the three coordi-
nate angles.

2.3 The application to cancer metastasis

The ECM has preexisting pores (diameter varies from 1 to
20 µm) or fiber-like (ranging from less than 3–30 µm in
width) and channel-like (varying from 100 to 600µm) tracks
(Paul et al. 2017). Furthermore, cells are viscoelastic objects
such that morphological deformation happens frequently
during the cancer invasion process (Mak and Erickson 2013).
Thence, ourmodel for cell andnucleus deformation is applied
to a simplified process occurring during cancer metastasis
in a pore and a channel-like microenvironment. During the
invasion, a cancer cell is normally able to squeeze obsta-
cles like cells, tissue, capillary-sized vessels and deform
itself as well as its nucleus to penetrate and seed in other
organs. In the model, we use a constraint cavity with varying
roughnesses to simulate themicroenvironment during cancer
spread, which is mimicked using a trigonometric function as
follows.

y = ±(y0 + ε sin(ωx)), (15)

where y depicts the rough tube bounds and y0 is a constant
used to adjust the width of a tube. Through changing ε andω,
different roughnesses (varying amplitudes and frequencies)
can be simulated.
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3 The numerical method

3.1 Time integration

We describe the two-dimensional case and provide infor-
mation for the 3D-case if it substantially differs from the
2D-case. Initially the cell outer membrane surface is divided
into N mesh points with respect to the cell center located on
(xc, yc) as follows

xi (0) =
(
xc + R cos

(
2π

(i − 1)

N

)
,

yc + R sin

(
2π

(i − 1)

N

))
,

i ∈ {1, . . . , N }.

(16)

where we assume the cell to be circular in 2D with radius R.
The counterparts of the mesh points on the nuclear surface
are given by

xni (0) =
(
xc + Rn cos

(
2π

(i − 1)

N

)
,

yc + Rn sin

(
2π

(i − 1)

N

))
,

i ∈ {1, . . . , N },

(17)

where Rn < R represents the radius of the cell nucleus. The
3D spherical cell is described analogously for i ∈ {1, . . . , N }
and j ∈ {1, . . . , M}

xi, j (0) =
(
xc + R cos

(
2π

(i − 1)

N

)
sin

(
π

( j − 1)

M

)
,

yc + R sin

(
2π

(i − 1)

N

)
sin

(
π

( j − 1)

M

)
,

zc + R cos

(
π

(i − 1)

M

))
,

(18)

and on the nuclear surface by

xi, j (0) =
(
xc + Rn cos

(
2π

(i − 1)

N

)
sin

(
π

( j − 1)

M

)
,

yc + Rn sin

(
2π

(i − 1)

N

)
sin

(
π

( j − 1)

M

)
,

zc + Rn cos

(
π

(i − 1)

M
)

)
.

(19)

These initial values can be applied to the multi-cell con-
figuration similarly. To determine the positions of the nodal
points on the outer membrane surface, we use an IMplicit-
EXplicit (IMEX) time integration to update the positions at
the next time step in such a way that the linear parts are
treated in an Euler backward method, whereas the nonlinear
parts are treatedusing a forwardEulermethod.This treatment
has been chosen to avoid the need of solving a nonlinear sys-
tem using an iterative procedure. This treatment results into
the following equation (for the single-cell two-dimensional
case) for the nodes on the outer membrane

xi (t p+1) = xi (t p) + �t · (β∇ci (t
p+1) + α(xni (t

p)

+ x̂i − xi (t p+1))) + η�W,
(20)

and

xni (t
p+1) = xni (t

p) + �t · (−α(xni (t
p) + x̂i − xi (t p+1))

+ αn(xc(t p) + x̂ni − xni (t
p+1))) + η�W,

(21)

for the nodes on the nuclear surface, for i ∈ {1, . . . , N }.
Here, �W is a two-dimensional Wiener process with vari-
ables from a normal distribution with zero mean and �t
variance. For the definition and introduction of the vector
Wiener process, one can refer to Steele (2012). For the gra-
dient of the concentration (or any other signal that triggers
cell migration and deformation), we use the following IMEX
convention based on the Green’s Fundamental solutions in
2D (in 3D analogously)

∇cp+1
i = γS(t p+1)(xS(t p+1) − xi (t p+1))

πD||xS(t p) − xi (t p)||2 . (22)

3.2 Cell shape

In order to compute the coordinate of the cell center of mass,
we need the area or volume of the cell and nucleus. The area
A(t) in 2D is computed by realizing that the cell is a polygon,
which follows from

A(t) =
∫

∂�

x(t)nx (t)d�

≈ 1

2

⎡

⎣
∑

i∈{1,...,N−1}
(xi+1 + xi )(yi+1 − yi )+

(x1 + xN ))(y1 − yN )

⎤

⎦ .

(23)
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For the 3D counterpart, we divide the cell into triangles (in
order to allow any finite-element surfacemesh), and compute
the volume V (t) of the cell by

V (t) =
∫

∂�

x(t)nx (t)dS

=
∑

j∈{1,...,Nel}

∫

∂� j

x(t)nx (t)dS

≈
∑

j∈{1,...,Nel}

|� j |nx
6

·
∑

m∈{ j1, j2, j3}
xm,

(24)

where Nel denotes the number of triangles that are used to
approximate the cell (or nuclear) surface, and j1, j2 and j3
refer to the indexes of the vertices of triangle j . Further, 12 |� j |
denotes the area of the j-th triangle, where we compute � j

by

|� j | = ||(x j2 − x j1) × (x j3 − x j1)||, (25)

and the unit outward normal vector by

n j = (x j2 − x j1) × (x j3 − x j1)

||(x j2 − x j1) × (x j3 − x j1)|| , (26)

and hence to compute |� j |nx , it suffices to take the x–
coordinate of (x j2 − x j1) × (x j3 − x j1).

For the 3D-case, we note that the area is computed by
summing the areas of all the triangles, that is

Ab(t) ≈ 1

2

∑

j∈{1,...,Nel}
||(x j2 − x j1) × (x j3 − x j1)||. (27)

3.3 TheMonte Carlo simulations

In our model, most experimental data is difficult or even
impossible to collect, therefore, we refer to other literature
data or estimate the input data and thereby evaluating the
quantification of the propagation of uncertainty in the vari-
ables is very important. To investigate the output influence
and correlation among variables, Monte Carlo simulations
are carried out based on the model of cancer metastasis.
There, a cell transmigrates through a narrow rough tubular
path to get from one part of the surrounding tissue to another
part. Passage through the tube requires deformation of the
cells’ cytoplasm and nucleus and affects the corresponding
penetration time τ which is quantified under different condi-
tions.

Suppose the variable X ∈ {D, β, α, αn} follows a normal
distribution X ∼ N (μ, σ 2), where μ and σ represent the

mean of the distribution and the standard deviation. Then,
the stochastic variable X could be generated by

X = (randn(Ns, 1) × σ) + μ, (28)

here Ns denotes the number of samples. The strength of the
linear association between every variable and penetration
time τ is quantified by the correlation coefficient r given
by

r =

N∑

j=1
(X j − X̄)(τ j − τ̄ )

[
N∑

j=1
(X j − X̄)2

N∑

j=1
(τ j − τ̄ )2

] 1
2

. (29)

Note the correlation coefficient is always bounded by
[− 1, 1], where− 1 or 1, respectively, indicates a perfect neg-
ative or positive linear correlation.

3.4 Error analysis

Numerical methods yield approximate results, where the
numerical error E arises from the IMEX method and the
Monte Carlo simulations. The IMEX time integration error
Eti is defined by

‖Eti‖ = ‖τ̂ − τ̂�t‖ � C · �t, (30)

here C represents a positive constant, τ̂ and τ̂�t denote the
real mean penetration time and numerical mean penetration
time, respectively. The numerical result becomes accurate
with the limitation of a sufficiently small time step �t .
Furthermore, the accuracy of the Monte Carlo simulations
depends on the number of samples Ns and this error Emc is
achieved by

‖Emc‖ = ‖τ̂�t − τ̂�t
Ns

‖ 	 Sn√
Ns

, (31)

where Sn denotes the sample standard deviation and τ̂�t
Ns

is the sample mean as a result of Ns samples, which is

τ̂�t
Ns

=
∑N

j=1 τ�t
j

Ns
. Here τ�t

j denotes the penetration time
of sample j , and the sample standard deviation is given by

Sn =
[∑Ns

j=1(τ
�t
j −τ̂�t

Ns
)2

Ns−1

] 1
2

. Note that this error decreases with

increasing number of trials. Therefore, the total error E is
given by

‖E‖ = ‖τ̂ − τ̂�t
Ns

‖ � ‖τ̂ − τ̂�t‖ + ‖τ̂�t − τ̂�t
Ns

‖
� C · �t + Sn√

Ns
.

(32)
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To keep the numerical approximation as accurate as possible,
the time step should be small enough and number of samples
should be sufficient large. Take the Monte Carlo simulations
with six parameters as an example. If we fix all the six param-
eters and set the random walk parameter to zero, then the
computation is fully deterministic. The time step is 0.0001h
and the constant C can be estimated using Richardson error
estimation by

{
τ̂ = τ̂�t + C · �t

τ̂ = τ̂ 2�t + C · 2�t,
(33)

where C = τ̂�t−τ̂ 2�t

�t = 133, which is a mean value of ten
times calculations. With 10,000Monte Carlo (with sampling
in the six parameters and using random walk) samples, the
analytical error analysis can be derived as,

‖E‖ � 1.33 × 10−2 + 0.0687√
10,000

	 1.40 × 10−2,

(34)

where 0.0687 is the sample standard deviation Sn . There-
fore, the total error in the Monte Carlo simulations with six
parameters is bounded by 0.014h.

4 The numerical simulations

First, we describe the simulations in which one cell migrates
toward the gradient of an increasing stimulus along obstacles
in 2D and 3D. Subsequently, this deformation model of cell
and its nucleus is applied to a simplified cancer metastasis
phenomenon. Furthermore, six parameters are studied and
analyzed by Monte Carlo simulations.

4.1 Parameter values

Most often the experimental parameter values are not avail-
able to us, therefore estimating input values based on
experimental literature is essential. For example, we use
10 µm in 2D and 16 µm in 3D for diameters of the nucleus
referring to the work by Friedl et al. (2011), where the diame-
ter of the nucleus varies from 10–20 µm in 2D and 5–15 µm
in 3D. Analogously, other default input values are listed in
Table 2, as well as the sources from the literature whenever
possible.

4.2 Cell migration along a rigid object in 2D and 3D

4.2.1 One cell migrating along a rigid object in 2D

In solid tumors, cell migration shows trends in its direction
according to the presence of chemotactic gradients or other
external cues. Since there are many parallels existing in the
mechanisms underlying the movement of cancer cells and
immune cells within tissues aswell as in the blood circulation
(Pinner and Sahai 2008), the modeled cell can be an immune
cell with a chemical source of antigen or a cancer cell with a
source of oxygen or substrate/ECM stiffness.

The cell moves according to the gradient of chemokine.
Snapshots at different stages of the migration are shown in
Fig. 3,where the red, green andgray objects visualize the cell,
nucleus and a rigid obstacle, respectively. Furthermore, the
signal source location is represented by an asterisk. To pass
a stiff barrier or overcome an obstacle, the migrating cell has
to reshape and adapt the mechanostructure of the cytoplasm
and the membrane. That is done via exerting contractile
forces or withstanding the stresses from neighbor cells,
which are mediated by the cell cytoskeleton (Brunner et al.
2006). According to the experimental observation of Brunner
et al. (2006), one migrating cell could push a small obstacle
upward by exerting forces and crawl underneath this obsta-
cle. Given a larger obstacle in our simulation, the cell and
nucleus are more likely to crawl along the rigid boundary by
morphological adjustments to different extents. Ultimately,
the cell and nucleus are able to return to their initial shapes
due to cell polarity once the source is no longer active.

4.2.2 One cell moving along a rigid object in 3D

In three-dimensional interstitial tissues, cells typically uti-
lize one of two mechanisms for invasion: mesenchymal or
amoeboid, respectively, involving degradation of the sur-
rounding ECM or squeezing through sub-cell-size pores
in the ECM; these mechanisms require, respectively, pro-
teinases that can degrade the ECMor deformations of the cell
shape. (Friedl et al. 2011). To simplify the problem andmake
it time-efficient to solve, we only consider the mechanical
deformability of the cell in this model rather than deforma-
bility of both the environment and the cell. The degradation of
the ECM is hence modeled implicitly in the β-term in Eq. 3.
Note that if the ECM decay-rate would be zero, then the
β-parameter would be zero as well. Hence the β-parameter
accounts for the decay of ECM and the mobility of the node.
In a future study, the decay process of the ECM could be
modeled more explicitly so that the migration and deforma-
tion process of the cell can be modeled to be rate-determined
by the slowest process. We model a 3D cell with a spherical
equilibrium geometry that travels over an obstacle toward a
source that secretes a chemokine, e.g., for immune cells the
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Table 2 Parameter values Constant Notation Value Unit Source

Radius of a circular cell
in 2D

R 12.5 µm (Champion and Mitragotri 2006)

Radius of a spherical cell
in 3D

R 10 µm (Champion and Mitragotri 2006)

Radius of a circular
nucleus in 2D

Rn 5 µm (Friedl et al. 2011)

Radius of a spherical
nucleus in 3D

Rn 8 µm (Friedl et al. 2011)

Cell deformation relax-
ation

α 250 h−1 estimated

Nucleus deformation
relaxation

αn 2500 h−1 estimated

Diffusivity of the
chemokine

D 3600 µm2/h (Jayaraman et al. 2001)

Mobility of points on cell
membrane

β 60 h−1 (Vermolen and Gefen 2012)

Secretion rate of the
chemokine

γs 1.2 ×106 mol/hµm3 (Savinell et al. 1989)

Time step in 2D �t 0.0001 h (Pinner and Sahai 2008)

Time step in 3D �t 0.01 h –

Number of nodes on a 2D
cell

N 30 – –

Number of circles on a
3D cell

Nc 30 – –

sourcemay be a pathogen. In Fig. 4, consecutive snapshots of
a 3D cell that reaches a source and engulfs are shown. It can
be seen that the cell deformsmechanostructurally and that the
cell shape returns to its equilibrium spherical shape once the
stimulus has been removed. Note that the cell is still attached
to the obstacle once the source has disappeared. Due to this
mechanical attachment and cell elasticity, the cell deforms
back to its equilibrium and thereby pushes itself away from
the obstacle such that there is only attachment at one point of
the cell boundary to the obstacle. This is a characteristic of
the current model in which steady-state adherence has been
neglected. The figures illustrate how the model takes into
account the hard mechanical impingement between the cell
and the rigid obstacle.

In general, dimensionality does not affect the expected
numerical result in this case. Furthermore, the computational
time of a 2Dmodel is much shorter as a result of the need for
fewer gridpoints on the boundaries of the cell and nucleus,
and thereby we use 2D model for further application and
analysis in this work.

4.3 Application to cancer metastasis in 2D

There are preexisting openings (pores, fiber-like or channel-
like tracks) inECMthat enable cancer cells tomigratewith an
independence ofMMP’s (Paul et al. 2017). In this section, we

apply the model to the transmigration of cancer cells through
pores and channels to migrate from one part to another part
of the tissue without degrading ECM.

4.3.1 Simulation on penetration of a cell through a cavity

We initially consider a single cell penetrating through a
cavity, which is formed by two circular obstacles, without
secreting proteolytic enzymes and remodeling the ECM;
i.e., the cell migration is assumed to utilize the amoeboid
mode. The initial state is shown in Fig. 5 (top-left). The cell
is attracted to an imaginary source (indicated by the blue
asterisk) that releases a chemokine or a ECM stiffness sig-
nal. The migration of the cell is directed up the gradient
of the chemokine, and it is limited by the presence of the
two physical obstacles. Further, it can be seen that the cell
is mechanically compressed as a result of its shrinkage due
to its migration through the cavity and the nucleus deforms
whenever the size of the pore is smaller than the size of the
nucleus, see Fig. 5. As soon as the cell exits the constric-
tion and is no longer mechanically compressed, the nucleus
returns to its equilibrium circular shape. Once the source has
been engulfed, the cell shape returns to its equilibrium circu-
lar shape. The model only incorporates temporary adherence
to the obstacle, no permanent adherence.After disappearance
of the source, only restoration of the cell shape is modeled.

123



1438 J. Chen et al.

Fig. 3 Consecutive snapshots of one cell migrating along a rigid obsta-
cle in a 2D simulation. The cell, nucleus and obstacle are visualized by
red, green and gray colors, respectively. A blue asterisk denotes a source

secreting a chemokine with the secretion rate of 2 × 105 mol/hµm3.
The CPU time of this model takes 2.20 s

4.3.2 Simulation on penetration of a cell through a tube
channel

Cell deformation is normally studied in vitro by using
microfluidic devices(Mak et al. 2013; Paul et al. 2016;
Myrand-Lapierre et al. 2015). In the latter work, discord-
shaped red blood cells have been shown to be able to
repeatedly deform when penetrating through microcapillar-
ies with a diameter of 2.5 µm or even less. As mentioned
in Sect. 2.3, there are abundant preexisting fiber-like and
channel-like tracks formed by the alignments of the collagen
architecture in interstitial tissues and organs, which guide or
inhibit cell migration (Wolf et al. 2009; Paul et al. 2017). In
Fig. 6, a schematic representation of an endothelial cell wall
with a channel of approximate 10 µm in width is depicted

(Paul et al. 2017). This value is considered here to guarantee
that the cell is able to penetrate through it in most cases.

Mechanical boundaries could regulate some biomedical
processes and Mak et al. (2013) demonstrate that if the
confined dimensional modulation of a microfluidic device
has a mechanical barrier smaller than the cell nucleus,
then metastatic breast adenocarcinoma cells likely deform
in elongated morphological states and invade distinct sites.
Here, taking mechanical boundaries into account, we use the
trigonometric function (from equation (15)) to simulate the
different roughnesses through changing the value of param-
eter ε and ω. A highly rough boundary of the channel is
defined if the perturbation [see Eq. (15)] has a high frequency
or/and a big amplitude, which is determined by the surface
of the endothelial cells. Whereas a lower frequency (also a
lower amplitude) as we depict in Fig. 6 could show where
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Fig. 4 Consecutive snapshots of one cell migration along a rigid obstacle in 3D simulation. The cell, nucleus and obstacle are visualized by red,
yellow and blue colors, respectively. A black asterisk denotes any type of sources. The CPU time of this model is 21.77 s

each cell is located. The discrepancy between the endothelial
cellular surfaces and the channel through which the can-
cer (or immune) cell migrates, could be a consequence of
the extracellular matrix around the cells. Then the boundary
of the channel can have various roughnesses, which com-
bined with other parameters, are analyzed by using Monte
Carlo simulations based on this model. Moreover, this model
is incorporated with Poisseuille flow to simulate the micro
blood flow referring our work (Chen et al. 2018). To investi-
gate how the cell speed changes in the current scenario, the
speed evolution with the respect of time is plotted in Fig. 8a
without the perturbation of vector Wiener process. As we
expected, the cell speed slows down when it starts to squeeze
the opening and subsequently accelerates to move toward the
emitting source. When the τ equals approximate 0.37 hour,
the instantaneous speed reaches a peak and drops to zero
after the engulfment of the source and cell shape recovery.
During the transmigration in the tube, the cell migrates with
a speed vibrating up and down at 200 µm/h, which is in the

range 1–5 µm/min for the typical speed of amoeboid move-
ment observed in vivo in the work (Pinner and Sahai 2008).
Moreover, the cell speed can be controlled under various con-
ditions, like the number of emitting sources, the diffusion
coefficient, cell mobility.

4.3.3 Simulation on cancer metastasis

Immune cells and cancer cells similarly deform in chemically
or mechanically induced locomotion. The work by Springer
(1994) reports that leukocytes can attach to thewall of a blood
vessel by binding to adhesion molecules of the endothe-
lial cells, subsequently the leukocytes flatten themselves,
and then squeeze through openings which are much smaller
than themselves among the endothelial cells. Analogously,
metastatic cells utilize similarmechanismswhen intravasting
into or extravasating out of blood vessels. Cancer metastasis
is a multi-step cascade that can be divided into the following
steps, (1) escape from the primary tumor site; (2) survive tran-
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Fig. 5 Consecutive snapshots of one cell penetration a cavity made of two obstacles in 2D simulation. The cell, nucleus and obstacles are visualized
by red, green and gray colors, respectively. A blue asterisk denotes any type of sources. The CPU time of this model is 2.18 s

sit in the bloodstream or lymphatic vessels after successful
intravasation; (3) disseminate and extravasate subsequently;
(4) start to proliferate and colonize secondary sites at distant
organs (Chambers et al. 2002a; Kopfstein and Christofori
2006). We attempt to simulate the steps of intravasation and
extravasation and several consecutive snapshots showing the
shape changes of cell and nucleus are provided in Fig. 7,
where a schematic diagram of a capillary-sized channel is
depicted. In order to get around hypoxia (or lack of nutri-
tion) as a result of competitive growth in cancer cell colonies
or as a response to a stiffness gradient, metastatic cells show
migratory exploratory behavior toward regions outside the
cology they reside in. This migration can be inspired by gel-
stiffness-dependent differences in traction forces or strain
energies in Massalha and Weihs (2017). Therefore cancer
cells are capable of penetrating through small openings in
endothelium. This process is highly inefficient, and during
this dissemination, themajority of cancer cells would die and

only < 0.02% of them are able to seed at distant sites suc-
cessfully (Celià-Terrassa and Kang 2016; Luzzi et al. 1998).
Analogously, the cell speed evolution of this model is shown
in Fig. 8b, and the speed is around 200 µm/h in the channel
and reaches a peak instantaneouslywhen the cell gets close to
the source.The reason for this peak is the singularity inEq. (2)
at the position of the source, which gives a very large gradi-
ent of the concentration near the source. This peak could be
regularised by either adding a time-dependency (through an
analytic solution or through a numerical solution of the con-
centration) or by replacing the chemotaxis by a factor such
that the velocity stays bounded. All these approaches make
the model more complication and since the objective was a
construct a simple model, this has been omitted. At the final
stages, the speed decreases to zero due to lack of attraction
signals and the vector Wiener process. We also remark that
the large variations in Fig. 8b are caused by the cell having
to pass through the apertures and having to migrate along the
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Fig. 6 Consecutive snapshots of one cell penetration through an endothelial cell wall in 2D simulation. The migrating cell, nucleus and endothelial
cells are visualized by red, green and gray colors, respectively. A blue asterisk denotes any type of sources. The CPU time of this model is 6.05 s

wall of the channel. This interaction between the cell bound-
ary and obstacle causes the switch between repulsion and
migration along the tangent of the obstacle and attraction as
a result of a component normal to the tangent of the bound-
ary of the obstacle. This effect of this discontinuous switch
mechanism can only be inhibited by choosing a smaller time
step.

4.4 Parameter study with Monte Carlo simulations

If certain input values contain uncertainties, Monte Carlo
simulations could be a way to evaluate the impacts of out-
put. This method enables us to estimate of the impact from
variables ranging from various statistical distributions like
Pareto, uniform, normal, lognormal, Chi-square, exponen-
tial (Mooney 1997). Furthermore, Monte Carlo simulations
have been used over a spectrum of systems, which is typi-
cally concluded in following four steps, (1) generate the input
random values based on their probability distribution func-
tions; (2) calculate samples; (3) repeat the above-mentioned
steps with a number of trials Ns; (4) calculate the mean and
construct a relative frequency distribution of the simulated
results (Mooney 1997; Mahadevan 1997). Furthermore, one
can estimate the correlation between the various input and
output parameters.

Themodel introduced in Sect. 4.3.2 is used inMonteCarlo
simulations, with the channel boundary of 60 µm in length
and approximately 10 µm in width. The transit time inter-
val that starts once one of the cell’s boundary points enters
the channel and lasts until the last point exits the channel is
defined as the penetration time τ . In this section, the influ-

ences of several parameters on the penetration time τ are
investigated.

As we discussed in Sect. 3.4, the accuracy of the simula-
tion result depends on the number of samples. To achieve an
accurate approximation, the number of samples is tested that
is shown in Fig. 9.

Note that the axes represent the logarithm of sample count
and themean of transit time, respectively. If the sample count
in the Monte Carlo simulations is too small, then the aver-
age penetration time has not yet converged (see Fig. 9 for
Ns < 200).We observe that using 10,000 samples only gives
very small fluctuations of the average penetration time (see
Fig. 9). The result has converged sufficiently to approximate
0.356h. However, to evaluate the uncertainty of input data
quantitatively, 10,000 samples are chosen in our simulation
which give acceptable computation times in the order of hour.
Using equation (31), the Monte Carlo error is estimated by
‖Emc‖ = ‖τ̂�t − τ̂�t

Ns
‖ 	 Sn√

Ns
.

4.4.1 Monte Carlo simulations on parameters D,ˇ,˛,˛n

We start with the Monte Carlo simulations on four input
parameters which are the diffusion coefficient of the
chemokine D, cell point mobility β, cell deformation relax-
ation α and the nucleus deformation relaxation αn . We
sample them from the normal distribution, then they can be
generated by Eq. (28) with the default values in Table 3.

The mean value of each is the same as the value in Table 1
and corresponding standard deviation reflects the degree of
dispersion among samples. The values have been chosen
mathematically based on an extensive testing. In Fig. 10, we
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Fig. 7 Consecutive snapshots of one cell about intravasation and extravasation of a blood or lymphatic vessel in 2D simulation. The migrating cell,
nucleus and the vessel are visualized by red, green and gray colors, respectively. A blue asterisk denotes any type of sources. The CPU time of this
model is 7.30 s

plot a histogram of 10,000 samples as well as a cumulative
distribution function (CDF) of the estimated probability of
penetration time τ . Thence, the x-axis denotes the consecu-
tive variable penetration time τ and the y-axis represents the
frequency of occurrence or the probability Pn(t ≤ τ) of the
corresponding variable depending on the chart considered in
Fig. 10.

Taking different roughnesses of the channel boundary into
consideration, various values of ε (ε = 0, 0.5, 1.0, 1.5µm)
and ω (ω = 0, 0.25, 0.5, 0.75µm−1) are set and compared
in Fig.11. The ε parameter manifests the magnitude of ver-
tical fluctuation, i.e., the amplitude; while ω determines the

frequency of the fluctuations of boundary. A smooth bound-
ary has a small ω value, then one cell is able to move through
it much faster than through a rough channel. In Fig.11a, we
observe four cumulative distribution functions with different
slopes f (τ ), which represents the probability density. Thus,
any probability Pn of a time interval [τ − �t

2 , τ + �t
2 ] occur-

ring can be calculated by the formula Pn(τ − �t
2 ≤ τ̂ ≤

τ + �t
2 ) ≈ f (τ ) ·�t . Conversely, with the same probability,

taking Pn = 0.5 for an example, we can get the information
about the transit time of one cell with 50% probability in var-
ious conditions, where τ1(ε = 0µm) < τ2(ε = 0.5µm) <

τ3(ε = 1.0µm) < τ4(ε = 1.5µm). Analogously, Fig.11b
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Fig. 8 a The cell speed evolution in cell penetration model (Fig. 6); b the cell speed evolution in cell metastasis model (Fig. 7)
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Fig. 9 Sample quantity test for convergence of average penetration time
τ . The penetration time is in hours

showing four cumulative distribution functions of the pene-
tration time τ are compared under different conditions with
varying ω. With 50 % probability, one cell takes penetration
time τ1 with a straight boundary ω = 0µm−1, the penetra-
tion time rises to τ2, τ3 and τ4 with the increase in roughnesses
ω = 0.25µm−1, ω = 0.5µm−1 and ω = 0.75µm−1,
respectively. In conclusion, both the standard deviation in the
arrival times and the mean arrival time increase with increas-
ing values of ε and ω. Subsequently, we fix the roughness
parameter values to ε = 1.0µm and ω = 0.5µm−1, then
the impacts of four parameters D, β, α, αn on the penetra-

tion time τ are investigated and the correlation analysis are
shown in Fig. 12. Based on the results, there is some pos-
itive correlation between the penetration time τ and both
D and α with correlation coefficient r equal to 0.6068 and
0.49772, respectively. Moreover, β has a negative linear cor-
relation with τ , whereas, the nucleus deformation relaxation
has no obvious correlation with penetration time in this situa-
tion. However, the nucleus is the stiffest cellular component,
which inhibits the confined cell migration if the pore diame-
ter in the ECM is below a critical threshold (Wolf et al. 2013;
Davidson et al. 2014). Therefore, the correlation between
the penetration time and nucleus stiffness is expected to be
highly positive if the width of channel is smaller than a crit-
ical threshold.

4.4.2 Monte Carlo simulations on parameters � and!

We next analyze the other two parameters ε and ω, which
reflect the amplitude and frequency of the channel bound-
ary. Suppose ε and ω are too large, i.e., ε, ω > 2 in our
simulations, the trigonometric functions probably would trap
migrating cells due to sharp peaks or corners. Therefore, ε

and ω are generated carefully with uniform normal distribu-
tion by the following equation,

{
ε ∼ U (0.5, 1.5),

ω ∼ U (0, 0.6).
(35)

Table 3 Parameter values D β α αn

Value N ∼ (3600, 302) N ∼ (60, 32) N ∼ (250, 402) N ∼ (2500, 1252)
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Fig. 10 The histogram (a) and CDF plot (b) of cell penetration time τ in Monte Carlo simulations on parameters D, β, α, αn
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Fig. 11 a Compares the CDF plots of cell penetration time τ in terms of various ε (ε = 0, 0.5, 1.0, 1.5µm) with a fixed ω value (ω = 0.5µm−1).
b Compares the CDF plots of cell penetration time τ in terms of various ω (ω = 0, 0.25, 0.5, 0.75µm−1) with a fixed ε value (ε = 1.0µm)

This above equation guarantees the value of ε and ω

are uniformly distributed and bounded by (0.5, 1.5) and
(0, 0.6). Based on the 10,000 samples, Fig. 13a shows the
corresponding histogram, which looks like a lognormal chart
and fits from a qualitative point of viewwith the experimental
results by Abuhattum andWeihs (2016), where themigration
speeds of single preadipocytes without chemoattractants fol-
low a lognormal distribution. A cumulative percentage of the
number of occurrences regarding the cell penetration time τ

is plotted in Fig. 13b.
Analogously, scatter diagrams about ε and ω with pen-

etration time τ indicating their correlations are shown in
Fig. 14. With the increase in roughness, one cell travels a
longer time to penetrate the channel in most cases. Further-

more, the increment of ω makes a contribution to the total
travel time of one cell. This is also reflected by the correla-
tions of r = 0.4310 and r = 0.7100 between the penetration
time and ε and ω, respectively.

4.4.3 Monte Carlo simulations on parameters D,ˇ,˛,˛n,�
and!

To test the essential variables simultaneously, all six param-
eters D, β, α, αn , ε and ω are analyzed by Monte Carlo
simulations. The histogramof the penetration time τ is shown
in Fig. 15a which can be fitted to a lognormal distribution.
Furthermore, a CDF result is shown based on a sample of
10,000 times simulations in Fig.15b.
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Fig. 12 Scatter plots about cell penetration time τ with respect to various variables D, β, α, αn
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Fig. 14 Scatter plots about cell penetration time τ with respect to various variables ε and ω
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Fig. 15 The histogram (a) and CDF plot (b) of cell penetration time τ in Monte Carlo simulations on parameters D, β, α, αn , ε and ω

To investigate the impacts of variables on output results
and analyze the correlations of each variable with penetra-
tion time τ , a couple of scatter plots are shown in Fig. 16,
respectively. Adding some control variables that are statisti-
cally distributed yields more uncertainty to the system. The
increase in uncertainty generally decreases the correlation.
Therefore, in current simulation of six parameters, the cor-
relation of parameters D, β, α, ε and ω with time τ decrease
slightly compared with the simulations with the variation of
four parameters. The correlation between τ and αn is still
negligible. Further, Fig. 16 shows that the roughness (ε and
ω) dominantly influences the cell travel time.

5 Discussion and conclusions

In this work, we develop a cell-based model to describe the
morphological evolution of the cell and nucleus in a phe-
nomenological way. The cell cytoskeleton spanning between
the nucleus and the cellmembrane is simulated by 30 springs.
As we expected, an immune cell or a single cancer cell
can deform according to the specific obstacles or paths
when it encounters a stiff obstacle in a 2D or 3D environ-
ment. Compared with some existing models, e.g., a model
investigating the role of nucleus deformation in the cell
deformation under different geometrical andfluidflowcondi-
tions (Serrano-Alcalde et al. 2017) and a three-dimensional
model describing nucleus mechanics during cell migration
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Fig. 16 Scatter plots about cell penetration time τ with respect to various variables D, β, α, αn, ε and ω
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and deformation (Giverso et al. 2018), one of the major
advantages of our modeling is its efficiency regarding CPU
time, which enables to carry out Monte Carlo simulations
for evaluation of parameter sensitivity. A further merit of the
current model is its simplicity. If one is able measure the
velocity of points on the surface of the cell under the influ-
ence of (the gradient of) a generic (being a concentration or
a stiffness for instance) signal, then the β-parameter can be
determined. If one further is able to measure the retraction
speed on the boundaries of the cell and the nucleus once the
signal has disappeared, then it can fit the α parameters.

The uncertainties in the input values necessitate us to
study the impact of uncertainty by carrying out Monte Carlo
simulations. With 10,000 samples, the correlations of each
variable D, β, α, αn , ε and ω with cell penetration time τ are
analyzed. The results show that αn has no significant correla-
tion with the penetration time in current situation, where the
reason probably is the low range of parametric values in our
simulations. A larger range, with variations over a lognor-
mal distribution could give a higher correlation. The use of
very high values of αn in the model when the cell is penetrat-
ing through an aperture needs more investigation. Moreover,
Serrano-Alcalde et al. (2017) state that a small cell nucleus
does not play a crucial role in cell deformability-based exper-
iments under a fluid flow. Therefore, the deformability of the
nucleus could be impacted by the size of the nucleus, and
thereby influence the penetration time. Whereas, other vari-
ables influence the cell penetration time τ to varying degrees,
where the correlation of roughness is the most significant.

To make the problem tractable, some assumptions are
made based on the simplified biomedical phenomenon,
which are: (1) the equilibriummorphology of the cell is circu-
lar in 2D and spherical in 3D, respectively; (2) the cell is not
allowed to die, which means the cell cannot be removed, in
any extreme narrow scenarios; (3) cell mobility is simulated
by a source secreting a single cytokine evenly and continu-
ously until it is consumed , which makes the model consist of
a system of ordinary differential equations; (4) the obstacles
are absolutely stiff such that they cannot deform and thereby
we do not need to consider the degradation of substrate/ ECM
on the obstacles. Further, the introduction of elastic obsta-
cles also needs the inclusion of mechanical balance based
on Newton’s law for the objects. Although this would be an
interesting extension of themodel, we omit this in the current
paper since this extension enlarges the parameter space for
the Monte Carlo simulations. In order to improve the model,
the following aspects could be considered in future work.

– Compared to a 2Dmodel, a 3Dmodel ismore physiologi-
cal, however, there is no significant qualitative difference
in terms of expected numerical results. Moreover, taking
the Monte Carlo simulations into account, the CPU time
for simulating the 2D model is much more reasonable.

However, a 3D model will still be an interesting research
direction in the future.

– Amoeboid andmesenchymalmovement, as the two basic
forms of cell locomotion, mutually transform and par-
ticipate in the process of cell migration. The former is
also called pseudopodia movement including lamellipo-
dia and filopodia, which normally takes place close to
the cell front as a result of cell polarization (Lauffen-
burger and Horwitz 1996; Lämmermann and Sixt 2009;
Paul et al. 2017). Since the interconversion between the
amoeboid model and the mesenchymal model due to the
cytoskeleton rearrangement happens during cancer cell
migration (Zhao et al. 2011), thefilopodia that is an exten-
sion of active membrane of cell front and rear might be
considered in future work.

– In the current work, we define constant values for the cell
deformation relaxationα and cellmobilityβ everywhere,
while they in general depend on chemokines. Therefore,
to introduce surface-resident chemical species, some sur-
face partial differential equations can be incorporated
such that it describes the evolution of the chemical sig-
nals over the membrane surface. This amounts to solving

at + ∇� · (va) − Da��a = f (a),

v = d

dt
x(t), (t, x(t)) ∈ R

+ × �(t).
(36)

This is an interesting and relevant research direction,
which will be taken into consideration in future work.

– A tumor is typically surrounded by a dense network of
collagen fibers, which are normally utilized by motile
cancer cells to guide their paths (Sahai 2007). Further-
more, mutated cancer cells are capable of remodeling the
normal ECM around them, abnormal ECM or the density
of fibers preferably reshapes aligned direction in a par-
allel arrangement, which forms an anisotropic medium
and thereby has a significant impact on cell migration.
If we formalize this directional dependence through the
so-called orientation tensor �. Then we get the follow-
ing revision on the response to the external signal of the
migration equations:

dxi (t) = (β0I + β1�)∇c(t, xi(t))dt + α(xni (t)

+ x̂i − xi (t))dt + ηdW(t),

i ∈ {1, . . . , N },
(37)

where β0 and β1 are two constants and� can be obtained
by

�(t, x) =
(

�xx �xy

�xy �yy

)
. (38)
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For the formalism, one can refer to thework byCumming
et al. (2010) and a further application in the work (Chen
et al. 2018).

– We note that the relaxation parameter of the nucleus has
little correlation with the transmigration time. This find-
ing seems counter-intuitive. According to the studies of
Serrano-Alcalde et al. (2017), the stiffness of the nucleus
hardly plays a role in cell deformability experiments if the
nucleus is relatively small. However for larger sizes, this
deformability of the nucleus may become more impor-
tant.

Over the past several decades, a significant progress has
been made in medical technology and attempts have been
made to investigate the complexity of cancer initiation and
progression. For example, cell deformability has been shown
to have certain correlations with disease states of cells and
metastatic potentials (Guck et al. 2005; Mak and Erick-
son 2013). Nonetheless, the biological mechanisms of a
multi-step metastatic cancer still remain poorly understood
(Lambert et al. 2017). To make a contribution, our group
will continue to work on biological mathematical modeling
to predict the behavior of cells in the microenvironment and
aid the biological experiments for the further understanding
of cancer and drug development.
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