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Abstract
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ifolds with a special foliation structure. Two Nomizu-type theorems for cohomologies of
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1 Introduction

Let X be an n-dimensional compact smooth manifold. Assume that the tangent bundle Tx
of X is trivial (thus the cotangent bundle T is also trivial). Let

®:={c!,....0"
be a global smooth frame of T. Inspired by [9,20], we introduce the following
Definition 1.1 We call ® a nilpotent frame if

do! = Z Ailak N Vi<j<n, (L.1)
k,J>j

where A,’d are “real constants.”

In the complex case, assume that the holomorphic tangent bundle AV0Tx of a compact
complex manifold X is smoothly trivial (may not be trivial as a holomorphic vector bundle).
Now assume that the complex dimension of X is n. Let

wo= (g, .. &M

be a global smooth frame of /\I’OT;(‘. We shall use the following

Definition 1.2 We call ¥ a complex nilpotent frame if

di;‘j — Z Blflék/\sl_" Z B]{i.?gkAg, V1<j<n, (1.2)

kl>j k>j
where B}, and B;l- are “complex constants.”

We have the following generalization of the main results in [9,13,20].
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Main Theorem Let X be a compact smooth (resp. complex) manifold. Assume that Ty (resp.
/\I’OT; ) possesses a nilpotent (resp. complex nilpotent) frame ® (resp. V). Then, every de
Rham (resp. Dolbeault) cohomology class of X can be represented by R (resp. C) linear
combination of finite wedge products of forms in ® (resp. ¥ U W).

Remark 1 Denote by A* (resp. A**) the finite dimension R (resp. C) linear space spanned
by wedge products of @ (resp. W' U W). Then we know that the d-cohomology is well defined
on A*, the d-cohomology is well defined on A** and they are also called the Lie algebra
cohomologies. Let us denote them by H} 4, and Hg ’;, respectively. Then, our main theorem
is equivalent to say that ’
Hj ~ Hj g, Hg'* ~ Hg”;,

where H} (resp. Hg’*) denotes the usual de Rham (resp. Dolbeault) cohomology group. See
Sect. 8 for a more explicit description of Hj 4 and Hg; in certain cases and Sect. 9 for
related results. ’

Remark 2 The main ingredient in the proof of our main theorem is the following vertical—
horizontal decomposition of Laplacians (see Theorem 4.1)

Og = Oav +0Ognyg,»
associated to the following decomposition
d=d"+d" + Ry,

of d on a smooth manifold with a special foliation structure, where d" only increases the
horizontal degree, d” only increases the vertical degree and the remaining term Ry is a tensor
(see [1-3,18,19,21,26] for the background and related results).

Remark 3 The proof of our main theorem in Sect. 7 also gives the following result: Let X
be a compact smooth manifold. Assume that C ® Ty possesses a nilpotent frame ®. Then
every complex de Rham cohomology class of X can be represented by C linear combination
of finite wedge products of forms in ®.

Our main theorem suggests to study the following problem:

(x): Let G be a Lie group, let T" be a discrete subgroup of G. Assume that with respect
to the left action of T', X := I'\G is a compact manifold. When does Ty possess a nilpotent
frame ?

If G is nilpotent then of course Ty possesses a nilpotent frame. But it is also interesting
to study the general case, e.g., SL(2, Z)\SL(2, R) (non-compact!). In Sect. 9, we shall give
an example where T’y possesses a nilpotent frame but G is not nilpotent. For related results,
see [6,7].

2 Motivations

2.1 First motivation: Kiinneth formula

Our first motivation comes from the following well-known Kiinneth formula:

Theorem 2.1 (Kiinneth formula) Let (X, gx) and (Y, gy) be two compact Riemannian mani-
folds. Let (E, hg), (F, hp) be Hermitian complex vector bundles over X and Y, respectively.
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836 S. Rollenske et al.

e IfE and F are flat, then we have the following formula for de Rham cohomologies:
Hi(X xY,E®F) = ®piq— H (X, E) ® HI (Y, F);
e If X, Y are complex manifolds and E, F are holomorphic vector bundles, then
',1 ’
HINX X Y, E® F) = ®jk=piim=g HI' (X, E) ® HX" (Y, F).

One way to prove the above formulas is to use the Leray spectral sequence for fibrations,
see [9]. Our motivation comes from the proof of using the following decomposition formulas
of Laplacians:

XxY X Y
O, =07 +0z, 2.1

and
Dg” =0f +0O0F. (2.2)

More precisely, we will study the following problem:
Problem: How to generalize (2.1) and (2.2) to non-product fibrations?

Remark One way to study the above problem is to develop the L2-theory of the Leray spectral
sequence for fibrations (see [5,11] for related results). We know that for the spectral sequence
of the double complex (9, 9),d = 9 + 9, the associated Lz—theory is based on the classical
Bochner—Kodaira—Nakano formula.

2.2 Second motivation: Nomizu-type theorems

Our second motivation is based on the following celebrated Nomizu’s theorem [20] proved
in 1954:

Nomizu’s theorem (weak version) Let G be a simply connected nilpotent Lie group with
a discrete subgroup T'. Assume that X := I'\G is compact and the ascending central series
of the Lie algebra of G (see Sect. 6.2 for the definition) defines a torus fibration resolution
of X. Then the de Rham cohomology of X can be represented by G-invariant forms.

In 1976, Sakane [24] proved that the Nomizu theorem is also true for compact complex
parallelisable solvmanifolds. The following theorem of Cordero—Fernidndez—Gray—Ugarte
[9] is a generalization of Sakane’s theorem:

Cordero-Fernandez—Gray-Ugarte’s theorem (weak version) Let G be a simply con-
nected nilpotent Lie group with a discrete subgroup T". Assume that X := I'\G is a compact
manifold with a left invariant integrable almost complex structure J. Assume that the J -
compatible ascending series of the Lie algebra of G (see Sect. 6.3 for the definition) defines
a holomorphic torus fibration resolution of X. Then, the Dolbeault cohomology of X can
be represented by G-invariant forms.

Remark The assumption that the J-compatible ascending series of the Lie algebra of G
defines a holomorphic torus fibration resolution is contained in the proof of the main theorem
in [9].

In real case the ascending central series will always give a torus fibration resolution (see
page 208 in [10]). Thus the following result is still true:

Nomizu’s theorem (original version) Let G be a simply connected nilpotent Lie group
with a discrete subgroup T'. Assume that X := I'\G is compact. Then, the de Rham coho-
mology of X can be represented by G-invariant forms.
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In complex case, the J-compatible ascending series may not give a torus fibration reso-
lution (see Example 3.6 in [23] or [13]). But our main theorem implies the following result.

Cordero-Fernandez—Gray-Ugarte’s theorem (strong version) Let G be a simply con-
nected nilpotent Lie group with a discrete subgroup I'". Assume that X := I'\G is a compact
manifold with a nilpotent complex structure (see [9], page 2, for the definition). Then, the
Dolbeault cohomology of X can be represented by G-invariant forms. In particular, it is
independent of T.

The above result applies in a number of important cases.

Corollary 2.2 Let G be a simply connected nilpotent Lie group with a discrete cocompact
subgroup I and left-invariant complex structure J. If G is 2-step nilpotent, then the Dolbeault
cohomology of X = (I'\G, J) can be computed by left-invariant forms.

Proof We only have to observe that if G is 2-step nilpotent, then every left-invariant complex
structure on G is nilpotent in the above sense by [22, Prop. 3.3] so the strong version of
Cordero—Fernandez—Gray—Ugarte’s theorem applies. O

A different way to generalize the weak version of Cordero—-Ferndndez—Gray—Ugarte’s
theorem was considered in [13] and like in loc. cit. we are able to settle all cases of low
dimension.

Corollary 2.3 Let X be a nilmanifold of real dimension at most 6 with left-invariant complex
structure. Then, the Dolbeault cohomology of X is computed by left-invariant forms.

Proof In dimension 2 and 4, there are only tori and the Kodaira—Thurston manifold to con-
sider, for which the result is well known.

In real dimension 6, there are only finitely many nilpotent Lie algebras and the ones
admitting complex structures are classified by Salamon [25]. In [22, Proof of Thm.B] the
statement was shown to hold for all complex structures on all such nilmanifolds except
possibly for those with Lie algebra h7, in the notation of Salamon (see also [8] for the
original definition). Since b7 is 2-step nilpotent, indeed the free 2-step nilpotent Lie algebra
on 3 generators, the previous corollary applies to this remaining case. O

3 Foliations of nilpotent type
3.1 Nilpotent foliation

Let us recall the definition of distribution first.

Definition 3.1 (Distribution) Let X be a smooth manifold. We call

V= {Vilrex,
a rank-r distribution on X if for every x € X, Vy is an r-dimensional real linear subspace
of T\ X (space of vectors at x) and there exist smooth vector fields Vi, ..., V, on an open

neighborhood, say Uy, of x such that

Vy = Spang{V1(y), ..., V:(0)},

forevery y € U,. We call {V1, ..., V,} alocal basis of V.
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838 S. Rollenske et al.

Remark 1f V is a smooth vector field on X such that V(x) € V, for every x € X, then we
say that V lies in V and write V € V. Denote by C*°(Tx) the space of smooth vector fields
on X. Then, one may look at a rank-r distribution as a subspace of C*°(T) that is locally
generated by r linearly independent smooth vector fields.

Definition 3.2 (Integrable distribution) A distribution V is said to be integrable if [V, W] €
V, forevery V, W € V (see the remark above). We call an integrable distribution a foliation
on X.

Remark 1t is enough to check integrability for local basis of V. The classical Frobe-
nius theorem tells us that a rank-r distribution V is integrable if and only if for every

x € X there exists a smooth local coordinate system, say {x', ..., x"}, near x such that
V is generated by {8/8x1, ...,0/0x"} near x (i.e., V is tangent to the fibers of the map
! XM > (T L L x™)). Thus, a rank-r integrable distribution is equivalent to a

foliation of r-dimensional local smooth manifolds.
We shall use the following lemma to define the notion of nilpotent foliation.

Lemma 3.3 LetV be a distribution on X. Let gx be a smooth Riemannian metric on X. Then
V= (Vi rex,

is also a distribution on X, where each Vj‘ denote the orthogonal complement of Vy in Ty X
with respect to gx.

Proof Let {Vy, ..., V,} be a local basis of V. Then we can extend it to a local frame, say
{Vi,..., Vyi}, of Tx. Denote by V].L, Jj > r, the orthogonal projection of V; to VL. Then, we

know that {V].J-} j>r generates Yt locally. O

Definition 3.4 (Nilpotent foliation) Let V be a distribution on a Riemannian manifold
(X, gx)-Wecall (V, gx) anilpotent foliation structure on X if locally there exists an orthonor-
mal frame {V1, ..., V,} of (Tx, gx) such that

(1) {V;}j<ris alocal basis of V and {V} ;- is a local basis of vt
(2) [Vj, i\l =0foreveryl < j<r,1 <k <n.

Remark Notice that condition (2) in the above definition implies that a nilpotent foliation is
always integrable.

We shall also study nilpotent foliations on complex manifold.

Definition 3.5 (Complex nilpotent foliation) Let V be a distribution on a complex manifold
(X, J).Letgx bea J-Hermitian metric on X. We call (V, J, gx) acomplex nilpotent foliation
structure on X if locally there exists an orthonormal frame {V1, ..., V,} of (T;’O, gx) such
that

() {V;, Vj}j<risa local basis of V and {V;, V;}j=r is alocal basis of V+;
Q) Vi, =1[V;,Vy]=0foreveryl < j <r,1 <k =<n.

Remark Since gy is J-Hermitian, a complex nilpotent foliation also satisfies J (V1) = V1.
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3.2 Vertical-horizontal decomposition of d

Definition 3.6 (Vertical-horizontal vector field) Let V be a distribution on a Riemannian
manifold (X, gx). We call V € V a vertical vector field and W € V1 a horizontal vector
field.

We also need the dual of the notion of vertical-horizontal vector field (motivated by [4],
see also formula (1.3) in [1]).

Definition 3.7 (Vertical-horizontal one-form) A differential one-form u on X is said to be
horizontal (resp. vertical) if V | u = 0 for every vertical (resp. horizontal) vector field V on
X.

Definition 3.8 (Vertical-horizontal degree) Denote by T;* and T, the subbundles of 7*X
generated by horizontal one-forms and vertical one-forms, respectively. Then, we have

APT*X = @pp1=p (AR TF) A (AT,
We call a section of (AXT;¥) A (AIT)¥) adegree (k|1)-form and say that it has horizontal degree
k and vertical degree l.

The following lemma suggests to study vertical-horizontal decomposition of the exterior
derivative.

Lemma 3.9 Let V be a distribution on a Riemannian manifold (X, gx). Let u be a smooth
degree (k|l)-form on X. Assume that V is integrable. Then, we can write

du=d"u+d"u+ Ryu,
where d'u is degree (k|l 4+ 1), d"u is degree (k + 1|I) and Rqu is degree (k + 2|l — 1).
Proof Let us locally write
U= Zufl A uﬂ,
where u,ﬁ are (0|/)-forms and u{l are (k|0)-forms. Since V is integrable, we know that d (uf;)

has no degree (k — 1|2) components. Thus, du has no degree (k — 1|/ 4+ 2) components. O

Definition 3.10 (Atiyah tensor) Let V be an integrable distribution on a Riemannian manifold
(X, gx). Then, we define d" as the (1 |0)-part of d and dV as the (0|1)-part of d. We call the
following degree (2| — 1) tensor

Ry=d—d"—d",
the Atiyah tensor.

Remark 1 From the proof of the above Lemma, we know that the Atiyah tensor is zero if
and only if V1 is integrable. In case V is associated to the Lie algebra g of a G-bundle,
then cohomology class of each Lie—algebra component of the Atiyah tensor is also called the
Atiyah class.

Remark2 d",d? are also well defined on the space of all smooth forms on X. The reason is
we can always write a smooth form u as

w=3u,

where each u*) denotes the degree (k|l)-component of . Then we can define
d"u = Zdhu(k”), d'u = Zd”u(k”).
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3.3 Vertical-horizontal decomposition of &

Now let us consider the case that V is a distribution on a complex manifold (X, J) with a
J-Hermitian Riemannian metric gx (we call (X, J, gx) a Hermitian complex manifold) such
that J()) = V. Then we have

APIT*X = @it jepismg (AT A (NSTY).

We call smooth section of (/\k'lTh*) A (/\j*STv*) a degree (k,1|j, s)-form and say that it has
horizontal degree (k, ) and vertical degree (j, s). Similar as the real case, we have

Lemma 3.11 LetV be anintegrable distribution on a hermitian complex manifold (X, J, gx).
Let u be a smooth degree (k,1|j, s)-form on X. Assume that J (V) = V. Then we can write

u=29u +§hu + Ra,u + Ra,u + Rgsu,

where 3" u is degree (k,1|j,s + 1), 5hu is degree (k,l + 1|j,s) and Rau is degree (k +
1,I4+1]j—1,s), Ra,uisdegree (k,14+2|j, s —1) and Rgsu is degree (k+1,1|j—1,s+1).

Definition 3.12 (Complex Atiyah Tensor and Kodaira—Spencer Tensor) Let )V be a J -invariant

integrable distribution on a Hermitian complex manifold (X, J, gx). We define 5h as the
(0, 110, 0)-part of 9 and 3" as the (0, 010, 1)-part of 9. We call

Ra = Ra, + Ra,,

the complex Atiyah tensorand Rgs the Kodaira—Spencer tensor.

Remark In case V is given by the fiber-tangent distribution of a proper holomorphic
submersion, then cohomology class of each component of Rkg is just the well known
Kodaira—Spencer class. In general, put

Ry = R + Rgs,
If Rgs # O then Ry # Ry + Ry. In fact, we have
Ri=Ra+Ra, d'=0" +0",
and
d" = Rgs + Rgs + 0" + 7.
In case V is a complex nilpotent foliation, we can prove that

Lemma 3.13 Assume that (V, J, gx) is a complex nilpotent foliation structure. Then Rgs =
0.

Proof Tt suffices to show that if u is an vertical (1, 0)-form then du has no degree (1, 00, 1)-
component. Since

du(W, V) = Lwu(V)) — Ly u(W)) —u((W,V]), (3.1

it is enough to show that for every vertical (0, 1)-vector field V and horizontal (1, 0)-vector
field W, the vertical (1, 0)-component of [V, W] is zero, which follows from 2) in Defini-
tion 3.5. ]
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4 Vertical-horizontal decomposition of Laplacians
4.1 Fundamental theorem
The fundamental theorem in this paper is the following:

Theorem 4.1 (Real case). Let (X, gx) be an oriented Riemannian manifold with a nilpotent
Soliation structure (see Definition 3.4). Then on the space of smooth forms on X, we have

Dd=de+Ddh+Rd' (41)

(Complex case): Let (X, J, gx) be a hermitian complex manifold with a complex nilpotent
Soliation structure (see Definition 3.5). Then, on the space of smooth forms on X, we have

Oy = O + 0y . Ope = O, 42)

5h+R§’

Remark 1 In our proof, we shall use the following notation: if P is a differential operator on
the space of smooth forms on X, then we shall write P* as the adjoint of P and write

Op := PP*+ P*P.
Recall that P* satisfies
(Pu,v) = (u, P*v),

if u is a smooth form and v is a smooth form with compact support. Thus, P* and Op are
well defined on the space of smooth forms. If P maps a degree k form to a degree (k + p)
form, then we say that P has degree p. If P is a degree p operator and Q is a degree ¢
operator, then we write

[P,Q]:=PQ—(-DPMQP.
Since d, dV, d" + R, are degree one operators, we have
Oq =[d,d"], Ogv = [d", (d")"],
and
Ogiyg, = [d" + Rq., (d" + Ra)*].
Thus (4.1) is equivalent to
[d", @")*1=0, [d", R;1=0. (4.3)
Remark 2 Notice that if X is compact, then
(@p +Og)u u) = [[Pull> + [|P*ull> + || Qull* + 1 Q*ul .
for every smooth form u on X. Thus (Lp + Ogp)u = 0 is equivalent to
Pu=P'u=Qu=Q"u=0,

which gives the following corollary:
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Corollary 4.2 (Real case): Let (X, gx) be an oriented compact Riemannian manifold with a
nilpotent foliation structure (see Definition 3.4). Then, a smooth form u lies in ker Uy if and

only if
d’u = d*)*u=@"+Rpu= "+ R)*u=0 onX. (4.4)

(Complex case): Let (X, J, gx) be a hermitian compact complex manifold with a complex
nilpotent foliation structure (see Definition 3.5). Then, a smooth form u lies in ker U if and
only if

3u=0"u=@"+Ryu=@ +Ry)'u=0"u=@®)u=0onX. (45
4.2 Proof of the real case

Let (V, gx) be a nilpotent foliation structure on X (see Definition 3.4). Let {V;} be the local
frame of (Tx, gx) in Definition 3.4. Let us write

xj!: vrjs Xp=Ve, 1<k<r, 1<j<n-r.

We know each X} is vertical and each X ﬁ’ is horizontal. Denote by

the dual frame of {X?, X}}. By 2) in Definition 3.4 and (3.1), we have

n—r
j ik ! .
dey =Y ChohAgy 1<j<n—r,
k,l=1

and

—r
k k j [
def =Y Dio) ngy 1<k<r,
jl=1

where C /}’l and Dlj‘. ; are smooth functions. Thus we have

Lemma 4.3 The components Ry, d?, d" of d can be written as

r  n—r

Ri=Y 3" (Dkol neh) A (Xp D),

k=1j,i=1

p=1
n—r . n—r X

d" =Ygl n e+ 3 ¢ (dknel) A,
=1 jki=1

Now let us finish the proof of the first identity in (4.3).

Lemma4.4 [d°, R}] =0.
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Proof Since R is a tensor, we have

Ri=)" % Dy n(X] DXh D). (4.6)

k=1j.i=1

Thus R’; commutes with o! A.Moreover, d2<pl’§ = O gives thatd”D’}l = 0.Thus [d”, R}] = 0.
O

We need the following proposition to prove [d", (d")*] = 0.

Proposition 4.5 Denote by x the Hodge star operator on our oriented manifold (X, gx).
Assume that the orientation of X is given by Qpn A Qy, where

n—r

Q, ;=¢}1A~~/\<ph , :=(p;/\-~-/\<p5.

Denote by *j, (resp. %) the Hodge star operator with respect to 2y, (resp. 2,) on the space
of horizontal (resp. vertical) forms, respectively. Then

* (up Atty) = (= DT sy A sy, 4.7
where uy, is a degree p horizontal form, u, is a degree q vertical form.

Proof Notice that

(up A ) A (= DPT7P g A syuy)=up A spup) A Gy A spitn) =g A tp) A £y A uy).
Thus (4.7) follows. O

Lemma 4.6 Letu = f up A uy, be a smooth degree (a|b) form, where uy, (resp. uy) is a finite
wedge product of (p}]f (resp. gaf) ) and f is a smooth function. Then

@)= (= D% A (= DO s, a5 (). “.8)
and

@ u = ((— DO=D@EDFT g gh (fuh)) Ally. (4.9)

Proof The main idea is to use the fact that (d¥)*u (resp. (d")*u) is the degree (a|b — 1)
(resp. (@ — 1|b)) part of d*u and d*u = (— 1)@+ D+l gy, Thus, the above proposition
applies. We shall only prove the first formula. By (4.7), we have

s = (— DT s un A sy,
Thus
dxu= (=D @ A Gopup A xpuy) + f dGepn A soity)) .

Using (4.7) again, we know that the degree (a|b — 1)-part of (—1)*@+0+D+1 4 4wy is equal
to the right hand side of (4.8). m]

Remark Since
(=1 s (@A) sy uy = XY 1y,
(4.8) gives the following formula:

Lemma4.7 (dV)* = — Z;zl(X;J ) A (X}})'
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Now we can prove the second identity in (4.3).
Lemma4.8 [d", (d")*] = 0.

Proof Notice that dzga}{ = 0 gives d”C,{l = (. Thus Lemma 4.3 and the above lemma give

[d", @)1= (X" XPDXE 1) A @A) (4.10)

But by (2) in Definition 3.4, we have
(X" x1=0. 4.11)
Thus the lemma follows. O

The proof of the real case is complete.

4.3 Proof of the complex case

Let (W, J, gx) be a complex nilpotent foliation structure on X. Let {V;}i<;<, be the local
frame of (T):,’O, gx) in Definition 3.5). Put

X?:: s Xp = Vi, 1<k<r, 1<j<n-s.

We know each X} is vertical and each X " is horizontal. Denote by

the dual frame of {X?, X}}. By (2) in Definition 3.5 and (3.1), we have

dfph ZCkl(ph/\wh—i-ZCkl(ph/\(ph, l<j<n-r,
k=1 k=1
and
n—r n—r S
doy = Y Doy Agl+ ) Dol ngh 1<k=<r,
J.l=1 jil=1

where C,d, C;l, Dk and Dk are smooth functions, which gives

—h = .
Lemma 4.9 The components 9, 8v, Ry can be written as

n—r___ o n—r _ n—r X J—
=Y oA+ Dl eEne) A D+ Y cl (w,’iAgo,i)A(X?J),
j=1 ok, I=1 k=1

.
=Y ek A,
k=1
and Ry = Ris + Ra, + Ra, satisfies
r Ti

r n—r n—r
Ris =0. Ray =" Y (Dol nef) A Ray =30 30 (Dhyof nl) mcxp 1.
k=1j,l=

k=1j.i=1 1
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By a similar proof as the real case, we have
[9°, RX1 =0, (4.12)
and the following analogy of Lemma 4.7.
Lemma4.10 (3")* = — Y (XY 1) A (XY,
Similar as the real case, the above lemma gives
[0, @)*1=0 (4.13)
We know that (4.12) and (4.13) together give
Uy =0z + D§h+R§'

Now it suffices to prove

Ogv = Oge.

By Lemmas 4.10 and 4.9, we have

r r

O =— Y _(XDAD ==Y XN(KY, (4.14)
j=1 j=1

which gives

Ogv = Ogv = Oye
The proof of Theorem 4.1 is complete. O

Remark One may also prove the complex case of Theorem 4.1 by using vertical-horizontal
decomposition of the following Demailly—Griffiths—Kédhler identity (see page 306 in [12,15]
or [27] for a pure algebraic proof)

9 =i[d, Al+[L,0%], Lu:=wAu, 6:=[3,L], A:=L" (4.15)

where w denotes the real Hermitian (1, 1)-form associated to (gx, J).

5 An example: the Kodaira-Thurston manifold

The Kodaira—Thurston surface was first found by Kodaira [17]. It is the first example [28]
of complex symplectic manifold without Kéhler structure. Let us recall its definition in [27].
Consider the following group structure

a*b:= (@ +b",a®>+b%a>+a'b?+ b3 a* + b,

on R*. The Kodaira—Thurston surface X is defined as the quotient manifold with respect to
the left action of Z* on (notice that Z* is a discrete subgroup of G)

G = (R*, »).
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It is easy to see that X is a compact manifold with respect to the quotient topology. Let
(x', x2, x3, x*) be the canonical coordinate system on R*. We know

on = dx! +idx?,
@y = dx® — x1dx? + idx?,
@:d}c1 — idx?,
@y = dx3 — xldx? — idx*,

(5.1

is a frame of the space of G-invariant (with respect to the left action of G) 1-forms on X.
Let J be the almost complex structure on X such that the associated A0T* X is spanned by
{on, @y} Notice that

{ den =0, (5.2)

dgy = — %Wh A Q.
implies that J is integrable on X. One may check that

Ax! +ix?) =0,
9 (x3 +ix* — Lxh?) =o0.

Thus

zi=x+ ixz,

wi=x3 +ixt — %(xl)z.
are local holomorphic coordinates on X. Now we know that the following holomorphic map
from (R*, J) to C

(z, w) = z,

defines a holomorphic submersion, say 7, from X to the torus T := C/Z?. Let {X", X"} be
the global frame of T 1.0(X) that is dual to {on, py}. Then we know that

8/0z := X" +ix'X?,
/0w := X".

is a holomorphic m-local (i.e., well defined on the w-inverse of a sufficiently small open set
in T) frame for 71-9X. Thus we have

Proposition 5.1 7 : X — T is locally trivial.

Remark Notice that (5.2) implies that the fibers of 7 defines a complex nilpotent foliation
structure on (X, J, gx), where gx is J-hermitian such that the fundamental form of (gx, J)
is

W=1ipp NP +igy A Qy.

We know that ¢y, @j, are horizontal forms and ¢, , @, are vertical forms. By (5.2), we know
that

i _
R5=—E¢’hNﬂhA(X”J ),

is of degree (1, 1| — 1, 0). We shall use Theorem 4.1 and Corollary 4.2 to give another proof
of the following well known result (see Sect. 5 in [9]).
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Theorem 5.2 Denote by HP(d) the space of d-harmonic (p, q)-forms on the Kodaira—
Thurston surface (X, J, gx), we have

H%0(d) = Spanc (1),

H"0(9) = Spang (¢1),

HO1(9) = Spanc: (gn, @v),

H>0(9) = Spanc. (¢n A @),

H1(@) = Spanc (@h A v, o1 A D).
H%2(9) = Spanc (gi A @0),

H*1(0) = Spanc (on A 9o AP, On A @y ADy),
H'2(0) = Spanc (¢, A @i A @y),

H2'2(5) = Spang (

(NN T NB

Proof H*0(3) = Spang (1) is trivial. By Corollary 4.2, we know that all harmonic forms in
HP4(3) lie in the kernel of ', (3)*, 3" + Ry and (3" + Ry)*.
Degree (1, 0) case: Let

u = app + by,
be in H10(3). Notice that 3" u = 0 is equivalent to
3'a=0"b=0,
and (5h + Rz)u = 0 is equivalent to
3'b=0, 3a+ %b@ =0.

Thus 3b = 0 and b is a constant. Notice that 3'a = 0 and 3" a + £b @, = 0 together imply
£b g = — da is 9-exact. Since @y, is not d-exact, we know that b = 0. Thus

d a=5va=0,

which gives da = 0 and a is a constant. Thus HL0@) = Spanc (¢n).
Degree (0, 1) case: Let

u = aypy + bey,
be in 1%1(3). 3"u = (@' + Ry)u = 0 is equivalent to
7'a=10"b=0.
(@")*u = 01is equivalent to
9'b = 0.
Since ng = [yv, we know that Vb = 0 implies 9"b = 0. Thus 9b = 0 and b is a constant.

(5h + Ry)*u = 0 is equivalent to 8"a = 0, thus da = 0 and « is a constant.
Degree (2, 0) case: Let

u=app N @y,

be in H>%(d). du = 0 is equivalent to da = 0, which is equivalent to that a is a constant.
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Degree (1, 1) case: Let
U=agn N +bop APy + cou AQn + fou A @y,
be a harmonic (1, 1)-form. We have
Uzeu = (Ugva) on A@n + Uz00) on Aoy + (Uzve) oo Agn + g0 ) o A 9o,
Then [zvu = 0 is equivalent to
Ura = Uzeb = e = U5 f = 0.
Together with [yv = Uz, the above identities give
d’a=d"b=d’c=d"’f =0.
(511 + Ry)u = 0 is equivalent to
3'r=0. b+ fa=0.
thus 3 f = 0 and f is a constant. Since 9 b = 0, we have
— i
ab + 3 fon =0.
By the above computation of H%!(3), we know that @, is not 9-exact. Thus f = 0 and
9b = 0. Now we know that b is a constant. (5h + R3z)*u = 0 is equivalent to
8ha = 0, %a(ph +3c=0.
thus da = 0 and a is a constant. Again

agn +0c =0,

gives a = 0 and c is a constant.
For the remaining cases, by the following well-known formula

dim H”?(3) = dim H"~P"~9(9),

it is enough to check that the listed forms lie in the d-harmonic spaces, which follows by a
direct computation. O

5.1 Nilpotent fibrations

For the Kodaira—Thurston manifold, the complex nilpotent foliation structure comes from a
holomorphic fibration. The general definition is as follows:

Definition 5.3 (Nilpotent fibration) We call a proper smooth submersion 7 : (X, gx) —
(B, gp) between two Riemannian manifolds a nilpotent fibration if the associated foliation
V of the fibers defines a nilpotent foliation structure on (X, gx) and

gx(V, W) = gp(m.V, m W), (5.3)

for every horizontal vector fields V, W on X.
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Remark Let Vg be a vector field on B, we call a vector field Vx on X a lift of Vp if
w.Vx = Vp.

It is clear that Vp has a unique lift Vx such that Vy is horizontal. (5.3) says that the norm of
a vector field on B is equal to the norm of its horizontal lift.

Definition 5.4 (Complex nilpotent fibration) We call a proper holomorphic submersion
7 : (X,wx) — (B,wp) between two Hermitian complex manifolds a complex nilpo-
tent fibration if the associated foliation V of the fibers defines a complex nilpotent foliation
structure on (X, wy) and

wx(V, W) =wp@m.V,m,W), 5.4)

for every horizontal (1, 0)-vector fields V, W on X.
Theorem 4.1 gives

Theorem 5.5 On the total space of a nilpotent fibration, we have
Og =0Ogv + Ddh+R,1'
On the total space of a complex nilpotent fibration, we have

Oy = Op + O Oz = Oge.

a+R’

Remark Associated to a fibration there is a natural Leray-Serre spectral sequence, which
plays a crucial role in the proof of Nomizu-type theorems. But in general a foliation does not
give a good fibration structure, thus one has to use other methods. Our main idea is: with the
help of Theorem 4.1, one may use the spectral sequence for double complex to continue the
reduction process (as in the fibration case), in which the natural setup is a manifold with a
nilpotent frame.

6 Nilpotent frame
6.1 Real case
Let X be a compact smooth manifold with trivial 7. Let
®:={c!,....,0"
be a global smooth frame of Ty. Then we have the following Maurer—Cartan equations
Z Al a* Ao 6.1)
k=1

where Ai[ are globally defined smooth functions on X. Recall that ® is a nilpotent frame if

A',il are real constants and the above equations reduce to

do/ = 3" Al 0" nol. (6.2)
k,>j
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Definition 6.1 Let & be a nilpotent frame. Put ry = 0 and define r; (j > 1) inductively by
rj+1=minUj, Uj = Ujsy,_ 41k, 12 A # 0},
where r; := n if U; is empty. Fix k such that
O=ro<ri<---<rp_1 <rp=n,

we call ® a k-nilpotent frame. Let S/ be the subbundle of Ty generated by {o!, ..., 0"}
We call

0=5" sl ... sk =T,
the ®-filtration of T.
Remark We always have 1 < k < n. For the Kodaira—Thurston manifold (see (5.1)), put

ol = dx4, 0% =dx3 —x'dx?, o3 = dxz, o% =dx',

we have
do! =0,
do? =63 Ao,
do3 =0,
do* = 0.

Thus k = 2 and the ®-filtration is
0 < Span{o!, 6%} <= Span{o!, o2, 03, 0%} = T}.
Put
TS = Span{c', 6%}, T = Span{c?, o).
We get the following vertical-horizontal decomposition of the T’y
Ty=T;®T.

with respect the Riemannian metric 3" o/ ® o/. In general, we shall introduce the following
definition

Definition 6.2 Denote by Tv*j (1 < j < k) the subbundle of Ty generated by
{o7i=1F1 .. 0"} Put

k .
Th*j =@l 0=j<k-1 T, =0.
We call
* % * .
Ty, =T, &T;, 1<j=<k

the jthvertical horizontal decomposition with respect to the following Riemannian metric
n
gx =y o/ ®dl, (6.3)
j=1
on X associated to the nilpotent frame &.
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Remark The first vertical horizontal decomposition of 7*X gives
. gho _ h 1
d:=d" =d" +d"" + Ry,

where dV! (resp. d"!) increases the first vertical (resp. horizontal) degree by one and R}l is
the remaining term. In general, the jth vertical horizontal decomposition gives

d"it =% +d" + R, 1<j<k
Notice that the kth vertical horizontal decomposition reduces to
d"—1 = d%, Rk =0, d" =0.
We shall use our fundamental theorem (see Theorem 4.1) to prove the following result.
Theorem 6.3 With respect to the notation above, we have
Oy = Ogvr + Oy +RY (6.4)
on the space of smooth forms on X. Moreover, if k > 2 then for every 2 < j < k, we have

O =0 +0

n (6.5)

d"i 4R}
on the space of smooth forms in ker Ogvi N --- Nker O v

Proof Denote by {T", T} the subbundles of Ty that are dual to {Th*j, T, }. From Defi-

nition 6.1, we know that the distribution V! associated to 7! is integrable and V' defines
a nilpotent foliation with respect to the Riemannian metric gx in (6.3). Thus Theorem 4.1

gives (6.4).
Now let us prove (6.5) for j = 2. Let us write a smooth form # on X as
u= Z fraq uﬁl Aud, (6.6)
where {uZ1 } (resp. {u?, }) denotes a basis of the exterior algebra generated by {o"1*!, ..., "}
(resp. {o'!, ..., 6"1}), respectively. Denote by {V;} the frame of Ty that is dual to {o'}. Put

ol =l gt ="t XD = Vi, X = Xy,
By Lemmas 4.3 and 4.10, we have
O == > (XXM,
which gives
Oaniw =Y Oavi fp.q)uh Aud,.
Thus Ogv u = 0 is equivalent to
Oav1 fpq =0,

forall p, q. Since f), , are globally defined smooth functions on X, we know that (v f), 4 =
0 is equivalent to that d*! f}, ; = 0. Thus we get the following lemma.

Lemma 6.4 Uyviu = 0 is equivalent to that all f, 4 are constants on leaves of VV.
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By the above lemma and Definition 6.1, we know that the distribution V2 associated
to 772 is integrable on the space of smooth forms in ker [l v . Moreover, on the space of
smooth forms in ker (v, V? defines a nilpotent foliation with respect to the following
decomposition

* * *
I, =T,&T,.

Thus the proof of Theorem 4.1 gives (6.5) for j = 2. The general case follows by induction
on j. O

6.2 Complex case

Let X be a compact complex manifold with smoothly trivial holomorphic cotangent bundle
1,0
AVPT. Let
X

W= (g8
be a global smooth frame of /\I'OTX*. Recall that ¥ is a complex nilpotent frame if
dg/ = )" B & nE + ) BLE AL 6.7)
k,>j k> j

where B,il and BZ[- are complex constants.

Definition 6.5 Let W be a complex nilpotent frame. Put ro = 0 and define r; (j > 1)
inductively by

: — . gl J
rj + 1 = min Uj, U; := szrj71+1{k,l : Bkl or Bkl_ # 0},
where r;j := n if U; is empty. Fix k such that
O=ro<ri<---<ri—1 <rg=n,

we call W a complex k-nilpotent frame. Let S/ be the subbundle of /\1’0T§ generated by
{g1, ... E"}. We call

0=5" sl ... Sk:/\l’OT;,
: 1,0 %
the W-filtration of A*"Ty.
Similar as the real case, we have

Definition 6.6 Denote by Tvt (1 < j < k) the (smooth, may not be holomorphic) subbundle
of ALOT} generated by {£77-111, ..., £7/}. Put

k .
Th*j =@l 0sj<k-1 T, =0.
We call
Ty =T,&T;, 1<)k

the jth vertical horizontal decomposition with respect to the following Hermitian form
n o
wx =iy &I NE, (6.8)
Jj=1
on X associated to the complex nilpotent frame W.
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Remark The first vertical horizontal decomposition of 7*X gives

7:=9" =3" 49" +R%,

where 9" (resp. 5h') increases the first vertical (resp. horizontal) degree by (0, 1) and R% is

the remaining term. In general, the jth vertical horizontal decomposition gives

U =37 4+ + R 1<j<k

Notice that the kth vertical horizontal decomposition reduces to

Shi-1

9" =3", RE=0,3" =0.

Similar as the real case, Theorem 4.1 implies the following result.

Theorem 6.7 With respect to the notation above, we have

Dg = D5v1 + Dgh ngl = yvr, (6.9)

1 1
+R}
on the space of smooth forms on X. Moreover, if k > 2 then for every 2 < j < k, we have

Oy = Oy + O Ogvi = Oy s (6.10)

J4+RL
+RY

on the space of smooth forms in ker Uzvy N -+ - N ker Ugv;—1.

7 Proof of the main theorem

7.1 Cohomology description of Theorem 4.1

Let X be a compact smooth manifold. By the de Rham theorem, we have the following
isomorphism

Hj ~Hy:={ue A" : Oqu =0},
where H denotes the de Rham cohomology group of X, .A* denotes the space of smooth
forms on X. With the assumption in Theorem 4.1 (real case), every u € A* must satisfies
deu =0,

which gives, by Lemma 6.4, that all coefficients of u are constants on leaves of V. Denote by
A7 the space of smooth forms on X whose coefficients are constants on leaves of V, the usual
d operator reduces to d" + Ry on A*, which suggests to look at the following cohomology
(notice that (dh + R;)? = 0 on A*, since the coefficients of Ry are constants on leaves of
V)

. _{ueAf:(@"+ Rpu =0
d"+Rq " (@ + Ra)(AD)

A representative of a class in H

iR, is minimal if and only if it lies in ker Uyny g, Thus
Theorem 4.1 implies that

* o~ oy
Ha =~ Hd"+R¢1'

A similar argument also works in the complex case, to summarize, we get
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Theorem 7.1 Theorem 4.1 (real case) implies

o~ Ik
Hd = dh+Rd.
Theorem 4.1 (real case) implies
HY  ~ HS .
d 3h+R5

Remark In the setting of Theorems 6.7 and 6.3, one may continue to get a sequence of
isomorphisms. In fact, with the notation in Theorem 6.3, denote by V/ (1 < j < k) the
distribution associated to TV @ --- @ T/, let .Aj be the space of smooth forms on X whose

coefficients are constants on leaves of 1/, then one may verify that
@ +R)? =0,  onA
Put
{u € A% : (d" + R)u = 0} (e A% s dhiy =0}
HY = / . , HY = /
dJ+Ry (dhj + RZZ)('Aj) d"i dhj (AT)

we have

Theorem 7.2 Theorem 6.3 implies

% % * ~ % ) < i<
Hd = dh]+R(b’ dhj*I _Hdh-f+Ri’ Vz_j _k.
Theorem 6.7 implies
HX* ~ HY" HY® ~HY  V2<j<k
3 CURYR (T B A9 ] =/ =

Remark 1In the proper fibration case, the above theorem is essentially equivalent to the use
of the E term in the Leray—Serre spectral sequence.

In order to apply the above theorem, one has to study the relation between H:h and

J+R)
H;,,j ; in the next section, we shall prove that, with respect to the spectral sequence of the
double complex d"i + Ré, the E, term is equal to H;hj and the E, term is H;hj R

d
7.2 Spectral sequence for double complex

We shall use the notation in [14]. We look at the complex
hj J.
d' + Ryt AT — AT,
denote its kernel by Z, image by B and put

Z %
H:=—=H ;.
B d"i+R;

With the notation in [14], we denote by ” T as the space of forms in .Aj. whose jth horizontal
degree is no less than p. By Definition 6.1, the maximal jth horizontal degree is n — r;, thus
we have

A =T 517 55T 5 "I = )
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Denote by T™ the space of degree-m forms in A";. We have
A = @0 T".
Put
PTM .= PTAT™,

we know that P T" is the space of degree-m forms in A% whose horizontal degree is no less
that p. One may easily verify the following compatibility conditions in [14]

@" +R)T™ c T"' (@ + R)PT C ’T.
In fact, notice thatd"/ PT < P T and R;; PT c P27 the following stronger compatibility
condition holds
" +R) PT c P*'T.
Moreover, we shall introduce
pgm
ppm’

Pz" :=ZnNnPT", PB" :=BNPT", PH™ :=
The fundamental definition is the following

Definition 7.3 (Spectral sequence of a filtered complex [14]) The modules of spectral
sequence are

EP4 pT’erqi EPa prL 1,2
r = ) o0 = L) r = ’ ERRICICIE )
pTrqu + pBrp_+1q PZptq4 4 PBrPt+q

where
PTM = fu e PT" . (d" + R)u e "7 T}, PB" :={(d" + R)pue PT" :ue P7'T}.
One may verify that d"i + R'di induces the following d, complex
Erp—r,q-‘rr—l i) EP ﬁ) E;H—r,q—r—‘rl.
As general properties of the spectral sequence, we have

Proposition 7.4 The associated d, cohomology gives the E,| term, more precisely
P kerd, N EP4
17 Imd, N EPY

Moreover, we have

PHPta
Pd H

P9 _ P4 .
Oo_m, Er —Eoo,Van r]—l—l.

Remark For the double complex d = 9 + 9 (also called Frolicher spectral sequence), it is
well known that [14]

Ep,q ~ Hf’q.
1 F]

In our case, we obtain the following

@ Springer



856 S. Rollenske et al.

Lemma 7.5 @p-{-q:mE;’q = H;}U

Proof Recall that
ptaq
Eg"f = pTZ—
) Ptq ptq
PT " + PB
Letus write u € PT™ as

U= up\mfp +up+l|m71771 4.

)

where u®# denotes the component of u with horizontal degree « and vertical degree B.
Notice that (" + Ré)u has no horizontal degree p + 1 component if and only if

dhiyPm=r =,
Thus u lies in pT2p+q if and only if d"iuP™~P = 0. A similar discussion gives that u lies
in PT]erq + pBlerq if and only if u?"~P € Im d"/. Thus the (p|q)-component of H";Zj is

isomorphic to £5°7. Hence the lemma follows. o

7.3 The final proof

Let us introduce the following notation: let D be a complex on .A’;-, denote its associated
cohomology by H7,. Recall that Aj means the space of smooth forms on X whose coefficients

are constants on leaves of V/, in particular
A* = A
is the finite dimensional real vector space spanned by wedge products of the frame ®. Assume
that D maps A* to itself. Put
ker D| 4+

Hj g = DA

’ Im D] 4+
we say that H}, is simple if it reduces to Hjj 4, i.e.,

H}), ~ H}) .
The real case of our main theorem is of course equivalent to that / is simple. By Theorem 7.2,
Hj issimple if and only if H;hl LRI is simple. Now let us look at the double complex (4”1, R[ll),

d

by Lemma 7.5, its E, term is H;h] . Thus in order to prove that Hd*h ' is simple, it suffices

+R)
to show that H;hl is simple. Apply Theorem 7.2 again, we know that H;,,l is simple if and
only if H;h 2 R2 is simple. Now again Lemma 7.5 ensures that it is enough to prove simplicity
d
of H;,, , - Repeat the above argument, we know it suffices to show that H;hk is simple, which

holds trivially since A} = A*. The complex case follows by a similar argument.

Remark Notice that the Lie algebra cohomology H 4 has the following “harmonic” repre-
sentative

Hjo~=MHjqe ={uecA": DRI;_,'__”_,’_R/{;AM =0}

Since

H} ¢ € ker Oy,
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our main theorem actually also gives a formula for the following d-harmonic space
Hy =kerOy = Hy -

A more careful study of M} 4 will be given in Sect. 8.

7.4 Proof of the strong version of Cordero-Fernandez-Gray-Ugarte’s theorem

Let us choose an appropriate basis of left-invariant vector fields for the nilpotent Lie group
and a left-invariant metric making this a global orthonormal frame. Then we know that our
main theorem applies.

Remark The above argument also applies to the original version of Nomizu’s theorem.

8 An explicit version of our main theorem

In case k = 2, the remark at the end of Sect. 7.3 gives
kede:{ueA*:DR}tu:O}. (8.1)

The above formula can also be proved using the E3 term of the spectral sequence of the
double complex (d hi, R},). In fact, by Lemma 7.5, we know that the E3 term is defined by
the following complex

Ry A* — A%

The key point here is that both R[]l and its adjoint send A* to itself, from which we know that
the above spectral sequence degenerates at E3.

Example 1 By the example in Sect. 5, if X is the Kodaira-Thurston manifold, then k = 2
and

i _ i —
Ry=—on AGi A (X" D), (Rp)" = Sg0 A (XM DX ]).
The complex version of (8.1) gives
Het = {ue AV R%u = (Ral)*u =0}.

Example2 Let g be the 3-dimensional 2-step complex nilpotent Lie algebra admitting a
complex (1, 0)-coframe {& 1 g2 g3y satisfying
de' =& A2+ DE NG, AP =0, d& =0,

where D is a complex parameter having non-negative imaginary part. Let G be the simply
connected Lie group having g as Lie algebra. Let X be any compact quotient of G. Then,
k = 2, the decomposition of /\LOT; into vertical and horizontal subbundles is given by

AT = Y @ (8%, 87)
and

RI=@EAE+DEAE)AE D, RY =£'"AEDE D +DEE D],
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where {1, &, &3} satisfies £ (&;) = 8. Also in this case, the complex version of (8.1) gives
Het = {ue AV R%u = (Ral)*u =0}.
For general k, we shall introduce the following:

Definition 8.1 With the notation in our main theorem. In the real case, the nilpotent frame @
is said to be admissible if k > 2 or

k—j—1 _ _ k—j—1 .
Rd (DRS—J‘+~-~+DR§—1)—<DRZ—]+---+DR§—1)Rd , V1<j<k-2,
when k > 3. In the complex case, the nilpotent frame W is said to be admissible if k > 2 or

k—j—1 ' _ , k—j—1 :
5 (DR§7'1+"'+DR§71)_<DR§7-’+"'+DR§71) 5 , V1<j<k-2,

when k > 3.
We obtain the following result:

Theorem 8.2 With the assumptions in our main theorem. Assume further that the associated
frame is admissible. Then:

(1) In the real case, we have

Hy={ue A Ru=R)u=0V1<j<k—1}
(2) In the complex case, we have
Mot ={u e A Rlu=(R)'=0,V1<j<k-1}.

Proof Notice that
k—2 k=2
R, (DR{’;’I):(DRs’])Rd

implies (notice that HZ”k— , = kerJ R(I}'—l)

REZ2(HY, ) C HY

d/’k—Z dhk—Z ’

from which we know that the following complex

k=2 . * *
Rd i L) - Hdhk—z’

is also well defined on the corresponding harmonic space H;h ., - Thus the spectral sequence
(d"2, Rfl_z) degenerates at E3 and
=H Nkerd RE-2:

* *
"2 +R§’2 d"k—2

which is equivalent to

H = ker DR§_2+R§_1 = ker DR‘/;—z N DRs—l .

*
dk—3

Repeating the above argument gives the proof of the real case, the complex case follows by
a similar argument. O

Remark Not all nilpotent frames are admissible, we shall give a counterexample in the next
section.
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9 Further examples

9.1 A nilmanifold not satisfying Theorem 8.2

Let b7 be the real 6-dimensional nilpotent Lie algebra with basis {eq, ..., eg} such that
[e1, e2] = —eq, [e1,e3] = —es5, [e2,e3] = — e,
the other brackets vanishing. Then, denoting by {el, e, e6} the dual basis of {eq, ..., es},

we obtain the following structure equations
de!' = 0, de? = 0, de’ = 0, de* =e' A ez, de® =e' A e3, de® =2 A&,

Then, the simply connected Lie group H7 whose Lie algebra is 7 admits compact quotients
M = I'\ H7. Define an almost complex structure Jy on M by the following complex (1, 0)-
coframe

o'=e' + iez, w? = —2(e3 +ie4), w = —4(e5 —I—ieé).
Then
1

do' =0, do?* =o' A0, do® =o' A+ o' Ao,

that is Jy is in fact integrable and by Ugarte [29] (see also [23]) any other complex structure
on M is equivalent to Jy. Set

Then, o -
de! = — 2 A+ ALY, de? =g AE3, dEP=0 9.1)

and k = 3. The decomposition of /\I’OT;[ into vertical and horizontal subbundles reads as
AT = 1 @ (82.8Y).
A direct computation taking into account (9.1) gives
Ry=—EAENED+ENEANE D, RE=EAEANED,

R =& AIEGEDEDI+E AGEDE DL (RY =& A 1E DE DI
where {£1, &, &3} satisfies £" (&) = &}
Theorem 9.1 The Dolbeault cohomology group of T'\ Hy satisfies

7_%,1 ~ Spang <$1§’$2§,§2§+€317 5224—5@,). (9.2)

where S’j =EA 57 In particular, H;J] does not satisfy Theorem 8.2.
Proof Let

U= aléli —I—blEZi +Cl“§3i _i_azsli +b2522 —|—c2§-‘3i +a3$13 +b3§‘23 _’_C3%.33

be a harmonic (1, 1)-form. By our main theorem, one may assume that all the above coeffi-
cients are constants. Then, u is harmonic if and only if

= (R% + R%) u=09"u= ((Rg)* + (R%)*) u=0,
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which gives (9.2). Notice that H%‘l satisfies Theorem 8.2 if and only if
Hz' C ker Ry Nker(RD™ Mker RZ N ker(R2)*
But obviously
RAE™ +£3T) £ 0,

thus H%’l does not satisfy Theorem 8.2. O

9.2 Nilpotent frame in a non-nilpotent Lie group

Let us look at the following example from [16].

Example Consider the following group structure
(@, 1) (t.2) = (@ + 1, 2+ e72),
on R x C. Then we know that
G =MRxC, %),

is a Lie group. It is clear that

I =Zx(Z+iZ)
is a discrete subgroup of G such that the quotient space (with respect to the left action)

X :=T\G,
is a compact smooth manifold. It is clear that
dr, e 2mitdz,

are G-invariant with respect to the left action of G. Put

e =rdr, e =Re(e 7"dz), ¢ = Im(e >""dz).

we know that {e!, €2, ¢3} is a basis of the dual Lie algebra g* of G. Notice thatif z = x + iy
then
e = (cos 2mt) dx + (sin277) dy,
and
e =— (sin2mt) dx 4 (cos2mt) dy.
Thus

de' =0, de? =2mwe' ned, de® = —2m el A €2,
which gives
[, [g, 9]l = [g, 9], [lg, 9l [g,9]]1 =0.

Thus g is solvable but not nilpotent. But notice that

ol = dr, o2 = dx, o3 = dy,
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give a smooth frame of Ty such that
do/ =0, j=1,2,3.
Thus
P = {01, o2, 03},

is a nilpotent frame of X and our main theorem implies that the de Rham cohomology of
X is isomorphic to the exterior algebra generated by @ (in fact it is easy to see that X is
diffeomorphic to a real torus).
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