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Abstract Let Syz1(m) be the first syzygy of the graded maximal ideal m of a polynomial
ring K [x1, . . . , xn] over a field K . The multiplicity and (Castelnuovo–Mumford) regularity
of the symmetric algebra Sym(Syz1(m)) are estimated by using the theory of s-sequences.
It is proved that the multiplicity of Sym(Syz1(m)) is 1 when n ≥ 5, and n − 2 is an upper
bound for its regularity. In virtue ofGröbner bases, this bound is shown to be reached provided
n ≤ 5.
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1 Introduction

Let R be a Noetherian ring and M = ( f1, . . . , fn) be a finitely generated R-module. The
symmetric algebra Sym(M) of M is a quotient ring of the polynomial ring R[y1, . . . , yn]
over R. Considering this presentation, s-sequences were introduced to study the properties
of symmetric algebras in [5] (cf. [7,12]). If M is generated by an s-sequence, one obtains
exact values for the dimension dim(Sym(M)) and the multiplicity e(Sym(M)), and bounds
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for the depth depth(Sym(M)) and the (Castelnuovo–Mumford) regularity reg(Sym(M)) by
the same invariants of some special quotients of R by the annihilator ideals.

Let K be a field, K [x1, . . . , xn] be a polynomial ring over K and m = (x1, . . . , xn). The
first syzygy ofm is denoted by Syz1(m). Our topic is the symmetric algebra Sym(Syz1(m)).
In [10], the authors obtained the dimension and depth of Sym(Syz1(m)). In this paper, we
will continue to study the multiplicity and regularity of Sym(Syz1(m)).

We calculate the multiplicity of Sym(Syz1(m)) in Sect. 3. In order to get the regularity of
Sym(Syz1(m)), we need to estimate the regularity of the initial ideals of certain annihilator
ideals in Sect. 4, where some new results in [3] and [8] are applied. In Sect. 5, an upper bound
for the regularity of Sym(Syz1(m)) is given. When n ≤ 5, using Buchberger’s algorithm,
we find a set of minimal generators for the second syzygy module of Sym(Syz1(m)). The
degrees of these generators give a lower bound for the regularity. Then we obtain an equality
for the regularity of Sym(Syz1(m)) provided n ≤ 5.

2 Preliminaries

Let R be a Noetherian ring and M = ( f1, . . . , fn) be a finitely generated R-module. Then
M has a presentation

Rm −→ Rn −→ M −→ 0

with a relation matrix A = (ai j )m×n . The symmetric algebra Sym(M) has the presentation

R[y1, . . . , yn]/J,

where J = (g1, . . . , gm) and gi = ∑n
j=1 ai j y j , i = 1, . . . , m.

Let P = R[y1, . . . , yn] which is a graded R-algebra. Then J is a graded ideal, and
Sym(M) is a graded R-algebra. Assign degree one to each variable yi and degree zero to
the elements of R. Let < be a monomial order induced by y1 < · · · < yn . For any f ∈ P ,
f = ∑

α aα yα , we put in( f ) = aα yα where yα is the largest monomial with respect to the
given order such that aα �= 0. We call in( f ) the initial term of f and define the ideal

in(J ) = (in( f ) : f ∈ J ),

which is generated bymonomials in y1, . . . , yn with coefficients in R and is finitely generated
since P is Noetherian.

For i = 1, . . . , n, we set Mi = ∑i
j=1 R f j and let Ii = Mi−1 :R fi = {a ∈ R : a fi ∈

Mi−1}. We also set I0 = 0. Then Ii is the annihilator ideal of the cyclic module Mi/Mi−1.
It is clear that

(I1y1, . . . , In yn) ⊆ in(J ),

and the two ideals coincide in degree one.

Definition 2.1 The generators f1, . . . , fn of M are called an s-sequence (with respect to<),
if

(I1y1, . . . , In yn) = in(J ).

If, in addition, I1 ⊆ I2 ⊆ · · · ⊆ In , then f1, . . . , fn is called a strong s-sequence.
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Let S = K [x1, . . . , xd ] be a polynomial ring over a field K and M a finitely generated
graded S-module. Let

· · · → Fj
φ j→ · · · → F1

φ1→ F0 → M → 0

be a graded minimal free resolution of M , where Fj = ⊕i S(−a ji ). Im(φ j ) is called the j-th
syzygy module of M . One says that M is m-regular if a ji − j ≤ m for all i, j and defines
the Castelnuovo–Mumford regularity (or regularity) of M by

reg(M) = min{m : M is m-regular}.
Let J be a graded ideal of S. Notice that the i-th syzygy of J is just the (i + 1)-th syzygy of
S/J . It follows that reg(J ) = reg(S/J ) + 1. On the other hand, if g is a minimal generator
of J , then reg(J ) ≥ deg(g), and if h is a minimal generator of the first syzygy module of J ,
which is the second syzygy module of S/J , then reg(J ) ≥ deg(h) − 1, and so on. For the
properties of the regularity, we refer to [1].

Lemma 2.2 ([5, Propositions 2.4 and 2.6]) Suppose that f1, . . . , fn form a strong s-sequence
and have the same degree. Let d = dim(Sym(M)). Then

e(Sym(M)) =
∑

r≥0,dim(R/Ir )=d−r

e(R/Ir ),

and

reg(Sym(M)) ≤ max{reg(Ir ) : r = 1, . . . , n}.
Assume from now on that n ≥ 3. Let K be a field, S = K [x1, . . . , xn] be a polynomial

ring andm = (x1, . . . , xn) be the graded maximal ideal of S. Denote the first syzygy ofm by
Syz1(m). From the Koszul complex of S with respect to x1, . . . , xn , one has a presentation
of Syz1(m) as an S-module

S(n
3) −→ S(n

2) −→ Syz1(m) −→ 0.

It follows that the symmetric algebra of Syz1(m) has the presentation

SymS(Syz1(m)) = S[yi j : 1 ≤ i < j ≤ n]/J,

where J is the ideal of S[yi j : 1 ≤ i < j ≤ n] generated by the set
{

xi y jk − x j yik + xk yi j : 1 ≤ i < j < k ≤ n
}
.

Since the generators of Syz1(m) do not form an s-sequence in general with respect to the
term order xi < y12 < y13 < · · · < yn−1,n , we cannot apply the theory of s-sequences in
this form. However, the Jacobian dual of Syz1(m) can help us.

Let Q = K [yi j : 1 ≤ i < j ≤ n]. Then the Jacobian dual Syz1(m)∨ of Syz1(m) is a
Q-module with a presentation

Q(n
3) −→ Qn −→ Syz1(m)∨ −→ 0,

and

Sym(Syz1(m)) ∼= Sym(Syz1(m)∨) ∼= Q[x1, . . . , xn]/J,

cf. [11]. We will use this new presentation of Sym(Syz1(m)) to estimate its multiplicity and
regularity.
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Lemma 2.3 ([7, Lemma 3.1 and Proposition 3.3]) Let Y = (yi j )n×n be the skew-symmetric
matrix where yi j = −y ji and yii = 0. Then the set

{xi y jk − x j yik + xk yi j : 1 ≤ i < j < k ≤ n} ∪ {xr P2(Y ) : 1 ≤ r ≤ n}
is a Gröbner basis of J with respect to the term order

xn > xn−1 > · · · > x1 > y1n > y1,n−1 > · · · > y12 > y2n > y2,n−1 > · · · > yn−1,n,

where P2(Y ) is the set of all 4-Pfaffians of Y .
Let x∗

i be the image of xi in Sym(Syz1(m)), i = 1, . . . , n. Then x∗
1 , . . . , x∗

n is a strong
s-sequence with the annihilator ideal

Ir = ({yi j : 1 ≤ i < j < r} ∪ P2(Y ))

= ({yi j : 1 ≤ i < j < r} ∪ {yil y jk − yik y jl + yi j ykl : 1 ≤ i < j < k < � ≤ n}),
r = 1, . . . , n,

which are ideals of Q.

Notice that I1 = I2, and when n = 3, I1 = I2 = 0.
Then, by Lemma 2.2,

e(Sym(Syz1(m))) =
∑

r≥0,dim(Q/Ir )=d−r

e(Q/Ir ),

where d = dim(Sym(Syz1(m))), and

reg(Sym(Syz1(m))) ≤ max{reg(Ir ) : r = 1, . . . , n}.

3 Multiplicity of the symmetric algebra

For the multiplicity of the symmetric algebra Sym(Syz1(m)), we have the following equali-
ties.

Theorem 3.1 If n �= 4, then

e(Sym(Syz1(m))) = 1,

and, if n = 4 then

e(Sym(Syz1(m))) = 5.

Proof Let d = dim(Sym(Syz1(m))). Then, by [10, Theorem 4.1], d = max{ n(n−1)
2 , 2n−1}.

Let us calculate the multiplicity e(Q/Ir ) with dim(Q/Ir ) = d − r . Notice that I1 = I2 and,
by [10, Proposition 3.4], dim(Q/Ir ) = 2n − 1 − r for r ≥ 2.

Firstly, suppose that n = 3. In this case, d = 5, I1 = I2 = 0, I3 = (y12) and dim(Q/I3) =
2 = d − 3. Then

e(Sym(Syz1(m))) = e(Q/I3) = 1.

Now assume that n = 4. Then d = 7 and dim(Q/Ir ) + r = d for r = 2, 3, 4. We have

e(Sym(Syz1(m))) = e(Q/I2) + e(Q/I3) + e(Q/I4).
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Notice that

Q/I2 = Q/(P2(Y )),

Q/I3 = K [y13, y14, y23, y24, y34]/(y14y23 − y13y24),

Q/I4 = K [y14, y24, y34].
For the multiplicity of a Pfaffian ideal, by [6, Theorem 5.6], we have the following result:

If Y is a 2r × 2r generic skew matrix of indeterminates and R = K [Y ], then

e(R/(Pr (Y ))) = det

[(
2

−i + j + 1

)

−
(

2

−i − j + 1

)]

i, j=1,...,r−1
,

from which we have

e(Q/I2) =
(
2

1

)

−
(

2

−1

)

= 2.

For the multiplicity of a determinantal ideal, there is a well-known result (cf. [6]): If X is
an n × n generic matrix of indeterminates and R = K [X ], then

e(R/(det(X))) = det

[(
2n − i − j

n − i

)]

i, j=1,...,n−1
,

which implies that

e(Q/I3) = e(K [y13, y14, y23, y24]/(y14y23 − y13y24)) =
(
2

1

)

= 2.

It is clear that e(Q/I4) = 1. Hence, in this case, e(Sym(Syz1(m))) = 5.
Finally, suppose that n ≥ 5. Then d = n(n−1)

2 �= r +dim(Q/Ir ) for r = 1, . . . , n. Hence

e(Sym(Syz1(m))) = e(Q) = 1.

The proof is complete. 
�

4 Regularity of annihilators

Let us estimate the regularity reg(Ir ) of an annihilator ideal Ir . Notice that Q/Ir = Qr/I ′
r

where Qr = K [yi j : 1 ≤ i < j ≤ n, j ≥ r ] and
I ′
r = ({yil y jk − yik y jl : 1 ≤ i < j < r ≤ k < l ≤ n}

∪{yil y jk − yik y jl + yi j ykl : 1 ≤ i < j; r ≤ j < k < l ≤ n}).
Then reg(Ir ) = reg(I ′

r ).
In [10], in order to calculate the dimension and depth of Sym(Syz1(m)), the following

result was proved.

Lemma 4.1 ([10, Lemma 3.3 and Proposition 3.4]) Qr/I ′
r is Cohen–Macaulay of dimension

2n − 1 − r for r ≥ 2 and

in(I ′
r ) = (in(A) : A is a 2-minor of Y ′

r )

with the term order

y1n > y1,n−1 > · · · > y12 > y2n > y2,n−1 > · · · > y23 > · · · · · · > yn−1,n,
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where

Y ′
r =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1r y1,r+1 · · · y1n

· · · · · ·
yr−1,r yr−1,r+1 · · · yr−1,n

yr,r+1 · · · yrn

· · ·
yn−1,n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let Z ′
nr be the mirror symmetry of Y ′

r :

Z ′
nr =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

z11 z12 · · · z1,n−r z1,n−r+1

· · · · · ·
zr−1,1 zr−1,2 · · · zr−1,n−r zr−1,n−r+1

zr1 zr2 · · · zr,n−r

· · ·
zn−1,1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

i.e., zi j = yi,n− j+1, and let the term order <′ be as the following

z11 >′ z12 >′ · · · >′ z1,n−r+1 >′ z21 >′ z22 >′ · · · >′ z2,n−r+1 >′ · · · · · · >′ zn−1,1.

Notice that, by changing the variables from yi j to zi j and the term order from < to <′, Qr

and in(I ′
r ) remain the same. Then

in(I ′
r ) = (in<′(B) : B is a 2-minor of Z ′

nr ).

Let I2(Z ′
nr ) be the ideal of Qr generated by all the 2-minors of Z ′

nr . Since Z ′
nr is a

ladder, by [9, Corollary 3.4], the set of 2-minors of Z ′
nr forms a Gröbner basis. It follows that

in(I ′
r ) = in<′(I2(Z ′

nr )).
Set [n] = {1, . . . , n}. Let us identify zi j with its index (i, j). Then Z ′

nr is an ideal poset
of [n] × [n] where (i, j) ≤ (k, l) if and only if i ≤ k and j ≤ l (cf. [4, §9.1.2]). For any set
S, denote the set of indeterminates xs, s ∈ S, by xS . Let L(2, Z ′

nr ) be the monomial ideal of
K [x[2]×Z ′

nr
] generated by the following monomials:

x1px2q , p, q ∈ Z ′
nr , p ≤ q.

By [2, Theorem 2.4], L(2, Z ′
nr ) is a Cohen–Macaulay ideal, hence, unmixed (L(n, Z ′

nr ) is
just I2,2(Z ′

nr ) with the notation of [2]). Then Theorem 4.4 of [8] claims that the regularity
of K [x[2]×Z ′

nr
]/L(2, Z ′

nr ) is just the maximal cardinality of an antichain in Z ′
nr , where an

antichain in Z ′
nr is a sequence of points in Z ′

nr with the property that any two points are
incomparable. From the shape of Z ′

nr , it is easy to see that this maximal cardinality is
n − r + 1. Then, we have proved the following

Lemma 4.2 reg(K [x[2]×Z ′
nr

]/L(2, Z ′
nr )) = n − r + 1.

In [3], the authors developed one method by which one gets the same regularity by cutting
down a regular sequence from K [x[2]×Z ′

nr
]/L(2, Z ′

nr ).
Let

φ : [2] × Z ′
nr → [n + 1] × [n + 1]

(1, i, j) �→ (i, j)

(2, i, j) �→ (i + 1, j + 1),
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and Lφ(2, Z ′
nr ) be the monomial ideal of K [x[n+1]×[n+1]] generated by the following mono-

mials:

xi j xi ′+1, j ′+1, (i, j), (i ′, j ′) ∈ Z ′
nr , (i, j) ≤ (i ′, j ′).

Then, by [3, Corollary 2.3], the following result holds.

Lemma 4.3 ([3, Corollary 2.3]) The quotient rings K [x[2]×Z ′
nr

]/L(2, Z ′
nr ) and

K [x[n+1]×[n+1]]/Lφ(2, Z ′
nr ) have the same regularity.

Notice that the generators of Lφ(2, Z ′
nr ) are just the initial terms of the 2-minors of

Z ′
n+2,r+1 (identifying xi j with zi j ) with respect to the term order <′, which form a Gröbner

basis as we have noted before. It follows that Lφ(2, Z ′
nr ) = in<′(I2(Z ′

n+2,r+1)).
Then we have the following crucial lemma.

Lemma 4.4 For r = 3, . . . , n,

reg(in<′(I2(Z ′
nr ))) = n − r + 1.

Proof It is because

reg(in<′(I2(Z ′
nr ))) = reg(K [x[n+1]×[n+1]]/Lφ(2, Z ′

n−2,r−1)) + 1

= reg(K [x[2]×Z ′
n−2,r−1

]/L(2, Z ′
n−2,r−1)) + 1

= n − r + 1,

where the last equality follows from Lemma 4.2. 
�

5 Regularity of the symmetric algebra

Now, we can estimate the regularity of the symmetric algebra Sym(Syz1(m)).

Theorem 5.1 If n ≥ 3, then

reg(Sym(Syz1(m))) ≤ n − 2.

Proof Notice that I1 = I2, in<′(I2(Z ′
n2)) = in<′(I2(Z ′

n3)) and

reg(Ir ) = reg(I ′
r ) ≤ reg(in(I ′

r )) = reg(in<′(I2(Z ′
nr ))).

Then, by Lemmas 2.2 and 4.4, we have that

reg(Sym(Syz1(m))) ≤ max{reg(Ir ) : r = 2, . . . , n}
≤ max{reg(in<′(I2(Z ′

nr ))) : r = 2, . . . , n}
= max{reg(in<′(I2(Z ′

nr ))) : r = 3, . . . , n}
= max{n − r + 1 : r = 3, . . . , n}
= n − 2.


�
The above theorem obtains an inequality for the regularity of Sym(Syz1(m)). We wish

that the other direction’s inequality could also hold. For this purpose, let us check a graded
minimal free resolution of Sym(Syz1(m)). For any 1 ≤ i < j < k ≤ n, set gi jk =
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yi j xk−yik x j +y jk xi . ThenSym(Syz1(m)) = Q[x1, . . . , xn]/J and J isminimally generated
by gi jk , 1 ≤ i < j < k ≤ n. We can construct the first two steps of a graded minimal free
resolution of Sym(Syz1(m)):

· · · −→
⊕

1≤i< j<k≤n

Q[x1, . . . , xn]ei jk(−2)
φ1−→ Q[x1, . . . , xn] −→ Sym(Syz1(m)) −→ 0,

where φ1(ei jk) = gi jk . From the generators of the first syzygies of Sym(Syz1(m)),
i.e., gi jk , are all of degree 2, we see immediately from the definition of regularity that
reg(Sym(Syz1(m))) ≥ 1. Hence reg(Sym(Syz1(m))) = n − 2 when n = 3. However this
bound is not big enough for n ≥ 4.We have to consider the degrees of the minimal generators
of the second syzygies of Sym(Syz1(m)).

Now assume that n ≥ 4. In order to get that reg(Sym(Syz1(m))) ≥ n − 2, it is enough to
find one minimal generator of Ker(φ1) which has degree n. Since we have found a Gröbner
basis for J , it is possible, as pointed out in [1, page 335], to get a set of generators for the
second syzygy module of Sym(Syz1(m)) by Buchberger’s algorithm:

Lemma 5.2 (cf. [1, Theorem 15.10]) Let S = K [X1, . . . , Xn] and g1, . . . , gs be a set of
minimal generators of a graded ideal I of S. Suppose that g1, . . . , gs, gs+1, . . . , gt form a
Gröbner basis for I with respect to a term order <. Then, for any 1 ≤ i < j ≤ t , the S-pair

S(gi , g j ) := m ji gi − mi j g j =
∑

u

f (i j)
u gu, in( f (i j)

u gu) < in(m ji gi ),

where mi j = in(gi )
gcd(in(gi ),in(g j ))

. Substituting gs+1, . . . , gt in the above expressions in terms of

g1, . . . , gs , one has that

m ji gi − mi j g j =
s∑

u=1

h(i j)
u gu, in(h(i j)

u gu) < in(m ji gi ), 1 ≤ i < j ≤ s.

Define an S-homomorphism

φ :
s⊕

i=1

Sei → I

ei �→ gi .

Set τi j = m ji ei − mi j e j − ∑s
u=1 h(i j)

u eu. Then the set {τi j : 1 ≤ i < j ≤ s} generates
Ker(φ), i.e., the first syzygy module of I .

Notice that, once a set of generators is given as above, some generator τi0, jo is minimal if
and only if τi0, jo is not a linear combination of other generators in this set. We will use this
idea to find a satisfied minimal generator.

It is clear that every element of Ker(φ1) is a linear combination:
∑

1≤i< j<k≤n

fi jkei jk, fi jk ∈ Q[x1, . . . , xn].

We call fi jk the coefficient of ei jk , which is a polynomial in variables x1, . . . , xn , yi j , 1 ≤
i < j ≤ n. Sometimes, we write such a linear combination as f123e123 + · · · . Notice that
the degree of fi jkei jk is equal to the degree of fi jk plus two. Therefore, in order to get that
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On invariants of certain symmetric algebras 1931

reg(Sym(Syz1(m))) ≥ n − 2, it is enough to find one minimal homogeneous generator of
Ker(φ1)

∑

1≤i< j<k≤n

fi jkei jk, fi jk ∈ Q[x1, . . . , xn],

where all the nonzero coefficients fi jk are of degree n −2.We will find such generators when
n = 4 or 5 by using Lemma 5.2.

Theorem 5.3 When n = 3 or 4, or n = 5 and char(K ) �= 2,

reg(Sym(Syz1(m))) = n − 2.

Proof We may assume that n ≥ 4. Define an order on Q[x1, . . . , xn] as follows
xn > xn−1 > · · · > x1 > y12 > y13 > · · · > y23 > · · · > yn−1,n .

Set P(r)
i jkl = xr (yi j ykl − yik y jl + yil y jk) for 1 ≤ i < j < k < l ≤ n, 1 ≤ r ≤ n. We will

use the same notation for gi jk and P(r)
i jkl when i, j, k or i, j, k, l are only different and not

necessarily in the above order.
Let us follow the Buchberger’s algorithm to get a Gröbner basis from gi jk, 1 ≤ i <

j < k ≤ n and then, try to find a minimal first syzygy of degree 4 or 5 when n = 4 or
5. The first step is to compute S-pairs S(gi jk, gstl) where we may assume that the initial
terms of gi jk and gstl are not co-prime. There are two possibilities: (i, j) = (s, t), k �= l or
(i, j) �= (s, t), k = l. In the first case, we need to compute S(gi jk, gi jl) with k < l. One has

S(gi jk, gi jl) = xl gi jk − xk gi jl

= −yik x j xl + y jk xi xl + yil x j xk − y jl xi xk

= −x j gikl + xi g jkl ,

which induces a generator of the first syzygy module of J :

xlei jk − xkei jl + x j eikl − xi e jkl .

Notice that this generator is of degree 3 and with coefficients in variables xu . We will see
that this kind of generators would not appear in the second case. We discuss the second case
according to n = 4 or 5.

Assume firstly that n = 4. Then S(gi jk, gstk) with (i, j) �= (s, t) are all the following

S(g124, g134) = y13g124 − y12g134 = y14g123 − P(1)
1234,

S(g124, g234) = y23g124 − y12g234 = y24g123 − P(2)
1234,

S(g134, g234) = y23g134 − y13g234 = y34g123 − P(3)
1234.

It follows that the following elements form a Gröbner basis (cf. Lemma 2.3)

P(1)
1234, P(2)

1234, P(3)
1234, gi jk, 1 ≤ i < j < k ≤ 4.

Substituting P(1)
1234 and P(2)

1234 in the S-pair S(P(1)
1234, P(2)

1234) = x2P(1)
1234 − x1P(2)

1234, one gets
that

(x2y14 − x1y24)g123 + (−x2y13 + x1y23)g124 + x2y12g134 − x1y12g234 = 0,

which induces to the following degree 4 syzygy:

(x2y14 − x1y24)e123 + (−x2y13 + x1y23)e124 + x2y12e134 − x1y12e234.
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It is clear that this syzygy is not a multiple of the unique degree 3 syzygy x4e123 − x3e124 +
x2e134−x1e234. Therefore the above syzygy isminimal. It follows that reg(Sym(Syz1(m))) =
2 when n = 4.

Now assume that n = 5. The possible cases for S(gi jk, gstk) with (i, j) �= (s, t) are the
following

S(g125, g345) = y34g125 − y12g345 = y35g124 − y45g123 − P(2)
1345 + P(1)

2345,

S(g135, g245) = y24g135 − y13g245 = y25g134 + y45g123 − P(3)
1245 − P(1)

2345,

S(g145, g235) = y23g145 − y14g235 = −y15g234 + y45g123 − P(3)
1245 + P(2)

1345,

and, for all 1 ≤ i < j < k < l ≤ 5,

S(gi jl , gikl) = yik gi jl − yi j gikl = yil gi jk − P(i)
i jkl ,

S(gi jl , g jkl) = y jk gi jl − yi j g jkl = y jl gi jk − P( j)
i jkl ,

S(gikl , g jkl) = y jk gikl − yik g jkl = ykl gi jk − P(k)
i jkl .

Assume that char(K ) �= 2. Then from the above first three equations, we can solve P(3)
1245,

P(2)
1345 and P(1)

2345:

P(3)
1245 = 1

2
y45g123 + · · · ,

P(2)
1345 = −1

2
y45g123 + · · · ,

P(1)
2345 = −1

2
y45g123 + · · · .

It follows that the following elements form a Gröbner basis (cf. Lemma 2.3)

P(3)
1245, P(2)

1345, P(1)
2345, P(i)

i jkl , P( j)
i jkl , P(k)

i jkl , 1 ≤ i < j < k < l ≤ 5, gi jk, 1 ≤ i < j < k ≤ 5.

Notice that, as a conclusion, there are no syzygies on {gi jk} of degree 3 with coefficients in
variables yuv .

From

S
(

P(2)
1234, P(2)

2345

)
= y23y45P(2)

1234 − y12y34P(2)
2345

= (y24y35 − y25y34)P(2)
1234 − (y13y24 − y14y23)P(2)

2345

and substituting P(2)
2345 = y23g245 − y24g235 + y25g234 and P(2)

1234 = y24g123 − y23g124 +
y12g234, we get a syzygy of degree 5 with coefficients in variables yuv

(∗) y24(y23y45 − y24y35 + y25y34)e123 + · · · .

We will prove that the above syzygy (∗) is minimal. Then reg(Sym(Syz1(m))) = 3 follows.
Notice that if the syzygy (∗) is not minimal, then (∗) should be a linear combination of

some degree 4 syzygies whose monomials of the coefficient of e123 divide the monomials of
y24(y23y45 − y24y35 + y25y34). Let us identify all such possible degree 4 syzygies. We will
use the exclusive method.

The possible cases appear only in the S-pairs S(P(r)
i jkl , guvr ) with (u, v) �= (i, j) and (k, l)

or S(P(r)
i jkl , P(r)

stuv) with (i, j) = (s, t) or (k, l) = (u, v).
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For the first case S(P(r)
i jkl , guvr ), r must be 3 or 4.When r = 3, there are only two subcases:

S(P(3)
1345, g123) and S(P(3)

2345, g123). When r = 4, it is just S(P(4)
2345, g234). From

S
(

P(3)
1345, g123

)
= y12P(3)

1345 − y13y45g123

= (−y14y45 + y15y34)g123 + y13P(2)
1345 − y23P(1)

1345,

we see that this case should be excluded because y1i appears in the coefficients of e123.
However, one has that

S
(

P(3)
2345, g123

)
= y12P(3)

2345 − y23y45g123

= (−y24y35 + y25y34)g123 + y13P(2)
2345 − y23P(1)

2345,

S
(

P(4)
2345, g124

)
= y12P(4)

2345 − y23y45g124

= (−y24y35 + y25y34)g124 + y14P(2)
2345 − y24P(1)

2345,

from which we get two syzygies:
(
1

2
y23y45 − y24y35 + y25y34

)

e123 + · · · ,

1

2
y24y45e123 + · · · .

For the second case S(P(r)
i jkl , P(r)

stuv) with (i, j) = (s, t) or (k, l) = (u, v), there are six

possibilities: S(P(r)
1245, P(r)

1345) with r ≤ 4, S(P(r)
1235, P(r)

1245) with r ≤ 3, S(P(r)
1234, P(r)

1245) with

r ≤ 3, S(P(r)
1234, P(r)

1235) with r ≤ 3, S(P(r)
1345, P(r)

2345) with r ≤ 4 and S(P(r)
1245, P(r)

2345) with
r ≤ 4.

Since

S
(

P(r)
1245, P(r)

1345

)
= y13P(r)

1245 − y12P(r)
1345 = y14P(r)

1235 − y15P(r)
1234,

and its coefficients are all with some y1s , we see immediately that this possibility is excluded.
Similarly for

S
(

P(r)
1235, P(r)

1245

)
= y45P(r)

1235 − y35P(r)
1245 = y15P(r)

2345 − y25P(r)
1345,

the coefficients of g123 in the explains of y45P(r)
1235, y35P(r)

1245 and y25P(r)
1345 do not divide any

monomials of y24(y23y45 − y24y35 + y25y34) in any cases; this possibility should also be
excluded. Now consider S(P(r)

1234, P(r)
1245) with r ≤ 3. In the equality

S
(

P(r)
1234, P(r)

1245

)
= y45P(r)

1234 − y34P(r)
1245 = −y24P(r)

1345 + y14P(r)
2345,

only when r = 2, y45P(r)
1234 contains y24y45g123 and y24P(r)

1345 contains − 1
2 y24y45g123. Thus,

in this possibility, one gets only one required syzygy: 1
2 y24y45e123 + · · · .

For the two possibilities that S(P(r)
1234, P(r)

1235) with r ≤ 3 and S(P(r)
1345, P(r)

2345) with r ≤ 4,
in the equalities

S
(

P(r)
1234, P(r)

1235

)
= y35P(r)

1234 − y34P(r)
1235 = −y23P(r)

1345 + y13P(r)
2345,

S
(

P(r)
1345, P(r)

2345

)
= y23P(r)

1345 − y13P(r)
2345 = −y35P(r)

1234 + y34P(r)
1235,
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only when r = 2, y23P(r)
1345 has − 1

2 y23y45g123, y35P(r)
1234 has y24y35g123, and y34P(r)

1235
has y25y34g123. It turns out, in these two possibilities, there is only one required syzygy:
(− 1

2 y23y45 + y24y35 − y25y34)e123 + · · · .
Finally, for S(P(r)

1245, P(r)
2345) with r ≤ 4, in the equality

S
(

P(r)
1245, P(r)

2345

)
= y23P(r)

1245 − y12P(r)
2345 = −y25P(r)

1234 + y24P(r)
1235,

only when r = 3, y23P(r)
1245 has

1
2 y23y45g123; when r = 2, y25P(r)

1234 has y24y25g123, and when

r = 3, y25P(r)
1234 has y25y34g123; when r = 2, y24P(r)

1235 has y24y25g123, and when r = 3,

y24P(r)
1235 has y24y35g123. Therefore, only when r = 3, there is a syzygy ( 12 y23y45 − y24y35 +

y25y34)e123 + · · · .
To summarize the results obtained, there are only two degree 4 syzygies whosemonomials

of the coefficient of e123 divide the monomials of y24(y23y45 − y24y35 + y25y34):
(
1

2
y23y45 − y24y35 + y25y34

)

e123 + · · ·

and

1

2
y24y45e123 + · · · .

It is clear that they cannot generate y24(y23y45 − y24y35 + y25y34)e123 + · · · . Therefore the
syzygy (∗) is minimal, as required. 
�
Remark 5.4 When n = 3, the equality reg(Sym(Syz1(m))) = 1 can be easily seen because
Sym(Syz1(m)) = Q[x1, x2, x3]/(x1y23 − x2y13 + x3y12) and x1y23 − x2y13 + x3y12 is
homogeneous of degree two.

On the other hand, when n = 6, one might hope naturally to find one degree 6 second
syzygy by using the same method as above. Unfortunately it is impossible because, in this
case, we can find a set of generators of degree at most 5 for the first syzygy of elements
{gi jk} by using the computer algebra system CoCoA. Therefore, to get an equality for the
regularity of Sym(Syz1(m)) in the case n ≥ 6, one might need to find a satisfied third syzygy
of Sym(Syz1(m)), which is challenging.

Acknowledgements This work was supported by the “National Group for Algebraic and Geometric Struc-
tures, and their Applications” (GNSAGA—INDAM). The paper was carried out when the second author was
visiting the University of Messina, and the author would like to thank INDAM (Istituto Nazionale di Alta
Matematica “F. Severi,” Roma, Italy) and the National Natural Science Foundation of China (No. 11471234)
for financial supports and is grateful to the Department of Mathematical and Computer Sciences, Physical
Sciences and Earth Sciences of the University of Messina for its hospitality.

References

1. Eisenbud, D.: Commutative Algebra, With a View Toward Algebraic Geometry. Graduate Texts in Math-
ematics, vol. 150. Springer, New York (1995)

2. Ene, V., Herzog, J., Mohammadi, J.: Monomial ideals and toric rings of Hibi type arising from a finite
poset. Eur. J. Comb. 32, 404–421 (2011)

3. Fløystad,G.,Greve, B.M.,Herzog, J.: Letterplace and co-letterplace ideals of posets. J. PureAppl.Algebra
221, 1218–1241 (2017)

4. Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics, vol. 260. Springer, London (2011)
5. Herzog, J., Restuccia, G., Tang, Z.: s-Sequences and symmetric algebras. Manus. Math. 104, 479–501

(2001)

123



On invariants of certain symmetric algebras 1935

6. Herzog, J., Trung, N.V.: Gröbner bases and multiplicity of determinantal and pfaffian ideals. Adv. Math.
76, 1–37 (1992)

7. Herzog, J., Tang, Z., Zarzuela, S.: Symmetric and Rees algebras of Koszul cycles and their Gröbner bases.
Manus. Math. 112, 489–509 (2003)

8. Juhnke-Kubitzke, M., Katthan, L., Madani, S.S.: Algebraic properties of ideals of poset homomorphisms.
J. Algebr. Comb. 44, 1–28 (2015)

9. Narasimhan, H.: The irreducibility of ladder determinantal varieties. J. Algebra 102, 162–185 (1986)
10. Restuccia, G., Tang, Z., Utano, R.: On the symmetric algebra of the first syzygy of a graded maximal

ideal. Commun. Algebra 44, 1110–1118 (2016)
11. Simis, A., Ulrich, B., Wasconcelos, W.: Jacobian dual fibrations. Am. J. Math. 115, 47–75 (1993)
12. Tang, Z.: On certain monomial sequences. J. Algebra 282, 831–842 (2004)

123


	On invariants of certain symmetric algebras
	Abstract
	1 Introduction
	2 Preliminaries
	3 Multiplicity of the symmetric algebra
	4 Regularity of annihilators
	5 Regularity of the symmetric algebra
	Acknowledgements
	References




