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Abstract
In this paper, we obtain a vertical–horizontal decomposition formula of Laplacians on man-
ifolds with a special foliation structure. Two Nomizu-type theorems for cohomologies of
nilmanifolds follow as applications.
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1 Introduction

Let X be an n-dimensional compact smooth manifold. Assume that the tangent bundle TX
of X is trivial (thus the cotangent bundle T ∗

X is also trivial). Let

� := {σ 1, . . . , σ n}
be a global smooth frame of T ∗

X . Inspired by [9,20], we introduce the following

Definition 1.1 We call � a nilpotent frame if

dσ j =
∑

k,l> j

A j
kl σ

k ∧ σ l , ∀ 1 ≤ j ≤ n, (1.1)

where A j
kl are “real constants.”

In the complex case, assume that the holomorphic tangent bundle ∧1,0TX of a compact
complex manifold X is smoothly trivial (may not be trivial as a holomorphic vector bundle).
Now assume that the complex dimension of X is n. Let

� := {ξ1, . . . , ξn}
be a global smooth frame of ∧1,0T ∗

X . We shall use the following

Definition 1.2 We call � a complex nilpotent frame if

dξ j =
∑

k,l> j

B j
kl ξ

k ∧ ξ l +
∑

k,l> j

B j
kl̄

ξ k ∧ ξ l , ∀ 1 ≤ j ≤ n, (1.2)

where B j
kl and B j

kl̄
are “complex constants.”

We have the following generalization of the main results in [9,13,20].
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Main Theorem Let X be a compact smooth (resp. complex) manifold. Assume that T ∗
X (resp.

∧1,0T ∗
X ) possesses a nilpotent (resp. complex nilpotent) frame � (resp. �). Then, every de

Rham (resp. Dolbeault) cohomology class of X can be represented by R (resp. C) linear
combination of finite wedge products of forms in � (resp. � ∪ �).

Remark 1 Denote by A� (resp. A�,�) the finite dimension R (resp. C) linear space spanned
by wedge products of� (resp.� ∪�). Then we know that the d-cohomology is well defined
on A�, the ∂-cohomology is well defined on A�,� and they are also called the Lie algebra
cohomologies. Let us denote them by H �

d,� and H �,�

∂,�
, respectively. Then, our main theorem

is equivalent to say that

H �
d � H �

d,�, H �,�

∂
� H �,�

∂,�
,

where H �
d (resp. H �,�

∂
) denotes the usual de Rham (resp. Dolbeault) cohomology group. See

Sect. 8 for a more explicit description of H �
d,� and H �,�

∂,�
in certain cases and Sect. 9 for

related results.

Remark 2 The main ingredient in the proof of our main theorem is the following vertical–
horizontal decomposition of Laplacians (see Theorem 4.1)

�d = �dv + �dh+Rd
,

associated to the following decomposition

d = dh + dv + Rd ,

of d on a smooth manifold with a special foliation structure, where dh only increases the
horizontal degree, dv only increases the vertical degree and the remaining term Rd is a tensor
(see [1–3,18,19,21,26] for the background and related results).

Remark 3 The proof of our main theorem in Sect. 7 also gives the following result: Let X
be a compact smooth manifold. Assume that C ⊗ T ∗

X possesses a nilpotent frame �. Then
every complex de Rham cohomology class of X can be represented by C linear combination
of finite wedge products of forms in �.

Our main theorem suggests to study the following problem:
(�): Let G be a Lie group, let � be a discrete subgroup of G. Assume that with respect

to the left action of �, X := �\G is a compact manifold. When does T ∗
X possess a nilpotent

frame ?
If G is nilpotent then of course T ∗

X possesses a nilpotent frame. But it is also interesting
to study the general case, e.g., SL(2,Z)\SL(2,R) (non-compact!). In Sect. 9, we shall give
an example where T ∗

X possesses a nilpotent frame but G is not nilpotent. For related results,
see [6,7].

2 Motivations

2.1 First motivation: Künneth formula

Our first motivation comes from the following well-known Künneth formula:

Theorem 2.1 (Künneth formula) Let (X , gX ) and (Y , gY ) be two compact Riemannianmani-
folds. Let (E, hE ), (F, hF ) be Hermitian complex vector bundles over X and Y , respectively.
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836 S. Rollenske et al.

• If E and F are flat, then we have the following formula for de Rham cohomologies:

Hk
d (X × Y , E ⊗ F) = ⊕p+q=k H

p
d (X , E) ⊗ Hq

d (Y , F);
• If X , Y are complex manifolds and E, F are holomorphic vector bundles, then

H p,q
∂

(X × Y , E ⊗ F) = ⊕ j+k=p,l+m=q H
j,l

∂
(X , E) ⊗ Hk,m

∂
(Y , F).

One way to prove the above formulas is to use the Leray spectral sequence for fibrations,
see [9]. Our motivation comes from the proof of using the following decomposition formulas
of Laplacians:

�X×Y
d = �X

d + �Y
d , (2.1)

and
�X×Y

∂
= �X

∂
+ �Y

∂
. (2.2)

More precisely, we will study the following problem:
Problem: How to generalize (2.1) and (2.2) to non-product fibrations?

Remark Oneway to study the above problem is to develop the L2-theory of the Leray spectral
sequence for fibrations (see [5,11] for related results). We know that for the spectral sequence
of the double complex (∂, ∂), d = ∂ + ∂ , the associated L2-theory is based on the classical
Bochner–Kodaira–Nakano formula.

2.2 Secondmotivation: Nomizu-type theorems

Our second motivation is based on the following celebrated Nomizu’s theorem [20] proved
in 1954:

Nomizu’s theorem (weak version) Let G be a simply connected nilpotent Lie group with
a discrete subgroup �. Assume that X := �\G is compact and the ascending central series
of the Lie algebra of G (see Sect. 6.2 for the definition) defines a torus fibration resolution
of X . Then the de Rham cohomology of X can be represented by G-invariant forms.

In 1976, Sakane [24] proved that the Nomizu theorem is also true for compact complex
parallelisable solvmanifolds. The following theorem of Cordero–Fernández–Gray–Ugarte
[9] is a generalization of Sakane’s theorem:

Cordero–Fernández–Gray–Ugarte’s theorem (weak version) Let G be a simply con-
nected nilpotent Lie group with a discrete subgroup �. Assume that X := �\G is a compact
manifold with a left invariant integrable almost complex structure J . Assume that the J -
compatible ascending series of the Lie algebra of G (see Sect. 6.3 for the definition) defines
a holomorphic torus fibration resolution of X . Then, the Dolbeault cohomology of X can
be represented by G-invariant forms.

Remark The assumption that the J -compatible ascending series of the Lie algebra of G
defines a holomorphic torus fibration resolution is contained in the proof of the main theorem
in [9].

In real case the ascending central series will always give a torus fibration resolution (see
page 208 in [10]). Thus the following result is still true:

Nomizu’s theorem (original version) Let G be a simply connected nilpotent Lie group
with a discrete subgroup �. Assume that X := �\G is compact. Then, the de Rham coho-
mology of X can be represented by G-invariant forms.
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In complex case, the J -compatible ascending series may not give a torus fibration reso-
lution (see Example 3.6 in [23] or [13]). But our main theorem implies the following result.

Cordero–Fernández–Gray–Ugarte’s theorem (strong version) Let G be a simply con-
nected nilpotent Lie group with a discrete subgroup �. Assume that X := �\G is a compact
manifold with a nilpotent complex structure (see [9], page 2, for the definition). Then, the
Dolbeault cohomology of X can be represented by G-invariant forms. In particular, it is
independent of �.

The above result applies in a number of important cases.

Corollary 2.2 Let G be a simply connected nilpotent Lie group with a discrete cocompact
subgroup� and left-invariant complex structure J . If G is 2-step nilpotent, then theDolbeault
cohomology of X = (�\G, J ) can be computed by left-invariant forms.

Proof We only have to observe that if G is 2-step nilpotent, then every left-invariant complex
structure on G is nilpotent in the above sense by [22, Prop. 3.3] so the strong version of
Cordero–Fernández–Gray–Ugarte’s theorem applies. 
�

A different way to generalize the weak version of Cordero–Fernández–Gray–Ugarte’s
theorem was considered in [13] and like in loc. cit. we are able to settle all cases of low
dimension.

Corollary 2.3 Let X be a nilmanifold of real dimension at most 6 with left-invariant complex
structure. Then, the Dolbeault cohomology of X is computed by left-invariant forms.

Proof In dimension 2 and 4, there are only tori and the Kodaira–Thurston manifold to con-
sider, for which the result is well known.

In real dimension 6, there are only finitely many nilpotent Lie algebras and the ones
admitting complex structures are classified by Salamon [25]. In [22, Proof of Thm.B] the
statement was shown to hold for all complex structures on all such nilmanifolds except
possibly for those with Lie algebra h7, in the notation of Salamon (see also [8] for the
original definition). Since h7 is 2-step nilpotent, indeed the free 2-step nilpotent Lie algebra
on 3 generators, the previous corollary applies to this remaining case. 
�

3 Foliations of nilpotent type

3.1 Nilpotent foliation

Let us recall the definition of distribution first.

Definition 3.1 (Distribution) Let X be a smooth manifold. We call

V := {Vx }x∈X ,

a rank-r distribution on X if for every x ∈ X , Vx is an r -dimensional real linear subspace
of Tx X (space of vectors at x) and there exist smooth vector fields V1, . . . , Vr on an open
neighborhood, say Ux , of x such that

Vy = SpanR{V1(y), . . . , Vr (y)},
for every y ∈ Ux . We call {V1, . . . , Vr } a local basis of V .
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Remark If V is a smooth vector field on X such that V (x) ∈ Vx for every x ∈ X , then we
say that V lies in V and write V ∈ V . Denote by C∞(TX ) the space of smooth vector fields
on X . Then, one may look at a rank-r distribution as a subspace of C∞(TX ) that is locally
generated by r linearly independent smooth vector fields.

Definition 3.2 (Integrable distribution) A distribution V is said to be integrable if [V ,W ] ∈
V , for every V ,W ∈ V (see the remark above). We call an integrable distribution a foliation
on X .

Remark It is enough to check integrability for local basis of V . The classical Frobe-
nius theorem tells us that a rank-r distribution V is integrable if and only if for every
x ∈ X there exists a smooth local coordinate system, say {x1, . . . , xn}, near x such that
V is generated by {∂/∂x1, . . . , ∂/∂xr } near x (i.e., V is tangent to the fibers of the map
(x1, . . . , xn) �→ (xr+1, . . . , xn)). Thus, a rank-r integrable distribution is equivalent to a
foliation of r -dimensional local smooth manifolds.

We shall use the following lemma to define the notion of nilpotent foliation.

Lemma 3.3 Let V be a distribution on X. Let gX be a smooth Riemannian metric on X. Then

V⊥ := {V⊥
x }x∈X ,

is also a distribution on X, where each V⊥
x denote the orthogonal complement of Vx in Tx X

with respect to gX .

Proof Let {V1, . . . , Vr } be a local basis of V . Then we can extend it to a local frame, say
{V1, . . . , Vn}, of TX . Denote by V⊥

j , j > r , the orthogonal projection of Vj to V⊥. Then, we
know that {V⊥

j } j>r generates V⊥ locally. 
�

Definition 3.4 (Nilpotent foliation) Let V be a distribution on a Riemannian manifold
(X , gX ).We call (V, gX ) anilpotent foliation structureon X if locally there exists an orthonor-
mal frame {V1, . . . , Vn} of (TX , gX ) such that

(1) {Vj } j≤r is a local basis of V and {Vj } j>r is a local basis of V⊥;
(2) [Vj , Vk] = 0 for every 1 ≤ j ≤ r , 1 ≤ k ≤ n.

Remark Notice that condition (2) in the above definition implies that a nilpotent foliation is
always integrable.

We shall also study nilpotent foliations on complex manifold.

Definition 3.5 (Complex nilpotent foliation) Let V be a distribution on a complex manifold
(X , J ). Let gX be a J -Hermitianmetric on X .We call (V, J , gX ) a complex nilpotent foliation
structure on X if locally there exists an orthonormal frame {V1, . . . , Vn} of (T 1,0

X , gX ) such
that

(1) {Vj , V̄ j } j≤r is a local basis of V and {Vj , V̄ j } j>r is a local basis of V⊥;
(2) [Vj , Vk] = [Vj , V̄k] = 0 for every 1 ≤ j ≤ r , 1 ≤ k ≤ n.

Remark Since gX is J -Hermitian, a complex nilpotent foliation also satisfies J (V⊥) = V⊥.
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3.2 Vertical–horizontal decomposition of d

Definition 3.6 (Vertical–horizontal vector field) Let V be a distribution on a Riemannian
manifold (X , gX ). We call V ∈ V a vertical vector field and W ∈ V⊥ a horizontal vector
field.

We also need the dual of the notion of vertical–horizontal vector field (motivated by [4],
see also formula (1.3) in [1]).

Definition 3.7 (Vertical–horizontal one-form) A differential one-form u on X is said to be
horizontal (resp. vertical) if V � u = 0 for every vertical (resp. horizontal) vector field V on
X .

Definition 3.8 (Vertical–horizontal degree) Denote by T ∗
h and T ∗

v the subbundles of T ∗X
generated by horizontal one-forms and vertical one-forms, respectively. Then, we have

∧pT ∗X = ⊕k+l=p(∧kT ∗
h ) ∧ (∧l T ∗

v ).

We call a section of (∧kT ∗
h )∧(∧l T ∗

v ) a degree (k|l)-form and say that it has horizontal degree
k and vertical degree l.

The following lemma suggests to study vertical–horizontal decomposition of the exterior
derivative.

Lemma 3.9 Let V be a distribution on a Riemannian manifold (X , gX ). Let u be a smooth
degree (k|l)-form on X. Assume that V is integrable. Then, we can write

du = dvu + dhu + Rdu,

where dvu is degree (k|l + 1), dhu is degree (k + 1|l) and Rdu is degree (k + 2|l − 1).

Proof Let us locally write

u =
∑

u j
h ∧ u j

v,

where u j
v are (0|l)-forms and u j

h are (k|0)-forms. Since V is integrable, we know that d(u j
h)

has no degree (k − 1|2) components. Thus, du has no degree (k − 1|l + 2) components. 
�
Definition 3.10 (Atiyah tensor) LetV be an integrable distribution on a Riemannianmanifold
(X , gX ). Then, we define dh as the (1|0)-part of d and dv as the (0|1)-part of d . We call the
following degree (2| − 1) tensor

Rd := d − dh − dv,

the Atiyah tensor.

Remark 1 From the proof of the above Lemma, we know that the Atiyah tensor is zero if
and only if V⊥ is integrable. In case V is associated to the Lie algebra g of a G–bundle,
then cohomology class of each Lie–algebra component of the Atiyah tensor is also called the
Atiyah class.

Remark 2 dh, dv are also well defined on the space of all smooth forms on X . The reason is
we can always write a smooth form u as

u =
∑

u(k|l),

where each u(k|l) denotes the degree (k|l)-component of u. Then we can define

dhu =
∑

dhu(k|l), dvu =
∑

dvu(k|l).
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3.3 Vertical–horizontal decomposition of@

Now let us consider the case that V is a distribution on a complex manifold (X , J ) with a
J -Hermitian Riemannian metric gX (we call (X , J , gX ) aHermitian complex manifold) such
that J (V) = V . Then we have

∧p,qT ∗X = ⊕k+ j=p,l+s=q(∧k,l T ∗
h ) ∧ (∧ j,sT ∗

v ).

We call smooth section of (∧k,l T ∗
h ) ∧ (∧ j,sT ∗

v ) a degree (k, l| j, s)-form and say that it has
horizontal degree (k, l) and vertical degree ( j, s). Similar as the real case, we have

Lemma 3.11 LetV be an integrable distribution on a hermitian complexmanifold (X , J , gX ).
Let u be a smooth degree (k, l| j, s)-form on X. Assume that J (V) = V . Then we can write

∂u = ∂
v
u + ∂

h
u + RA1u + RA2u + RK Su,

where ∂
v
u is degree (k, l| j, s + 1), ∂

h
u is degree (k, l + 1| j, s) and RA1u is degree (k +

1, l+1| j−1, s), RA2u is degree (k, l+2| j, s−1) and RK Su is degree (k+1, l| j−1, s+1).

Definition 3.12 (ComplexAtiyahTensor andKodaira–SpencerTensor) LetV be a J -invariant

integrable distribution on a Hermitian complex manifold (X , J , gX ). We define ∂
h
as the

(0, 1|0, 0)-part of ∂ and ∂
v
as the (0, 0|0, 1)-part of ∂ . We call

RA := RA1 + RA2 ,

the complex Atiyah tensorand RKS the Kodaira–Spencer tensor.

Remark In case V is given by the fiber-tangent distribution of a proper holomorphic
submersion, then cohomology class of each component of RK S is just the well known
Kodaira–Spencer class. In general, put

R∂ = RA + RK S,

If RK S �= 0 then Rd �= R∂ + R∂ . In fact, we have

Rd = RA + RA, dv = ∂
v + ∂v,

and

dh = RKS + RKS + ∂h + ∂
h
.

In case V is a complex nilpotent foliation, we can prove that

Lemma 3.13 Assume that (V, J , gX ) is a complex nilpotent foliation structure. Then RK S ≡
0.

Proof It suffices to show that if u is an vertical (1, 0)-form then ∂u has no degree (1, 0|0, 1)-
component. Since

du(W , V ) = LW (u(V )) − LV (u(W )) − u([W , V ]), (3.1)

it is enough to show that for every vertical (0, 1)-vector field V and horizontal (1, 0)-vector
field W , the vertical (1, 0)-component of [V ,W ] is zero, which follows from 2) in Defini-
tion 3.5. 
�
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4 Vertical–horizontal decomposition of Laplacians

4.1 Fundamental theorem

The fundamental theorem in this paper is the following:

Theorem 4.1 (Real case): Let (X , gX ) be an oriented Riemannian manifold with a nilpotent
foliation structure (see Definition 3.4). Then on the space of smooth forms on X, we have

�d = �dv + �dh+Rd
. (4.1)

(Complex case): Let (X , J , gX ) be a hermitian complexmanifold with a complex nilpotent
foliation structure (see Definition 3.5). Then, on the space of smooth forms on X, we have

�∂ = �
∂

v + �
∂
h+R∂

, �
∂

v = �∂v . (4.2)

Remark 1 In our proof, we shall use the following notation: if P is a differential operator on
the space of smooth forms on X , then we shall write P∗ as the adjoint of P and write

�P := PP∗ + P∗P.

Recall that P∗ satisfies

(Pu, v) = (u, P∗v),

if u is a smooth form and v is a smooth form with compact support. Thus, P∗ and �P are
well defined on the space of smooth forms. If P maps a degree k form to a degree (k + p)
form, then we say that P has degree p. If P is a degree p operator and Q is a degree q
operator, then we write

[P, Q] := PQ − (− 1)pq QP.

Since d, dv, dh + Rd are degree one operators, we have

�d = [d, d∗], �dv = [dv, (dv)∗],
and

�dh+Rd
= [dh + Rd , (d

h + Rd)
∗].

Thus (4.1) is equivalent to

[dh, (dv)∗] = 0, [dv, R∗
d ] = 0. (4.3)

Remark 2 Notice that if X is compact, then

((�P + �Q)u, u) = ||Pu||2 + ||P∗u||2 + ||Qu||2 + ||Q∗u||2,
for every smooth form u on X . Thus (�P + �Q)u = 0 is equivalent to

Pu = P∗u = Qu = Q∗u = 0,

which gives the following corollary:
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Corollary 4.2 (Real case): Let (X , gX ) be an oriented compact Riemannian manifold with a
nilpotent foliation structure (see Definition 3.4). Then, a smooth form u lies in ker�d if and
only if

dvu = (dv)∗u = (dh + Rd)u = (dh + Rd)
∗u = 0 on X . (4.4)

(Complex case): Let (X , J , gX ) be a hermitian compact complex manifold with a complex
nilpotent foliation structure (see Definition 3.5). Then, a smooth form u lies in ker�∂ if and
only if

∂
v
u = (∂

v
)∗u = (∂

h + R∂ )u = (∂
h + R∂ )

∗u = ∂vu = (∂v)∗u = 0 on X . (4.5)

4.2 Proof of the real case

Let (V, gX ) be a nilpotent foliation structure on X (see Definition 3.4). Let {Vj } be the local
frame of (TX , gX ) in Definition 3.4. Let us write

Xh
j = Vr+ j , Xv

k = Vk, 1 ≤ k ≤ r , 1 ≤ j ≤ n − r .

We know each Xv
k is vertical and each Xh

j is horizontal. Denote by

{ϕ j
h , ϕ

k
v }1≤k≤r ,1≤ j≤n−r ,

the dual frame of {Xh
j , X

v
k }. By 2) in Definition 3.4 and (3.1), we have

dϕ
j
h =

n−r∑

k,l=1

C j
kl ϕ

k
h ∧ ϕl

h, 1 ≤ j ≤ n − r ,

and

dϕk
v =

n−r∑

j,l=1

Dk
jl ϕ

j
h ∧ ϕl

h, 1 ≤ k ≤ r ,

where C j
kl and Dk

jl are smooth functions. Thus we have

Lemma 4.3 The components Rd , dv, dh of d can be written as

Rd =
r∑

k=1

n−r∑

j,l=1

(
Dk

jl ϕ
j
h ∧ ϕl

h

)
∧ (Xv

k � ),

dv =
r∑

p=1

ϕ p
v ∧ (Xv

p),

dh =
n−r∑

j=1

ϕ
j
h ∧ (Xh

j ) +
n−r∑

j,k,l=1

C j
kl

(
ϕk
h ∧ ϕl

h

)
∧ (Xh

j � ).

Now let us finish the proof of the first identity in (4.3).

Lemma 4.4 [dv, R∗
d ] = 0.
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Proof Since Rd is a tensor, we have

R∗
d =

r∑

k=1

n−r∑

j,l=1

Dk
jl ϕ

k
v ∧ (Xh

l � )(Xh
j � ). (4.6)

Thus R∗
d commuteswithϕ

p
v ∧.Moreover, d2ϕk

v = 0 gives thatdvDk
jl ≡ 0. Thus [dv, R∗

d ] = 0.

�

We need the following proposition to prove [dh, (dv)∗] = 0.

Proposition 4.5 Denote by ∗ the Hodge star operator on our oriented manifold (X , gX ).
Assume that the orientation of X is given by 
h ∧ 
v , where


h := ϕ1
h ∧ · · · ∧ ϕn−r

h , 
v := ϕ1
v ∧ · · · ∧ ϕr

v.

Denote by ∗h (resp. ∗v) the Hodge star operator with respect to 
h (resp. 
v) on the space
of horizontal (resp. vertical) forms, respectively. Then

∗ (uh ∧ uv) = (− 1)(n−r−p)q ∗h uh ∧ ∗vuv, (4.7)

where uh is a degree p horizontal form, uv is a degree q vertical form.

Proof Notice that

(uh ∧ uv) ∧ (− 1)(n−r−p)q (∗huh ∧ ∗vuv)=(uh ∧ ∗huh) ∧ (uv ∧ ∗vuv)=(uh ∧ uv) ∧ ∗(uh ∧ uv).

Thus (4.7) follows. 
�
Lemma 4.6 Let u = f uh ∧ uv be a smooth degree (a|b) form, where uh (resp. uv) is a finite
wedge product of ϕk

h (resp. ϕl
v) and f is a smooth function. Then

(dv)∗u = (− 1)auh ∧
(
(− 1)r(b+1)+1 ∗v d

v ∗v ( f uv)
)

, (4.8)

and
(dh)∗u =

(
(− 1)(n−r)(a+1)+1 ∗h dh ∗h ( f uh)

)
∧ uv. (4.9)

Proof The main idea is to use the fact that (dv)∗u (resp. (dh)∗u) is the degree (a|b − 1)
(resp. (a−1|b)) part of d∗u and d∗u = (− 1)n(a+b+1)+1 ∗d ∗u. Thus, the above proposition
applies. We shall only prove the first formula. By (4.7), we have

∗u = (− 1)(n−r−a)b f ∗h uh ∧ ∗vuv.

Thus

d ∗ u = (− 1)(n−r−a)b (d f ∧ (∗huh ∧ ∗vuv) + f d(∗huh ∧ ∗vuv)) .

Using (4.7) again, we know that the degree (a|b− 1)-part of (−1)n(a+b+1)+1 ∗ d ∗ u is equal
to the right hand side of (4.8). 
�
Remark Since

(−1)r(b+1) ∗v (ϕ j
v∧) ∗v uv = Xv

j � uv,

(4.8) gives the following formula:

Lemma 4.7 (dv)∗ = − ∑r
j=1(X

v
j � ) ∧ (Xv

j ).
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Now we can prove the second identity in (4.3).

Lemma 4.8 [dh, (dv)∗] = 0.

Proof Notice that d2ϕ j
h = 0 gives dvC j

kl ≡ 0. Thus Lemma 4.3 and the above lemma give

[dh, (dv)∗] =
∑

([Xh
j , X

v
k ])(Xv

k � ) ∧ (ϕ
j
h∧). (4.10)

But by (2) in Definition 3.4, we have

[Xh
j , X

v
k ] = 0. (4.11)

Thus the lemma follows. 
�
The proof of the real case is complete.

4.3 Proof of the complex case

Let (V, J , gX ) be a complex nilpotent foliation structure on X . Let {Vj }1≤ j≤n be the local
frame of (T 1,0

X , gX ) in Definition 3.5). Put

Xh
j := Vr+ j , Xv

k = Vk, 1 ≤ k ≤ r , 1 ≤ j ≤ n − s.

We know each Xv
k is vertical and each Xh

j is horizontal. Denote by

{ϕ j
h , ϕ

k
v }1≤k≤r ,1≤ j≤n−r ,

the dual frame of {Xh
j , X

v
k }. By (2) in Definition 3.5 and (3.1), we have

dϕ
j
h =

n−r∑

k,l=1

C j
kl ϕ

k
h ∧ ϕl

h +
n−r∑

k,l=1

C j
kl̄

ϕk
h ∧ ϕl

h, 1 ≤ j ≤ n − r ,

and

dϕk
v =

n−r∑

j,l=1

Dk
jl ϕ

j
h ∧ ϕl

h +
n−r∑

j,l=1

Dk
jl̄

ϕ
j
h ∧ ϕl

h, 1 ≤ k ≤ r ,

where C j
kl ,C

j
kl̄

, Dk
jl and Dk

jl̄
are smooth functions, which gives

Lemma 4.9 The components ∂
h
, ∂

v
, R∂ can be written as

∂
h =

n−r∑

j=1

ϕ
j
h ∧ (Xh

j ) +
n−r∑

j,k,l=1

C j
kl

(
ϕk
h ∧ ϕl

h

) ∧ (Xh
j � ) +

n−r∑

j,k,l=1

C j
kl̄

(
ϕk
h ∧ ϕl

h

)
∧ (Xh

j � ),

∂
v =

r∑

k=1

ϕk
v ∧ (Xv

k ),

and R∂ = RK S + RA1 + RA2 satisfies

RK S = 0, RA1 =
r∑

k=1

n−r∑

j ,l=1

(
Dk

jl̄
ϕ
j
h ∧ ϕlh

)
∧ (Xv

k � ), RA2 =
r∑

k=1

n−r∑

j,l=1

(
Dk

jl ϕ
j
h ∧ ϕlh

)
∧ (Xv

k � ).
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By a similar proof as the real case, we have

[∂v
, R∗

∂
] = 0, (4.12)

and the following analogy of Lemma 4.7.

Lemma 4.10 (∂
v
)∗ = − ∑r

j=1(X
v
j � ) ∧ (Xv

j ).

Similar as the real case, the above lemma gives

[∂h, (∂v
)∗] = 0 (4.13)

We know that (4.12) and (4.13) together give

�∂ = �
∂

v + �
∂
h+R∂

.

Now it suffices to prove

�
∂

v = �∂v .

By Lemmas 4.10 and 4.9, we have

�
∂

v = −
r∑

j=1

(Xv
j )(X

v
j ) = −

r∑

j=1

(Xv
j )(X

v
j ), (4.14)

which gives

�
∂

v = �
∂

v = �∂v .

The proof of Theorem 4.1 is complete. 
�

Remark One may also prove the complex case of Theorem 4.1 by using vertical–horizontal
decomposition of the following Demailly–Griffiths–Kähler identity (see page 306 in [12,15]
or [27] for a pure algebraic proof)

∂
∗ = i[∂,�] + [L, θ∗], Lu := ω ∧ u, θ := [∂, L], � := L∗, (4.15)

where ω denotes the real Hermitian (1, 1)-form associated to (gX , J ).

5 An example: the Kodaira–Thurstonmanifold

The Kodaira–Thurston surface was first found by Kodaira [17]. It is the first example [28]
of complex symplectic manifold without Kähler structure. Let us recall its definition in [27].
Consider the following group structure

a ∗ b := (a1 + b1, a2 + b2, a3 + a1b2 + b3, a4 + b4),

on R
4. The Kodaira–Thurston surface X is defined as the quotient manifold with respect to

the left action of Z4 on (notice that Z4 is a discrete subgroup of G)

G := (R4, ∗).
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It is easy to see that X is a compact manifold with respect to the quotient topology. Let
(x1, x2, x3, x4) be the canonical coordinate system on R4. We know

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕh = dx1 + idx2,

ϕv = dx3 − x1dx2 + idx4,

ϕh = dx1 − idx2,

ϕv = dx3 − x1dx2 − idx4,

(5.1)

is a frame of the space of G-invariant (with respect to the left action of G) 1-forms on X .
Let J be the almost complex structure on X such that the associated ∧1,0T ∗X is spanned by
{ϕh, ϕv}. Notice that {

dϕh = 0,

dϕv = − i
2ϕh ∧ ϕh .

(5.2)

implies that J is integrable on X . One may check that
{

∂(x1 + i x2) = 0,

∂
(
x3 + i x4 − i

2 (x
1)2

) = 0.

Thus {
z := x1 + i x2,

w := x3 + i x4 − i
2 (x

1)2.

are local holomorphic coordinates on X . Now we know that the following holomorphic map
from (R4, J ) to C

(z, w) �→ z,

defines a holomorphic submersion, say π , from X to the torus T := C/Z2. Let {Xh, Xv} be
the global frame of T 1,0(X) that is dual to {ϕh, ϕv}. Then we know that

{
∂/∂z := Xh + i x1Xv,

∂/∂w := Xv.

is a holomorphic π-local (i.e., well defined on the π -inverse of a sufficiently small open set
in T) frame for T 1,0X . Thus we have

Proposition 5.1 π : X → T is locally trivial.

Remark Notice that (5.2) implies that the fibers of π defines a complex nilpotent foliation
structure on (X , J , gX ), where gX is J -hermitian such that the fundamental form of (gX , J )

is

ω = iϕh ∧ ϕh + iϕv ∧ ϕv.

We know that ϕh, ϕh are horizontal forms and ϕv, ϕv are vertical forms. By (5.2), we know
that

R∂ = − i

2
ϕh ∧ ϕh ∧ (Xv � . . .),

is of degree (1, 1| − 1, 0). We shall use Theorem 4.1 and Corollary 4.2 to give another proof
of the following well known result (see Sect. 5 in [9]).
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Theorem 5.2 Denote by Hp,q(∂) the space of ∂-harmonic (p, q)-forms on the Kodaira–
Thurston surface (X , J , gX ), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0,0(∂) = SpanC 〈1〉,
H1,0(∂) = SpanC 〈ϕh〉,
H0,1(∂) = SpanC 〈ϕh, ϕv〉,
H2,0(∂) = SpanC 〈ϕh ∧ ϕv〉,
H1,1(∂) = SpanC 〈ϕh ∧ ϕv, ϕh ∧ ϕv〉,
H0,2(∂) = SpanC 〈ϕh ∧ ϕv〉,
H2,1(∂) = SpanC 〈ϕh ∧ ϕv ∧ ϕh, ϕh ∧ ϕv ∧ ϕv〉,
H1,2(∂) = SpanC 〈ϕv ∧ ϕh ∧ ϕv〉,
H2,2(∂) = SpanC 〈ϕh ∧ ϕv ∧ ϕh ∧ ϕv〉.

Proof H0,0(∂) = SpanC 〈1〉 is trivial. By Corollary 4.2, we know that all harmonic forms in

Hp,q(∂) lie in the kernel of ∂
v
, (∂

v
)∗, ∂h + R∂ and (∂

h + R∂ )
∗.

Degree (1, 0) case: Let

u = aϕh + bϕv,

be in H1,0(∂). Notice that ∂
v
u = 0 is equivalent to

∂
v
a = ∂

v
b = 0,

and (∂
h + R∂ )u = 0 is equivalent to

∂
h
b = 0, ∂

h
a + i

2
b ϕh = 0.

Thus ∂b = 0 and b is a constant. Notice that ∂
v
a = 0 and ∂

h
a + i

2b ϕh = 0 together imply
i
2b ϕh = − ∂a is ∂-exact. Since ϕh is not ∂-exact, we know that b = 0. Thus

∂
h
a = ∂

v
a = 0,

which gives ∂a = 0 and a is a constant. Thus H1,0(∂) = SpanC 〈ϕh〉.
Degree (0, 1) case: Let

u = aϕh + bϕv,

be in H0,1(∂). ∂
v
u = (∂

h + R∂ )u = 0 is equivalent to

∂
v
a = ∂

h
b = 0.

(∂
v
)∗u = 0 is equivalent to

∂vb = 0.

Since �
∂

v = �∂v , we know that ∂vb = 0 implies ∂
v
b = 0. Thus ∂b = 0 and b is a constant.

(∂
h + R∂ )

∗u = 0 is equivalent to ∂ha = 0, thus ∂a = 0 and a is a constant.
Degree (2, 0) case: Let

u = aϕh ∧ ϕv,

be in H2,0(∂). ∂u = 0 is equivalent to ∂a = 0, which is equivalent to that a is a constant.
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Degree (1, 1) case: Let

u = aϕh ∧ ϕh + bϕh ∧ ϕv + cϕv ∧ ϕh + f ϕv ∧ ϕv,

be a harmonic (1, 1)-form. We have

�
∂

vu = (�
∂

va) ϕh ∧ ϕh + (�
∂

vb) ϕh ∧ ϕv + (�
∂

vc) ϕv ∧ ϕh + (�
∂

v f ) ϕv ∧ ϕv,

Then �
∂

vu = 0 is equivalent to

�
∂

va = �
∂

vb = �
∂

vc = �
∂

v f = 0.

Together with �∂v = �
∂

v , the above identities give

dva = dvb = dvc = dv f = 0.

(∂
h + R∂ )u = 0 is equivalent to

∂
h
f = 0, ∂

h
b + i

2
f ϕh = 0,

thus ∂ f = 0 and f is a constant. Since ∂
v
b = 0, we have

∂b + i

2
f ϕh = 0.

By the above computation of H0,1(∂), we know that ϕh is not ∂-exact. Thus f = 0 and

∂b = 0. Now we know that b is a constant. (∂
h + R∂ )

∗u = 0 is equivalent to

∂ha = 0,
i

2
aϕh + ∂hc = 0.

thus ∂a = 0 and a is a constant. Again

− i

2
āϕh + ∂ c̄ = 0,

gives a = 0 and c is a constant.
For the remaining cases, by the following well-known formula

dimHp,q(∂) = dimHn−p,n−q(∂),

it is enough to check that the listed forms lie in the ∂-harmonic spaces, which follows by a
direct computation. 
�

5.1 Nilpotent fibrations

For the Kodaira–Thurston manifold, the complex nilpotent foliation structure comes from a
holomorphic fibration. The general definition is as follows:

Definition 5.3 (Nilpotent fibration) We call a proper smooth submersion π : (X , gX ) →
(B, gB) between two Riemannian manifolds a nilpotent fibration if the associated foliation
V of the fibers defines a nilpotent foliation structure on (X , gX ) and

gX (V ,W ) = gB(π∗V , π∗W ), (5.3)

for every horizontal vector fields V ,W on X .
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Remark Let VB be a vector field on B, we call a vector field VX on X a lift of VB if

π∗VX = VB .

It is clear that VB has a unique lift VX such that VX is horizontal. (5.3) says that the norm of
a vector field on B is equal to the norm of its horizontal lift.

Definition 5.4 (Complex nilpotent fibration) We call a proper holomorphic submersion
π : (X , ωX ) → (B, ωB) between two Hermitian complex manifolds a complex nilpo-
tent fibration if the associated foliation V of the fibers defines a complex nilpotent foliation
structure on (X , ωX ) and

ωX (V ,W ) = ωB(π∗V , π∗W ), (5.4)

for every horizontal (1, 0)-vector fields V ,W on X .

Theorem 4.1 gives

Theorem 5.5 On the total space of a nilpotent fibration, we have

�d = �dv + �dh+Rd
.

On the total space of a complex nilpotent fibration, we have

�∂ = �
∂

v + �
∂
h+R∂

, �
∂

v = �∂v .

Remark Associated to a fibration there is a natural Leray-Serre spectral sequence, which
plays a crucial role in the proof of Nomizu-type theorems. But in general a foliation does not
give a good fibration structure, thus one has to use other methods. Our main idea is: with the
help of Theorem 4.1, one may use the spectral sequence for double complex to continue the
reduction process (as in the fibration case), in which the natural setup is a manifold with a
nilpotent frame.

6 Nilpotent frame

6.1 Real case

Let X be a compact smooth manifold with trivial T ∗
X . Let

� := {σ 1, . . . , σ n}
be a global smooth frame of T ∗

X . Then we have the following Maurer–Cartan equations

dσ j =
n∑

k,l=1

A j
kl σ

k ∧ σ l , (6.1)

where A j
kl are globally defined smooth functions on X . Recall that � is a nilpotent frame if

A j
kl are real constants and the above equations reduce to

dσ j =
∑

k,l> j

A j
kl σ

k ∧ σ l . (6.2)
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Definition 6.1 Let � be a nilpotent frame. Put r0 = 0 and define r j ( j ≥ 1) inductively by

r j + 1 = minUj , Uj := ∪ j≥r j−1+1{k, l : A j
kl �= 0},

where r j := n if Uj is empty. Fix k such that

0 = r0 < r1 < · · · < rk−1 < rk = n,

we call � a k-nilpotent frame. Let S j be the subbundle of T ∗
X generated by {σ 1, . . . , σ r j }.

We call

0 = S0 ↪→ S1 ↪→ · · · ↪→ Sk = T ∗
X ,

the �-filtration of T ∗
X .

Remark We always have 1 ≤ k ≤ n. For the Kodaira–Thurston manifold (see (5.1)), put

σ 1 = dx4, σ 2 = dx3 − x1dx2, σ 3 = dx2, σ 4 = dx1,

we have ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dσ 1 = 0,

dσ 2 = σ 3 ∧ σ 4,

dσ 3 = 0,

dσ 4 = 0.

Thus k = 2 and the �-filtration is

0 ↪→ Span{σ 1, σ 2} ↪→ Span{σ 1, σ 2, σ 3, σ 4} = T ∗
X .

Put

T ∗
v = Span{σ 1, σ 2}, T ∗

h = Span{σ 3, σ 4}.
We get the following vertical–horizontal decomposition of the T ∗

X

T ∗
X = T ∗

v ⊕ T ∗
h .

with respect the Riemannian metric
∑

σ j ⊗σ j . In general, we shall introduce the following
definition

Definition 6.2 Denote by T ∗
v j

(1 ≤ j ≤ k) the subbundle of T ∗
X generated by

{σ r j−1+1, . . . , σ r j }. Put
T ∗
h j

= ⊕k
l= j+1T

∗
vl

, 0 ≤ j ≤ k − 1, T ∗
hk = 0.

We call

T ∗
h j−1

:= T ∗
v j

⊕ T ∗
h j

, 1 ≤ j ≤ k,

the j thvertical horizontal decomposition with respect to the following Riemannian metric

gX :=
n∑

j=1

σ j ⊗ σ j , (6.3)

on X associated to the nilpotent frame �.
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Remark The first vertical horizontal decomposition of T ∗X gives

d := dh0 = dv1 + dh1 + R1
d ,

where dv1 (resp. dh1) increases the first vertical (resp. horizontal) degree by one and R1
d is

the remaining term. In general, the j th vertical horizontal decomposition gives

dh j−1 = dv j + dh j + R j
d , 1 ≤ j ≤ k.

Notice that the kth vertical horizontal decomposition reduces to

dhk−1 = dvk , Rk
d = 0, dhk = 0.

We shall use our fundamental theorem (see Theorem 4.1) to prove the following result.

Theorem 6.3 With respect to the notation above, we have

�d = �dv1 + �dh1+R1
d
, (6.4)

on the space of smooth forms on X. Moreover, if k ≥ 2 then for every 2 ≤ j ≤ k, we have

�
dh j−1 = �dv j + �

dh j +R j
d
, (6.5)

on the space of smooth forms in ker�dv1 ∩ · · · ∩ ker�dv j−1 .

Proof Denote by {T h j , T vk } the subbundles of TX that are dual to {T ∗
h j

, T ∗
vk

}. From Defi-

nition 6.1, we know that the distribution V1 associated to T v1 is integrable and V1 defines
a nilpotent foliation with respect to the Riemannian metric gX in (6.3). Thus Theorem 4.1
gives (6.4).

Now let us prove (6.5) for j = 2. Let us write a smooth form u on X as

u =
∑

f p,q u
p
h1

∧ uqv1 , (6.6)

where {u p
h1

} (resp. {uqv1}) denotes a basis of the exterior algebra generated by {σ r1+1, . . . , σ n}
(resp. {σ 1, . . . , σ r1}), respectively. Denote by {Vl} the frame of TX that is dual to {σ l}. Put

ϕl
v1

= σ l , ϕm
h1 = σ r1+m, Xv1

l = Vl , Xh1
m = Xr1+m .

By Lemmas 4.3 and 4.10, we have

�dv1 = −
∑

(Xv1
l )(Xv1

l ),

which gives

�dv1 u =
∑

(�dv1 f p,q) u
p
h1

∧ uqv1 .

Thus �dv1 u = 0 is equivalent to

�dv1 f p,q ≡ 0,

for all p, q . Since f p,q are globally defined smooth functions on X , we know that�dv1 f p,q ≡
0 is equivalent to that dv1 f p,q ≡ 0. Thus we get the following lemma.

Lemma 6.4 �dv1 u = 0 is equivalent to that all f p,q are constants on leaves of V1.
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By the above lemma and Definition 6.1, we know that the distribution V2 associated
to T v2 is integrable on the space of smooth forms in ker�dv1 . Moreover, on the space of
smooth forms in ker�dv1 , V2 defines a nilpotent foliation with respect to the following
decomposition

T ∗
h1 = T ∗

v2
⊕ T ∗

h2 .

Thus the proof of Theorem 4.1 gives (6.5) for j = 2. The general case follows by induction
on j . 
�

6.2 Complex case

Let X be a compact complex manifold with smoothly trivial holomorphic cotangent bundle
∧1,0T ∗

X . Let

� := {ξ1, . . . , ξn}
be a global smooth frame of ∧1,0T ∗

X . Recall that � is a complex nilpotent frame if

dξ j =
∑

k,l> j

B j
kl ξ

k ∧ ξ l +
∑

k,l> j

B j
kl̄

ξ k ∧ ξ l , (6.7)

where B j
kl and B j

kl̄
are complex constants.

Definition 6.5 Let � be a complex nilpotent frame. Put r0 = 0 and define r j ( j ≥ 1)
inductively by

r j + 1 = minUj , Uj := ∪ j≥r j−1+1{k, l : B j
kl or B

j
kl̄

�= 0},
where r j := n if Uj is empty. Fix k such that

0 = r0 < r1 < · · · < rk−1 < rk = n,

we call � a complex k-nilpotent frame. Let S j be the subbundle of ∧1,0T ∗
X generated by

{ξ1, . . . , ξ r j }. We call

0 = S0 ↪→ S1 ↪→ · · · ↪→ Sk = ∧1,0T ∗
X ,

the �-filtration of ∧1,0T ∗
X .

Similar as the real case, we have

Definition 6.6 Denote by T ∗
v j

(1 ≤ j ≤ k) the (smooth, may not be holomorphic) subbundle

of ∧1,0T ∗
X generated by {ξ r j−1+1, . . . , ξ r j }. Put

T ∗
h j

= ⊕k
l= j+1T

∗
vl

, 0 ≤ j ≤ k − 1, T ∗
hk = 0.

We call

T ∗
h j−1

:= T ∗
v j

⊕ T ∗
h j

, 1 ≤ j ≤ k,

the j th vertical horizontal decomposition with respect to the following Hermitian form

ωX := i
n∑

j=1

ξ j ∧ ξ j , (6.8)

on X associated to the complex nilpotent frame �.
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Remark The first vertical horizontal decomposition of T ∗X gives

∂ := ∂
h0 = ∂

v1 + ∂
h1 + R1

∂
,

where ∂
v1 (resp. ∂

h1
) increases the first vertical (resp. horizontal) degree by (0, 1) and R1

∂
is

the remaining term. In general, the j th vertical horizontal decomposition gives

∂
h j−1 = ∂

v j + ∂
h j + R j

∂
, 1 ≤ j ≤ k.

Notice that the kth vertical horizontal decomposition reduces to

∂
hk−1 = ∂

vk
, Rk

∂
= 0, ∂

hk = 0.

Similar as the real case, Theorem 4.1 implies the following result.

Theorem 6.7 With respect to the notation above, we have

�∂ = �
∂

v1 + �
∂
h1+R1

∂

, �
∂

v1 = �∂v1 , (6.9)

on the space of smooth forms on X. Moreover, if k ≥ 2 then for every 2 ≤ j ≤ k, we have

�
∂
h j−1 = �

∂
v j + �

∂
h j +R j

∂

, �
∂

v j = �∂
v j , (6.10)

on the space of smooth forms in ker�
∂

v1 ∩ · · · ∩ ker�
∂

v j−1 .

7 Proof of themain theorem

7.1 Cohomology description of Theorem 4.1

Let X be a compact smooth manifold. By the de Rham theorem, we have the following
isomorphism

H �
d � H�

d := {u ∈ A∗ : �du = 0},
where H �

d denotes the de Rham cohomology group of X , A∗ denotes the space of smooth
forms on X . With the assumption in Theorem 4.1 (real case), every u ∈ A∗ must satisfies

�dvu = 0,

which gives, by Lemma 6.4, that all coefficients of u are constants on leaves of V . Denote by
A∗

1 the space of smooth forms on X whose coefficients are constants on leaves of V , the usual
d operator reduces to dh + Rd on A∗

1, which suggests to look at the following cohomology
(notice that (dh + Rd)

2 = 0 on A∗
1, since the coefficients of Rd are constants on leaves of

V)

H∗
dh+Rd

:= {u ∈ A∗
1 : (dh + Rd)u = 0}

(dh + Rd)(A∗
1)

.

A representative of a class in H∗
dh+Rd

is minimal if and only if it lies in ker�dh+Rd
. Thus

Theorem 4.1 implies that

H�
d � H∗

dh+Rd
.

A similar argument also works in the complex case, to summarize, we get
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Theorem 7.1 Theorem 4.1 (real case) implies

H∗
d � H∗

dh+Rd
.

Theorem 4.1 (real case) implies

H∗,∗
∂

� H∗,∗
∂
h+R∂

.

Remark In the setting of Theorems 6.7 and 6.3, one may continue to get a sequence of
isomorphisms. In fact, with the notation in Theorem 6.3, denote by V j (1 ≤ j ≤ k) the
distribution associated to T v1 ⊕ · · · ⊕ T v j , letA∗

j be the space of smooth forms on X whose

coefficients are constants on leaves of V j , then one may verify that

(dh j + R j
d )

2 = 0, on A∗
j .

Put

H∗
dh j +R j

d

:= {u ∈ A∗
j : (dh j + R j

d )u = 0}
(dh j + R j

d )(A∗
j )

, H∗
dh j

:= {u ∈ A∗
j : dh j u = 0}

dh j (A∗
j )

we have

Theorem 7.2 Theorem 6.3 implies

H∗
d � H∗

dh1+R1
d
, H∗

dh j−1
� H∗

dh j +R j
d

, ∀ 2 ≤ j ≤ k.

Theorem 6.7 implies

H∗,∗
∂

� H∗,∗
∂
h1+R1

∂

, H∗,∗
∂
h j−1

� H∗,∗
∂
h j +R j

∂

, ∀ 2 ≤ j ≤ k.

Remark In the proper fibration case, the above theorem is essentially equivalent to the use
of the E2 term in the Leray–Serre spectral sequence.

In order to apply the above theorem, one has to study the relation between H∗
dh j +R j

d

and

H∗
dh j

; in the next section, we shall prove that, with respect to the spectral sequence of the

double complex dh j + R j
d , the E2 term is equal to H∗

dh j
and the E∞ term is H∗

dh j +R j
d

.

7.2 Spectral sequence for double complex

We shall use the notation in [14]. We look at the complex

dh j + R j
d : A∗

j → A∗
j ,

denote its kernel by Z , image by B and put

H := Z

B
= H∗

dh j +R j
d

.

With the notation in [14], we denote by pT as the space of forms inA∗
j whose j th horizontal

degree is no less than p. By Definition 6.1, the maximal j th horizontal degree is n − r j , thus
we have

A∗
j = 0T ⊃ 1T ⊃ · · · ⊃ n−r j T ⊃ n−r j+1T = {0}.
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Denote by Tm the space of degree-m forms in A∗
j . We have

A∗
j = ⊕n

m=0T
m .

Put

pTm : = pT ∩ Tm,

we know that pTm is the space of degree-m forms in A∗
j whose horizontal degree is no less

that p. One may easily verify the following compatibility conditions in [14]

(dh j + R j
d ) T

m ⊂ Tm+1, (dh j + R j
d )

pT ⊂ pT .

In fact, notice that dh j pT ⊂ p+1T and R j
d
pT ⊂ p+2T , the following stronger compatibility

condition holds

(dh j + R j
d )

pT ⊂ p+1T .

Moreover, we shall introduce

p Zm := Z ∩ pT n, p Bm := B ∩ pT n, pHm : =
p Zm

pBm
.

The fundamental definition is the following

Definition 7.3 (Spectral sequence of a filtered complex [14]) The modules of spectral
sequence are

E p,q
r :=

pT p+q
r

pT p+q
r−1 + p B p+q

r−1

, E p,q∞ :=
p Z p+q

p Z p+q + p B p+q
, r = 1, 2, . . . ,

where

pTm
r := {u ∈ pTm : (dh j + R j

d )u ∈ p+r T }, p Bm
r := {(dh j + R j

d )u ∈ pTm : u ∈ p−r T }.

One may verify that dh j + R j
d induces the following dr complex

E p−r ,q+r−1
r

dr−→ E p,q
r

dr−→ E p+r ,q−r+1
r .

As general properties of the spectral sequence, we have

Proposition 7.4 The associated dr cohomology gives the Er+1 term, more precisely

E p,q
r+1 � ker dr ∩ E p,q

r

Im dr ∩ E p,q
r

.

Moreover, we have

E p,q∞ �
pH p+q

p+1H p+q
, E p,q

r = E p,q∞ , ∀ r ≥ n − r j + 1.

Remark For the double complex d = ∂ + ∂ (also called Frölicher spectral sequence), it is
well known that [14]

E p,q
1 � H p,q

∂
.

In our case, we obtain the following
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Lemma 7.5 ⊕p+q=mE
p,q
2 � Hm

dh j
.

Proof Recall that

E p,q
2 :=

pT p+q
2

pT p+q
1 + p B p+q

1

.

Let us write u ∈ pTm as

u = u p|m−p + u p+1|m−p−1 + · · · ,

where uα|β denotes the component of u with horizontal degree α and vertical degree β.
Notice that (dh j + R j

d )u has no horizontal degree p + 1 component if and only if

dh j u p|m−p = 0.

Thus u lies in pT p+q
2 if and only if dh j u p|m−p = 0. A similar discussion gives that u lies

in pT p+q
1 + p B p+q

1 if and only if u p|m−p ∈ Im dh j . Thus the (p|q)-component of Hm
dh j

is

isomorphic to E p,q
2 . Hence the lemma follows. 
�

7.3 The final proof

Let us introduce the following notation: let D be a complex on A∗
j , denote its associated

cohomology by H∗
D . Recall thatA∗

j means the space of smooth forms on X whose coefficients

are constants on leaves of V j , in particular

A∗ := A∗
k

is the finite dimensional real vector space spanned bywedge products of the frame�. Assume
that D maps A∗ to itself. Put

H∗
D,� := ker D|A∗

Im D|A∗
,

we say that H∗
D is simple if it reduces to H∗

D,�, i.e.,

H∗
D � H∗

D,�.

The real case of ourmain theorem is of course equivalent to that H∗
d is simple.ByTheorem7.2,

H∗
d is simple if andonly ifH∗

dh1+R1
d
is simple.Now let us look at the double complex (dh1 , R1

d),

by Lemma 7.5, its E2 term is H∗
dh1

. Thus in order to prove that H∗
dh1+R1

d
is simple, it suffices

to show that H∗
dh1

is simple. Apply Theorem 7.2 again, we know that H∗
dh1

is simple if and
only if H∗

dh2+R2
d
is simple. Now again Lemma 7.5 ensures that it is enough to prove simplicity

of H∗
dh2

. Repeat the above argument, we know it suffices to show that H∗
dhk

is simple, which
holds trivially since A∗

k = A∗. The complex case follows by a similar argument.

Remark Notice that the Lie algebra cohomology H∗
d,� has the following “harmonic” repre-

sentative

H∗
d,� � H∗

d,� := {u ∈ A∗ : �R1
d+···+Rk−1

d
u = 0}.

Since

H∗
d,� ∈ ker�d ,
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our main theorem actually also gives a formula for the following d-harmonic space

H∗
d := ker�d = H∗

d,�.

A more careful study of H∗
d,� will be given in Sect. 8.

7.4 Proof of the strong version of Cordero–Fernández–Gray–Ugarte’s theorem

Let us choose an appropriate basis of left-invariant vector fields for the nilpotent Lie group
and a left-invariant metric making this a global orthonormal frame. Then we know that our
main theorem applies.

Remark The above argument also applies to the original version of Nomizu’s theorem.

8 An explicit version of our main theorem

In case k = 2, the remark at the end of Sect. 7.3 gives

ker�d = {u ∈ A∗ : �R1
d
u = 0}. (8.1)

The above formula can also be proved using the E3 term of the spectral sequence of the
double complex (dh1 , R1

d). In fact, by Lemma 7.5, we know that the E3 term is defined by
the following complex

R1
d : A∗ → A∗.

The key point here is that both R1
d and its adjoint send A∗ to itself, from which we know that

the above spectral sequence degenerates at E3.

Example 1 By the example in Sect. 5, if X is the Kodaira–Thurston manifold, then k = 2
and

R1
∂

= − i

2
ϕh ∧ ϕh ∧ (Xv � ), (R1

∂
)∗ = i

2
ϕv ∧ (Xh � )(Xh � ).

The complex version of (8.1) gives

H∗,∗
∂

= {u ∈ A∗,∗ : R1
∂
u = (R1

∂
)∗u = 0}.

Example 2 Let g be the 3-dimensional 2-step complex nilpotent Lie algebra admitting a
complex (1, 0)-coframe {ξ1, ξ2, ξ3} satisfying

dξ1 = ξ2 ∧ ξ2 + Dξ3 ∧ ξ3, dξ2 = 0, dξ3 = 0,

where D is a complex parameter having non-negative imaginary part. Let G be the simply
connected Lie group having g as Lie algebra. Let X be any compact quotient of G. Then,
k = 2, the decomposition of ∧1,0T ∗

X into vertical and horizontal subbundles is given by

∧1,0T ∗
X = 〈ξ1〉 ⊕ 〈ξ2, ξ3〉

and

R1
∂

= (ξ2 ∧ ξ2 + Dξ3 ∧ ξ3) ∧ (ξ1 � ), (R1
∂
)∗ = ξ1 ∧ [(ξ2 � )(ξ2 � ) + D̄(ξ3 � )(ξ3 � )],
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where {ξ1, ξ2, ξ3} satisfies ξ r (ξs) = δrs . Also in this case, the complex version of (8.1) gives

H∗,∗
∂

= {u ∈ A∗,∗ : R1
∂
u = (R1

∂
)∗u = 0}.

For general k, we shall introduce the following:

Definition 8.1 With the notation in our main theorem. In the real case, the nilpotent frame �

is said to be admissible if k ≥ 2 or

Rk− j−1
d

(
�

Rk− j
d

+ · · · + �Rk−1
d

)
=

(
�

Rk− j
d

+ · · · + �Rk−1
d

)
Rk− j−1
d , ∀ 1 ≤ j ≤ k − 2,

when k ≥ 3. In the complex case, the nilpotent frame � is said to be admissible if k ≥ 2 or

Rk− j−1
∂

(
�

Rk− j
∂

+ · · · + �Rk−1
∂

)
=

(
�

Rk− j
∂

+ · · · + �Rk−1
∂

)
Rk− j−1

∂
, ∀ 1 ≤ j ≤ k − 2,

when k ≥ 3.

We obtain the following result:

Theorem 8.2 With the assumptions in our main theorem. Assume further that the associated
frame is admissible. Then:

(1) In the real case, we have

H�
d = {u ∈ A� : R j

du = (R j
d )

∗u = 0, ∀ 1 ≤ j ≤ k − 1}.
(2) In the complex case, we have

H�,�

∂
= {u ∈ A�,� : R j

∂
u = (R j

∂
)∗u = 0, ∀ 1 ≤ j ≤ k − 1}.

Proof Notice that

Rk−2
d

(
�Rk−1

d

)
=

(
�Rk−1

d

)
Rk−2
d

implies (notice that H∗
dhk−2

= ker�Rk−1
d

)

Rk−2
d (H∗

dhk−2
) ⊂ H∗

dhk−2
,

from which we know that the following complex

Rk−2
d : H∗

dhk−2
→ H∗

dhk−2
,

is also well defined on the corresponding harmonic spaceH∗
dhk−2

. Thus the spectral sequence

(dhk−2 , Rk−2
d ) degenerates at E3 and

H∗
dhk−2+Rk−2

d
= H∗

dhk−2
∩ ker�Rk−2

d
,

which is equivalent to

H∗
dhk−3

= ker�Rk−2
d +Rk−1

d
= ker�Rk−2

d
∩ �Rk−1

d
.

Repeating the above argument gives the proof of the real case, the complex case follows by
a similar argument. 
�
Remark Not all nilpotent frames are admissible, we shall give a counterexample in the next
section.
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9 Further examples

9.1 A nilmanifold not satisfying Theorem 8.2

Let h7 be the real 6-dimensional nilpotent Lie algebra with basis {e1, . . . , e6} such that
[e1, e2] = − e4, [e1, e3] = − e5, [e2, e3] = − e6,

the other brackets vanishing. Then, denoting by {e1, . . . , e6} the dual basis of {e1, . . . , e6},
we obtain the following structure equations

de1 = 0, de2 = 0, de3 = 0, de4 = e1 ∧ e2, de5 = e1 ∧ e3, de6 = e2 ∧ e3.

Then, the simply connected Lie group H7 whose Lie algebra is h7 admits compact quotients
M = �\H7. Define an almost complex structure J0 on M by the following complex (1, 0)-
coframe

ω1 = e1 + ie2, ω2 = − 2(e3 + ie4), ω3 = − 4(e5 + ie6).

Then

dω1 = 0, dω2 = ω1 ∧ ω1, dω3 = ω1 ∧ ω2 + ω1 ∧ ω2,

that is J0 is in fact integrable and by Ugarte [29] (see also [23]) any other complex structure
on M is equivalent to J0. Set

ω1 = ξ3, ω2 = ξ2, ω3 = ξ1.

Then,
dξ1 = − ξ2 ∧ ξ3 + ξ3 ∧ ξ2, dξ2 = ξ3 ∧ ξ3, dξ3 = 0 (9.1)

and k = 3. The decomposition of ∧1,0T ∗
M into vertical and horizontal subbundles reads as

∧1,0T ∗
M = 〈ξ1〉 ⊕ 〈ξ2, ξ3〉.

A direct computation taking into account (9.1) gives

R1
∂

= − ξ2 ∧ ξ3 ∧ (ξ1 � ) + ξ3 ∧ ξ2 ∧ (ξ1 � ), R2
∂

= ξ3 ∧ ξ3 ∧ (ξ2 � ),

(R1
∂
)∗ = − ξ1 ∧ [(ξ3 � )(ξ2 � )] + ξ1 ∧ [(ξ2 � )(ξ3 � )], (R2

∂
)∗ = ξ2 ∧ [(ξ3 � )(ξ3 �)],

where {ξ1, ξ2, ξ3} satisfies ξ r (ξs) = δrs .

Theorem 9.1 The Dolbeault cohomology group of �\H7 satisfies

H1,1
∂

� SpanC 〈ξ12̄, ξ23̄, ξ22̄ + ξ31̄, ξ22̄ + ξ13̄, 〉. (9.2)

where ξ i j̄ := ξ i ∧ ξ j . In particular, H1,1
∂

does not satisfy Theorem 8.2.

Proof Let

u = a1ξ
11̄ + b1ξ

21̄ + c1ξ
31̄ + a2ξ

12̄ + b2ξ
22̄ + c2ξ

32̄ + a3ξ
13̄ + b3ξ

23̄ + c3ξ
33̄

be a harmonic (1, 1)-form. By our main theorem, one may assume that all the above coeffi-
cients are constants. Then, u is harmonic if and only if

∂u =
(
R1

∂
+ R2

∂

)
u = ∂

∗
u =

(
(R1

∂
)∗ + (R2

∂
)∗

)
u = 0,
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which gives (9.2). Notice that H1,1
∂

satisfies Theorem 8.2 if and only if

H1,1
∂

⊂ ker R1
∂

∩ ker(R1
∂
)∗ ∩ ker R2

∂
∩ ker(R2

∂
)∗

But obviously

R2
∂
(ξ21̄ + ξ31̄) �= 0,

thus H1,1
∂

does not satisfy Theorem 8.2. 
�

9.2 Nilpotent frame in a non-nilpotent Lie group

Let us look at the following example from [16].

Example Consider the following group structure

(a, λ) ∗ (t, z) = (a + t, λ + e2π ia z),

on R × C. Then we know that

G := (R × C, ∗),

is a Lie group. It is clear that

� := Z × (Z + iZ)

is a discrete subgroup of G such that the quotient space (with respect to the left action)

X := �\G,

is a compact smooth manifold. It is clear that

dt, e−2π i tdz,

are G-invariant with respect to the left action of G. Put

e1 = rdt, e2 = Re(e−2π i tdz), e3 = Im(e−2π i tdz).

we know that {e1, e2, e3} is a basis of the dual Lie algebra g∗ of G. Notice that if z = x + iy
then

e2 = (cos 2π t) dx + (sin 2π t) dy,

and

e3 = − (sin 2π t) dx + (cos 2π t) dy.

Thus

de1 = 0, de2 = 2π e1 ∧ e3, de3 = − 2π e1 ∧ e2,

which gives

[g, [g, g]] = [g, g], [[g, g], [g, g]] = 0.

Thus g is solvable but not nilpotent. But notice that

σ 1 := dt, σ 2 := dx, σ 3 := dy,
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give a smooth frame of T ∗
X such that

dσ j = 0, j = 1, 2, 3.

Thus

� := {σ 1, σ 2, σ 3},
is a nilpotent frame of X and our main theorem implies that the de Rham cohomology of
X is isomorphic to the exterior algebra generated by � (in fact it is easy to see that X is
diffeomorphic to a real torus).
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