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Abstract We give a complete characterization of the solutions F(s) of the analog in the
Selberg class of Hecke’s functional equation of conductor 5, namely

(√
5

2π

)s

Γ (s + μ)F(s) = ω

(√
5

2π

)1−s

Γ (1 − s + μ)F(1 − s)

with �μ ≥ 0 and |ω| = 1. The proof is based on several results from our theory of nonlinear
twists of L-functions, applied to obtain a full description of the Euler factor of F(s) at p = 2,
and then on some ideas from a 1995 paper by J. B. Conrey and D. W. Farmer on converse
theorems for Euler products.

Keywords L-functions · Hecke theory · Selberg class · Converse theorems

Mathematics Subject Classification 11M41 · 11F66

1 Introduction

Hecke’s functional equation of signature (λ, k, ω), where λ, k > 0 and |ω| = 1, is in
normalized form

Φ(s) = ωΦ(1 − s), (1.1)
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1708 J. Kaczorowski, A. Perelli

where

Φ(s) =
(

λ

2π

)s

Γ (s + μ)F(s) (1.2)

with μ = (k − 1)/2. The solutions F(s) of (1.1) are required to be absolutely convergent
Dirichlet series for σ > 1 such that (s − 1)F(s) is entire of finite order. In this situation, the
conductor of F(s), or of the functional equation (1.1), is q = λ2. A well-known theorem of
Hecke asserts that if λ > 2, then (1.1) has an uncountable number of linearly independent
solutions F(s); see Chapter 2 of Hecke [4], Chapter 1 of Ogg [16] and Chapter 4 of Berndt-
Knopp [1].

In this paper, we deal with the case q = 5, the first integral conductor with an infinite-
dimensional space of solutions, with a twofold aim. On the one hand, we show that as soon as
standard arithmetical requirements, i.e., Euler product and Ramanujan conjecture, are added
to F(s), then the solutions of (1.1) drastically reduce to a finite number. Thus, in particular, all
but finitely many solutions of (1.1) do not have at least one of these arithmetical properties.
In addition, we give a full description of the solutions. Actually, we deal with a slightly
different, but essentially equivalent, functional equation, namely the general case of degree
d = 2 and conductor q = 5 with a single Γ -factor in the Selberg class; see (1.3) and (1.4),
and Sect. 2 for definitions. Thus, we get a sharp converse theorem in this framework. Note
that, from the point of view of modular forms, the Selberg class functional equation (1.3)
is more appropriate than Hecke’s (1.1), since the conjugation is required when dealing with
newforms of level > 1.

The results in this paper are obtained by developing certain ideas in our previous papers on
nonlinear twists of L-functions and their applications to converse theorems, see in particular
[12] and [15], and then using some ideas in Conrey–Farmer [3]. More precisely, we first
exploit the properties of nonlinear twists to detect the exact form of μ in (1.4) and of the
Euler factor of F(s) at p = 2. This is done in Sect. 2 and forms the bulk of the paper; actually,
the results in Sect. 2 hold in a more general framework, see Propositions 1 and 2. Then, in
Sect. 3 we suitably modify certain arguments in [3] to deduce the final result.

In order to state our results, we first recall the definition of the Selberg class in the special
case under investigation in the paper; the general definition of the Selberg class S, and of
degree, conductor and other invariants, is given in the next section. Let F(s) be an absolutely
convergent Dirichlet series for σ > 1 such that (s − 1)mF(s) is an entire function of finite
order for some integer m, and satisfying the functional equation

Φ(s) = ωΦ(1 − s), (1.3)

with |ω| = 1 and

Φ(s) =
(√

q

2π

)s

Γ (s + μ)F(s), q > 0, �μ ≥ 0. (1.4)

Moreover, the Dirichlet coefficients a(n) satisfy the Ramanujan conjecture a(n) � nε for
every ε > 0, and F(s) has a general Euler product representation expressed in the form

log F(s) =
∞∑
n=1

b(n)

ns
, (1.5)

with b(n) = 0 unless n = pm , m ≥ 1, and b(n) � nϑ for some ϑ < 1/2. We denote by
S2(q, μ) the class of such functions. Actually, S2(q, μ) is the subclass of S of the functions
with degree 2, conductor q and a single Γ -factor in the functional equation. We refer to our
surveys [6], [9], [17], [18], [19] and [20] for definitions and the basic theory of the Selberg
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On a Hecke-type functional equation with conductor q = 5 1709

class. Moreover, we recall that Sk(Γ0(N ), χ) denotes the space of holomorphic cusp forms
f (z) for Γ0(N ) of weight k and character χ , and L(s, f ) is the Hecke L-function associated
with f (z). We also recall that a newform in Sk(Γ0(N ), χ) is a Hecke eigenform for all Hecke
operators Tn that belongs to the subspace S�

k (Γ0(N ), χ); see Section 6.6 of Iwaniec [5].

Theorem Let F ∈ S2(5, μ). Then there exist an integer k ≥ 1 and a Dirichlet character χ

(mod 5) such that

�μ = k − 1

2
, χ(−1) = (−1)k

and either

F(s) = ζ(s)L(s, χ)

or

F(s) = L(s + μ, f )

for some newform f ∈ Sk(Γ0(5), χ). In the first case, we haveμ = 0, and hence, in particular
k = 1 and χ is odd and primitive.

We conclude with some remarks. First, arguing similarly as in Hecke’s theory, one can
show that the Dirichlet series solutions of (1.3) and (1.4) with q > 4, satisfying the above
regularity conditions, form a real vector space with uncountable basis; see Carletti et al. [2].
We remark that this can also be derived by a direct argument from Hecke’s theory. As
already pointed out, our result shows, when q = 5, that adding the Euler product and
Ramanujan conjecture requirements, the number of such solutions becomes finite. In this case,
the solutions are automatically linearly independent thanks to the results by Kaczorowski–
Molteni–Perelli [7] and [8]. Moreover, we note that the Ramanujan conjecture is used only
in the proof of the density estimate in (ii) of Lemma 3, while the Euler product is exploited at
several stages in the proof. Further, the above theorem gives some support to the conjectures
that if F ∈ S has a pole at s = 1 then ζ(s) divides F(s) and that the degree 2 functions in the
Selberg class coincide with the GL2 L-functions. We finally remark that, although here we
deal explicitly only with the case of conductor q = 5, the involved ideas have a more general
flavor, and we believe that other conductors can be dealt with along these lines. However, as
for Conrey–Farmer [3], getting results of this type for every integer conductor q ≥ 5 remains
an open problem.

2 The Euler factor at p = 2

We first recall some further notation; again, we refer to our surveys listed in Introduction
for a comprehensive account of the various definitions and results we need in the paper. The
extended Selberg class S� contains the Dirichlet series F(s), absolutely convergent for σ > 1
and such that (s − 1)mF(s) extends to an entire function of finite order for some integer m,
satisfying the functional equation (1.3) with

Φ(s) = Qs
r∏
j=1

Γ (λ j s + μ j )F(s),

where Q, λ j > 0 and �μ j ≥ 0. The Selberg class S is the subclass of the functions F ∈ S�

with an Euler product as in (1.5) and satisfying the Ramanujan conjecture, see Sect. 1. Given
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1710 J. Kaczorowski, A. Perelli

F ∈ S, for σ > 1 and p prime we write

F(s) =
∞∑
n=1

a(n)

ns
and Fp(s) =

∞∑
m=0

a(pm)

pms
, (2.1)

hence the Euler product (1.5) can be written in the more familiar form

F(s) =
∏
p

Fp(s). (2.2)

Degree, conductor, ξ -invariant and root number of F ∈ S� are, respectively, defined as

dF = 2
r∑
j=1

λ j , qF = (2π)dF Q2
r∏
j=1

λ
2λ j
j ,

ξF = 2
r∑
j=1

(μ j − 1/2) = ηF + idFθF , ω∗
F = ω

r∏
j=1

λ
2i	μ j
j ;

for simplicity, in what follows we drop the suffix F when referring to such invariants. As
already pointed out, if Φ(s) is as in (1.4), then F(s) has degree 2. For F ∈ S�, σ > 1 and
α, β ∈ R, we consider the nonlinear twist

F(s, α, β) =
∞∑
n=1

a(n)

ns
e(−αn − β

√
n), (2.3)

where e(x) = e2π i x ; we write F(s, α, β) for the twist in (2.3) with a(n) in place of a(n).
Note that F(s, α, β) reduces to the linear twist when β = 0 and, if F(s) has degree 2, to the
standard twist when α = 0; the properties of such twists, reported in Lemma 2, are crucial
in this paper. Moreover, if F(s) has degree 2 and conductor q , we also write

nβ = qβ2

4
, Spec(F) = {β > 0 : a(nβ) 
= 0} =

{
2
√
m

q
: m ≥ 1 integer, a(m) 
= 0

}
;

here, and later, we writea(x) = 0 if x /∈ N. Further, we recall from [12] that the class M(d, q),
where d, q > 0, consists of the functions f (s), meromorphic over C and holomorphic for
σ < 1, with the property that for every A < B there exists a constant C = C(A, B) such
that

f (σ + i t) � |σ |d|σ |
(

q

(2πe)d

)|σ |
|σ |C

as σ → −∞, uniformly for A ≤ t ≤ B. Finally, for F ∈ S we write

NF (σ, T ) = |{ρ : F(ρ) = 0,�ρ > σ, |	ρ| ≤ T }|.
The first lemma allows the normalization 	μ = 0 when dealing with F ∈ S� with Φ(s)

as in (1.4).

Lemma 1 If F ∈ S� has a pole at s = 1 and Φ(s) as in (1.4), then μ = 0 and the pole is
simple.

Proof If F(s) has a pole at s = 1, then F(1 − s) has a pole at s = 0. Moreover, if μ 
= 0,
then both Γ (s+μ) and Γ (1−s+μ) are holomorphic and nonvanishing at s = 0. Therefore,
in this case from the functional equation (1.3) and (1.4) we immediately see that F(s) has a
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On a Hecke-type functional equation with conductor q = 5 1711

pole at s = 0, a contradiction; thus, μ = 0. Further, since Γ (s) has a simple pole at s = 0,
again from the functional equation we see that the pole of F(s) at s = 1 must be simple. �
Remark 1 As already mentioned, thanks to Lemma 1 we may assume that 	μ = 0. Indeed,
if F ∈ S2(q, μ) with �μ ≥ 0 is entire, we can make the shift s �→ s − i	μ thus getting that
G(s) = F(s − i	μ) belongs to S2(q,�μ). Hence, we may work with G(s), and only in the
end we shift back to F(s).

Since θ = 	μ if Φ(s) is as in (1.4), in view of Remark 1 we may assume that θ = 0
in what follows, which simplifies a bit the notation. Next we recall some results from our
theory of nonlinear twists, specialized to the case of degree 2 functions (recall that we drop
the suffix F in the invariants of F(s)).

Lemma 2 Let F ∈ S� with degree 2 and θ = 0.

(i) Let α > 0. For every integer K ≥ 0, there exist polynomials Q0(s), . . . , QK (s), inde-
pendent of α and with Q0(s) = 1 identically, such that the linear twist F(s, α, 0) satisfies
the transformation formula

F(s, α, 0) = −ω∗e−i π
2 η(α

√
q)2s−1

K∑
ν=0

ανQν(s)F

(
s + ν,− 1

qα
, 0

)
+ HK (s, α),

(2.4)
where HK (s, α) is holomorphic for−K +1/2 < σ < 2 and |s| ≤ 2(K +1) and satisfies
HK (s, α) � (A(K + 1))K for some constant A > 1. Moreover, the polynomials Qν(s)
satisfy

Qν(s) � (A(|s| + 1))2ν

ν! for ν ≤ min(|s|, K )

and

Qν(s) � (A(K + 1))K for |s| ≤ 2(K + 1) and ν ≤ K .

(ii) Let β > 0. If β /∈ Spec(F) then the standard twist F(s, 0, β) is entire, while if β ∈
Spec(F) then F(s, 0, β) is meromorphic over C with at most simple poles at the points

sk = 3/4 − k/2, k = 0, 1, . . .

and

ress=s0 F(s, 0, β) = c0(F)
a(nβ)

q3/4n1/4
β

, c0(F) 
= 0.

(iii) If the first nonvanishing coefficient of F(s) equals 1, α > 0 and β ∈ R, we have

F(s, α, β) = −ω∗e−i π
2 η(α

√
q)2s−1e(β2/4α)F

(
s,− 1

qα
,

β

α
√
q

)
+ H(s, α, β),

(2.5)
where H(s, α, β) is holomorphic for σ > 1/2.

Proof Equations (2.4) and (2.5) are special explicit cases of a general transformation formula
for nonlinear twists of functions in S�, see [11] and [14], and their meaning is that the
difference between the LHS and the explicit terms on the RHS is holomorphic in the stated
region. Moreover, (ii) contains some of the properties of the standard twist, see [10] and [13].
More precisely, (i) follows from Theorem 1.2 of [12], (ii) is a very special case of Theorems
1 and 2 of [10] (or of Theorem 2 of [13]), and (iii) is Lemma in [15]. �
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1712 J. Kaczorowski, A. Perelli

Remark 2 If F ∈ S�, then the conjugate function F(s) = F(s) belongs to S�, has conjugate
Dirichlet coefficients and dF = dF , qF = qF , ηF = ηF , ω∗

F
= ω∗

F . Hence we may apply

transformation formula (2.4) with F(s) in place of F(s), with suitable modifications. In
particular, we denote by Qν(s) the Qν-polynomials in (2.4) referred to F(s). Note that what
really matters in this paper about such polynomials for ν ≥ 1 are only the bounds they
satisfy. Also, we take this opportunity to correct a slip occurred in [14], namely the function
F(s∗ + η j ; f ∗), appearing in (1.10) of [14] and in later occasions, should be replaced by
F(s∗ + η j ;− f ∗).

Further results from our previous papers, needed later on, are summarized in the following
lemma.

Lemma 3 (i) If F ∈ S� has degree d and conductor q, then F(s) belongs to M(d, q).
Moreover, uniformly for A ≤ |t | ≤ B with A sufficiently large, as σ → −∞ we have

F(s) � |σ |d|σ |
(

q

(2πe)d

)|σ |
|σ |C (2.6)

for some C = C(A, B).
(ii) If F ∈ S has degree 2, then NF (σ, T ) = o(T ) for every fixed σ > 1/2.

Proof (i) is Lemma 2.1 in [12], while (ii) follows from the last displayed formula on p. 474
of [12]. �

The next lemma contains some arithmetical relations satisfied by the Euler products (2.2)
and their linear twists. For simplicity, we assume that F ∈ S, but actually the lemma holds
in general for any Dirichlet series, absolutely convergent for σ > 1, with Euler factors at
p = 2 and p = 3.

Lemma 4 For F ∈ S and σ > 1, we have

F(s, 1/4, 0) + F(s, 3/4, 0) = 2
(
1 − a(2)21−s F2(s)

−1 − F2(s)
−1)F(s), (2.7)

F(s, 1/3, 0) + F(s, 2/3, 0) = 2F(s) − 3F3(s)
−1F(s) (2.8)

and
F(s, 1/2, 0) = F(s) − 2F2(s)

−1F(s). (2.9)

Proof We have

F(s, 1/4, 0) =
∑
4|n

a(n)

ns
−

∑
2‖n

a(n)

ns
+

∑
2�n

a(n)e(−n/4)

ns

= F(s) − 2
∑
2‖n

a(n)

ns
−

∑
2�n

a(n)

ns
+

∑
2�n

a(n)e(−n/4)

ns

= F(s) − (a(2)21−s + 1)
∑
2�n

a(n)

ns
+

∑
2�n

a(n)e(−n/4)

ns

= (
1 − a(2)21−s F2(s)

−1 − F2(s)
−1) F(s) +

∑
2�n

a(n)e(−n/4)

ns
.

Similarly, we have

F(s, 3/4, 0) = (
1 − a(2)21−s F2(s)

−1 − F2(s)
−1) F(s) +

∑
2�n

a(n)e(−3n/4)

ns
.
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On a Hecke-type functional equation with conductor q = 5 1713

Adding the two identities, we obtain (2.7), since 2 � n if and only if n = 4k + a with
a ∈ {1, 3}, and e(−n/4) + e(−3n/4) = i−a + i−3a = i + i−1 = 0.

To prove (2.8), we proceed in a similar way. Indeed

F(s, 1/3, 0) + F(s, 2/3, 0) = 2
∑
3|n

a(n)

ns
+

∑
3�n

a(n)

ns
(
e(−n/3) + e(−2n/3)

);
but for 3 � n we have e(−n/3) + e(−2n/3) = e(−1/3) + e(−2/3) = −1, hence

F(s, 1/3, 0) + F(s, 2/3, 0) = 2

⎛
⎝F(s) −

∑
3�n

a(n)

ns

⎞
⎠ −

∑
3�n

a(n)

ns
= 2F(s) − 3F3(s)

−1F(s).

Finally,

F(s, 1/2, 0) =
∑
2|n

a(n)

ns
−

∑
2�n

a(n)

ns
= F(s) − 2

∑
2�n

a(n)

ns
,

and (2.9) follows. �

Now we deduce further results from the above lemmas. We explicitly remark that these
results hold for any function in S with degree 2, conductor q = 5 and θ = 0, not necessarily
satisfying the special functional equation of form (1.4).

Lemma 5 If F ∈ S has degree 2, conductor q = 5 and θ = 0, then(
1 + a(2)21−s)F2(s)

−1

is a Dirichlet polynomial in 2−s of degree ≤ 4.

Proof For s = σ + i t with σ ≥ 3/2, we write

E(2−s) = (
1 + a(2)21−s)F2(s)

−1.

We follow the basic strategy in the proof of Theorem 1.1 in [12], namely we exploit link
(2.7) between E(2−s) and linear twists to prove that E(z) is an entire function satisfying a
suitable bound, which then implies the final result. Of course, here we have first to prove that
the involved linear twists have good analytic properties; this is done using (i) of Lemma 2.

Thanks to the assumption ϑ < 1/2 in the definition of the Selberg class, see Sect. 1, we
already know that F2(s)−1, and hence E(2−s), is holomorphic, bounded and t-periodic of
period 2π/ log 2 for σ > 1/2 − 2δ for some δ > 0; see, e.g., p. 956 of [9]. Hence, we may
assume that σ < 1/2 − δ. Let c1 > 0 be sufficiently large, K > 0 be an arbitrarily large
integer and let

DK = {s ∈ C : 1 − K < σ < 1/2 − δ, c1 < t < K/2} .

In view of the above properties, if E(2−s) is holomorphic on DK for arbitrarily large K ,
then E(2−s) is an entire function. In what follows we use expressions of type O(H) to
denote holomorphic functions f (s) on DK satisfying f (s) = O(H) in a specified range
of s. Moreover, A > 1 denotes a constant whose value is not necessarily the same at each
occurrence.
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1714 J. Kaczorowski, A. Perelli

We start with (i) of Lemma 2, with α = 1/4, q = 5 and a large integer K . Thanks to the
1-periodicity in α of (2.3), from (2.4) we have

F(s, 1/4, 0) = −ω∗e−i π
2 η(

√
5/4)2s−1

K∑
ν=0

4−νQν(s)F(s + ν, 1/5, 0) + O
(
(A|σ |)|σ |)

for s ∈ DK with −K + 1 < σ < −K + 3. In view of Remark 2, we may apply again the
transformation formula (2.4) to F(s+ν, 1/5, 0), with α = 1/5, q = 5 and the sum extended
to � = 0, . . . , K − ν, thus getting that

F(s, 1/4, 0) = e−iπη(
√

5/4)2s−1
K∑

ν=0

4−νQν(s)(
√

5/5)2(s+ν)−1

×
K−ν∑
�=0

5−�Q�(s + ν)F(s + ν + �) + O
(
(A|σ |)|σ |)

+ O

(
4−2σ

K∑
ν=0

4−ν |Qν(s)|(A|σ |)|σ |−ν+3

)

= �(s) + O
(
(A|σ |)|σ |) + R,

(2.10)

say, again for s ∈ DK with −K + 1 < σ < −K + 3. In particular, (2.10) shows that
F(s, 1/4, 0) is holomorphic on DK , since the possible poles of F(s + ν + �) are on the real
line. Thanks to the bounds in (i) of Lemma 2, we have

R � A|σ |
K∑

ν=0

(|σ | + 2)2ν

ν! (|σ + 2)|σ |−ν+3 + (A(|σ | + 2))|σ | � (A|σ |)|σ |.

Moreover, in view of (i) of Lemmas 2 and 3 and the definition of the class M(2, 5) we also
have

�(s) � (
√

5/4)2σ
K∑

ν=0

K−ν∑
�=0

4−ν5−�(
√

5/5)2(σ+ν)

× |Qν(s)Q�(s + ν)||σ |2(|σ |−ν−�)

(
5

(2πe)2

)|σ |−ν−�

|σ |c2

�
(

16 × 5

(2πe)2

)|σ |
|σ |2σ |

∞∑
ν=0

∞∑
�=0

Aν+�

ν!�! |σ |c2 �
(

16 × 5

(2πe)2

)|σ |
|σ |2σ |+c2

for some c2 > 0. Therefore, from (2.10) we obtain that F(s, 1/4, 0) is holomorphic on DK ,
and for s ∈ DK with −K + 1 < σ < −K + 3 satisfies

F(s, 1/4, 0) �
(

16 × 5

(2πe)2

)|σ |
|σ |2σ |+c. (2.11)

Since F(s, 3/4, 0) = F(s, 1/4, 0), the same properties hold for F(s, 3/4, 0) as well.
By (2.7) in Lemma 4, we have

E(2−s) = 1 − F(s, 1/4, 0) + F(s, 3/4, 0)

2F(s)
, (2.12)
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On a Hecke-type functional equation with conductor q = 5 1715

hence E(2−s) is holomorphic on DK apart, possibly, at the zeros of F(s). To show that
E(2−s) is actually holomorphic on DK , we follow an argument already used in the proof
of Theorem 1.1 of [12], which we outline for completeness. Indeed, since c1 is sufficiently
large, thanks to the density estimate (ii) of Lemma 3 and the functional equation, F(s) has
o(K ) zeros in DK . But, by the uniqueness of meromorphic continuation, E(2−s) is t-periodic
on DK , hence if not holomorphic, it must have � K poles in DK , a contradiction if K is
sufficiently large. Therefore, E(2−s) is holomorphic on DK with K is arbitrarily large and
hence, as already pointed out at the beginning of the proof, it is an entire function. Moreover,
E(2−s) is bounded for σ > 1/2 − δ and, thanks to (2.11), (2.12), (2.6) in (i) of Lemma 3
and the t-periodicity, satisfies

E(2−s) � 24|σ |+ε

uniformly in t as σ → −∞, for every ε > 0. Thus, E(z) is an entire function satisfying
E(z) � z4+ε as |z| → ∞; hence, it is a polynomial of degree ≤ 4. �
Lemma 6 If F ∈ S has degree 2, conductor q = 5 and θ = 0, then F2(s)−1 is a Dirichlet
polynomial of degree ≤ 4, and has degree ≤ 3 if a(2) 
= 0.

Proof The argument is partly similar as in Lemma 5, but simpler since no estimates are
needed here. Hence, we proceed more sketchy, and we use the convenient notation

f (s) ∼
∞∑

ν=0

gν(s)

to mean that if we cut the summation at ν = K , then the remainder is holomorphic on DK ,
where DK is as in Lemma 5. With this notation, applying (i) of Lemma 2 with α = 1/3,
q = 5 and an arbitrarily large integer K , thanks to the 1-periodicity in α of (2.3) we get

F(s, 1/3, 0) ∼ (
√

5/3)2s
∞∑

ν=0

Pν(s, F)F(s + ν, 2/5, 0)

with certain polynomials Pν(s, F) depending on F(s). Applying again (2.4) to F(s +
ν, 2/5, 0), we obtain

F(s, 1/3, 0) ∼ (
√

5/3)2s
∞∑

ν=0

Pν(s, F)(2/
√

5)2(s+ν)
∞∑

�=0

P�(s + ν, F)F(s + ν + �, 1/2, 0)

∼ (2/3)2s
∞∑

m=0

Rm(s, F)F(s + m, 1/2, 0)

(2.13)

with certain polynomials Rm(s, F). Similarly, since F(s, 2/3, 0) = F(s, 1/3, 0) we have

F(s, 2/3, 0) ∼ (2/3)2s
∞∑

m=0

Rm(s, F)F(s + m, 1/2, 0) (2.14)

with certain polynomials Rm(s, F).
Combining (2.8) and (2.9) in Lemma 4 with (2.13) and (2.14), and writing Vm(s) =

Rm(s, F) + Rm(s, F), we get

2F(s) − 3F3(s)
−1F(s) ∼ (2/3)2s

∞∑
m=0

Vm(s)F(s + m)
(
1 − 2F2(s + m)−1),
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1716 J. Kaczorowski, A. Perelli

hence

F3(s)
−1 ∼ 2

3
− 1

3F(s)
(2/3)2s

∞∑
m=0

Vm(s)F(s + m)
(
1 − 2F2(s + m)−1). (2.15)

Note that by (i) of Lemma 2 we have Q0(s) = 1 identically; thus, V0(s) = V0 identically,
and a simple computation based on (2.4) shows that V0 
= 0. Thanks to Lemma 5, (2.15)
gives the meromorphic continuation of F3(s)−1 to DK . Moreover, F3(s)−1 is holomorphic
and t-periodic of period 2π/ log 3 for σ > 1/2 − 2δ, exactly by the same reason explained
for F2(s)−1 in the proof of Lemma 5. But from Lemma 5 we also see that either F2(s)−1 is
entire or its poles are at the points

ρ + 2πki

log 2
, k ∈ Z (2.16)

with a certain ρ ∈ C with �ρ < 1/2 − δ. These facts imply that

F2(s)
−1 and F3(s)

−1 are entire. (2.17)

Indeed, picking the term with m = 0, we rewrite (2.15) as

F3(s)
−1 = (2/3)2s+1V0F2(s)

−1 + �1(s)

F(s)
+ 2

3
− (2/3)2sV0/3 (2.18)

and suppose that F2(s)−1 is not entire. Then, we note that, due to the shift by m ≥ 1, the
poles of �1(s) in DK are disjoint from those of F2(s)−1. Moreover, as we already observed
in the proof of Lemma 5, 1/F(s) has o(K ) poles in DK . Hence, the poles of �1(s)/F(s)
may cancel at most o(K ) poles of (2/3)2s+1V0F2(s)−1 in DK . Therefore, the first term on
the RHS of (2.18) induces poles of F3(s)−1 in DK of form (2.16) for all but o(K ) values
c1 log 2

2π
< k <

K log 2
4π

. But log 2 and log 3 are linearly independent over Q, thus leading
to a contradiction in view of the above t-periodicity of F3(s)−1. Hence, F2(s)−1 is entire.
Moreover, the same argument used in Lemma 5 shows that the possible poles of F3(s)−1 and
�1(s)/F(s) cannot match; thus, F3(s)−1 is holomorphic in DK . Therefore, as in Lemma 5,
F3(s)−1 is also entire, and (2.17) is proved.

Finally, since
(
1 + a(2)21−s

)
F2(s)−1 is a Dirichlet polynomial P4(s), say, of degree ≤ 4

by Lemma 5, and F2(s)−1 is entire, we have that 1 + a(2)21−s divides P4(s); the lemma is
therefore proved. �

In view of Lemma 6, we write

F2(s)
−1 =

4∑
�=0

A�

2�s
, (2.19)

where A0 = 1 and A1 = −a(2), and A4 = 0 if a(2) 
= 0. Up to this point, only the linear
twists have been used; now we also exploit the standard twists and the nonlinear twists (2.3).
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On a Hecke-type functional equation with conductor q = 5 1717

Lemma 7 If F ∈ S has degree 2, conductor q = 5 and θ = 0, then for β ∈ R we have(
e(5β2 − η/2) + e(−5β2 + η/2) + a(2)A3 + 1

2
A4

)
F(s, 0, 4β)

+ 2s
(
a(2)A2 + 1

2
A3

)
F(s, 0, 23/2β)

+ 4s
(
a(2)A1 + 1

2
A2

)
F(s, 0, 2β)

+ 8s
(
a(2) + 1

2
A1

)
F(s, 0, 21/2β) = H(s),

where H(s) is holomorphic for σ > 1/2.

Proof We first show that, thanks to (2.19), for σ > 1 we have

∑
2�n

a(n)e(−β
√
n)

ns
=

4∑
�=0

A�

2�s
F(s, 0, 2�/2β). (2.20)

Indeed, the Euler product implies that

∑
2�n

a(n)

ns
= F2(s)

−1F(s),

hence in view of (2.19), for every n ≥ 1 we get

1

2
(1 − (−1)n)a(n) =

∑
2�|n

0≤�≤4

A�a(n/2�).

Therefore

∑
2�n

a(n)e(−β
√
n)

ns
=

∞∑
n=1

∑
2�|n

0≤�≤4

A�a(n/2�)
e(−β

√
n)

ns

and (2.20) follows by inverting the order of summation. Next we use (2.20) to show, similarly
as in (2.7) in Lemma 4, that for σ > 1

F(s, 1/4, β) + F(s, 3/4, β) = 2F(s, 0, β) − 22−sa(2)

3∑
�=0

A�

2�s
F(s, 0, 2(�+1)/2β)

− 2
4∑

�=0

A�

2�s
F(s, 0, 2�/2β).

(2.21)

Indeed, as in the first steps of the proof of (2.7) we obtain for σ > 1 that

F(s, 1/4, β) + F(s, 3/4, β) = 2F(s, 0, β) − 4
a(2)

2s
∑
2�n

a(n)e(−21/2β
√
n)

ns

− 2
∑
2�n

a(n)e(−β
√
n)

ns
,
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1718 J. Kaczorowski, A. Perelli

and (2.21) follows at once from (2.20), since A4 = 0 if a(2) 
= 0 by (2.19).
Now we apply (iii) of Lemma 2 to the LHS of (2.21); this is possible since θ = 0 and

a(1) = 1. By two applications of (2.5), the fact that e(4n/5) = e(−n/5) and Remark 2, a
simple computation shows that

F(s, 1/4, β) = −ω∗e−i π
2 η(

√
5/4)2s−1e(β2)F(s,−4/5, 4β/

√
5) + h1(s)

= e−iπη41−2se(5β2)F(s, 0, 4β) + h2(s),
(2.22)

where the h j (s)’s denote, here and later, holomorphic functions for σ > 1/2. Moreover,
since

F(s, 3/4, β) = F(s, 1/4,−β),

from (2.22) we deduce that

F(s, 3/4, β) = eiπη41−2se(−5β2)F(s, 0, 4β) + h3(s). (2.23)

Finally, adding (2.22) and (2.23) and substituting the result in the LHS of (2.21) we obtain

21−4s(e(5β2 − η/2) + e(−5β2 + η/2)
)
F(s, 0, 4β) = F(s, 0, β)

− 2
a(2)

2s

3∑
�=0

A�

2�s
F(s, 0, 2(�+1)/2β) −

4∑
�=0

A�

2�s
F(s, 0, 2�/2β) + h4(s),

(2.24)

and the lemma follows by a rearrangement of (2.24). �
Now we use the above lemmas to detect the admissible values of η (see the definition at

the beginning of the section) and the finer structure of F2(s).

Proposition 1 If F ∈ S has degree 2, conductor q = 5 and θ = 0, then

η ∈ Z (2.25)

and the degree of F2(s)−1 is ≤ 2.

Proof Recalling the notation at the beginning of this section, for integer ν ≥ 0 we choose

βν = 2(ν−2)/2/
√

5 in order to have n2 j/2βν
= 2ν+ j−4 for j = 1, . . . , 4. (2.26)

Next we choose β = βν and compute the residue at s = 3/4 of both sides of the identity
in Lemma 7. Thanks to (2.26) and (ii) of Lemma 2, a simple computation shows that the
following recurrence relation holds(

2πν(η) + a(2)A3 + 1

2
A4

)
a(2ν)

2ν/4 + 23/4
(
a(2)A2 + 1

2
A3

)
a(2ν−1)

2(ν−1)/4

+ 43/4
(
a(2)A1 + 1

2
A2

)
a(2ν−2)

2(ν−2)/4
+ 83/4

(
a(2) + 1

2
A1

)
a(2ν−3)

2(ν−3)/4
= 0,

(2.27)

where a(x) = 0 if x /∈ N and

πν(η) =

⎧⎪⎨
⎪⎩

sin(πη) if ν = 0

− cos(πη) if ν = 1

cos(πη) if ν ≥ 2.
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On a Hecke-type functional equation with conductor q = 5 1719

Now we consider the generating function

G(z) =
∞∑

ν=0

a(2ν)zν,

hence clearly G(2−s) = F2(s). From the properties of F2(s) seen at the beginning of the
proof of Lemma 5, this series is absolutely convergent for |z| < 2−ϑ , and thanks to (2.19)
we have

G(z) = 1

1 + A1z + A2z2 + A3z3 + A4z4 . (2.28)

But, in view of the recurrence relation (2.27), we can get another explicit expression for G(z)
by a fairly standard computation with formal power series; Proposition 1 will then follow by
a comparison of such expressions. Indeed, (2.27) implies that for ν ≥ 0

B0,νa(2ν) + B1a(2ν−1) + B2a(2ν−2) + B3a(2ν−3) = 0 (2.29)

where

B0,ν = 2πν(η) + a(2)A3 + A4/2

B0 = 2 cos(πη) + a(2)A3 + A4/2

B1 = 2a(2)A2 + A3

B2 = 4a(2)A1 + 2A2

B3 = 8a(2) + 4A1; (2.30)

note that B0 is the value of B0,ν for ν ≥ 2. Then, multiplying (2.29) by zν , summing over
ν ≥ 0 and observing that

B0,0a(1) + B0,1a(2)z − B0a(1) − B0a(2)z = −2(cos(πη) − sin(πη)) − 4 cos(πη)a(2)z,

after a rearrangement we obtain

G(z) = 2(cos(πη) − sin(πη)) + 4 cos(πη)a(2)z

B0 + B1z + B2z2 + B3z3 . (2.31)

Suppose first that a(2) 
= 0. Then by (2.19) we have A4 = 0. If A3 
= 0, then cos(πη) = 0
and

−2 sin(πη)

B0 + B1z + B2z2 + B3z3 = 1

1 + A1z + A2z2 + A3z3

by a comparison of (2.28) and (2.31); moreover, sin(πη) = ±1. Thus, for j = 0, . . . , 4 we
have

Bj = −2A j sin(πη). (2.32)

Now from (2.29) with ν = 0 we obtain that B0,0 = 0, and hence, by (2.30) we have

a(2)A3 = −2 sin(πη). (2.33)

Therefore, taking j = 3 in (2.32) and multiplying by a(2) we get a(2)B3 = 4 sin2(πη) = 4.
But from (2.19) and (2.30) we deduce that B3 = 4a(2), hence

|a(2)| = 1 and therefore a(2) = a(2)−1. (2.34)
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1720 J. Kaczorowski, A. Perelli

Next we choose j = 1 in (2.32), thus getting from (2.19) that B1 = 2a(2) sin πη. Hence
multiplying by a(2), comparing with (2.30) and using (2.34) gives 2A2 + a(2)2a(2)A3 =
2a(2) sin πη. In view of (2.33), taking conjugates we therefore obtain

A2 = 2a(2)
2

sin(πη). (2.35)

Take now j = 2 in (2.32) and compare with (2.35), thus getting B2 = −4a(2)
2
. Hence

comparing with (2.30) and inserting (2.35), in view of the value of A1 in (2.19), we finally
obtain

a(2)2 sin(πη) = 0,

a contradiction since we already know that cos(πη) = 0. Therefore, recalling also (2.33),
we have that a(2) 
= 0 implies

A3 = A4 = sin(πη) = 0. (2.36)

Suppose now that a(2) = 0. Then from (2.30) and the value of A1 in (2.19), we have that
B3 = 0, hence comparing (2.28) and (2.31) we immediately get A3 = A4 = 0, and hence
sin(πη) = 0 as well since we already observed that B0,0 in (2.30) vanishes. Therefore, (2.36)
holds also if a(2) = 0. In particular, we deduce that η ∈ Z, and Proposition 1 follows. �
Remark 3 Actually, we can prove that under the hypotheses of Proposition 1

F2(s) =
(

1 − α

2s

)−1
(

1 − β

2s

)−1

with certain α, β ∈ C satisfying |α|, |β| ≤ 1. Indeed, F2(s) can be written in this form
with some α, β ∈ C since F2(s)−1 has degree ≤ 2. But then the Ramanujan conjecture
implies that |α|, |β| ≤ 1, see the argument at the end of the proof of Theorem 1.1 in [12].
Moreover, it is interesting to note that (2.29) agrees with the action of the Hecke operator
T2. Indeed, inserting the value of the coefficients A j given by Proposition 2, as well as the
relations cos(πη) = χ(−1) and a(2) = χ(2)a(2), recurrence (2.29) becomes (after dividing
by 2χ(−1) all terms)

a(2ν) − a(2)a(2ν−1) + χ(2)a(2ν−2) + 2a(2)(the same with ν replaced by ν − 1) = 0.

We need one more lemma.

Lemma 8 If F ∈ S has degree 2, conductor q = 5, θ = 0 and a(2) = 0, then |a(4)| = 1.

Proof According to Proposition 1, F2(s)−1 is a Dirichlet polynomial of degree ≤ 2; hence,
comparing with the shape of F2(s) in (2.1), we deduce that in this case

F2(s)
−1 = 1 − a(4)4−s .

Therefore, comparing with (2.1) we get

a(n) = 0 if 2‖n and a(4m) = a(4)a(m) for every m ≥ 1. (2.37)

Since for n ≡ 1, 3, 5 (mod 6) we have e(−2n/3) + e(−n/6) = 0, and e(−8m/3) =
e(−4m/6) for every m ≥ 1, in view of (2.37) for σ > 1 and β ∈ R we have

F(s, 2/3, β) + F(s, 1/6, β) =
∑
4|n

a(n)

ns
(
e(−2n/3) + e(−n/6)

)
e(−β

√
n)

= 2a(4)

4s
F(s, 2/3, 2β).

(2.38)
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On a Hecke-type functional equation with conductor q = 5 1721

The lemma will follow applying (iii) of Lemma 2 to both sides of (2.38) and then comparing
the outputs in a suitable way.

In the following computations, for ease of notation, we denote by λ (or λ1, . . . ) complex
numbers with |λ| = 1 and by h(s) holomorphic functions for σ > 1/2, not necessarily the
same at each occurrence. Moreover, we apply without explicit mention the conjugation and
periodicity tricks, in the same fashion already used in Lemma 7, when several applications
of the transformation formula in (iii) of Lemma 2 are performed. By repeated applications
of (2.5), we have

F(s, 2/3, β) = F(s, 1/3,−β) = λ(
√

5/3)2s−1F(s, 3/5, 3β/
√

5) + h(s)

= λ(
√

5/3)2s−1F(s,−2/5, 3β/
√

5) + h(s)

= λ(
√

5/3)2s−1F(s, 2/5,−3β/
√

5) + h(s)

= λ(2/3)2s−1F(s, 1/2, 3β/2) + h(s).

(2.39)

But, thanks to (2.37),

F(s, 1/2, 3β/2) =
∑
4|n

a(n)

ns
e(−3β

√
n/2) −

∑
2�n

a(n)

ns
e(−3β

√
n/2)

= 2a(4)

4s
F(s, 0, 3β) − F(s, 0, 3β/2)

hence (2.39) becomes

F(s, 2/3, β) = λ(2/3)2s−1
(

2a(4)

4s
F(s, 0, 3β) − F(s, 0, 3β/2)

)
+ h(s). (2.40)

Similarly
F(s, 1/6, β) = λ(

√
5/6)2s−1F(s,−6/5, 6β/

√
5) + h(s)

= λ(
√

5/6)2s−1F(s, 1/5, 6β/
√

5) + h(s)

= λ(1/6)2s−1F(s, 0, 6β) + h(s),

(2.41)

and from (2.40), we also have

F(s, 2/3, 2β) = λ(2/3)2s−1
(

2a(4)

4s
F(s, 0, 6β) − F(s, 0, 3β)

)
+ h(s). (2.42)

Inserting (2.40), (2.41) and (2.42) in (2.38) and rearranging terms, and then choosing β =
β0 > 0 such that n6β0 = 1 and recalling (ii) of Lemma 2, we obtain

(λ1 − λ2a(4)2)(1/6)2s−1F(s, 0, 6β0) = h(s). (2.43)

Indeed, both n3β0/2 and n3β0 are smaller than 1; hence, 3β0/2 and 3β0 do not belong to
Spec(F), and therefore, F(s, 0, 3β0/2) and F(s, 0, 3β0) are entire functions. Computing the
residue of both sides of (2.43) at s = 3/4, thanks to the formula in (ii) of Lemma 2 we get

c(F)((λ1 − λ2a(4)2) = 0

with some c(F) 
= 0, and the lemma follows since a(4)2 = λ1/λ2 . �

Further information on the finer structure of F2(s) is given by the next result.
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Proposition 2 If F ∈ S has degree 2, conductor q = 5, θ = 0 and η ∈ Z, then

F2(s)
−1 = 1 − a(2)

2s
+ χ(2)

22s (2.44)

with a certainDirichlet characterχ (mod 5) such thatχ(−1) = (−1)η and a(2) = χ(2)a(2).

Proof Assume first that a(2) 
= 0. Taking ν = 1 in (2.29) and recalling from (2.36) that
A3 = A4 = 0, we get

A2 = cos(πη)
a(2)

a(2)
, (2.45)

hence in particular
|A2| = 1 and hence A2 = A−1

2 . (2.46)

Now taking ν = 2 in (2.29) and recalling that A1 = −a(2), see (2.19), we obtain

cos(πη)a(4) = 2a(2)
2 − (

1 + |a(2)|2) A2. (2.47)

By (2.28) and (2.46), we have a(4) = a(2)2 − A2 = a(2)2 − A2
−1

; hence, substituting in
(2.47) we have

cos(πη)a(2)2 − cos(πη)A2
−1 = 2a(2)

2 − (1 + |a(2)|2)A2.

Multiplying by A2 and observing that

a(2)
2
A2 = |a(2)|2 cos(πη) and A2a(2)2 cos(πη) = |a(2)|2A2

2

thanks to (2.45), we therefore obtain

|a(2)|2A2
2 − cos(πη) = 2 cos(πη)|a(2)|2 − (1 + |a(2)|2)A2

2
.

Taking conjugates this gives

(1 + 2|a(2)|2)A2
2 = cos(πη)(1 + 2|a(2)|2)

and hence
A2

2 = cos(πη) = (−1)η. (2.48)

Therefore, the admissible values for A2 are ± 1,± i ; thus, there exists a Dirichlet character
χ (mod 5) such that

A2 = χ(2), (2.49)

which also satisfies χ(3) = χ(2) and χ(4) = χ(2)2 = (−1)η. Hence, in view of (2.19) and
(2.36), (2.44) follows in this case since χ(−1) = χ(4). Moreover, multiplying (2.45) by A2

and using (2.48) and (2.49) we have that a(2) = χ(2)a(2).
Assume now that a(2) = 0. In this case, we take ν = 2 in (2.29) and, recalling again that

A3 = A4 = 0, we obtain
A2 = − cos(πη)a(4). (2.50)

But comparing (2.1) with (2.19), we see that

A2 = a(2)2 − a(4) = −a(4), (2.51)

and |a(4)| = 1 by Lemma 8. Thus comparing (2.50) and (2.51), we have |A2| = 1 and
A2 = cos(πη)A2, and hence, exactly as before, we obtain that the admissible values for A2

are ±1,±i and A2 = χ(2) for some χ (mod 5). Moreover, still comparing (2.50) and (2.51)
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On a Hecke-type functional equation with conductor q = 5 1723

we get that A2 = cos(πη)A2, hence A2
2 = cos(πη) = (−1)η and therefore χ(−1) = (−1)η

as before. �

3 Proof of the Theorem

3.1 Notation

First we recall some notation from the theory of modular forms and from Conrey–Farmer

[3]. As usual we denote by H the upper half-plane, for γ =
(
a b
c d

)
∈ Γ0(N ) we write

χ(γ ) = χ(d), and for γ =
(
a b
c d

)
∈ GL+

2 (R), k ∈ N and f : H → C the k-slash operator

is

f|γ (z) = (det γ )k/2(cz + d)−k f

(
az + b

cz + d

)
,

and is well defined. If γ ∈ C[GL+
2 (R)] has the shape

γ =
J∑

j=1

c jγ j (3.1)

we write

f|γ =
J∑

j=1

c j f|γ j . (3.2)

Moreover, we write

γ ∗ =
(

a − b
− c d

)
if γ =

(
a b
c d

)
and γ ∗ =

J∑
j=1

c jγ
∗
j if γ is as in (3.1),

and f (z) = f (−z) for any function f : H → C. Clearly, γ ∗∗ = γ , f = f and f = 0 if and
only if f = 0. We further write

� f = {
γ ∈ C[GL+

2 (R)] : f|γ = 0
}

and γ ≡ γ ′ (mod � f ) to mean that γ −γ ′ ∈ � f . Since det γ ∗ = det γ , a simple computation
shows that

f|γ = f |γ ∗ , and f |γ = f|γ ∗ . (3.3)

We recall that the Hecke operators of weight k and character χ are defined for n ≥ 1 as

Tn = 1

n

∑
ad=n

χ(a)ak
∑

1≤b<d

(
a b
0 d

)
,

and their action on f : H → C is given by

Tn f (z) = 1

n

∑
ad=n

χ(a)ak
∑

0≤b<d

f

(
az + b

d

)
; (3.4)
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see Section 6.2 of Iwaniec [5]. We also consider the modified Hecke operator T̃2, which
essentially mimics the action of T2 via the slash operator (see (3.7)), defined as

T̃2 = χ(2)

(
2 0
0 1

)
+

(
1 0
0 2

)
+

(
1 1
0 2

)
. (3.5)

Finally, we write

H5 =
(

0 − 1
5 0

)
, P =

(
1 1
0 1

)
, W5 =

(
1 0
5 1

)
, M2 =

(
2 1
5 3

)
, I =

(
1 0
0 1

)
.

3.2 The holomorphic case

We start with the proof of the theorem, assuming that F(s) is entire. By Remark 1, we may
assume that μ ≥ 0, i.e., θ = 0, since otherwise we consider G(s) = F(s − 	μ) in place of
F(s). Note that in the special case where Φ(s) is as in (1.4), we have η = 2μ − 1 and, by
Proposition 1, η ∈ Z. But μ ≥ 0, thus writing η + 2 = k we have that k ≥ 1 is an integer
and

μ = k − 1

2
.

Moreover, in view of Proposition 2 we have

χ(−1) = (−1)k;
we shall use these properties without further mention. Let

f (z) =
∞∑
n=1

ane(nz), an = a(n)n(k−1)/2; (3.6)

clearly, f (z) is absolutely convergent on H. Having obtained full information on the Euler
factor F2(s) of F(s) in Proposition 2, now we modify some ideas in Conrey–Farmer [3] to
characterize F(s).

In view of (3.1), (3.2), (3.4) and (3.5), a simple computation shows that, for any f : H →
C,

f|T̃2
(z) = √

2 2−(k−1)/2 T2 f (z). (3.7)

Choose now f (z) as in (3.6). By Proposition 2 and standard computations from the theory
of Hecke operators, see, e.g., Chapters 2 and 4 of Ogg [16], in this case we have

T2 f (z) = a2 f (z) = 2(k−1)/2a(2) f (z), (3.8)

hence comparing (3.7) and (3.8) we get

f|T̃2
(z) = α2 f (z), α2 = √

2 a(2). (3.9)

The next steps in the proof are as follows. First we combine (3.9) with the information coming
from the functional equation of F(s) to show that f (z) satisfies the modularity relation

f|γ (z) = χ(γ ) f (z) for γ ∈ {P,W5, M2}. (3.10)

Since {P,W5, M2} is a set of generators of Γ0(5), see p. 450 of Conrey–Farmer [3], from
(3.10) we obtain that f (z) satisfies the same modularity relation for every γ ∈ Γ0(5). Then
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we show that f (z) is a newform in Sk(Γ0(5), χ). Hence, by Remark 1 and (3.6), we obtain
that

F(s) = L

(
s + k − 1

2
+ 	μ, f

)
= L(s + μ, f ), (3.11)

as required.
Now we prove (3.10). Clearly, by (3.6) we have

f|P (z) = χ(P) f (z). (3.12)

Moreover, it is well known that the functional equation of F(s) implies, via the Mellin
transform, that

f|H5
= ω f and f |H5

= ω−1 f, (3.13)

hence
f|
H−1

5

= ω f (3.14)

since f = f |
H5H

−1
5

= ω−1 f|
H−1

5

by the chain rule satisfied by the k-slash operator. In order

to deal with M2 we note that by (3.13), (3.9) and (3.14) we have

f |
H5 T̃2H

−1
5

= ω−1 f|
T̃ H−1

5

= ω−1α2 f|
H−1

5

= α2 f ,

hence H5T̃2H
−1
5 − α2 I ∈ � f and therefore by (3.3)(

H5T̃2H
−1
5

)∗ − α2 I ∈ � f . (3.15)

But a direct computation shows that

H5T̃2H
−1
5 = χ(2)

(
1 0
0 2

)
+

(
2 0
0 1

)
+

(
2 0

−5 1

)
,

hence (
H5T̃2H

−1
5

)∗ = χ(2)

(
1 0
0 2

)
+

(
2 0
0 1

)
+

(
2 0
5 1

)
.

Multiplying this identity by χ(2), from (3.15), we have

χ(2)

(
2 0
0 1

)
+

(
1 0
0 2

)
+ χ(2)

(
2 0
5 1

)
− χ(2)α2 I ∈ � f ,

and subtracting this relation from (3.9), we obtain(
1 1
0 2

)
− χ(2)

(
2 0
5 1

)
− (α2 − χ(2)α2)I ∈ � f .

Thanks to Proposition 2 and in view of (3.9), we have α2 − χ(2)α2 = 0, and hence, we get(
1 1
0 2

)
− χ(2)

(
2 0
5 1

)
∈ � f . (3.16)

Multiplying (3.16) on the right by

(
2 1
0 1

)
and dividing by 2, we obtain

P − χ(2)M2 ∈ � f ,
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and since P ≡ I (mod � f ) by (3.12), and χ(2)−1 = χ(3), the above relation shows that

f|M2
(z) = χ(M2) f (z). (3.17)

Finally, to deal with W5 we note that by (3.13), (3.12) and (3.14) we have

f |
H5PH−1

5

= ω−1 f|
PH−1

5
= ω−1 f|

H−1
5

= f ,

hence H5PH−1
5 − I ∈ � f and therefore by (3.3)(

H5PH−1
5

)∗ − I ∈ � f . (3.18)

Again, a direct computation shows that

H5PH−1
5 =

(
1 0

−5 1

)
,

hence (H5PH−1
5 )∗ = W5 and (3.18) becomes

f|W5
(z) = χ(W5) f (z). (3.19)

The modularity relations (3.10) follow now from (3.12), (3.17) and (3.19).
To show that f (z) is a newform in Sk(Γ0(5), χ), we argue as follows. Since this is probably

known in the theory of modular forms thanks to the multiplicity one property, we give a sketch
of proof based on the linear independence property of L-functions, which in fact is a kind of
analog of the multiplicity one in the framework of L-functions. As in Section 5 of [3], the
above convergence and modularity properties imply that f (z) is holomorphic at the cusps of
Γ0(5); hence, f ∈ Mk(Γ0(5), χ) and (3.11) holds. By Proposition 2.6 of Iwaniec [5], Γ0(5)

has only two inequivalent cusps, 0 and ∞; moreover, (3.6) is the Fourier expansion of f (z) at
∞ and F(s −μ) is its associated L-function. By the functional equation of F(s), we deduce
(see Section 7.2 of [5]) that

f (z) =
∞∑
n=1

ane(nz)

is the Fourier expansion of f (z) at 0, and hence, f (z) is a cusp form since both 0-coefficients
vanish. Now we recall that

Sk(Γ0(5), χ) = S�
k (Γ0(5), χ) ⊕ S�

k(Γ0(5), χ),

S�
k (Γ0(5), χ) has a basis of newforms f j (z) of level 5 and S�

k(Γ0(5), χ) has a basis of type
g j (d j z) with g j (z) Hecke eigenform of level 1 and d j |5; see Section 6 of [5]). Hence, we
have

f (z) =
h∑
j=1

α j f j (z) +
r∑
j=1

β j g j (d j z), α j , β j ∈ C. (3.20)

Passing to the associated L-functions, we obtain that

L(s, f ) =
h∑
j=1

α j L(s, f j ) +
r∑
j=1

β j d
−s
j L(s, g j ),

hence L(s, f ) is a linear combination over Dirichlet polynomials of L-functions in the Selberg
class S. Thanks to the linear independence property of L-functions in S, see Kaczorowski–
Molteni–Perelli [7] and [8], we see that either L(s, f ) = L(s, f j ) or L(s, f ) = L(s, g j ) for

123



On a Hecke-type functional equation with conductor q = 5 1727

some j . But F(s) has conductor q = 5; hence, in view of (3.11) we deduce that f (z) = f j (z)
for some j , as required.

3.3 The polar case

Suppose now that F(s) has a pole at s = 1; the argument is similar to the holomorphic case,
so we only give a brief sketch; but first we need a further lemma.

Lemma 9 If F ∈ S2(5, μ) is polar, then a(2) = 1 + χ(2), where χ is as in Proposition 2.

Proof By Lemma 1, we have μ = 0 and the pole of F(s) at s = 1 is simple. Hence, in
this case we have k = 1 and cos(πη) = −1; moreover, by Proposition 2 we also have
A0 = 1, A1 = −a(2) and A2 = χ(2). Now we choose β = 0 in Lemma 7; recalling that
A3 = A4 = 0 and inserting the above values of A0, A1, A2 and cos(πη), we obtain( − 2 + 2sa(2)χ(2) + 4s(−a(2)2 + χ(2)/2) + 8sa(2)/2

)
F(s) = H(s),

where H(s) is holomorphic for σ > 1/2. Computing residues at s = 1 on both sides, dividing
by 4 and rearranging terms we get

a(2)2 − (1 + χ(2)/2)a(2) + (1 − χ(2))/2 = 0.

Now observe that χ(2)2 = −1, since χ(2)2 = χ(4) = χ(−1) = (−1)k = −1. Hence, a
simple computation shows that the two values

a(2) = 1 + χ(2) and a(2) = −χ(2)/2

satisfy the above equation, which therefore are the only possibilities for a(2). But inserting
a(2) = −χ(2)/2 in (2.45) and recalling that A2 = χ(2) and cos(πη) = −1, we get

χ(2) = −χ(2)

χ(2)
,

hence −1 = χ(2)2 = −χ(2), thus χ(2) = 1 and hence χ(4) = 1, a contradiction. Therefore,
a(2) = 1 + χ(2), and the lemma follows. �

As already observed in the proof of Lemma 9, the pole is simple, μ = 0 and k = 1; in
this case, we replace (3.6) by

f (z) =
∞∑
n=0

a(n)e(nz), a(0) = F(0). (3.21)

Then, (3.9) and (3.12)–(3.14) hold also for f (z) defined by (3.21). Indeed, (3.13) and (3.14)
hold in this case since F(s) has a simple pole at s = 1, while (3.12) is trivial. Moreover, by
(3.9) and a direct computation we have

f|T̃2
(z) = a(0)|T̃2

+ α2
(
f (z) − a(0)

)
= √

2(1 + χ(2))a(0) + α2
(
f (z) − a(0)

) = α2 f (z)

in view of Lemma 9. As a consequence, (3.10) holds as well, exactly by the same arguments
as in the holomorphic case. Further, exactly as before we have that f ∈ M1(Γ0(5), χ). But

dim M1(Γ0(5), χ) = dim S1(Γ0(5), χ) + 1
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and M1(Γ0(5), χ) has a basis consisting of cusp forms plus the normalized Eisenstein series
f0(z), whose associated L-function is ζ(s)L(s, χ); see Section 6.3 of Stein [21]. Therefore,
with notation similar as in Sect. 3.2 with k = 1, in analogy with (3.20) we have

f (z) =
h̃∑
j=1

α̃ j f̃ j (z) +
r̃∑
j=1

β̃ j g̃ j (d̃ j z) + γ0 f0(z), α̃ j , β̃ j , γ0 ∈ C.

Passing to the associated L-functions, and using again the linear independence property of
S, we finally obtain that F(s) = ζ(s)L(s, χ) since all the L(s, f̃ j ) and L(s, g̃ j ) are entire.
The proof of the theorem is now complete.
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