
Annali di Matematica Pura ed Applicata (1923 -) (2019) 198:1495–1511
https://doi.org/10.1007/s10231-019-00824-1

On the continuity of the solutions to the Navier–Stokes
equations with initial data in critical Besov spaces

Reinhard Farwig1 · Yoshikazu Giga2 · Pen-Yuan Hsu2

Received: 5 December 2016 / Accepted: 16 January 2019 / Published online: 7 February 2019
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer
Nature 2019

Abstract
It iswell known that there exists a unique local-in-time strong solutionu of the initial boundary
value problem for the Navier–Stokes system in a three-dimensional smooth bounded domain
when the initial velocity u0 belongs to critical Besov spaces. A typical space is B = B−1+3/q

q,s

with 3 < q < ∞, 2 < s < ∞ satisfying 2/s + 3/q ≤ 1 or B = B̊−1+3/q
q,∞ . In this paper, we

show that the solution u is continuous in time up to initial time with values in B. Moreover,
the solution map u0 �→ u is locally Lipschitz from B to C ([0, T ]; B). This implies that in
the range 3 < q < ∞, 2 < s ≤ ∞ with 3/q + 2/s ≤ 1 the problem is well posed which is
in strong contrast to norm inflation phenomena in the space B−1∞,s , 1 ≤ s < ∞ proved in the
last years for the whole space case.

Keywords Nonstationary Navier–Stokes system · Initial values · Weighted Serrin
condition · Limiting type of Besov space · Continuity of solutions · Stability of solutions

Mathematics Subject Classification 35Q30 · 76D05

1 Introduction

We consider the initial boundary value problem of the Navier–Stokes equations in a bounded
domain � ⊂ R

3 with C2,1 boundary ∂�,

ut − �u + u · ∇u + ∇ p = f , div u = 0 in (0, T ) × �

u
∣
∣
∂�

= 0, u(0) = u0, (1.1)
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where T ∈ (0,∞]. We are interested in local-in-time strong solutions in a Bochner space
Ls (0, T ; Lq(�)) or, more generally, a weighted Bochner space with weight in time,

Ls
α(Lq) := Ls

α

(

0, T ; Lq(�)
) = {

v measurable in (0, T ) × � : ‖v‖Ls
α(Lq ) < ∞}

with

‖v‖Ls
α(Lq ) :=

(∫ T

0

(

τα ‖v(τ)‖q
)s dτ

)1/s

,

where α ≥ 0 and 1 ≤ s < ∞; for s = ∞, the standard modification for the norm ‖ · ‖L∞
α (Lq )

is to be used. By definition, Ls
0(L

q) = Ls(Lq) = Ls (0, T ; Lq(�)).
There is a large literature on the existence of a local-in-time strong solution under various

regularity condition on the initial data and the external force f [2,13–15,17,18,21,25–27].
The first contribution in this direction seems to be the work of Kiselev and Ladyzhenskaya
[19]. Since then, the condition on initial data and the external force f has been weakened;
in other words, u0 can be taken in a larger space.

In the scale of Besov spaces, it is shown in [11,12] that a necessary and sufficient condition
to get Ls(Lq)-strong solutions is that the initial data u0 belong to a solenoidal Besov space
B

−1+3/q
q,s (�) provided that s = sq where 2/sq + 3/q = 1 (3 < q < ∞). In this case, the

so-called Serrin class Ls(Lq) allows to prove regularity and uniqueness of weak solutions
of the Navier–Stokes system. See also [7] for a review.

The existence of strong solutions is extended for s larger than sq by introducing aweighted
Bochner space. In fact, in [8] a local-in-time strong solution in Ls

α(Lq) is constructed if the

initial data belong to B
−1+3/q
q,s for 3 < q < ∞, sq ≤ s < ∞ with 2/sq + 3/q = 1 and

2/s + 3/q = 1− 2α. In [9], this result is extended to the case s = ∞ by replacing B−1+3/q
q,s

by B̊−1+3/q
q,∞ which is obtained as a continuous interpolation space. In [8,9], u0 is assumed to

belong also to the space L2
σ to compare with weak solutions. However, just for existence of

a strong solution, this additional L2
σ assumption is unnecessary to get an Ls

α(Lq)-solution.
The explanation of the Besov spaces will be given in appendix for the reader’s convenience.

In this paper, we shall prove that Ls
α(Lq)-solutions are indeed in C

([0, T ];B−1+3/q
q,s

)

for initial data u0 ∈ B
−1+3/q
q,s when sq ≤ s < ∞, or in C

([0, T ]; B̊−1+3/q
q,∞

)

for u0 ∈
B̊

−1+3/q
q,∞ when s = ∞; see Theorems 1.1 and 1.2, respectively. Moreover, we will show in

Theorems1.3 (sq ≤ s < ∞) and1.4 (s = ∞) that they are globallywell posed for small initial
data. Theorems 1.1 and 1.2 are in strong contrast to the so-called norm inflation phenomenon
in limiting—homogeneous or inhomogeneous—Besov spaces for the corresponding Cauchy
problem on R

n , n ≥ 2. Bourgain and Pavlovič [4] construct for any δ > 0 mild solutions
with initial values u0 in the Schwartz class such that ‖u0‖Ḃ−1∞,∞ ≤ δ, but ‖u(t)‖Ḃ−1∞,∞ > 1/δ

for some 0 < t < δ. Note that on the one hand, Ḃ−1∞,∞ is the largest scale-invariant Banach
space of tempered distributions; see Meyer [24]. On the other hand, BMO−1 ⊂ Ḃ−1∞,∞
is the largest scale-invariant space for which global well-posedness for small initial data
in BMO−1 has been proved so far, cf. Koch and Tataru [20]. Yoneda [32] clarifies the
approach in [4] and extends the result to Ḃ−1∞,s , s > 2, to be more precise, to a space V

satisfying Ḃ−1
∞,2 ⊂ V ⊂ Ḃ−1∞,s . Wang [31] proves this norm inflation phenomenon even for

all 1 ≤ s < ∞. Finally, Cheskidov and Shvidkoy [5] consider weak solutions of Leray–Hopf
type such that lim supt→0 ‖u(t) − u0‖B−1∞,∞ ≥ δ0 for some δ0 > 0 independent of u0. Since

B−1+3/q
q,∞ , 1 < q < ∞, is continuously embedded into B−1∞,∞ on R

3, this result also yields

the ill-posedness of weak solutions at t = 0 measured in the space B−1+3/q
q,∞ . This negative
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result underlines the importance of using the continuous interpolation space B̊−1+3/q
q,∞ rather

than B
−1+3/q
q,∞ in Theorem 1.2.

Theorem 1.1 Let � ⊂ R
3 be a bounded domain with C2,1 boundary. Let 0 < T ≤ ∞,

2 < s < ∞, 3 < q < ∞ and 0 ≤ α < 1/2 satisfy 2/s + 3/q = 1 − 2α. Moreover, let
u be an Ls

α(Lq)-strong solution with initial data u0 ∈ B
−1+3/q
q,s and f = div F satisfying

F ∈ Ls/2
2α

(

0, T ; Lq/2(�)
)

. Then

u ∈ C
([0, T ];B−1+3/q

q,s
)

. (1.2)

Theorem 1.2 (s = ∞) Let �, T , q be as in Theorem 1.1, and let 2α = 1 − 3/q. Then
an L∞

α (Lq)-strong solution u with initial data u0 ∈ B̊
−1+3/q
q,∞ and f = div F satisfying

F ∈ L∞
2α

([0, T ]; Lq/2(�)
)

and ‖F‖L∞
2α(0,t;Lq/2) → 0 as t ↓ 0 satisfies

u ∈ C
(

[0, T ]; B̊−1+3/q
q,∞

)

. (1.3)

We further observe the continuity of solutions with respect to initial data and external
forces.

Theorem 1.3 Under the assumptions of Theorem 1.1, let v be an Ls
α(Lq)-strong solution

with initial data v0 ∈ B
−1+3/q
q,s and external force G ∈ Ls/2

2α

(

0, T ; Lq/2(�)
)

. Then there are
constants ε∗ and C depending only on� such that if T0 ≤ T is taken so that ‖u‖Ls

α(0,T0;Lq ) ≤
ε∗, ‖v‖Ls

α(0,T0;Lq ) ≤ ε∗, then for all t ∈ (0, T0)

‖(u − v)(t)‖
B

−1+3/q
q,s

≤ C
(

‖u0 − v0‖
B

−1+3/q
q,s

+ ‖F − G‖
Ls/2
2α (0,T0;Lq/2)

)

. (1.4)

Theorem 1.4 (s = ∞) Under the assumptions of Theorem 1.2, let v be an L∞
α (Lq)-strong

solution with initial data v0 ∈ B̊
−1+3/q
q,∞ and external force G ∈ L∞

2α

(

0, T ; Lq/2(�)
)

such
that ‖G‖L∞

2α(0,t;Lq/2) → 0 as t ↓ 0. Then there are constants ε∗ and C depending only on �

such that if T0 ≤ T is taken so that ‖u‖L∞
α (0,T0;Lq ) ≤ ε∗, ‖v‖L∞

α (0,T0;Lq ) ≤ ε∗, then

‖(u − v)(t)‖
B

−1+3/q
q,∞

≤ C
(‖u0 − v0‖

B
−1+3/q
q,∞

+ ‖F − G‖L∞
2α(0,T0;Lq/2)

)

, t ∈ (0, T0).

(1.5)

Theorems 1.1 and 1.2 are proved directly avoiding deep tools from interpolation theory
and interpolation–extrapolation scales. The terminology of Besov spaces is only used in
the statements of the theorems and in appendix where it is shown that Besov spaces are
behind the norm estimates in Sects. 2, 3 and 4; see (1.6). This context is well known from
the optimal spaces of initial values for a classical parabolic equation like the heat equation

where u0 ∈ B1+3/q
q,sq = B

2−2/sq
q,sq = (Lq ,D(�))1−1/sq ,sq allows for a strong solution u in the

maximal regularity class Lsq (0,∞;D(�)) over Lq . In this article, working in scale-invariant
function spaces close to Serrin’s class Lsq (0, T ; Lq

σ ), the initial values are chosen fromBesov
spaces of solenoidal vector fields, B−1+3/q

q,s and B̊−1+3/q
q,∞ .

Let us recall the Helmholtz projection Pq : Lq(�) → Lq
σ (�) and the Stokes operator

A = Aq = −Pq� in Lq
σ (�), the closure of C∞

c,σ (�) in Lq(�); here, C∞
c,σ (�) denotes the

space of smooth solenoidal vector fields with compact support. The semigroup generated
by −Aq is denoted by e−t Aq and defines the solution operator u0 �→ u(t) for the Stokes
equations in case that f = 0. Then, if 2/s + 3/q = 1 − 2α,
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u0 ∈ B
−1+3/q
q,s iff

∫ T

0

(

τα
∥
∥e−τ Au0

∥
∥
q

)s
dτ < ∞ (1.6)

with the usual modification if s = ∞; for more details, see Appendix in Sect. 5. The results
on continuity and well-posedness hold for a (mild) solution u ∈ Ls

α(Lq) of the corresponding
integral equation

u(t) = e−t Au0 −
∫ t

0
e−(t−τ)A (P div(u ⊗ u) − P div F) (τ ) dτ. (1.7)

In Sect. 2, we prepare abstract lemmata for Theorems 1.1–1.4 to be proved in Sect. 4.
The essential technical estimates will be performed in Sect. 3. In appendix, the abstract
interpolation spaces introduced in Sect. 2 are identified with solenoidal Besov spaces; these
results are taken from papers by Amann [2,3] and his monograph [1].

Note that Ls
α(Lq)-strong solutions in [9] are defined as the subset of classical weak

solutions of Leray–Hopf type in which u ∈ Ls
α(Lq). Finally, related results can be found

in articles by Amann [2] and Haak and Kunstmann [16] as special cases of a more general
abstract theory using interpolation–extrapolation scales of Banach spaces; see Remark 4.1
for more details.

2 Abstract spaces

Let X be a Banach space equipped with the norm ‖ · ‖X , and let −A denote the generator
of a C0-analytic semigroup e−t A in X . Assume that {z ∈ C : Re z ≥ 0} is included in the
resolvent set of A. Then A−1 : X → D(A) is bounded and A : D(A) → X is an isometry
whenD(A) is equipped with the homogeneous graph norm ‖A ·‖X . Moreover, the semigroup
e−t A decays exponentially in time, i.e.

∥
∥e−t A

∥
∥
op(X)

≤ C0e−νt with some positive constants
C0 and ν; here, ‖ · ‖op(X) denotes the operator norm on X .

Under these assumptions, we define the extrapolation space Z = X−1 with norm ‖z‖Z =
‖A−1z‖X as the completion

(

X , ‖ · ‖Z
)

. Then A−1, defined as the closure of A in X−1, is the
unique continuous extension of the isometry A : D(A) → X and yields an isometry A−1 :
X = D(A−1) ⊂ X−1 → X−1. The semigroup operators e−t A possess continuous extensions
from X to X−1 defining an exponentially decaying analytic semigroup with infinitesimal
generator A−1; see Proposition 2.1. For simplicity, we will denote this semigroup by e−t A

again. For details, we refer to [1, Chapter V, p. 262], [6, Chapter II.5]. If X is reflexive, then
Z is isomorphic to

(D(A′)
)′; see [1, Theorem V.1.4.6] or [6, Chapter II, Exercise 5.9(4)].

Hence, with an abuse of notation, we will write

A : X → Z = AX = (D(A′)
)′

defining the isometry ‖Ax‖Z = ‖x‖X for x ∈ X .
For 1 ≤ s ≤ ∞ and α ∈ R such that 0 < α + 1

s < 1, we define for f ∈ Z the norm

‖ f ‖Xs,α := ‖A−1 f ‖X +

⎧

⎪⎨

⎪⎩

(∫ ∞

0
ταs

∥
∥e−τ A f

∥
∥s
X dτ

)1/s

when s < ∞,

sup0<τ<∞ τα
∥
∥e−τ A f

∥
∥
X when s = ∞,

(2.1)

and the space

Xs,α = { f ∈ Z : ‖ f ‖s,α < ∞}.
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We note that the term ‖A−1 f ‖X in (2.1) can be omitted. The idea well known from interpo-
lation theory uses the identity f = − ∫ ∞

0
d
dτ e

−τ A f dτ = ∫ ∞
0 Ae−τ A f dτ in Z which holds

if ‖Ae−τ A f ‖Z = ‖e−τ A f ‖X is integrable on (0,∞). To control
∫ ∞
0 ‖e−τ A f ‖X dτ , we use

Hölder’s inequality and αs′ < 1 to see that

∫ 1

0
‖e−τ A f ‖X dτ ≤ C

(∫ 1

0
ταs ‖e−τ A f ‖sX dτ

)1/s

;

moreover, by the exponential decay of e−τ A an estimate similar to the above one holds also
on (1,∞). Using the exponential decay of e−τ A again and an argument by geometric series,
we obtain that—for any 0 < T < ∞—the norm in (2.1) can be replaced by the equivalent
norm

‖ f ‖X T
s,α

=

⎧

⎪⎨

⎪⎩

(∫ T

0
ταs

∥
∥e−τ A f

∥
∥s
X dτ

)1/s

when s < ∞,

sup0<τ<T τα
∥
∥e−τ A f

∥
∥
X when s = ∞.

(2.2)

To indicate which equivalent norm is used in Xs,α , we also use the notation X T
s,α instead of

Xs,α when Xs,α is equipped with the norm ‖ · ‖X T
s,α
.

From real interpolation theory applied to the spaces Z and X = D(A−1), for example, see
[23, Proposition 6.2], we conclude thatX T

s,α = Xs,α also coincides with the real interpolation
space (Z , X)1−α−1/s,s endowed with the equivalent norm

‖ f ‖(Z ,X)1−α−1/s,s =
(∫ ∞

0

(

τα+1/s‖Ae−τ A f ‖Z
)s dτ

τ

)1/s

, (2.3)

where the term ‖A−1 f ‖X is omitted. In the limit case when s = ∞, [23, Exercise 6.1.1 (1)]
implies that X T∞,α = (Z , X)1−α,∞ for all 0 < T ≤ ∞ with equivalent norms. Thus, for
fixed θ = 1 − α − 1

s ∈ (0, 1), i.e. α = α(s) = 1 − θ − 1
s ∈ [0, 1 − θ ], we get the scale

of interpolation spaces (Z , X)θ,s for 1
1−θ

=: s1 ≤ s ≤ ∞ for all 0 < T ≤ ∞ and with
continuous embeddings

X ⊂ (Z , X)θ,s1 ⊂ (Z , X)θ,s ⊂ (Z , X)θ,∞ ⊂ Z , (2.4)

or, since (Z , X)θ,s = X T
s,α(s), the scale X ⊂ X T

s1,α(s1)
⊂ X T

s,α(s) ⊂ X T
∞,α(∞) ⊂ Z .

Proposition 2.1 (i) For t > 0 and f ∈ Z, we have that e−t A f ∈ Z such that

‖e−t A f ‖Z ≤ ‖e−t A‖op(X)‖ f ‖Z .

Moreover, e−t A extends to a bounded linear operator from Z to X. To be more precise,
there exists a constant c > 0 independent of t and f ∈ Z such that

‖e−t A f ‖X ≤ ct−1‖ f ‖Z , t > 0.

(ii) The space X is continuously embedded into X T
s,α for all α ≥ 0, 1 ≤ s ≤ ∞ and

0 < T ≤ ∞.

Proof (i) By analyticity, we observe that for f ∈ Z = X−1 and for t > 0

‖e−t A f ‖Z = ‖A−1
−1e

−t A f ‖X = ‖e−t A A−1
−1 f ‖X

≤ ‖e−t A‖op(X)‖A−1 f ‖X ≤ ‖e−t A‖op(X)‖ f ‖Z .
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If f = A−1x ∈ Z with x ∈ X , then

‖e−t A f ‖X = ‖A−1e
−t Ax‖X ≤ ct−1‖x‖X = ct−1‖ f ‖Z ,

with some constant c independent of f and t .
(ii) It is well known from real interpolation theory since X ⊂ Z ; see also (2.4). ��
Besides the spaces X∞,α , we also need the closed subspace X̊∞,α defined by

X̊∞,α =
{

f ∈ X∞,α : sup
0<τ<τ0

τα
∥
∥e−τ A f

∥
∥
X → 0 as τ0 → 0

}

.

By [23, Exercise 6.1.1 (1)], X̊∞,α coincides with the continuous interpolation space
(Z , X)01−α,∞ with equivalent norms. Thus, obviously X ⊂ X̊∞,α ⊂ X∞,α ⊂ Z .

In view of (2.1), (2.2), we often suppress the T -dependence of X T
s,α and assume that

0 < T < ∞ is fixed. The notation X T
s,α is important in the construction of strong Ls

α(Lq)-
solution where T yields a control of the interval of existence; see [8,9] and [11,12].

3 Estimates of continuity

In the following, we fix 0 < T < ∞ and simplywriteXs,α forX T
s,α . The first continuity result

considers the homogeneous part e−t Au0 in (1.7) and can be proved by general interpolation
theory since by (2.2), (2.4) Xs,α = A (X ,D(A))1−α− 1

s ,s = (Z , X)1−α− 1
s ,s . However, we

present a direct proof for completeness.

Proposition 3.1 Let s ∈ [1,∞] and α ≥ 0. Assume that u0 ∈ Xs,α .

(i) For t ∈ (0, T ], the estimate
∥
∥e−t Au0

∥
∥X T

s,α
≤ CT ‖u0‖X T

s,α

holds with the constant CT = supt∈(0,T ) ‖e−t A‖op(X).
(ii) e−t Au0 ∈ C

([0,∞);Xs,α
)

if u0 ∈ Xs,α and s < ∞.

(iii) e−t Au0 ∈ C
([0,∞); X̊∞,α

)

if u0 ∈ X̊∞,α .

(iv) For u0 ∈ X∞,α , continuity holds except at t = 0, i.e. e−t A ∈ C
(

(0,∞); X̊∞,α

)

.

Moreover, e−t Au0
∗
⇀ u0 as t → 0 in X∞,α; for the latter result X is assumed to be

reflexive.

To prove Proposition 3.1, we use the strong continuity of the semigroup e−t A on X and
on D(A) near t = 0.

Lemma 3.2 (i)
∥
∥
(

e−t A − I
)

f
∥
∥
X ≤ cβ,T tβ

∥
∥Aβ f

∥
∥
X for each β ∈ (0, 1], t ∈ (0, T ) and

f ∈ D(Aβ) with a constant cβ,T > 0 independent of f and t > 0.

(ii)
∥
∥
(

e−t A − I
)

e−τ A f
∥
∥
X ≤ cβ,T

(
t

τ

)β

‖ f ‖X for each β ∈ (0, 1], t ∈ (0, T ) and f ∈ X

with cβ,T independent of t , τ and f .

Proof of Lemma 3.2 (i) By the fundamental theorem of calculus,

e−t A f − f = −
∫ t

0
Ae−τ A f dτ = −

∫ t

0
A1−βe−τ A Aβ f dτ.
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Since
∥
∥Aλe−t A

∥
∥
op(X)

≤ cλτ
−λ (λ > 0) by analyticity, we observe that

∥
∥e−t A f − f

∥
∥
X ≤ c1−β

∫ t

0

dτ

τ 1−β

∥
∥Aβ f

∥
∥
X = c′

β t
β

∥
∥Aβ f

∥
∥
X .

(ii) This follows from (i) since
∥
∥Aβe−τ A

∥
∥
op(X)

≤ cβτ−β . ��

Proof of Proposition 3.1 (i) This estimate is easy; for example, for s < ∞ we have

∥
∥e−t Au0

∥
∥sX T

s,α
=

∫ T

0
ταs

∥
∥e−(τ+t)Au0

∥
∥s
X dτ ≤ Cs

T ‖u0‖sX T
s,α

.

(ii) Let t0, t ≥ 0. Then

∥
∥e−t Au0 − e−t0Au0

∥
∥
s
X T

s,α
=

∫ T

0
ταs

∥
∥

(

e−t A − e−t0A
)

e−τ Au0
∥
∥
s
X dτ

converges to 0 as t → t0 by Lebesgue’s theorem on dominated convergence since the
integrand is uniformly estimated by an integrable function in (0, T ) and converges to 0 in
the pointwise sense. This proves the continuity of e−t Au0 in [0,∞) with values in Xs,α .

(iii) Let t, t0 ≥ 0. We take δ ∈ (0, T ) and divide the supremum into two parts:

∥
∥e−t Au0 − e−t0Au0

∥
∥X T∞,α

≤
(

sup
δ<τ<T

+ sup
0<τ<δ

)

τα
∥
∥

(

e−t A−e−t0A
)

e−τ Au0
∥
∥
X =: J1 + J2.

Similarly to the case s < ∞, we observe that J1 → 0 as t → t0. The second term is estimated
as

J2 ≤ 2C0 sup
0<τ<δ

τα
∥
∥e−τ Au0

∥
∥
X .

If u0 ∈ X̊∞,α , the right-hand side (which is independent of t , t0) tends to zero as δ → 0.
Thus, we conclude the continuity of e−t Au0 up to t = 0 with values in X̊∞,α .

(iv) If u0 ∈ X∞,α , the function e−t Au0 may not be continuous at t = 0 with values in
X∞,α . However, since e−t Au0 ∈ X by Proposition 2.1 for t > 0 and X ⊂ X̊s,α , the assertion
e−t Au0 ∈ C

(

(0,∞); X̊s,α
)

holds.
For the analysis at t = 0, we apply the duality theorem of real interpolation, see [30,

Theorem 1.11.2], and consider X∞,α = (Z , X)1−α,∞ as the dual space of (Z ′, X ′)1−α,1 =
(X ′,D(A′))α,1 with the weighted norm

∫ T
0 τ−α‖A′e−τ A′

ϕ‖X ′ dτ for ϕ ∈ (X ′,D(A′))α,1, cf.
(2.3). Given ϕ we get that

|〈e−t Au0 − u0, ϕ〉| = |〈u0, e−t A′
ϕ − ϕ〉|

≤ ‖u0‖X∞,α‖e−t A′
ϕ − ϕ‖(X ′,D(A′))α,1 .

To show that the latter term converges to 0 as t → 0 we note that part (ii) of this proposition
holds also for negative α as is easily seen. ��

To estimate nonlinear terms as on the right-hand side of (1.7), we consider for μ > 0 the
integral operator

(N f )(t) =
∫ t

0
Aμe−(t−τ)A f (τ ) dτ (3.1)
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for f ∈ Ls1
α1(0, T ; Y ). HereY is anotherBanach space containing X and e−t A can be extended

to Y having a regularizing estimate
∥
∥e−t Aa

∥
∥
X ≤ cT t

−η‖a‖Y , a ∈ Y , t ∈ (0, T ) (3.2)

for some η > 0 with cT independent of a.
We recall the weighted Hardy–Littlewood–Sobolev inequality [28,29]. The limit cases

s1, s2 ∈ {1,∞} are considered in [29, Theorem 5].

Lemma 3.3 Assume that λ ∈ (0, 1) satisfies the scale balance of exponents 1/s1 + α1 + λ =
1/s2 + α2 + 1 under the restrictions of exponents 1 ≤ s1 ≤ s2 ≤ ∞, α2 ≤ α1 and
0 < α1 + 1/s1 < 1, 0 < α2 + 1/s2 < 1. Then the integral operator

(Iλ f )(t) =
∫

R

|t − τ |−λ f (τ ) dτ

is bounded from Ls1
α1(R) to Ls2

α2(R). If α2 = α1, then the stricter condition 1 < s1, s2 < ∞
is needed.

By
∥
∥Aμe−t A

∥
∥
op(X)

≤ Ct−μ and (3.2),

‖(N f )(t)‖X ≤ C
∫ t

0
(t − τ)−μ−η ‖ f (τ )‖Y dτ, (3.3)

so that Lemma 3.3 yields the following:

Proposition 3.4 Assume that λ = μ + η ∈ (0, 1) for positive μ, η as in (3.1), (3.2). Then N
defined by (3.1) is a bounded operator from Ls1

α1(0, T ; Y ) to Ls2
α2(0, T ; X). Here the exponents

s j , α j satisfy the assumptions in Lemma 3.3, and the operator norm of N is independent of
T .

We claim that N f (·) belongs to C ([0, T ];Xs2,α2

)

and start with the case s2 < ∞.

Theorem 3.5 Assume that λ = μ + η ∈ (0, 1) for positive μ, η as in (3.1), (3.2) satisfies the
scale balance 1/s1 + α1 + λ = 1/s2 + α2 + 1 for exponents 1 < s1 ≤ s2 < ∞, α2 ≤ α1

where 0 < α1 + 1/s1 < 1, 0 < α2 + 1/s2 < 1. If f ∈ Ls1
α1(0, T ; Y ), then

‖N f (t)‖X T
s2,α2

≤ C‖ f ‖Ls1
α1 (0,t;Y )

, t ∈ [0, T ]. (3.4)

Moreover,

N f ∈ C
([0, T ];Xs2,α2

)

.

Proof By definition, we get from (3.3) that

‖N f (t)‖X T
s2,α2

=
(∫ T

0
τα2s2

∥
∥e−τ A(N f )(t)

∥
∥
s2
X dτ

)1/s2

≤ C

(∥
∥
∥
∥

∫ t

0
(t + τ − ρ)−μ−η ‖ f (ρ)‖Y dρ

∥
∥
∥
∥

s2

L
s2
α2 (0,T )

)1/s2

= C

(∫ T

0

(

τα2

∫

R

|t + τ − ρ|−λ‖( f χ)(ρ)‖Y dρ

)s2
dτ

)1/s2

(3.5)
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withχ = χ(0,t), the characteristic function of the interval (0, t). Using the change of variables
τ ′ = τ + t and that 0 ≤ τ ′ − t ≤ τ ′ Lemma 3.3 implies that

‖N f (t)‖X T
s2,α2

≤ C

(∫ t+T

t

(

(τ ′ − t)α2
∫

R

|τ ′ − ρ|−λ‖( f χ)(ρ)‖Y dρ

)s2
dτ ′

)1/s2

≤ C
∥
∥Iλ(‖ f χ‖Y )

∥
∥
L
s2
α2 (t,t+T )

≤ C
∥
∥ ‖ f χ‖Y

∥
∥
L
s1
α1

= C‖ f ‖Ls1
α1 (0,t;Y )

.

The proof of continuity is based on the previous estimates. By definition for t1 ≥ t2 ≥ 0,
we observe that

(N f )(t1) − (N f )(t2)

=
∫ t1

t2
Aμe−(t1−ρ)A f (ρ) dρ +

∫ t2

0

(

Aμe−(t1−ρ)A − Aμe−(t2−ρ)A
)

f (ρ) dρ

=: I1 + I2.
The first term is easy to estimate. Replacing f by f χ(t2,t1) and rewriting I1 as an integral for
f χ(t2,t1)(ρ) with ρ ∈ (0, t1), (3.4) proves that

‖I1‖X T
s2,α2

≤ C

∥
∥
∥
∥

∫ t1

0
(t1 + τ − ρ)−μ−η‖ f (ρ)χ(t2,t1)(ρ)‖Y dρ

∥
∥
∥
∥
L
s2
α2 (0,T )

≤ C‖ f ‖Ls1
α1 (t2,t1;Y )

→ 0

as t1 − t2 → 0. The integral I2 is divided into two parts:

‖I2‖s2X T
s2,α2

=
∫ T

0
τα2s2

∥
∥e−τ AI2

∥
∥
s2
X dτ =

(∫ δ

0
+

∫ T

δ

)

τα2s2
∥
∥e−τ AI2

∥
∥
s2
X dτ.

The first part is estimated as follows: for t1,2 = t1 and t1,2 = t2,

C
∫ δ

0
τα2s2

∥
∥
∥
∥

∫ t2

0
Aμe−(t1,2+τ−ρ)A f (ρ) dρ

∥
∥
∥
∥

s2

X
dτ

≤ C
∫ δ

0
τα2s2

( ∫ t2

0
(t2 + τ − ρ)−λ‖ f (ρ)‖Y dρ

)s2
dτ ;

for t1, we used that (t1 + τ − ρ)−λ ≤ (t2 + τ − ρ)−λ since t1 ≥ t2. Replacing δ by
T , we conclude—as for the estimate of ‖I1‖X T

s2,α2
—from Lemma 3.3 that the right-hand

double integral is bounded by C‖ f ‖s2
L
s1
α1 (0,t2;Y )

. Hence, as a function of δ, the right-hand side

converges to 0 as δ → 0, uniformly in 0 ≤ t2 ≤ t1 ≤ T .
To estimate the integral over (δ, T ) in ‖I2‖s2X T

s2,α2
, we observe that

∫ T

δ

τα2s2
∥
∥e−τ AI2

∥
∥
s2
X dτ =

∫ T

δ

τα2s2ϕ(τ, t1, t2) dτ,

where by Lemma 3.2 (ii) for any ν1 ∈ (0, 1)

ϕ(τ, t1, t2) =
∥
∥
∥
∥

∫ t2

0

(

e−(t1−t2)A − I
)

e−τ A Aμe−(t2−ρ)A f (ρ) dρ

∥
∥
∥
∥

s2

X

≤ C

∣
∣
∣
∣

t2 − t1
τ

∣
∣
∣
∣

ν1s2 (∫ t2

0

∥
∥
∥e−τ A/2Aμe−(t2−ρ)A f (ρ)

∥
∥
∥
X
dρ

)s2

.
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Thus,
∫ T

δ

τα2s2ϕ(τ, t1, t2) dτ

≤ C

∣
∣
∣
∣

t2 − t1
δ

∣
∣
∣
∣

ν1s2 ∫ T

0

(∫ t2

0

(

t2 + τ

2
− ρ

)−λ‖ f (ρ)‖Y dρ

)s2

dτ

≤ C

∣
∣
∣
∣

t2 − t1
δ

∣
∣
∣
∣

ν1s2
‖ f ‖s2

L
s1
α1 (0,t2;Y )

converges to 0 as t2 − t1 → 0 for fixed δ > 0.
Now the proof of continuity in the case of finite s2 is complete. ��

Next we handle the case X∞,α .

Theorem 3.6 Assume that λ = μ + η ∈ (0, 1) for positive μ, η as in (3.1), (3.2), and that
0 < α2 = λ + α1 − 1, 0 < α1 < 1. Let f ∈ L∞

α1
(0, T ; Y ) satisfy the condition

‖ f ‖L∞
α1

(t) := ‖ f ‖L∞
α1

(0,t;Y ) → 0 as t → 0. (3.6)

(i) For t ∈ (0, T ),

‖N f (t)‖X T∞,α2
≤ CT ‖ f ‖L∞

α1
(t). (3.7)

Particularly, N f (t) → 0 as t → 0 in X∞,α2 and N f (t) ∈ X̊∞,α2 .
(ii) N f ∈ C

([0, T ], X̊∞,α2

)

.

Proof (i) We first observe, by (3.2) and the analyticity of e−t A, that for 0 ≤ τ < T

τα2
∥
∥e−τ AN f (t)

∥
∥
X ≤ Cτα2

∫ t

0
(t + τ − ρ)−λρ−α1 dρ ‖ f ‖L∞

α1
(t).

Thus, for t ≤ τ < T ,

sup
t≤τ<T

τα2
∥
∥e−τ AN f (t)

∥
∥
X ≤ C sup

t≤τ<T
τα2

∫ τ

0
(τ − ρ)−λρ−α1 dρ ‖ f ‖L∞

α1
(t)

≤ CB‖ f ‖L∞
α1

(t)

by the scale balance, where B = B(1 − λ, 1 − α1) is the beta function. For τ ≤ t , we have

sup
0<τ<t

τα2
∥
∥e−τ AN f (t)

∥
∥
X ≤ C sup

0<τ<t
τα2

∫ t

0
(t − ρ)−λρ−α1 dρ ‖ f ‖L∞

α1
(t)

= CB sup
0<τ<t

τα2 t−α2‖ f ‖L∞
α1

(t)

= CB‖ f ‖L∞
α1

(t). (3.8)

Hence, under assumption (3.6),

‖N f (t)‖X T∞,α2
≤ CB‖ f ‖L∞

α1
(t) → 0 as t → 0.

For fixed t > 0, a modification of (3.8) also yields for 0 < τ < τ0 < t the estimate

sup
0<τ<τ0

τα2
∥
∥e−τ AN f (t)

∥
∥
X ≤ C(t) sup

0<τ<τ0

τα2 · ‖ f ‖L∞
α1

(t),

i.e. N f (t) ∈ X̊∞,α2 .
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(ii) It remains to prove the continuity of N f (t) inX∞,α2 for t ≥ δ > 0 for arbitrary δ > 0.
By definition for t1 ≥ t2 ≥ δ > 0, we observe that

(N f )(t1) − (N f )(t2)

=
∫ t1

t2
Aμe−(t1−ρ)A f (ρ) dρ +

∫ t2

0

(

e−(t1−t2)A − I
)

Aμe−(t2−ρ)A f (ρ) dρ

=: I1 + I2.

The term I1 is easy to treat. Due to the boundedness of the operator family e−τ A, 0 ≤
τ ≤ T , on X it suffices to consider ‖I1‖X directly. If 0 < τ < T ,

‖I1‖X ≤ c
∫ t1

t2
(t1 − ρ)−λρ−α1 dρ ‖ f ‖L∞

α1
(T )

≤ cδ

∫ t1

t2
(t1 − ρ)−λ dρ ‖ f ‖L∞

α1
(T )

≤ Cδ(t1 − t2)
1−λ‖ f ‖L∞

α1
(T ).

Thus,

lim sup
t1−t2→0
t1,t2≥δ

sup
0<τ<T

τα2

∥
∥
∥e−τ AI1

∥
∥
∥
X

= 0.

For the estimate of I2, we consider ‖I2‖X directly. By Lemma 3.2 (ii) and with 0 < β <

1 − λ,

‖I2‖X ≤ c
∫ t2

0

(
t1 − t2
t2 − ρ

)β

(t2 − ρ)−λ‖ f (ρ)‖Y dρ

≤ c(t1 − t2)
β

∫ t2

0
(t2 − ρ)−λ−βρ−α1 dρ ‖ f ‖L∞

α1
(T )

≤ cδ(t1 − t2)
β‖ f ‖L∞

α1
(T )

since t2 ≥ δ > 0. We thus conclude that

lim sup
t1−t2→0
t1,t2≥δ

sup
0<τ<T

∥
∥τα2e−τ AI2

∥
∥
X = 0.

Now the assertion N f ∈ C
(

(0, T ];X∞,α2

)

is proved. ��

4 Proof of main theorems

We shall prove Theorems 1.1 and 1.2 based on the abstract results given in the previous
section.

Proof of Theorem 1.1 We first note that if X = Lq
σ (�), A is taken as the Stokes operator

and if 2/s + 3/q = 1 − 2α, the Besov space B−1+3/q
q,s is identical with the weighted space

X T
s,α = Xs,α (for all 0 < T ≤ ∞) with equivalent norms; see Sect. 2 and Theorem 5.1. For

u0 ∈ B
−1+3/q
q,s , the Ls

α(Lq)-strong solution u satisfies the integral equation
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u(t) = e−t Au0 −
∫ t

0
e−(t−ρ)A

P∇ · ((u ⊗ u)(ρ) − F(ρ)) dρ

= e−t Au0 −
∫ t

0
A1/2e−(t−ρ)A A−1/2

P∇ · ((u ⊗ u)(ρ) − F(ρ)) dρ, (4.1)

where A−1/2
P∇ is bounded in any Lr (�)-space, 1 < r < ∞ (see Giga and Miyakawa [15]

and Sohr [26]). We observe from the assumptions u ∈ Ls
σ (Lq) and F ∈ Ls/2

2α (Lq/2) that

f := A−1/2
P∇ · ((u ⊗ u) − F) ∈ Ls/2

2α

(

0, T ; Lq/2
σ (�)

)

.

We take Y = Lq/2
σ (�) and X = Lq

σ (�) and rewrite (4.1) as

u(t) = e−t Au0 + N f (t)

with μ = 1/2. By Proposition 3.1, e−t Au0 ∈ C
([0,∞), Xs,α

)

. Since, see [15],
∥
∥e−t Av

∥
∥
X ≤ CT t

−η‖v‖Y
with η = 3/2q , the operator N satisfies assumptions (3.1), (3.3) with μ = 1/2, η = 3/2q .
Thus, Theorem 3.5 implies that N f ∈ C

([0,∞),Xs,α
)

. ��

Proof of Theorem 1.2 Obviously, the condition u0 ∈ B̊
−1+3/q
q,∞ is equivalent to say that u0 ∈

X̊∞,α with 3/q = 1− 2α. We recall the construction of the solution of (4.1) by the iteration

u1(t) = e−t Au0,

um+1(t) = e−t Au0 −
∫ t

0
A1/2e−(t−ρ)A A−1/2

P∇ · (um ⊗ um − F)(ρ) dρ (m ≥ 1).

Since u0 ∈ X̊∞,α , by Proposition 3.1 (iii) u1(t) = e−t Au0 ∈ C
([0, T ]; X̊∞,α

)

and even
‖u1‖L∞

α (0,t;X) → 0 as t → 0. By the assumption on F in Theorem 1.2, we conclude from
Proposition 3.4 inductively that ‖um+1‖L∞

α (0,t;X) → 0 as t → 0 for every m ∈ N. Hence,
also the limit solution u which is the limit of (um) in L∞

α (0, T ; X) has the same property at
t = 0.

We now consider (4.1) and apply Proposition 3.1 and Theorem 3.6, under assumption
(3.6) satisfied by u, F , to get the desired continuity. ��
Proof of Theorem 1.3 Let u, v be Ls

α(Lq)-strong solutions of (1.1) with data f = div F, u0
and g = divG, v0. Beingmild solutions of (4.1), the differencew = u−v solves the integral
equation

w(t) = e−t Aw0 −
∫ t

0
A1/2e−(t−ρ)A A−1/2

P∇ · (w ⊗ u + v ⊗ w − (F − G))(ρ) dρ

= e−t Aw0 − (Ng)(t), (4.2)

where the linear operator N is defined by (3.1) with μ = 1
2 , X = Lq(�), Y = Lq/2(�),

η = 3
2q in (3.2), and

g = A−1/2
P∇ · (w ⊗ u + v ⊗ w − (F − G))

satisfies the elementary estimate

‖g‖
Ls/2
2α (Lq/2)

≤ c
(‖w‖Ls

α(Lq )

(‖u‖Ls
α(Lq ) + ‖v‖Ls

α(Lq )

) + ‖F − G‖
Ls/2
2α (Lq/2)

)

. (4.3)
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Now Lemma 3.3 with exponents

s1 = s

2
, α1 = 2α, s2 = s, α2 = α and λ = 1

2
+ 3

2q
(4.4)

implies that

‖Ng‖Ls2
α2 (Lq )

≤ C‖g‖Ls1
α1 (Lq/2)

. (4.5)

Since ‖e−t Aw0‖Ls
α(Lq ) ≤ ‖w0‖X T

s,α
, Proposition 3.4 and (4.3) lead to the estimate

‖w‖Ls
α(Lq ) ≤ ‖w0‖X T

s,α
+ C

(‖w‖Ls
α(Lq )

(‖u‖Ls
α(Lq ) + ‖v‖Ls

α(Lq )

) + ‖F − G‖
Ls/2
2α (Lq/2)

)

,

(4.6)

where the Ls
α(Lq)-norm is considered on a time interval (0, T ). Choosing T0 ≤ T such

that, as in the assumption of Theorem 1.3, ‖u, v‖Ls
α(0,T0;Lq ) ≤ ε∗ with 2Cε∗ ≤ 1

2 the term
involving w on the right-hand side of (4.6) can be absorbed. This proves the estimate (1.4),
but still with the left-hand side replaced by ‖u − v‖Ls

α(Lq ).
Next we apply (3.4) from Theorem 3.5 to (4.2) to get that

‖w(t)‖X T
s,α

≤ ‖u0 − v0‖X T
s,α

+ ‖Ng(t)‖X T
s,α

≤ ‖u0 − v0‖X T
s,α

+ C‖g‖
Ls/2
2α (0,T ;Lq/2)

≤ ‖u0 − v0‖X T
s,α

+ C‖F − G‖
Ls/2
2α (0,T ;Lq/2)

+ C‖w‖Ls
α(0,T ;Lq )(‖u‖Ls

α(0,T ;Lq ) + ‖v‖Ls
α(0,T ;Lq )

)

. (4.7)

Under the smallness assumption on ‖u, v‖Ls
α(0,T0;Lq ) for a suitable 0 < T0 ≤ T , we can

insert (4.6), i.e. (1.4) with the left-hand side ‖u − v‖Ls
α(0,T0;Lq ) instead of ‖u − v‖X T

s,α
, into

(4.7) and conclude the proof of Theorem 1.3. ��
Proof of Theorem 1.4 The proof is similar to the proof of Theorem 1.3. Here s′

1 = s′
2 = 1 and

(3.7) from Theorem 3.6 is applied to (4.6). ��
Remark 4.1 (i) Our continuity results (Theorems 1.1 and 1.2) have an overlap with results
in [16, Remark 4.19, Theorem 4.20]. Their external force f is allowed to be of the form
f = f0 + div F , where both f and F are t-dependent but with values in L2(�). If there are
no external forces, our results are contained in their results.However, in [16] a heavy, technical
machinery based on interpolation and extrapolation spaces is applied to abstract parabolic
equations with quadratic nonlinearity. Our approach is much more direct and simple and
uses only basic terminology from interpolation theory including—in one step—the duality
theorem of real interpolation.

(ii) The results of Amann [2] cannot be compared with ours. In [2, Sect. 5], he considers
more regular solutions with initial value in B̊

−1+3/q
q,∞ but with forces in weighted C0 spaces

so that solutions are classically regular for t > 0; see [2, Theorem 6.1]. Although a weaker
force is discussed in [2, Remark 7.3], his space is not of Besov type but of Bessel potential
type in the analysis of the Navier–Stokes system on a domain.

5 Appendix: Besov spaces

For 1 < q < ∞, 1 ≤ r ≤ ∞ and t ∈ R, let Bt
q,r (R

3) denote the usual Besov spaces, see
[30, 2.3.1], and define for the bounded domain � ⊂ R

3 the space Bt
q,r (�) by restriction of
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elements in Bt
q,r (R

3) in the sense of distributions to �; the norm of u ∈ Bt
q,r (�) is defined

by ‖u‖Bt
q,r (�) = inf

{‖v‖Bt
q,r (R

3) : v ∈ Bt
q,r (R

3), v|� = u
}

. Concerning Besov spaces on �

with vanishing trace—if possible—the definition is modified as follows: Considering only
vector fields rather than scalar-valued functions and the range t ∈ [−2, 2], we follow Amann
[2,3] and define

Bt
q,r (�) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{u ∈ Bt
q,r (�)3; u|∂�

= 0}, 1/q < t ≤ 2,

{u ∈ B1/q
q,r (R3)3; supp(u) ⊂ �}, 1/q = t,

Bt
q,r (�)3, 0 ≤ t < 1/q,

(

B−t
q ′,r ′(�)

)′
(1 < r ≤ ∞), −2 ≤ t < 0.

(5.1)

For spaces of solenoidal vector fields on �, let

B
t
q,r (�) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Bt
q,r (�) ∩ Lq

σ (�), 0 < t ≤ 2,

cl
(

C∞
c,σ (�)

)

in B0
q,r (�), t = 0,

(

B
−t
q ′,r ′(�)

)′
(1 < r ≤ ∞), −2 ≤ t < 0,

(5.2)

where “cl” denotes the closure. Note that u ∈ B
t
q,r (�) with 1

q < t ≤ 2 vanishes on ∂�

by (5.1), but that only the normal component of u vanishes on ∂� when 0 < t ≤ 1
q since

u ∈ Lq
σ (�). The definition for t = 0 is more involved since the inclusion Lq(�) ⊂ B0

q,r (�)

holds if and only if either 2 ≤ q ≤ r or q ≤ 2 ≤ r . For r = ∞, the space is also called
Nikol’skii space and denoted by N

t
q(�).

Moreover, we need the spaces (little Nikol’skii spaces, also denoted as ıntq(�))

B̊
t
q,∞(�) := cl

(

Ht
q(�) ∩ Lq

σ (�)
)

in B
t
q,∞(�),

where Ht
q(�) is a Bessel potential space defined by restriction of the usual Bessel potential

space Ht
q(R

3)3 to vector fields on � (vanishing on ∂� if t > 1
q as in (5.1)), cf. [3, pp. 3–4].

Using the notation (·, ·)θ,r , 1 ≤ r < ∞, of real interpolation, and (·, ·)0θ,∞ for the continuous
interpolation functor, Theorem 3.4 in [2] states that for 0 < θ < 1

(Lq
σ (�),D(Aq))θ,r = B

2θ
q,r (�), (5.3)

(Lq
σ (�),D(Aq))

0
θ,∞ = B̊

2θ
q,∞(�). (5.4)

Note that D(Aq) is equipped with its graph norm, and that for a bounded domain this graph
norm can be simplified to ‖Aq · ‖q since 0 ∈ ρ(Aq). As is well known ([23, Proposition 6.2,
Exercise 6.1.1 (1)], equivalent norms on the spaces (Lq

σ (�),D(Aq))θ,r , 1 ≤ r ≤ ∞, are
given by

‖u‖B2θ
q,r

∼
( ∫ T

0

(

τ 1−θ‖Aqe
−τ Aq u‖q

)r dτ

τ

)1/r
if 1 ≤ r < ∞, (5.5)

and for r = ∞
‖u‖(Lq

σ ,D(Aq ))θ,∞ ∼ sup
(0,T )

τ 1−θ‖Aqe
−τ Aq u‖q if r = ∞, (5.6)
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where T ∈ (0,∞) can be chosen arbitrarily. The space B̊2θ
q,∞(�) is equipped with the norm

of (Lq
σ (�),D(Aq))θ,∞, but elements u ∈ B̊

2θ
q,∞(�) enjoy the further property that

lim
τ→0

τ 1−θ‖Aqe
−τ Aq u‖q = 0. (5.7)

We note that the identity (5.4) for the usual interpolation space (Lq
σ (�),D(Aq))θ,∞ and the

Besov spaceB2θ
q,∞(�) is not found in the literature. This remark also applies to (5.12) dealing

with negative exponents θ .
To obtain similar representations for negative exponents of regularity as well recall that

for −1 < θ < 0 and 1 < r ≤ ∞ by (5.2), (5.3) and the duality theorem of real interpolation
([30, Theorem 1.11.2])

(

Lq
σ (�),D(Aq ′)′

)

−θ,r = ((

Lq ′
σ (�),D(Aq ′)

)

−θ,r ′
)′ = (

B
−2θ
q ′,r ′(�)

)′ = B
2θ
q,r (�).

Then we get the characterizations (here −1 < θ < 0):

(D(Aq ′)′, Lq
σ (�)

)

1+θ,r = B
2θ
q,r (�), 1 ≤ r < ∞, (5.8)

(D(Aq ′)′, Lq
σ (�)

)

1+θ,∞ = B
2θ
q,∞(�) ∼= B2θ

q,∞(�)/
(

B
−2θ
q ′,1 (�)

)⊥
, (5.9)

(D(Aq ′)′, Lq
σ (�)

)0
1+θ,∞ = B̊

2θ
q,∞(�) = cl

(

H2
q(�)

)

in
(

B
−2θ
q ′,1 (�)

)′
. (5.10)

Actually, (5.8) for r = 1and (5.10) follow from[2,Theorem3.4], [3, p. 4], for all−1 < θ < 0;
the space B̊2θ

q,∞(�) also coincides with the closure cl
(

Lq
σ (�)) in B

2θ
q,∞(�). To prove (5.9),

we exploit the isomorphism

B
2θ
q,∞(�) = (

B
−2θ
q ′,1 (�)

)′ ∼= B2θ
q,∞(�)/(B−2θ

q ′,1 (�))⊥;
see [2, Remark 3.6] and its proof as well as definitions (5.1), (5.2).

Furthermore, note from Sect. 2 that Aq is an isomorphism fromD(Aq) to Lq
σ (�) and also

from Lq
σ (�) to D(Aq ′)′. Hence, for all 1 ≤ r ≤ ∞ and −1 < θ < 0

(D(Aq ′)′, Lq
σ (�)

)

1+θ,r = A
((

Lq
σ (�),D(Aq)

)

1+θ,r

)

, (5.11)

with a similar result for the continuous interpolation functor (·, ·)0θ,∞.
Thus, for any 1 ≤ r ≤ ∞ and −1 < θ < 0, by (5.11), (5.8), (5.9) and (5.3),

(D(Aq ′)′, Lq
σ (�)

)

1+θ,r = A
((

Lq
σ (�),D(Aq)

)

1+θ,r

) = B
2θ
q,r (�) with equivalent norm

‖u‖A((Lq
σ (�),D(Aq ))1+θ,r )

∼
⎧

⎨

⎩

( ∫ T

0

(

τ−θ‖e−τ Aq u‖q
)r dτ

τ

)1/r
if 1 ≤ r < ∞,

supτ∈(0,T ) τ−θ‖e−τ Aq u‖q if r = ∞.

(5.12)

This result was used in [12] when 2
r + 3

q = 1, θ = 0, 2 < r < ∞. For the continuous

interpolation space
(D(Aq ′)′, Lq

σ (�)
)0
1+θ,∞ = B̊

2θ
q,∞(�),wehave thenormdefined in (5.12),

with the additional property that

lim
τ→0

τ−θ‖e−τ Aq u‖q = 0.

Summarizing the previous arguments, we get the following theorem.
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Theorem 5.1 Choose any T ∈ (0,∞).

(i) Let 2 < s < ∞, 3 < q < ∞ and 0 < α < 1
2 such that 2

s + 3
q = 1 − 2α. Then the real

interpolation space
(D(Aq ′)′, Lq

σ (�)
)

1−α,s coincides with the Besov spaceB
−1+3/q
q,s (�)

and has the equivalent norm
(∫ T

0 (τα‖e−τ Aq u‖q)s dτ
)1/s

.
(ii) If 3 < q < ∞ and 0 < α < 1

2 such that 3
q = 1 − 2α, the real interpolation space

(D(Aq ′)′, Lq
σ (�)

)

1−α,∞ coincides with the space of Besov type B
−1+3/q
q,∞ (�) and has

the equivalent norm supτ∈(0,T ) τ α‖e−τ Aq u‖q .
(iii) The interpolation space

(D(Aq ′)′, Lq
σ (�)

)0
1−α,∞ equals the Besov space B̊−1+3/q

q,∞ (�),

equippedwith the normofB−1+3/q
q,∞ (�) such that the property limτ→0 τα‖e−τ Aq u‖q = 0

additionally holds for u ∈ B̊
−1+3/q
q,∞ (�).
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4. Bourgain, J., Pavlović, N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct.

Anal. 255, 2233–2247 (2008)
5. Cheskidov, A., Shvydkoy, R.: Ill-posedness of the basic equations of fluid dynamics in Besov spaces.

Proc. Am. Math. Soc. 138, 1059–1067 (2010)
6. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, Berlin

(2000)
7. Farwig, R.: On regularity of weak solutions to the instationary Navier–Stokes system: a review on recent

results. Ann. Univ. Ferrara, Sez. VII. Sci. Mat. 60, 91–122 (2014)
8. Farwig, R., Giga, Y., Hsu, P.-Y.: Initial values for the Navier–Stokes equations in spaces with weights in

time. Funkcial. Ekvac. 59, 199–216 (2016)
9. Farwig, R., Giga, Y., Hsu, P.-Y.: The Navier–Stokes equations with initial values in Besov spaces of type

B−1+3/q
q,∞ . J. Korean Math. Soc. 54, 1483–1504 (2017)

10. Farwig, R., Sohr, H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded
domains. J. Math. Soc. Japan 46, 607–643 (1994)

11. Farwig, R., Sohr, H.: Optimal initial value conditions for the existence of local strong solutions of the
Navier–Stokes equations. Math. Ann. 345, 631–642 (2009)

12. Farwig, R., Sohr, H., Varnhorn, W.: On optimal initial value conditions for local strong solutions of the
Navier–Stokes equations. Ann. Univ. Ferrara Sez. VII. Sci. Mat. 55, 89–110 (2009)

13. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 16, 269–315
(1964)

14. Giga, Y.: Solution for semilinear parabolic equations in L p and regularity of weak solutions for the
Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

15. Giga, Y., Miyakawa, T.: Solutions in Lr of the Navier–Stokes initial value problem. Arch. Ration. Mech.
Anal. 89, 267–281 (1985)

16. Haak, B.H., Kunstmann, P.C.: On Kato’s method for Navier–Stokes equations. J. Math. Fluid Mech. 11,
492–535 (2009)

123



On the continuity of the solutions to the Navier–Stokes… 1511

17. Heywood, J.G.: The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana
Univ. Math. J. 29, 639–681 (1980)

18. Kato, T.: Strong L p-solutions of the Navier–Stokes equation in Rm , with applications to weak solutions.
Math. Z. 187, 471–480 (1984)

19. Kiselev, A.A., Ladyzhenskaya, O.A.: On the existence and uniqueness of solutions of the non-stationary
problems for flows of non-compressible fluids. Am. Math. Soc. Transl. II 24, 79–106 (1963)

20. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)
21. Kozono, H., Yamazaki, M.: Local and global unique solvability of the Navier–Stokes exterior problem

with Cauchy data in the space Ln,∞. Houst. J. Math. 21, 755–799 (1995)
22. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)
23. Lunardi, A.: Interpolation Theory. Edizioni Della Normale, Appunti. Sc. Norm. Super. Pisa, 3rd edn.

(2018)
24. Meyer, Y.: Wavelets, Paraproducts and Navier–Stokes Equations. Current Developments in Mathematics.

International Press, Boston (1997)
25. Miyakawa, T.: On the initial value problem for the Navier–Stokes equations in Lr -spaces. Hiroshima

Math. J. 11, 9–20 (1981)
26. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel

(2001)
27. Solonnikov, V.A.: Estimates for solutions of nonstationary Navier–Stokes equations. J. Sov. Math. 8,

467–529 (1977)
28. Stein, E.M.,Weiss, G.: Fractional integrals on n-dimensional Euclidean space. J. Math. Mech. 7, 503–514

(1958)
29. Strichartz, R.S.: L p estimates for integral transforms. Trans. Am. Math. Soc. 136, 33–50 (1969)
30. Triebel, H.: Interpolation Theory, Function Spaces. Differential Operators, Amsterdam (1978)
31. Wang, B.: Ill-posedness for the Navier–Stokes equations in critical Besov spaces Ḃ−1∞,q . Adv. Math. 268,
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