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Abstract In order to describe the resistive drift wave turbulence appearing in nuclear fusion
plasma, the Hasegawa–Wakatani (HW) equations were proposed in 1983. We consider the
two-dimensional HW equations, which have numerous structures (that is, they explain the
branching phenomenon in turbulent and zonal flow in a two-dimensional plasma) and the
generalized HW equations that include temperature fluctuation. We prove the global-in-time
existence of a unique strong solution to both the HW equations and the generalized HW
equations in a two-dimensional domain with double periodic boundary conditions.

Keywords Hasegawa–Wakatani equations · Drift wave turbulence · Zonal flow ·
Sobolev–Slobodetskiı̆ spaces

Mathematics Subject Classification Primary 76W05; Secondary 35K45 · 35Q60 · 82D10

1 Introduction

Weconsider that a strong homogeneousmagnetic field is added to a plasma in the x3 direction,
e = (0, 0, 1), in three-dimensional space [X = (x1, x2, x3) = (x ′, x3)]. Then, the electro-
static field E(X, t) = (E1, E2, E3)(X, t) in the plasma can be described by the electrostatic
potential φ(X, t), which satisfiesE(X, t) = −∇φ(X, t), where∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3).
In this case, there is a large difference between the velocities of electrons and ions in the
x3 direction; hence, it is important to consider the current density j = j (X, t) in the x3
direction. Ohm’s law for the x3 direction is written as

η j = E3 = − ∂φ

∂x3
,
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where the resistivity η is positive constant. This relation can be generalized by adding a
density fluctuation n = n(X, t) as follows:

η j = − ∂

∂x3
(φ − n); (1.1)

this equation is called the generalized Ohm’s law.
For the following three-dimensional Hasegawa–Wakatani (HW) equations [16,17] for

an inhomogeneous plasma equilibrium density n∗ = n∗(|x ′|) (given function), a density
fluctuation n = n(X, t) (unknown function), and an electrostatic potential φ = φ(X, t)
(unknown function), we have several mathematical results [25–31]:

⎧
⎪⎪⎨

⎪⎪⎩

(
∂

∂t
− (∇φ × e) · ∇

)

�φ = β

n∗
∂ j

∂x3
+ D1�

2φ,
(

∂

∂t
− (∇φ × e) · ∇

)

(n + log n∗) = β

n∗
∂ j

∂x3
,

(1.2)

where j is given by (1.1), D1 is a positive constant that is proportional to the kinematic ion
viscosity coefficient, β is a positive constant, and � = ∂2/∂x21 + ∂2/∂x22 + ∂2/∂x23 . For two
variables f and g, the following holds:

− (∇ f × e) · ∇g = ∂ f

∂x1

∂g

∂x2
− ∂ f

∂x2

∂g

∂x1
.

Here, v = − (∇φ × e) is called the electric field drift velocity (see, [18]). Setting c1 = β/η

and inserting (1.1) into (1.2), we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂

∂t
− (∇φ × e) · ∇

)

�φ = − c1
n∗

∂2

∂x23
(φ − n) + D1�

2φ,

(
∂

∂t
− (∇φ × e) · ∇

)

(n + log n∗) = − c1
n∗

∂2

∂x23
(φ − n) .

(1.3)

In [25–27], we consider the initial boundary value problem for (1.3) in a cylindrical domain
Ω with the following boundary conditions:

{
φ(X, t) = �φ(X, t) = n(X, t) = 0 for x ∈ Γ,

φ, n, periodic in the x3-direction.
(1.4)

Here Ω = ω × (−L , L), ω = {x ′ = (x1, x2) ∈ R2 | |x ′| < R}, ∂ω = {x ′ = (x1, x2) ∈
R2 | |x ′| = R}, and Γ = ∂ω × [−L , L]. It is assumed that the ions are singly ionized,
and hence the densities of electrons ne and ions ni satisfy the Poisson equation, −�φ =
e (ni − ne) /ε0, where e is the elementary charge, and ε0 is the permittivity of vacuum (see,
[36]). Thus, the boundary condition �φ(X, t) = 0 states that the densities of electrons
and ions are equal at the boundary. Here, we consider that the boundary of the plasma is
away from the wall of the container. The existence and uniqueness of a strong solution to
the initial-boundary-value problems for (1.3) and (1.4) were proven when the initial data
are periodic in the x3 direction [25]. When the temperature of the plasma is very high,
the resistivity of the plasma approaches zero; therefore, it is important for nuclear fusion
plasma research to consider the case of zero resistivity. In [26,27], we proved that as the
resistivity tends to zero, the solution of (1.3) established in [25] converges strongly to that of
the model equations of drift wave turbulence with zero resistivity. Note that (1.3) with zero
resistivity under the additional condition that the mean value of n for x3 is zero is similar
to the Hasegawa–Mima equation with a higher-order correction term [see, (1.7)]. In nuclear
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fusion research, it is important to consider an irrational magnetic surface on which the line
of force covers the surface ergodically without closing [46]. However, research into plasma
phenomena in an irrational magnetic surface is difficult; therefore, we consider the following
simple problem as the first step in researching plasma phenomena in a tokamak. In [28–31],
we consider (1.3) in a cylindrical domain with almost-periodic initial data in the x3 direction.
The existence and uniqueness of a strong solution to the initial-boundary-value problems for
(1.3) in a cylindrical domain were proven when the initial data are Stepanov almost-periodic
[28]. In [29], we obtained two useful lemmas for Stepanov almost-periodic functions for
the purpose of obtaining uniform a priori estimates for resistivity; additionally, we proved
that the Stepanov almost-periodic solution of linearized HW equations converges strongly
to that of linearized HW equations with zero resistivity as the resistivity tends to zero when
the initial data are Stepanov almost-periodic. In [30], we used the lemmas presented in [29]
to prove that the Stepanov almost-periodic solutions of (1.3) established in [28] converge
strongly to that of (1.3) with zero resistivity under the additional condition that the mean
value of n for x3 is zero as the resistivity tends to zero. There is also a mathematical result
[47] related to the HW equations.

If we formally replace the terms�φ,�2φ, and−c1/n∗∂2 (φ − n) /∂x23 in (1.3)with�⊥φ,
�2⊥φ, and α (φ − n), respectively, we have the two-dimensional HW equations [16,17]:

⎧
⎪⎨

⎪⎩

∂�⊥φ

∂t
+ {φ,�⊥φ} = α (φ − n) + D1�

2⊥φ,

∂n

∂t
+ {φ, n + log n∗} = α (φ − n) ,

(1.5)

for n = n(x, t) and φ = φ(x, t). Here x = (x1, x2), �⊥ = ∂2/∂x21 + ∂2/∂x22 ; α is a positive
constant that can bewritten as α = α′/η, where η is the resistivity and α′ is a positive constant
independent of η (see, [25]). Here, {·, ·} denotes the Poisson bracket

{ f, g} = ∂ f

∂x1

∂g

∂x2
− ∂ f

∂x2

∂g

∂x1
.

Let consider the two-dimensional domain T2 = {x = (x1, x2)| 0 < x1 < L1, 0 < x2 <

L2} with double periodic boundary conditions, where L1 and L2 are positive numbers. The
periodic boundary condition for x2 is natural, and that for x1 is provided for simplicity. We
assume that n∗ = n∗(x1) is given by κ = −∂ log n∗/∂x1, where κ is a positive constant.
Then, (1.5) becomes

⎧
⎪⎨

⎪⎩

∂�⊥φ

∂t
+ {φ,�⊥φ} = α (φ − n) + D1�

2⊥φ,

∂n

∂t
+ {φ, n} = α (φ − n) − κ

∂φ

∂x2
.

(1.6)

Whenwe take the hydrodynamic limitα → 0, the first equation of (1.6) becomes the equation
for the vorticity�⊥φ of the two-dimensional incompressible Navier–Stokes equation. When
we take the adiabatic limit α → ∞, (1.6) become the Hasegawa–Mima (HM) equation
[14,15]:

∂ (�⊥φ − φ)

∂t
+ {φ,�⊥φ} = κ

∂φ

∂x2
+ D1�

2⊥φ. (1.7)

Here, taking the adiabatic limit α → ∞ means taking the limit η → 0, that is, neglecting the
effect of the resistivity. TheHMequation has a dipolar vortex solution, which is calledmodon
[19,33]. In a study of plasma turbulence, coherent vortex is an important research topic, since
plasma turbulence may produce self-organized structures in the form of vortices, and indeed

123



1802 S. Kondo

coherent vortices are observed in a variety of contents (see, for example, [24,39,44]). It is
noteworthy that the same equation can be found in geophysics, Charney–Obukhov equation
with respect to the quasi-geostrophic potential vorticity for Rossby wave [7,35,38,41]. For
the HM equation, we have had some mathematical results. For the initial value problem,
the temporally local existence and uniqueness of the strong solution and the temporally
global existence of the weak solution were proved by Guo and Han [13] and Paumond [40]
independently in 2004, and the global existence of a strong solution was proved by Gao
and Zhu [10] in 2005. The global-in-time existence and uniqueness of the solution and the
existence of a global attractor to the initial boundary value problem for the generalized HM
equation with periodic boundary condition were proved by Zhang and Guo for the two-
dimensional case [48] and the three-dimensional case [49]. In 2008, Hounkonnou and Kabir
[20] investigated symmetry reductions and exact solutions for the HM equation. There are
also mathematical results [4,5,12] related to the HM equation.

It is considered that drift wave turbulence is a natural cause of anomalous transport in
plasma, and drift wave turbulence is suppressed through zonal flow generation [see (1.9)].
Therefore, zonal flow generation is an important phenomena in plasma physics. In 2007,
Numata et al. [37] pointed out that the zonal components 〈φ〉 and 〈n〉 are independent of x3;
hence, the relation ∂2 (φ − n) /∂x23 = ∂2(φ̃ − ñ)/∂x23 holds. Here, the zonal and nonzonal
components of the variable f are defined as

zonal component : 〈 f 〉 = 1

L2

∫ L2

0
f (x) dx2,

nonzonal component : f̃ = f − 〈 f 〉.
Therefore, they insisted thatwe should replace the term−c1/n∗∂2 (φ − n) /∂x23 withα(φ̃−ñ)

when we obtain two-dimensional HW equations. If we formally replace the terms �φ, �2φ,
and −c1/n∗∂2 (φ − n) /∂x23 in (1.3) with �⊥φ, �2⊥φ, and α(φ̃ − ñ), respectively, we have
the following two-dimensional HW equations:

⎧
⎪⎨

⎪⎩

∂�⊥φ

∂t
+ {φ,�⊥φ} = α

(
φ̃ − ñ

)+ D1�
2⊥φ,

∂n

∂t
+ {φ, n} = α

(
φ̃ − ñ

)− κ
∂φ

∂x2
for x ∈ T2, t > 0.

(1.8)

Although in [37], (1.6) and (1.8) are called theHWequations and themodifiedHWequations,
respectively, in this paper, we will refer to both (1.6) and (1.8) as the two-dimensional HW
equations. As far as the author knows, there are no mathematical results for (1.6) and (1.8).
In this paper, we aim to prove the global-in-time existence of a unique strong solution to (1.6)
and (1.8); however, before introducing the main theorems, we will further explain (1.8).

Numata et al. [37] pointed out that (1.8) with D1 = 0 has a trivial solution (φ, n) = (0, 0)
and a zonal flow solution

(φ, n) = (φ0, 0), φ0 = −V0 cos(λx1)

λ
,

where V0 and λ are positive constants. As the vorticity is �⊥φ0, the zonal flow velocity is
given by

v =
(

−∂φ0

∂x2
,
∂φ0

∂x1

)

= (0, V0 sin(λx1)) . (1.9)

They showed that (1.8) has numerous structures; that is, it explains the branching behavior
of turbulent and zonal flow. Specifically, they presented a bifurcation diagram with respect
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Fig. 1 Contour plots of φ for cases a (D1 = D2 = 0.01, κ = 1.0, and α = 4.0), and b (D1 = D2 =
0.01, κ = 1.0, and α = 0.1). Horizontal and vertical axes represent x1 and x2, respectively

to κ and α by combining linear stability analysis of the trivial and zonal flow solutions and
numerical simulations for (1.8) with the hyperviscosity terms (see Figs. 3 and 11 in [37]).
We show numerical simulations for the following equations:

⎧
⎪⎨

⎪⎩

∂�⊥φ

∂t
+ {φ,�⊥φ} = α

(
φ̃ − ñ

)+ D1�
2⊥φ,

∂n

∂t
+ {φ, n} = α

(
φ̃ − ñ

)− κ
∂φ

∂x2
+ D2�⊥n for x ∈ T2, t > 0,

(1.10)

where D2 is a positive constant that is proportional to the collision frequency of electrons [42].
Details of the numerical simulation are shown in “Appendix” (see, [23,32,43]). In case (a)
(D1 = D2 = 0.01, κ = 1.0, and α = 4.0), drift waves appear owing to the linear instability
of the trivial solution (Fig. 1, (a) t = 57). Here, a drift wave is a wave that propagates in the
direction perpendicular to the equilibrium density gradient and the uniform magnetic field
direction. After enough time has passed, zonal flow is generated (Fig. 1, (a) t = 200). This
behavior is called self-organization of zonal flow. In case (a), the drift waves are well aligned;
however, in case (b) (D1 = D2 = 0.01, κ = 1.0, and α = 0.1), they do not persist, and a
state of turbulence occurs immediately (Fig. 1, (b) t = 57). After enough time has passed,
plasma turbulence appears (Fig. 1, (b) t = 200). It is called drift wave turbulence.

The aim of this paper is to establish the global-in-time existence of a unique strong solution
in Sobolev spaces to the initial value problem for (1.8) under the conditions

{
φ(x, 0) = φ0(x), n(x, 0) = n0(x) for x ∈ T2,

φ, n are periodic in the xi direction (i = 1, 2).
(1.11)

The definition of a Sobolev space is shown in Sect. 2. Our first result for the problem (1.8)
and (1.11) is as follows.

Theorem 1 Let D1, α, and κ be positive constants. Assume that (φ0, n0) ∈ W 4
2 (T2)×W 2

2
(T2) satisfies (1.11). Then, there exists a unique solution (φ, n) to the problem (1.8) and

(1.11) in any time interval [0, T ] (0 < T < ∞) such that (φ, n) ∈
(
L2(0, T ;W 4

2 (T2)) ∩
W 1

2 (0, T ;W 2
2 (T2))

)
× W 2,1

2 (QT ). Here QT ≡ T2 × (0, T ).
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1804 S. Kondo

Remark 1 (i) φ ∈ W 1
2 (0, T ;W 2

2 (T2)) means that

Dα
x φ ∈ L2 (T2;W 1

2 (0, T )
)

where |α| = 0, 1, 2.

(ii) For the problem (1.6) and (1.11), the same result as Theorem 1 holds. For example,
Lemma 1, which appears in the proof of Theorem 1, holds true if we replace α

∫ t
0 ‖(φ̃ −

ñ)(τ )‖2 dτ with α
∫ t
0 ‖(φ − n)(τ )‖2 dτ .

Next, we consider the generalized model of (1.8) with an inhomogeneous equilibrium
temperature T ∗ = T ∗(x1) (given function) and a temperature fluctuation T = T (x, t)
(unknown function) (see, [6,32,45]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂�⊥φ

∂t
+ {φ,�⊥φ} = α

(
φ̃ − ñ − (1 + γ )T̃

)+ D1�
2⊥φ,

∂n

∂t
+ {φ, n} = α

(
φ̃ − ñ − (1 + γ )T̃

)− κ
∂φ

∂x2
,

∂T

∂t
+ {φ, T } = χα

(
φ̃ − ñ − (1 + γ )T̃

)− κ ′ ∂φ

∂x2
+ D3�⊥T,

for x ∈ T2, t > 0,

(1.12)

where κ ′ = −∂ log T ∗/∂x1, γ , and χ are positive constants. The term α(φ̃ − ñ − (1+ γ )T̃ )

represents a current term that arises from the generalized Ohm’s law.
This paper also aims to establish the global-in-time existence of a unique strong solution

in Sobolev spaces to the initial value problem for (1.12) under the conditions

{
φ(x, 0) = φ0(x), n(x, 0) = n0(x), T (x, 0) = T0(x) for x ∈ T2,

φ, n, T are periodic in the xi -direction (i = 1, 2).
(1.13)

Our second result for the problem (1.12) and (1.13) is as follows.

Theorem 2 Let D1, D3, α, κ, κ ′, γ, χ be positive constants. Assume that (φ0, n0, T0)∈
W 4

2 (T2)×W 2
2 (T2)×W 2

2 (T2) satisfies (1.13). Then, there exists a unique solution (φ, n, T ) to
the problem (1.12) and (1.13) in any time interval [0, T ](0 < T < ∞) such that (φ, n, T ) ∈
L2(0, T ;W 4

2 (T2)) × W 2,1
2 (QT ) × W 2,1

2 (QT ), ∂φ/∂t ∈ L2(0, T ;W 2
2 (T2)). Here QT ≡

T2 × (0, T ).

This paper is organized as follows. In Sect. 2, we present preliminary results. In Sect. 3, we
prove Theorem 1. Since the second equation of (1.8) does not include the diffusion term of
n, the existence theorem is proved according to the following procedure. First, we establish
the global-in-time existence of a unique strong solution to the problem (1.10) and (1.11).
Next, with the help of the uniform estimate for the solution with respect to D2, by passing
to the limit D2 → 0, we establish the global-in-time existence of a unique strong solution
to the problem (1.8) and (1.11). In Sect. 4, we prove Theorem 2. First, we consider (4.1)
which includes the diffusion term D2�⊥n, and establish the global-in-time existence of a
unique strong solution to the problem (4.1) and (1.13). Next, by the similar way as the proof
of Theorem 1, we establish the global-in-time existence of a unique strong solution to the
problem (1.12) and (1.13). The procedures for proving Theorems 1 and 2 are similar to that
in [25], in which we prove the existence of a unique strong solution in some time interval for
the initial boundary value problems for (1.3) and (1.4).
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2 Preliminaries

First, we recall function spaces and some notation. Let T2 = {x = (x1, x2)| 0 < x1 <

L1, 0 < x2 < L2}. Here L1 and L2 are positive numbers.

• L p space L p(T2) denotes the space of functions u(x), x ∈ T2, equipped with the finite
norm

‖u‖p = ‖u‖L p(T2) =
(∫

T2
|u(x)|p dx

)1/p

for 1 ≤ p ≤ ∞, and

‖u‖∞ = ‖u‖L∞(T2) = sup
x∈T2

|u(x)|

for p = ∞. For simplicity, ‖ · ‖ is used instead of ‖ · ‖L2(T2).

• Sobolev space Wl
2(T

2) (l = 0, 1, 2 . . .) denotes the space of functions u(x), x ∈ T2,
equipped with the finite norm

‖u‖2
Wl

2(T
2)

=
∑

|α|≤l

∥
∥Dα

x

∥
∥2
L2(T2)

.

Here Dα
x u = ∂ |α|u/∂xα1

1 ∂xα2
2 is the generalized derivative of order |α| = α1 + α2, and

α = (α1, α2) is a multi-index.
Similarly, the norm of the space Wl

2(0, T ) (T ∈ R, T > 0) is defined as

‖u‖2
Wl

2(0,T )
=

l∑

j=0

∥
∥
∥D

j
t u
∥
∥
∥
2

L2(0,T )
.

The anisotropic Sobolev space W 2l,l
2 (QT ) (QT ≡ T2 × (0, T )) is defined as

L2(0, T ;W 2l
2 (T2)) ∩ L2(T2;Wl

2(0, T )), equipped with the finite norm

‖u‖2
W 2l,l

2 (QT )
= ‖u‖2

W 2l,0
2 (QT )

+ ‖u‖2
W 0,l

2 (QT )

≡
∫ T

0
‖u‖2

W 2l
2 (T2)

dt +
∫

T2
‖u‖2

Wl
2(0,T )

dx .

• Sobolev–Slobodetskiĭ space Sobolev–Slobodetskiĭ space is a generalization of Sobolev
space Wl

2(T
2) in the case of the real number of the exponent of the derivatives l.

Wl
2(T

2) (l ∈ R, l ≥ 0) denotes the space of functions u(x), x ∈ T2, equipped with the
finite norm

‖u‖2
Wl

2(T
2)

=
∑

|α|<l

∥
∥Dα

x

∥
∥2
L2(T2)

+ ‖u‖2
Ẇ l

2(T
2)

,
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1806 S. Kondo

where

‖u‖2
Ẇ l

2(T
2)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

|α|=l

∥
∥Dα

x u
∥
∥2
L2(T2)

if l ∈ Z,

∑

|α|=[l]

∫

T2

∫

T2

∣
∣
∣Dα

x u(x) − Dα
y u(y)

∣
∣
∣
2

|x − y|1+2(l−[l]) dx dy if l /∈ Z.

Here [l] is the integral part of l.
Similarly, the norm of the space Wl

2(0, T ) (T ∈ R, T > 0) is defined as

‖u‖2
Wl

2(0,T )
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l∑

j=0

∥
∥
∥D

j
t u
∥
∥
∥
2

L2(0,T )
if l ∈ Z,

l∑

j=0

∥
∥
∥D

j
t u
∥
∥
∥
2

L2(0,T )
+
∫ T

0
dt
∫ t

0

∣
∣
∣D[l]

t u(t) − D[l]
τ u(τ )

∣
∣
∣
2

|t − τ |1+2(l−[l]) dτ if l /∈ Z.

The anisotropic Sobolev–Slobodetskiı̆ space Wl,l/2
2 (QT ) (QT ≡ T2 × (0, T )) is defined

as L2(0, T ;Wl
2(T

2)) ∩ L2(T2;Wl/2
2 (0, T )), equipped with the finite norm

‖u‖2
Wl,l/2

2 (QT )
= ‖u‖2

Wl,0
2 (QT )

+ ‖u‖2
W 0,l/2

2 (QT )

≡
∫ T

0
‖u‖2

Wl
2(T

2)
dt +

∫

T2
‖u‖2

Wl/2
2 (0,T )

dx .

Next, we recall a well-known lemma and several inequalities. In the following, we write
∇ = ∇⊥ and � = �⊥, and the function u(x), x ∈ T2 is periodic in the xi direction
(i = 1, 2).

• Gronwall’s lemma The functions f (t) and ψ(t), t ∈ [0,∞), are continuous; ψ ≥ 0, c0
is a constant, and

f (t) ≤ c0 +
∫ t

0
ψ(τ) f (τ ) dτ, t ≥ 0

holds. Then

f (t) ≤ c0 exp

(∫ t

0
ψ(τ) dτ

)

, t ≥ 0 (2.1)

holds.

• Young’s inequality [11] For anypositive constantsa, b, p, andq satisfying 1/p+1/q = 1,

ab ≤ a p

p
+ bq

q
(2.2)

holds.

• Poincaré inequality Let u satisfy
∫

T2 u(x) dx = 0. For some positive constant c,
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Global-in-time existence results for the two-dimensional… 1807

‖u‖ ≤ c‖∇u‖ (2.3)

holds.

• Schwarz’s inequality

∣
∣
∣
∣

∫

T2
f (x)g(x) dx

∣
∣
∣
∣ ≤ ‖ f ‖‖g‖ for f, g ∈ L2 (T2) (2.4)

holds.

• Gagliardo–Nirenberg inequalities [9] For some positive constant c,

‖u‖∞ ≤ c‖u‖1/2
W 2

2 (T2)
‖u‖1/2 (2.5)

holds. For some positive constant c,

‖∇u‖4 ≤ c‖u‖3/4
W 2

2 (T2)
‖u‖1/4 (2.6)

holds.

• Sobolev embedding theorem [1] For some positive constant c,

‖u‖∞ ≤ c‖u‖W 2
2 (T2) (2.7)

holds.

• Elliptic estimates [2] Let u satisfy
∫

T2 u(x) dx = 0. For some positive constant c,

‖u‖W 2
2 (T2) ≤ c‖�u‖,

‖u‖W 3
2 (T2) ≤ c‖∇�u‖,

‖u‖W 4
2 (T2) ≤ c (‖∇�u‖ + ‖∇�u‖) ,

‖�u‖W 2
2 (T2) ≤ c

∥
∥�2u

∥
∥ (2.8)

hold.

3 Proof of theorem 1

First, we establish the global-in-time existence of a unique strong solution to the problem
(1.10) and (1.11). Next, by passing to the limit D2 → 0, we establish the global-in-time
existence of a unique strong solution to the problem (1.8) and (1.11).
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1808 S. Kondo

3.1 Global-in-time existence for problem (1.10) and (1.11)

We can obtain the following proposition on the local-in-time existence of a unique strong
solution to the problem (1.10) and (1.11) in Sobolev–Slobodetskiı̆ space. The proof of Propo-
sition 1 uses successive approximations; however, it is easier than that of [25], so we omit it.

Proposition 1 Let D1, D2, α, and κ be positive constants. Assume that (φ0, n0) ∈ W 4
2 (T2)

×W 2
2 (T2) satisfies (1.11). Then, there exists a unique solution (φ, n) to the problem

(1.10) and (1.11) in some time interval [0, T ] such that (φ, n) ∈
(
L2(0, T ;W 5

2 (T2)) ∩
W 3/2

2 (0, T ;W 2
2 (T2))

)
× W 3,3/2

2 (QT ). Here QT ≡ T2 × (0, T ).

Remark 2 φ ∈ W 3/2
2 (0, T ;W 2

2 (T2)) means that

Dα
x φ ∈ L2

(
T2;W 3/2

2 (0, T )
)

where |α| = 0, 1, 2.

We prove the following theorem on the global-in-time existence of a unique strong
solution.

Theorem 3 Let D1, D2, α, and κ be positive constants. Assume that (φ0, n0)∈W 4
2 (T2)

×W 2
2 (T2) satisfies (1.11). Then, there exists a unique solution (φ, n) to the problem (1.10)

and (1.11) in any time interval [0, T ] (0 < T < ∞) such that (φ, n) ∈
(
L2(0, T ;W 5

2 (T2))∩
W 3/2

2 (0, T ;W 2
2 (T2))

)
× W 3,3/2

2 (QT ). Here QT ≡ T2 × (0, T ).

To prove Theorem 3, we obtain a priori estimates of the solution (φ, n) established in
Proposition 1 by using energy estimates. In this subsection, we write ∇ = ∇⊥ and � = �⊥,
andwedenote by c a constant thatmay differ at each occurrence. First, we prove the following.

Lemma 1 For any t ≥ 0, the following holds.

1

2

(‖∇φ(t)‖2 + ‖n(t)‖2)+ D1

∫ t

0
‖�φ(τ)‖2 dτ + D2

∫ t

0
‖∇φ(τ)‖2 dτ

+α

∫ t

0

∥
∥
(
φ̃ − ñ

)
(τ )
∥
∥2 dτ ≤ κ

2

(‖∇φ0‖2 + ‖n0‖2
)
exp(κt) ≡ C1(t). (3.1)

Proof Multiplying the first equation of (1.10) by φ and integrating over T2, we have, by
virtue of integration by parts,

1

2

d

dt
‖∇φ(t)‖2 + D1‖�φ(t)‖2 + α

∫

T2

(
φ̃ − ñ

)
φ̃ dx = 0. (3.2)

Here, we use the following relation:
∫

T2
f̃ g dx =

∫

T2
f̃ g̃ dx for f, g ∈ L2 (T2) . (3.3)

Multiplying the second equation of (1.10) by n and integrating over T2, we have, by virtue
of integration by parts, (2.2), and (3.3),

1

2

d

dt
‖n(t)‖2 + D2‖∇n(t)‖2 + α

∫

T2

(
φ̃ − ñ

)
(−ñ) dx
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Global-in-time existence results for the two-dimensional… 1809

= −κ

∫

T2

∂φ

∂x2
n dx ≤ κ

2

(‖∇φ(t)‖2 + ‖n(t)‖2) . (3.4)

Adding (3.2) and (3.4) yields

1

2

d

dt

(‖∇φ(t)‖2 + ‖n(t)‖2)+ D1‖�φ(t)‖2 + D2‖∇n(t)‖2

+α
∥
∥
(
φ̃ − ñ

)
(t)
∥
∥2 ≤ κ

2

(‖∇φ(t)‖2 + ‖n(t)‖2) .
Integrating this inequality over [0, t] and using (2.1), we obtain (3.1). ��

Next, we prove the following.

Lemma 2 For any t > 0, the following holds.

1

2
‖�φ(t)‖2 + D1

∫ t

0
‖∇�φ(τ)‖2 dτ ≤ 1

2
‖�φ0‖2 +

√
αC1(t)

2
√
D1

≡ C2(t). (3.5)

Proof Multiplying the first equation of (1.10) by �φ and integrating over T2, we have, by
virtue of integration by parts and (2.2),

1

2

d

dt
‖�φ(t)‖2 + D1‖∇�φ(t)‖2 = α

∫

T2

(
φ̃ − ñ

)
�φ dx

≤
√

α

2
√
D1

(
α
∥
∥
(
φ̃ − ñ

)
(t)
∥
∥2 + D1 ‖�φ(t)‖2

)
.

Integrating this inequality over [0, t] and using (3.1), we obtain (3.5). ��
Next, we prove the following.

Lemma 3 For any t > 0, the following holds.

‖∇�φ(t)‖2 + D1

∫ t

0

∥
∥�2φ(τ)

∥
∥2 dτ

≤
(

‖∇�φ0‖2 + 2αC1(t)

D1

)

exp

(
cC2(t)

D2
1

)

≡ C3(t), (3.6)

∫ t

0

∥
∥
∥
∥
∂�φ(τ)

∂τ

∥
∥
∥
∥

2

dτ ≤ c

(∫ t

0
C3(τ )2 dτ + C1(t) + C3(t)

)

, (3.7)

where c is a positive constant independent of D2, and C3(t) is a positive function independent
of D2.

Proof Multiplying the first equation of (1.10) by �2φ and integrating over T2, we have, by
virtue of integration by parts, (2.4), and (2.6),

1

2

d

dt
‖∇�φ(t)‖2 + D1

∥
∥�2φ(t)

∥
∥2 =

∫

T2

[{φ,�φ} − α
(
φ̃ − ñ

)]
�2φ dx

≤ ‖∇φ(t)‖∞‖∇�φ(t)‖ ∥∥�2φ(t)
∥
∥+ α

∥
∥
(
φ̃ − ñ

)
(t)
∥
∥
∥
∥�2φ(t)

∥
∥

≤ D1

2

∥
∥�2φ(t)

∥
∥2 + 1

D1

(
c‖∇�φ(t)‖4 + α2

∥
∥
(
φ̃ − ñ

)
(t)
∥
∥2
)

.

Here, we used

‖∇ f ‖∞ ≤ c‖∇� f ‖ for f ∈ W 3
2

(
T2) , (3.8)
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1810 S. Kondo

which was obtained from (2.7) and (2.8). Hence,

1

2

d

dt
‖∇�φ(t)‖2 + D1

2

∥
∥�2φ(t)

∥
∥2

≤ 1

D1

(
c‖∇�φ(t)‖4 + α2

∥
∥
(
φ̃ − ñ

)
(t)
∥
∥2
)

.

If we integrate this inequality over (0, t), then (2.1) and (3.1) yield

‖∇�φ(t)‖2 ≤
(

‖∇�φ0‖2 + 2αC1(t)

D1

)

exp

(∫ t

0

c

D1
‖∇�φ(τ)‖2 dτ

)

.

From this inequality and (3.5), we have (3.6). From the first equation of (1.10), we have
∫ t

0

∥
∥
∥
∥
∂�φ(τ)

∂τ

∥
∥
∥
∥

2

dτ ≤ 3

(∫ t

0
‖∇φ(τ)‖2∞ ‖∇�φ(τ)‖2 dτ

+α2
∫ t

0

∥
∥
(
φ̃ − ñ

)
(τ )
∥
∥2 dτ + D2

1

∫ t

0

∥
∥�2φ(τ)

∥
∥2 dτ

)

.

From this result, (3.1), (3.6), and (3.8), we have (3.7). ��
Next, we prove the following.

Lemma 4 For any t > 0, the following holds.

‖∇n(t)‖2 ≤ (‖�φ0‖2 + ‖∇n0‖2
)
exp
(
ct + c

√
tC2(t) + c

√
tC3(t)

)

≡ C4(t), (3.9)

where c is a positive constant independent of D2, and C4(t) is a positive function independent
of D2.

Proof Multiplying the first equation of (1.10) by �φ and integrating over T2, we have, by
virtue of integration by parts, (3.3), and �̃φ = �φ̃,

1

2

d

dt
‖�φ(t)‖2 + D1‖∇�φ(t)‖2 + α

∫

T2
∇ (φ̃ − ñ

) · ∇φ̃ dx = 0. (3.10)

Multiplying the second equation of (1.10) by �n and integrating over T2, we have, by virtue
of integration by parts, (2.2), (2.4), (2.8), and (3.3),

1

2

d

dt
‖∇n(t)‖2 + D2‖�n(t)‖2 − α

∫

T2
∇ (φ̃ − ñ

) · ∇ñ dx

=
∫

T2

(

{φ, n} + κ
∂φ

∂x2

)

�n dx

≤ c
∥
∥D2

xφ(t)
∥
∥∞ ‖∇n(t)‖2 + κ

∥
∥D2

xφ(t)
∥
∥ ‖∇n(t)‖

≤ c
(‖∇�φ(t)‖ + ∥∥�2φ(t)

∥
∥
) ‖∇n(t)‖2 + c‖�φ(t)‖‖∇n(t)‖

≤ c
(
1 + ‖∇�φ(t)‖ + ∥∥�2φ(t)

∥
∥
) (‖�φ(t)‖2 + ‖∇n(t)‖2) . (3.11)

Here, we used
∥
∥D2

xφ(t)
∥
∥∞ ≤ c

(‖∇�φ(t)‖ + ∥∥�2φ(t)
∥
∥
)1/2 ‖�φ(t)‖1/2

≤ c
(‖∇�φ(t)‖ + ∥∥�2φ(t)

∥
∥
)
, (3.12)
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which was obtained from (2.2), (2.3), (2.5), and (2.8).
Adding (3.10) and (3.11) yields

1

2

d

dt

(‖�φ(t)‖2 + ‖∇n(t)‖2)+ D1‖∇�φ(t)‖2 + D2‖�n(t)‖2 + α
∥
∥∇ (φ̃ − ñ

)
(t)
∥
∥2

≤ c
(
1 + ‖∇�φ(t)‖ + ∥∥�2φ(t)

∥
∥
) (‖�φ(t)‖2 + ‖∇n(t)‖2) .

If we integrate this inequality over (0, t), then (2.1), (3.5), and (3.6) yield

‖�φ(t)‖2 + ‖∇n(t)‖2

≤ (‖�φ0‖2 + ‖∇n0‖2
)
exp

(∫ t

0
c
(
1 + ‖∇�φ(τ)‖ + ∥∥�2φ(τ)

∥
∥
)
dτ

)

≤ (‖�φ0‖2 + ‖∇n0‖2
)
exp

(

ct + c

√
tC2(t)

D1
+ c

√
tC3(t)

D1

)

.

From this result, we obtain (3.9). ��
Next, we prove the following.

Lemma 5 For any t > 0, the following holds.

‖�n(t)‖2 ≤
(

‖∇�φ0‖2 + ‖�n0‖2 + 2
∫ t

0
C1(τ ) dτ

)

exp
(
ct + c (C2(t) + C3(t)) + c

√
tC3(t) + c

√
tC4(t)

)
≡ C5(t), (3.13)

where c is a positive constant independent of D2, and C5(t) is a positive function independent
of D2.

Proof Multiplying the first equation of (1.10) by �2φ and integrating over T2, we have, by

virtue of integration by parts, (2.2), (3.3), (3.8), and ˜�2φ = �2φ̃,

1

2

d

dt
‖∇�φ(t)‖2 + D1

∥
∥�2φ(t)

∥
∥2 + α

∫

T2
�
(
φ̃ − ñ

)
�φ̃ dx

≤ ‖∇φ(t)‖∞‖∇�φ(t)‖ ∥∥�2φ(t)
∥
∥ ≤ c‖∇�φ(t)‖2 ∥∥�2φ(t)

∥
∥

≤ D1

2

∥
∥�2φ(t)

∥
∥2 + c

D1
‖∇�φ(t)‖4. (3.14)

Applying the Laplacian � to the second equation of (1.10), multiplying it by �n, and inte-
grating over T2, we have, by virtue of integration by parts, (2.2), (2.4), (2.6), (2.8), (3.3),
(3.12), and �̃n = �ñ,

1

2

d

dt
‖�n(t)‖2 + D2‖∇�n(t)‖2 − α

∫

T2
�
(
φ̃ − ñ

)
�ñ dx

= −
∫

T2
�

(

{φ, n} + κ
∂φ

∂x2

)

�n dx

≤ (∥∥D2
xφ(t)

∥
∥∞
∥
∥D2

xn(t)
∥
∥+ ‖∇�φ(t)‖4‖∇n(t)‖4 + κ‖∇φ(t)‖) ‖�n(t)‖

≤
(
c
(‖∇�φ(t)‖ + ∥∥�2φ(t)

∥
∥
) ‖�n(t)‖

+ c
∥
∥�2φ(t)

∥
∥3/4 ‖�φ(t)‖1/4‖�n(t)‖3/4‖n(t)‖1/4 + κ‖∇φ(t)‖

)
‖�n(t)‖.
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Hence, from this result, (2.2), and (2.3), we have

1

2

d

dt
‖�n(t)‖2 + D2‖∇�n(t)‖2 − α

∫

T2
�
(
φ̃ − ñ

)
�ñ dx

≤ c
(‖∇�φ(t)‖ + ∥∥�2φ(t)

∥
∥
) ‖�n(t)‖2

+ {c (‖�φ(t)‖ + ∥∥�2φ(t)
∥
∥
)
(‖n(t)‖ + ‖�n(t)‖) + κ‖∇φ(t)‖} ‖�n(t)‖

≤ c
(
1 + ‖∇�φ(t)‖ + ∥∥�2φ(t)

∥
∥+ ‖∇�φ(t)‖2 + ∥∥�2φ(t)

∥
∥2
)

‖�n(t)‖2

+‖∇φ(t)‖2 + ‖n(t)‖2. (3.15)

Adding (3.14) and (3.15) yields

1

2

d

dt

(‖∇�φ(t)‖2 + ‖�n(t)‖2)+ D1

2

∥
∥�2φ(t)

∥
∥2 + D2‖∇�n(t)‖2

+α
∥
∥�
(
φ̃ − ñ

)
(t)
∥
∥2

≤ c
(
1 + ‖∇�φ(t)‖ + ∥∥�2φ(t)

∥
∥+ ‖∇�φ(t)‖2 + ∥∥�2φ(t)

∥
∥2
)

(‖∇�φ(t)‖2 + ‖�n(t)‖2)+ ‖∇φ(t)‖2 + ‖n(t)‖2.
If we integrate this inequality over (0, t), then (2.1) and (3.1) yield

‖∇�φ(t)‖2 + ‖�n(t)‖2 ≤
(

‖∇�φ0‖2 + ‖�n0‖2 + 2
∫ t

0
C1(τ ) dτ

)

exp

(∫ t

0
c
(
1 + ‖∇�φ(τ)‖ + ∥∥�2φ(τ)

∥
∥+ ‖∇�φ(τ)‖2 + ∥∥�2φ(τ)

∥
∥2
)
dτ

)

.

From this result, (3.5), and (3.6), we have (3.13). ��
Next, we prove the following.

Lemma 6 For any t ≥ 0, the following holds.

∥
∥�2φ(t)

∥
∥2 ≤

(
∥
∥�2φ0

∥
∥2 + cC1(t) +

∫ t

0
cC5(τ ) dτ

)

exp
(
ct + c

√
tC2(t) + c

√
tC3(t)

)
, (3.16)

where c is a constant independent of D2.

Proof Applying the Laplacian � to the first equation of (1.10), multiplying it by �2φ, and
integrating over T2, we have

1

2

d

dt

∥
∥�2φ(t)

∥
∥2 + D1‖∇�2φ(t)‖2

= α

∫

T2
�
(
φ̃ − ñ

)
�2φ dx −

∫

T2
�{φ,�φ}�2φ dx

≤ cα (‖�φ(t)‖ + ‖�n(t)‖) ∥∥�2φ(t)
∥
∥+ ∥∥D2

xφ(t)
∥
∥∞
∥
∥D2

x�φ(t)
∥
∥
∥
∥�2φ(t)

∥
∥

≤ cα (‖�φ(t)‖ + ‖�n(t)‖) ∥∥�2φ(t)
∥
∥+ c

(‖∇�φ(t)‖ + ∥∥�2φ(t)
∥
∥
) ∥
∥�2φ(t)

∥
∥2

≤ c
(
1 + ‖∇�φ(t)‖ + ∥∥�2φ(t)

∥
∥
) ∥
∥�2φ(t)

∥
∥2 + c

(‖�φ(t)‖2 + ‖�n(t)‖2) ,
where we used (2.2), (2.8), (3.12), ‖�φ̃‖ ≤ c‖�φ‖, and ‖�ñ‖ ≤ c‖�n‖.
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If we integrate this inequality over (0, t), then (3.1) and (3.13) yield

∥
∥�2φ(t)

∥
∥2 ≤ ∥∥�2φ0

∥
∥2 + cC1(t)

D1
+
∫ t

0
cC5(τ ) dτ

+
∫ t

0
c
(
1 + ‖∇�φ(τ)‖ + ∥∥�2φ(τ)

∥
∥
) ∥
∥�2φ(τ)

∥
∥2 dτ.

From this result, (2.1), (3.5), and (3.6), we have (3.16). ��

Remark 3 Because the regularity of the solution is not sufficient, the arguments of Lemmas 5
and 6 are formal. Indeed, the terms

∫

T2 �2n�n dx and
∫

T2 �3φ�2φ dx appear in the proofs
of Lemmas 5 and 6. However, one can justify them by using mollifiers.

By the standard arguments based on the a priori estimates in Lemmas 1–6, the solution
established in Proposition 1 can be extended to any time interval [0, T ] (0 < T < ∞). Thus,
the proof of Theorem 3 is complete.

3.2 Global-in-time existence for problem (1.8) and (1.11)

The a priori estimates in Lemmas 1–6 do not depend on D2; that is, these estimates are
uniform estimates with respect to D2. With the help of the uniform estimate for the solution
with respect to D2, by passing to the limit D2 → 0, we can prove the following proposition
on the local-in-time existence of a unique strong solution to the problem (1.8) and (1.11).
The proof of Proposition 2 is similar to that of [25], so we omit the details.

Proposition 2 Let D1, α, and κ be positive constants. Assume that (φ0, n0)∈W 4
2 (T2)

×W 2
2 (T2) satisfies (1.11). Then, there exists a unique solution (φ, n) to the problem

(1.8) and (1.11) in some time interval [0, T ] such that (φ, n) ∈
(
L2(0, T ;W 4

2 (T2)) ∩
W 1

2 (0, T ;W 2
2 (T2))

)
× W 2,1

2 (QT ). Here QT ≡ T2 × (0, T ).

By using the a priori estimates in Lemmas 1–6with D2 = 0, the solution can be extended
to any time interval [0, T ] (0 < T < ∞). Thus, the proof of Theorem 1 is complete.

4 Proof of theorem 2

Let us add term D2�⊥n to the second equation of (1.12); then, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂�⊥φ

∂t
+ {φ,�⊥φ} = α

(
φ̃ − ñ − (1 + γ )T̃

)+ D1�
2⊥φ,

∂n

∂t
+ {φ, n} = α

(
φ̃ − ñ − (1 + γ )T̃

)− κ
∂φ

∂x2
+ D2�⊥n,

∂T

∂t
+ {φ, T } = χα

(
φ̃ − ñ − (1 + γ )T̃

)− κ ′ ∂φ

∂x2
+ D3�⊥T,

for x ∈ T2, t > 0,

(4.1)

First, we establish the global-in-time existence of a unique strong solution to the problem
(4.1) and (1.13). Next, by passing to the limit D2 → 0, we establish the global-in-time
existence of a unique strong solution to the problem (1.12) and (1.13).
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4.1 Global-in-time existence for problem (4.1) and (1.13)

We can obtain the following proposition on the local-in-time existence of a unique strong
solution to the problem (4.1) and (1.13) in Sobolev–Slobodetskiı̆ space. The proof of Propo-
sition 3 uses successive approximations; however, it is easier than that of [25], so we omit it.

Proposition 3 Let D1, D2, D3, α, κ, κ ′, γ, χ be positive constants. Assume that
(φ0, n0, T0)∈W 4

2 (T2)×W 2
2 (T2)×W 2

2 (T2) satisfies (1.13). Then, there exists a unique solu-
tion (φ, n, T ) to the problem (4.1) and (1.13) in some time interval [0, T ] such that

(φ, n, T ) ∈
(
L2(0, T ;W 5

2 (T2)) ∩ W 3/2
2 (0, T ;W 2

2 (T2))
)

× W 3,3/2
2 (QT ) × W 3,3/2

2 (QT ).

Here QT ≡ T2 × (0, T ).

In the following lemmas, we write ∇ = ∇⊥ and � = �⊥, and we denote by c a constant
that may differ at each occurrence. Let (φ, n, T ) be the solution established in Proposition 2.
The proofs of Lemmas 7–12 are similar to those of Lemmas 1–6, so we omit the proofs.

Lemma 7 For any t ≥ 0, the following holds.

1

2

(

‖∇φ(t)‖2 + ‖n(t)‖2 + 1 + γ

χ
‖T (t)‖2

)

+ D1

∫ t

0
‖�φ(τ)‖2 dτ

+D2

∫ t

0
‖∇n(τ )‖2 dτ + (1 + γ )D3

χ

∫ t

0
‖∇T (τ )‖2 dτ

+α

∫ t

0

∥
∥
(
φ̃ − ñ − (1 + γ )T̃

)
(τ )
∥
∥2 dτ

≤ κ

2

(

‖∇φ0‖2 + ‖n0‖2 + 1 + γ

χ
‖T0‖2

)

exp(κt) ≡ C6(t),

where C6(t) is a constant independent of D2.

Lemma 8 For any t > 0, the following holds.

1

2
‖�φ(t)‖2 + D1

∫ t

0
‖∇�φ(τ)‖2 dτ ≤ 1

2
‖�φ0‖2 +

√
αC6(t)√
2D1

≡ C7(t),

where C7(t) is a constant independent of D2.

Lemma 9 For any t > 0, the following holds.

‖∇�φ(t)‖2 + D1

∫ t

0

∥
∥�2φ(τ)

∥
∥2 dτ

≤
(

‖∇�φ0‖2 + 2αC6(t)

D1

)

exp

(
cC7(t)

D2
1

)

≡ C8(t),

∫ t

0

∥
∥
∥
∥
∂�φ(τ)

∂τ

∥
∥
∥
∥

2

dτ ≤ c

(∫ t

0
C8(τ )2 dτ + C6(t) + C8(t)

)

,

where c is a positive constant independent of D2, and C8(t) is a positive function independent
of D2.

Lemma 10 For any t > 0, the following holds.

123



Global-in-time existence results for the two-dimensional… 1815

‖∇n(t)‖2 ≤
(

‖�φ0‖2 + ‖∇n0‖2 + 1 + γ

χ
‖∇T0‖2

)

exp
(
ct + c

√
tC7(t) + c

√
tC8(t)

)
≡ C9(t),

where c is a positive constant independent of D2, and C9(t) is a positive function independent
of D2.

Lemma 11 For any t > 0, the following holds.

‖�n(t)‖2 ≤
(

‖∇�φ0‖2 + ‖�n0‖2 + 1 + γ

χ
‖�T0‖2 + 2

∫ t

0
C6(τ ) dτ

)

exp
(
ct + c (C6(t) + C7(t)) + c

√
tC7(t) + c

√
tC8(t)

)
≡ C10(t),

where c is a positive constant independent of D2, andC10(t) is a positive function independent
of D2.

Lemma 12 For any t ≥ 0, the following holds.

∥
∥�2φ(t)

∥
∥2 ≤

(
∥
∥�2φ0

∥
∥2 + cC6(t) +

∫ t

0
cC10(τ ) dτ

)

exp
(
ct + c

√
tC7(t) + c

√
tC8(t)

)
,

where c is a constant independent of D2.

By the standard arguments based on the a priori estimates in Lemmas 7–12, the solution
established in Proposition 3 can be extended to any time interval [0, T ] (0 < T < ∞). Thus,
we have the following theorem.

Theorem 4 Let D1, D2, D3, α, κ, κ ′, γ, χ be positive constants. Assume that (φ0, n0, T0)
∈W 4

2 (T2)×W 2
2 (T2)×W 2

2 (T2) satisfies (1.13). Then, there exists a unique solution (φ, n, T )

to the problem (4.1) and (1.13) for any time interval [0, T ] (0 < T < ∞) such that

(φ, n, T ) ∈
(
L2(0, T ;W 5

2 (T2)) ∩ W 3/2
2 (0, T ;W 2

2 (T2))
)

× W 3,3/2
2 (QT ) × W 3,3/2

2 (QT ).

Here QT ≡ T2 × (0, T ).

4.2 Global-in-time existence for problem (1.12) and (1.13)

The a priori estimates in Lemmas 7–12 do not depend on D2; that is, these estimates are
uniform estimates with respect to D2. With the help of the uniform estimate for the solution
with respect to D2, by passing to the limit D2 → 0, we can prove the following proposition
on the local-in-time existence of a unique strong solution to the problem (1.12) and (1.13).
The proof of Proposition 4 is similar to that of [25], so we omit the details.

Proposition 4 Let D1, D3, α, κ, κ ′, γ, χ be positive constants. Assume that (φ0, n0, T0)
∈W 4

2 (T2)×W 2
2 (T2)×W 2

2 (T2) satisfies (1.13). Then, there exists a unique solution (φ, n)

to the problem (1.12) and (1.13) in some time interval [0, T ] such that (φ, n, T ) ∈(
L2(0, T ;W 4

2 (T2)) ∩ W 1
2 (0, T ;W 2

2 (T2))
)

× W 2,1
2 (QT ) × W 2,1

2 (QT ). Here QT ≡ T2 ×
(0, T ).

By using the a priori estimates in Lemmas 7–12 with D2 = 0, the solution can be
extended to any time interval [0, T ] (0 < T < ∞). Thus, the proof of Theorem 2 is
complete.
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Appendix

When we obtain Fig. 1, we use the same numerical scheme as in [8,37], so we recall it. Let
D1 = D2, and rewrite the equations of (1.10) as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ψ

∂t
= α

(
φ̃ − ñ

)+ D1�⊥ψ − {φ,ψ} ,

∂n

∂t
= α

(
φ̃ − ñ

)+ D1�⊥n − {φ, n} − κ
∂φ

∂x2
,

�⊥φ = ψ.

(4.2)

Then, we solve it with periodic boundary conditions by the finite differential method. We
apply the third-order Karniadakis time integration scheme to the first and second equations
of (4.2), and we apply the successive over-relaxation (SOR) method to the third equation of
(4.2). The SOR method is well known, so we recall only the third-order Karniadakis time
integration scheme [22].

When we use the third-order Karniadakis time integration scheme, we use the central
difference for the spatial difference ∂φ/∂x2 and �⊥, and Arakawa’s method for the Poisson
bracket {·, ·}. We set L1 = L2 = 40; we use a grid width of dx1 = dx2 = h, and we use
256 × 256 grid points. Let us write the grid number as N = 256 and the time step width of
the numerical calculation as dt ; further, we write tk = kdt for k = 0, 1, 2, . . .. At the grid
point (i, j) and time step k, we write the unknown function f as f ki, j . As the initial value,
we choose the following function containing low-frequency waves:

φ0 = n0 = 0.1 sin

(
4πx1
L1

)

sin

(
4πx2
L2

)

+ 0.1 exp
(−(x1 − 15)2 − (x2 − 15)2

)
.

Arakawa [3] introduced the following discretization of { f, g}ki, j at the grid point (i, j) and
time step k:

{ f, g}ki, j = − 1

12h2

[(
f ki, j−1 + f ki+1, j−1 − f ki, j+1 − f ki+1, j+1

) (
gki+1, j + gki, j

)

−
(
f ki−1, j−1 + f ki, j−1 − f ki−1, j+1 − f ki, j+1

) (
gki, j + gki−1, j

)

+
(
f ki+1, j + f ki+1, j+1 − f ki−1, j − f ki−1, j+1

) (
gki, j+1 + gki, j

)

−
(
f ki+1, j−1 + f ki+1, j − f ki−1, j−1 − f ki−1, j

) (
gki, j + gki, j−1

)

+
(
f ki+1, j − f ki, j+1

) (
gki+1, j+1 + gki, j

)

−
(
f ki, j−1 − f ki−1, j

) (
gki, j + gki−1, j−1

)

+
(
f ki, j+1 − f ki−1, j

) (
gki−1, j+1 + gki, j

)

−
(
f ki+1, j − f ki, j−1

) (
gki, j + gki+1, j−1

)]
.

This discretization of the convection term exactly conserves energy, enstrophy, and circula-
tion. Arakawa’s method is compared with the spectral method in [34].
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Let us denote the discretization of the right-hand sides of the first and second equations
of (4.2) at the grid point (i, j) and time step k as Fk

i, j and Gk
i, j , as follows:

Fk
i, j = α

⎛

⎝φk
i, j − 1

N

N∑

j=0

φk
i, j − nki, j + 1

N

N∑

j=0

nki, j

⎞

⎠− {φ,ψ}ki, j

+D1

(
ψk
i−1, j − 2ψk

i, j + ψk
i+1, j

h2
+ ψk

i, j−1 − 2ψk
i, j + ψk

i, j+1

h2

)

,

Gk
i, j = α

⎛

⎝φk
i, j − 1

N

N∑

j=0

φk
i, j − nki, j + 1

N

N∑

j=0

nki, j

⎞

⎠− {φ, n}ki, j

+D1

(
nki−1, j − 2nki, j + nki+1, j

h2
+ nki, j−1 − 2nki, j + nki, j+1

h2

)

−κ
φk
i, j+1 − φk

i, j−1

2h
.

We apply the third-order Karniadakis time integration scheme [22] to the first and second
equations of (4.2):

ψk+1
i, j = 6

11

(

3ψk
i, j − 3

2
ψk−1
i, j + 1

3
ψk−2
i, j + dt

(
3Fk

i, j − 3Fk−1
i, j + Fk−2

i, j

))

,

nk+1
i, j = 6

11

(

3nki, j − 3

2
nk−1
i, j + 1

3
nk−2
i, j + dt

(
3Gk

i, j − 3Gk−1
i, j + Gk−2

i, j

))

.

When we solve the first and second equations of (4.2) using the third-order Karniadakis time
integration scheme, we take dt as follows:

dt = C∗ min

{
h2

D1
,
h

κ
,

h

M∗

}

,

where C∗ is a positive constant, and

M∗ = max
i, j

{ |φi+1, j − φi−1, j |
2h

,
|φi, j+1 − φi, j−1|

2h

}

.

Because the CFL constant C∗ must satisfy C∗ ≤ 1/4 (see, [21]), we take C∗ = 0.1.

References

1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
2. Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965)
3. Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion:

two-dimensional incompressible flow. Part I. J. Comput. Phys. 1, 119–143 (1966)
4. Bronski, J.C., Fetecau, R.C.: An alternative energy bound derivation for a generalized Hasegawa–Mima

equation. Nonlinear Anal. Real World Appl. 13, 1362–1368 (2012)
5. Cao, C., Farhat, A., Titi, E.S.: Global well-posedness of an inviscid three-dimensional pseudo-Hasegawa–

Mima model. Commun. Math. Phys. 319, 195–229 (2013)
6. Chang, Z., Callen, J.D.: Unified fluid/kinetic description of plasma microinstabilities. Phys. Fluids B 4,

1182–1192 (1992)
7. Charney, J.G.: On the scale of atmospheric motions. Geofys. Publ. Norske Vid.-Akad. Oslo 17, 1–17

(1948)

123



1818 S. Kondo

8. Dewhurst, J.M., Hnat, B., Dendy, R.O.: Finite Larmor radius effects on test particle transport in drift
wave-zonal flow turbulence. Plasma Phys. Control. Fusion 52, 025004 (2010)

9. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, Inc., New York (1969)
10. Gao, H., Zhu, A.: The global strong solutions of Hasegawa–Mima–Charney–Obukhov equation. J. Math.

Phys. 46, 083517 (2005)
11. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin

(2001)
12. Grauer, R.: An energy estimate for a perturbed Hasegawa–Mima equation. Nonlinearity 11, 659–666

(1998)
13. Guo, B., Han, Y.: Existence and uniqueness of global solution of the Hasegawa–Mima equation. J. Math.

Phys. 45, 1638–1647 (2004)
14. Hasegawa, A., Mima, K.: Stationary spectrum of strong turbulence in magnetized plasma. Phys. Rev.

Lett. 39, 205–208 (1977)
15. Hasegawa, A., Mima, K.: Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys.

Fluids 21, 87–92 (1978)
16. Hasegawa, A., Wakatani, M.: Plasma edge turbulence. Phys. Rev. Lett. 50, 682–686 (1983)
17. Hasegawa, A., Wakatani, M.: A collisional drift wave description of plasma edge turbulence. Phys. Fluids

27, 611–618 (1984)
18. Horton, W.: Drift waves and transport. Rev. Mod. Phys. 71, 735–778 (1999)
19. Horton, W., Hasegawa, A.: Quasi-two-dimensional dynamics of plasmas and fluids. Chaos 4, 227–251

(1994)
20. Hounkonnou, M.N., Kabir, M.M.: Hasegawa–Mima–Charney–Obukhov equation: symmetry reductions

and solutions. Int. J. Contemp. Math. Sci. 3, 145–157 (2008)
21. Johnston, H., Liu, J.G.: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment

of the pressure term. J. Comput. Phys. 199, 221–259 (2004)
22. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–

Stokes equations. J. Comput. Phys. 97, 414–443 (1991)
23. Kim, J., Terry, P.W.: Numerical investigation of frequency spectrum in the Hasegawa–Wakatani model.

Phys. Plasmas 20, 102303 (2013)
24. Kiwamoto, Y., Ito, K., Sanpei, A., Mohri, A.: Dynamics of electron-plasma vortex in background vorticity

distribution. Phys. Rev. Lett. 85, 3173–3176 (2000)
25. Kondo, S., Tani, A.: Initial boundary value problem for model equations of resistive drift wave turbulence.

SIAM J. Math. Anal. 43, 925–943 (2011)
26. Kondo, S., Tani, A.: Initial boundary value problem of Hasegawa–Wakatani equations with vanishing

resistivity. Adv. Math. Sci. Appl. 21, 223–253 (2011)
27. Kondo, S., Tani, A.: On the Hasegawa–Wakatani equations with vanishing resistivity. Proc. Jpn. Acad.

87, 156–161 (2011)
28. Kondo, S., Tani, A.: Almost-periodic solutions to initial boundary value problem for model equations of

resistive drift wave turbulence. Ann. Scuola Norm. Sup. Pisa XVI, 291–333 (2016)
29. Kondo, S.: Almost-periodic solution of linearized Hasegawa–Wakatani equations with vanishing resis-

tivity. Rend. Sem. Mat. Univ. Padova 133, 215–239 (2015)
30. Kondo, S.: On the almost-periodic solution of Hasegawa–Wakatani equations. J. Evol. Equ. 16, 155–172

(2016)
31. Kondo, S.: An almost-periodic solution of Hasegawa–Wakatani equations with vanishing resistivity. Proc.

R. Soc. Edinb. Sect. A 146, 983–1003 (2016)
32. Korsholm, S.B.: Coherent structures and transport in drift wave plasma turbulence. Risø-R-Report 1337

(2011)
33. Makino, M., Kamimura, T., Taniuti, T.: Dynamics of two-dimensional solitary vortices in a low-plasma

with convective motion. J. Phys. Soc. Jpn. 50, 980–989 (1981)
34. Naulin, V., Nielsen, A.H.: Accuracy of spectral and finite difference schemes in 2D advection problems.

SIAM J. Sci. Comput. 25, 104–126 (2003)
35. Nezlin, M.V., Chernikov, G.P., Rylov, A.Y., Titishov, K.B.: Self-organization of the large-scale planetary

and plasma drift vortices. Chaos 6, 309–327 (1996)
36. Nishikawa, K., Wakatani, M.: Plasma Physics: Basic Theory with Fusion Applications. Springer, New

York (1999)
37. Numata, R., Ball, R., Dewar, R.L.: Bifurcation in electrostatic resistive drift wave turbulence. Phys.

Plasmas 14, 102312 (2007)
38. Obukhov, A.M.: On the question of geostrophic wind. Izv. Akad. Nauk SSSR Geogr. Geophiz. 13, 281–

306 (1949). (in Russian)

123



Global-in-time existence results for the two-dimensional… 1819

39. Okamoto, A., Hara, K., Nagaoka, K., Yoshimura, S., Vranješ, J., Kono, M., Tanaka, M.Y.: Experimental
observation of a tripolar vortex in a plasma. Phys. Plasmas 10, 2211–2216 (2003)

40. Paumond, L.: Some remarks on a Hasegawa–Mima—Charney—Obukhov equation. Physica D 195, 379–
390 (2004)

41. Pedlosky, J.: Geophysical Fluids Dynamics. Springer, New York (1987)
42. Sandberg, I., Isliker, H., Pavlenko, V.P., Hizanidis, K., Vlahos, L.: Generation and saturation of large-scale

flows in flute turbulence. Phys. Plasmas 12, 032503 (2005)
43. Stals, L.: A study of the Hasegawa–Wakatani equations using an implicit explicit backward differentiation

formula. ANZIAM J. 50, C519–C533 (2008)
44. Sundkvist, D., Krasnoselskikh, V., Shukla, P.K., Vaivads, A., André, M., Buchert, S., Réme, H.: In situ

multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence. Nature 436, 825–
828 (2005)

45. Tassi, E., Garcia, O.E., Paulsen, J.V., Rypdal, K., Riccardi, C.: Three-field model for drift waves in a
simple magnetized torus. Phys. Scr. T113, 121–129 (2004)

46. Wakatani, M.: Stellarator and Heliotron Devices. Oxford University Press, Oxford (1998)
47. Wu, X.: On the global well-posedness of the magnetic-curvature-driven plasma equations with random

effects in R3. Commun. Math. Sci. 13, 1665–1681 (2015)
48. Zhang, R., Guo, B.: Global attractor for Hasegawa–Mima equation. Appl. Math. Mech. 27, 567–574

(2006)
49. Zhang, R., Guo, B.: Dynamical behavior for the three-dimensional generalized Hasegawa–Mima equa-

tions. J. Math. Phys. 48, 012703 (2007)

123


	Global-in-time existence results for the two-dimensional Hasegawa–Wakatani equations
	Abstract
	1 Introduction
	2 Preliminaries
	3 Proof of theorem 1
	3.1 Global-in-time existence for problem (1.10) and (1.11)
	3.2 Global-in-time existence for problem (1.8) and (1.11)

	4 Proof of theorem 2
	4.1 Global-in-time existence for problem (4.1) and (1.13)
	4.2 Global-in-time existence for problem (1.12) and (1.13)

	Acknowledgements
	Appendix
	References




