

Sign-changing bubble tower solutions for the supercritical Hénon-type equations

Daomin Cao^{1,2} · Zhongyuan Liu³ · Shuangjie Peng⁴

Received: 29 April 2017 / Accepted: 15 December 2017 / Published online: 27 December 2017 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract This paper deals with the following supercritical Hénon-type equation

$$\begin{cases} -\Delta u = |x|^{\alpha} |u|^{p_{\alpha}-1-\varepsilon} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\alpha > -2$, $\varepsilon > 0$, $p_{\alpha} = \frac{N+2+2\alpha}{N-2}$, $N \ge 3$, Ω is a smooth bounded domain in \mathbb{R}^N containing the origin. For $\varepsilon > 0$ small enough, it is shown that if α is not an even integer, the above problem has sign-changing bubble tower solutions, which blow up at the origin. It seems that this is the first existence result of sign-changing bubble tower solutions for the supercritical Hénon-type equation.

Keywords Sign-changing bubble tower solutions · Hénon-type equation · Lyapunov–Schmidt reduction

Mathematics Subject Classification Primary 35J60 ; Secondary 35J05 · 35J40

Zhongyuan Liu liuzy@vip.henu.edu.cn

> Daomin Cao dmcao@amt.ac.cn

Shuangjie Peng sjpeng@mail.ccnu.edu.cn

- School of Mathematics and Information Science, Guangzhou University, Guangzhou 510405, People's Republic of China
- ² Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- ³ School of Mathematics and Statistics, Henan University, Kaifeng 475004, Henan, People's Republic of China
- ⁴ School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, People's Republic of China

1 Introduction and main results

In this paper, we consider the existence of sign-changing bubble tower solutions for the following supercritical Hénon-type equation

$$\begin{cases} -\Delta u = |x|^{\alpha} |u|^{p_{\alpha} - 1 - \varepsilon} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.1)

where $\alpha > -2$, $\varepsilon > 0$, $p_{\alpha} = \frac{N+2+2\alpha}{N-2}$, $N \ge 3$, Ω is a smooth bounded domain in \mathbb{R}^{N} containing the origin.

When Ω is the unit ball $B_1(0)$ of \mathbb{R}^N , problem (1.1) becomes the well-known Hénon equation, i.e.,

$$\begin{cases} -\Delta u = |x|^{\alpha} u^{p}, \ u > 0, & \text{in } B_{1}(0), \\ u = 0, & \text{on } \partial B_{1}(0). \end{cases}$$
(1.2)

Problem (1.2) was proposed by Hénon in [15] when he studied rotating stellar structures, which has attracted a lot of interest in recent years. Ni [21] first considered (1.2) and proved that it possesses a positive radial solution when $p \in (1, p_{\alpha})$. Due to the appearance of the weighted term $|x|^{\alpha}$, the classical moving plane method in [13] cannot be applied to problem (1.2) when $\alpha > 0$. Therefore it is quite natural to ask whether problem (1.2) with $\alpha > 0$ has non-radial solutions. Based on numerical results in [4], Smets, Su and Willem [27] obtained the existence of non-radial solutions for $1 , when <math>\alpha$ is large enough. For $p = \frac{N+2}{N-2} - \varepsilon$, Cao and Peng [5] showed that the ground state solution is non-radial and blows up near the boundary of $B_1(0)$ as $\varepsilon \to 0$. Later on, Peng [22] constructed multiple boundary peak solutions for problem (1.2). When $p = \frac{N+2}{N-2}$, Serra [26] proved that problem (1.2) has a non-radial solution provided α is large enough. More recently, Wei and Yan [28] showed that there are infinitely many non-radial positive solutions for problem (1.2) with $\alpha > 0$. For other results related to the Hénon-type problems, see [1,2,6,16,24] and the references therein.

On the other hand, using the Pohozaev-type identity [25], we know that for $p \ge p_{\alpha}$ there are no nontrivial solutions to problem (1.2). So it seems more interesting whether there are solutions for $p \in (\frac{N+2}{N-2}, p_{\alpha})$. When $p = p_{\alpha} - \varepsilon$ with small $\varepsilon > 0$, Gladiali and Grossi in [11] showed that there exists a solution concentrating at origin provided $0 < \alpha \le 1$. By the results in [12], the same results still hold when α is not an even integer. In [17], the asymptotic behavior of the radial solutions obtained by Ni in [21] was analyzed as $\varepsilon \to 0^+$. More recently, Liu and Peng [19] constructed large number of peak solutions for (1.2) with $p = \frac{N+2}{N-2} + \varepsilon$. However, as far as we know, it seems that there are no results on existence of sign-changing solutions for (1.2) when $p \in (\frac{N+2}{N-2}, p_{\alpha})$

Our purpose in the present paper is to construct sign-changing bubble tower solutions for (1.1) which blow up at the origin. It seems that this is the first existence result of sign-changing bubble tower solutions for (1.1).

The main result of this paper is as follows.

Theorem 1.1 Assume that $N \ge 3$, $\alpha > -2$ is not an even integer, then for any $k \in \mathbb{N}^+$, there exists $\varepsilon_k > 0$ such that for $\varepsilon \in (0, \varepsilon_k)$, problem (1.1) has a sign-changing bubble tower solution u_{ε} with exactly k nodal sets in Ω .

Remark 1.2 When $\alpha = 0$ and Ω has some symmetry property, problem (1.1) has been studied in [3] and [23]. Our results do not need any symmetry property of Ω . Further more,

compared with the classical Hénon equation where $\alpha > 0$, our result covers the more general case $\alpha > -2$.

Remark 1.3 If Ω is the unit ball of \mathbb{R}^N , then Theorem 1.1 holds for all $\alpha > -2$. Actually, we can construct a sign-changing radial bubble tower solution u_{ε} . Considering the transformation w(s) = u(r), $r = s^{\frac{2}{\alpha+2}}$, problem (1.1) can be changed into the following problem

$$\begin{cases} -w'' - \frac{M-1}{s}w' = \frac{4}{(2+\alpha)^2} |w|^{\frac{M+2}{M-2}-\varepsilon} w, & \text{in } (0,1), \\ w'(0) = w(1) = 0, \end{cases}$$
(1.3)

where $M = \frac{2(N+\alpha)}{2+\alpha}$. When *M* is an integer, problem (1.3) was studied in [3]. However, problem (1.3) can be dealt with in a similar way if *M* is not an integer.

Let us outline the main idea to prove Theorem 1.1. To do this, we introduce a few notations first. For $x \in \mathbb{R}^N$ and $\mu > 0$, set

$$U_{\mu}(x) = C_{\alpha,N} \left(\frac{\mu^{\frac{2+\alpha}{2}}}{\mu^{2+\alpha} + |x|^{2+\alpha}} \right)^{\frac{N-2}{2+\alpha}}, \ C_{\alpha,N} = ((N+\alpha)(N-2))^{\frac{N-2}{4+2\alpha}}.$$

It is well known from [12,14] that $U_{\mu}(x)$ are the only radial solutions of

$$-\Delta u = |x|^{\alpha} u^{p_{\alpha}}, u > 0 \text{ in } \mathbb{R}^{N}.$$
(1.4)

We define the following Emden-Fowler-type transformation

$$v(y,\Theta) = \mathcal{T}(u)(y,\Theta) = \left(\frac{p_{\alpha}-1}{2}\right)^{\frac{2}{p_{\alpha}-1}} r^{\frac{N-2}{2}} u(r,\Theta), \tag{1.5}$$

where

$$r = e^{-\frac{p_{\alpha}-1}{2}y}, \Theta \in \mathbb{S}^{N-1}$$

Define

$$D = \{ (y, \Theta) \in \mathbb{R} \times \mathbb{S}^{N-1} : (e^{-\frac{p\alpha-1}{2}y}, \Theta) \in \Omega \}.$$

After these changes of variables, problem (1.1) becomes

$$\begin{cases} L(v) = \sigma_{\varepsilon} e^{-\frac{2+\alpha}{2}\varepsilon y} |v|^{p_{\alpha}-1-\varepsilon} v & \text{in } D, \\ v = 0 & \text{on } \partial D, \end{cases}$$
(1.6)

where

$$\sigma_{\varepsilon} = \left(\frac{p_{\alpha} - 1}{2}\right)^{\frac{2\varepsilon}{p_{\alpha} - 1}}$$

and

$$L(v) = -v'' + \frac{(2+\alpha)^2}{4}v - \left(\frac{p_{\alpha}-1}{2}\right)^2 \Delta_{\mathbb{S}^{N-1}}v.$$

The energy functional corresponding to problem (1.6) is

$$\begin{split} I_{\varepsilon}(v) &= \frac{1}{2} \int_{D} \left(|v'|^2 + \frac{(2+\alpha)^2}{4} |v|^2 \right) \mathrm{d}y \mathrm{d}\Theta + \frac{1}{2} \left(\frac{p_{\alpha} - 1}{2} \right)^2 \int_{D} |\nabla_{\mathbb{S}^{N-1}} v|^2 \mathrm{d}y \mathrm{d}\Theta \\ &- \frac{\sigma_{\varepsilon}}{p_{\alpha} + 1 - \varepsilon} \int_{D} e^{-\frac{2+\alpha}{2} \varepsilon y} |v|^{p_{\alpha} + 1 - \varepsilon} \mathrm{d}y \mathrm{d}\Theta. \end{split}$$

It is easy to see that

$$I_{\varepsilon}(v) = \left(\frac{p_{\alpha}-1}{2}\right)^{\frac{p_{\alpha}+1}{p_{\alpha}-1}} J_{\varepsilon}(u), \qquad (1.7)$$

where

$$J_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{1}{p_{\alpha} + 1 - \varepsilon} \int_{\Omega} |x|^{\alpha} |u|^{p_{\alpha} + 1 - \varepsilon} dx$$

We observe that W(y) is the unique solution of the problem

$$\begin{cases} W'' - \frac{(2+\alpha)^2}{4}W + W^{p_{\alpha}} = 0 \text{ in } \mathbb{R}, \\ W'(0) = 0, \quad W(y) > 0, \\ W(y) \to 0 \text{ as } y \to \pm \infty, \end{cases}$$
(1.8)

where

$$W(y) = \gamma_{\alpha,N} \frac{e^{-\frac{2+\alpha}{2}y}}{\left(1 + e^{-\frac{(2+\alpha)^2}{N-2}y}\right)^{\frac{N-2}{2+\alpha}}}, \ \gamma_{\alpha,N} = \left(\frac{(2+\alpha)^2(N+\alpha)}{N-2}\right)^{\frac{N-2}{4+2\alpha}}$$

We denote the function $PU_{\mu} := U_{\mu} + R_{\mu}$, which is the projection onto $H_0^1(\Omega)$ of the function U_{μ} , that is,

$$\begin{cases} -\Delta P U_{\mu} = |x|^{\alpha} U_{\mu}^{p_{\alpha}} & \text{in } \Omega, \\ P U_{\mu} = 0 & \text{on } \partial \Omega. \end{cases}$$

Then, we have

$$R_{\mu} = -C_{\alpha,N} \mu^{\frac{N-2}{2}} H(x,0) + O\left(\mu^{\frac{N+2+2\alpha}{2}}\right),$$

where H(x, 0) is the Robin function. For given $\Lambda_i > 0$, i = 1, 2, ..., k, set

$$\xi_{1} = -\frac{1}{2+\alpha} \log \varepsilon + \frac{2}{2+\alpha} \log \Lambda_{1},$$

$$\xi_{i+1} - \xi_{i} = -\frac{2}{2+\alpha} \log \varepsilon - \frac{2}{2+\alpha} \log \Lambda_{i+1}, \quad i = 1, 2, \dots, k-1.$$
(1.9)

Let us write

$$W_i(y) = W(y - \xi_i), \quad V_i(y) = W_i(y) + \Pi_i(y), \quad V(y) = \sum_{i=1}^k (-1)^i V_i(y), \quad (1.10)$$

where

$$\Pi_i(y) = \mathcal{T}(R_{\mu_i}), \ \mu_i = e^{-\frac{p_\alpha - 1}{2}\xi_i}.$$

We will prove Theorem 1.1 by verifying the following result.

Theorem 1.4 Suppose that $\alpha > -2$ is not an even integer. Then for any integer $k \ge 1$, there exists $\varepsilon_k > 0$ such that for $\varepsilon \in (0, \varepsilon_k)$, problem (1.6) has a pair of solutions v_{ε} and $-v_{\varepsilon}$ of the form

$$v_{\varepsilon} = V + \phi_{\varepsilon},$$

where $\|\phi_{\varepsilon}\|_{L^{\infty}} \to 0$, as $\varepsilon \to 0$.

Remark 1.5 Using the Emden–Fowler-type transformation (1.5), we can give the explicit expression of solution to problem (1.1), that is,

$$u_{\varepsilon}(x) = C_{\alpha,N} \sum_{i=1}^{k} (-1)^{i} \left(\frac{M_{i}^{\frac{2+\alpha}{2}} \varepsilon^{\frac{(2+\alpha)(2i-1)}{2(N-2)}}}{M_{i}^{2+\alpha} \varepsilon^{\frac{(2+\alpha)(2i-1)}{N-2}} + |x|^{2+\alpha}} \right)^{\frac{N-2}{2+\alpha}} (1+o(1)).$$

where M_i , i = 1, 2, ..., k are some certain positive constants (see (4.3)) and $o(1) \rightarrow 0$ uniformly on compact subsets of Ω as $\varepsilon \rightarrow 0$.

The proof of Theorem 1.4 is motivated by [7,23]. More precisely, we will use the Lyapunov–Schmidt reduction argument to prove Theorem 1.4, which reduces the construction of the solutions to a finite-dimensional variational problem. As a final remark, we point out that bubble tower concentration phenomena have been observed in [3,7,8,10,18,20,23] near the critical Sobolev exponent, i.e., $\alpha = 0$. However, as far as we know, there are no such results for $\alpha \neq 0$.

This paper is organized as follows. In Sect. 2, we give some basic estimates and asymptotic expansion. In Sect. 3, we will carry out the finite-dimensional reduction argument and the main results will be proved in Sect. 4.

2 Energy expansion

In this section, we give some estimates and asymptotic expansion used in the later sections.

Lemma 2.1 For fixed $\delta > 0$ and $\delta < \Lambda_i < \delta^{-1}$, i = 1, 2, ..., k, we have the following estimates:

$$\int_{D} |V|^{p_{\alpha}+1} \mathrm{d}y \mathrm{d}\Theta = k\omega_{N-1} \int_{\mathbb{R}} W^{p_{\alpha}+1} + o(1), \qquad (2.1)$$

$$\int_{D} \left(|V|^{p_{\alpha}+1} - |V|^{p_{\alpha}+1-\varepsilon} \right) \mathrm{d}y \mathrm{d}\Theta = k\omega_{N-1}\varepsilon \int_{\mathbb{R}} W^{p_{\alpha}+1} \log W + o(\varepsilon), \tag{2.2}$$

$$\int_{D} y|V|^{p_{\alpha}+1} \mathrm{d}y \mathrm{d}\Theta = \left(\sum_{\ell=1}^{k} \xi_{\ell}\right) \omega_{N-1} \int_{\mathbb{R}} W^{p_{\alpha}+1} + o(1), \qquad (2.3)$$

$$\int_{D_{\ell}} W_i^{p_{\alpha}} W_j \mathrm{d}y \mathrm{d}\Theta = o\left(\varepsilon\right), \quad i \neq \ell,$$
(2.4)

$$\int_{D_{\ell}} W_{\ell}^{p_{\alpha}} W_{j} \mathrm{d}y \mathrm{d}\Theta = a_{3} e^{-\frac{2+\alpha}{2}|\xi_{\ell} - \xi_{j}|} + o(\varepsilon), \quad j \neq \ell,$$
(2.5)

$$\int_{D_{\ell}} \left(|V_{\ell}|^{p_{\alpha}+1} - |V|^{p_{\alpha}+1} + (p_{\alpha}+1)V_{\ell}^{p_{\alpha}} \sum_{j \neq \ell} (-1)^{\ell+j} V_j \right) \mathrm{d}y \mathrm{d}\Theta = o\left(\varepsilon\right), \quad (2.6)$$

$$\int_{D_{\ell}} \left(W_{\ell}^{p_{\alpha}} - V_{\ell}^{p_{\alpha}} \right) V_{j} \mathrm{d}y \mathrm{d}\Theta = o\left(\varepsilon\right), \quad j \neq \ell,$$
(2.7)

where $a_3 = \gamma_{\alpha,N}\omega_{N-1} \int_{\mathbb{R}} e^{-\frac{2+\alpha}{2}y} W^{p_{\alpha}}, D_{\ell} = \{(y,\Theta) \in D : \eta_{\ell} \le y < \eta_{\ell+1}\}, \eta_1 = 0, \eta_{\ell} = \frac{\xi_{\ell-1} + \xi_{\ell}}{2}, \ \ell = 2, \dots, k, \eta_{k+1} = +\infty.$

Proof The results are similar to Lemma 4.4 in [23], we omit the details.

Deringer

Next, we will calculate the asymptotic expansions of the energy functional $I_{\varepsilon}(V)$.

Proposition 2.2 For any $\delta > 0$, there exists $\varepsilon_0 > 0$ such that for $\varepsilon \in (0, \varepsilon_0)$, we have the following asymptotic expansion

$$I_{\varepsilon}(V) = ka_0 + ka_1\varepsilon - \frac{k^2}{2}a_4\varepsilon\log\varepsilon + \varepsilon\Psi_k(\Lambda) + \varepsilon R_{\varepsilon}(\Lambda), \qquad (2.8)$$

where

$$\Psi_k(\Lambda) = ka_4 \log \Lambda_1 + \frac{a_2 H(0,0)}{\Lambda_1^2} + \sum_{\ell=2}^k (a_3 \Lambda_\ell - (k-\ell+1)a_4 \log \Lambda_\ell)$$

and $R_{\varepsilon} \to 0$, as $\varepsilon \to 0$ uniformly in C^1 -norm on the set of Λ_i 's with $\delta < \Lambda_i < \delta^{-1}$, i = 1, 2, ..., k. Here $a_i, i = 0, 1, ..., 4$, are given by

$$\begin{cases} a_{0} = \frac{2+\alpha}{2(N+\alpha)} \left(\frac{p_{\alpha}-1}{2}\right)^{\frac{p_{\alpha}+3}{p_{\alpha}-1}} \int_{\mathbb{R}^{N}} |x|^{\alpha} U_{1}^{p_{\alpha}+1}, \\ a_{1} = \frac{\omega_{N-1}}{p_{\alpha}+1} \left(\int_{\mathbb{R}} W^{p_{\alpha}+1} \log W - \frac{1}{p_{\alpha}+1} \int_{\mathbb{R}} W^{p_{\alpha}+1} - \frac{2}{p_{\alpha}-1} \log \frac{p_{\alpha}-1}{2} \int_{\mathbb{R}} W^{p_{\alpha}+1}\right), \\ a_{2} = \frac{2+\alpha}{2(N+\alpha)} \left(\frac{p_{\alpha}-1}{2}\right)^{\frac{p_{\alpha}+3}{p_{\alpha}-1}} C_{\alpha,N} \int_{\mathbb{R}^{N}} |x|^{\alpha} U_{1}^{p_{\alpha}}, \\ a_{3} = \gamma_{\alpha,N} \omega_{N-1} \int_{\mathbb{R}} e^{-\frac{2+\alpha}{2}y} W^{p_{\alpha}}, \\ a_{4} = \frac{\omega_{N-1}}{p_{\alpha}+1} \int_{\mathbb{R}} W^{p_{\alpha}+1}. \end{cases}$$

Proof The proof is standard, and we only give a sketch here. Note that

$$\begin{split} I_{\varepsilon}(V) &= I_0(V) + \frac{1}{p_{\alpha} + 1} \int_D |V|^{p_{\alpha} + 1} - \frac{\sigma_{\varepsilon}}{p_{\alpha} + 1 - \varepsilon} \int_D e^{-\frac{2 + \alpha}{2} \varepsilon y} |V|^{p_{\alpha} + 1 - \varepsilon} \\ &= I_0(V) - \frac{1}{p_{\alpha} + 1} \int_D \left(e^{-\frac{2 + \alpha}{2} \varepsilon y} - 1 \right) |V|^{p_{\alpha} + 1} + ka_1 \varepsilon + o(\varepsilon). \end{split}$$

It follows from Lemma 2.1 that

$$\frac{1}{p_{\alpha}+1} \int_{D} \left(e^{-\frac{2+\alpha}{2}\varepsilon y} - 1 \right) |V|^{p_{\alpha}+1} = -\frac{(2+\alpha)\varepsilon}{2(p_{\alpha}+1)} \int_{D} y|V|^{p_{\alpha}+1} + o(\varepsilon)$$
$$= -\varepsilon \frac{a_4(2+\alpha)}{2} \sum_{j=1}^{k} \xi_j + o(\varepsilon).$$

It is easy to check that

$$I_0(V) - \sum_{i=1}^k I_0(V_i) = \frac{1}{p_{\alpha} + 1} \int_D \left(\sum_{i=1}^k V_i^{p_{\alpha} + 1} - |V|^{p_{\alpha} + 1} \right) + \sum_{i,j=1,i>j}^k (-1)^{i+j} \int_D W_i^{p_{\alpha}} V_j.$$

Since $\Pi_j = O(e^{-\frac{2+\alpha}{2}\xi_j}) = O(\varepsilon^{\frac{3}{2}}), j \ge 2$, from Lemma 2.1, we have

$$\begin{split} I_{0}(V) &- \sum_{i=1}^{k} I_{0}(V_{i}) \\ &= \frac{1}{p_{\alpha} + 1} \sum_{\ell=1}^{k} \int_{D_{\ell}} \left(V_{\ell}^{p_{\alpha} + 1} - |V|^{p_{\alpha} + 1} + (p_{\alpha} + 1) \sum_{j < \ell} (-1)^{\ell + j} W_{\ell}^{p_{\alpha}} V_{j} \right) + o(\varepsilon) \\ &= - \sum_{\ell=1}^{k} \sum_{j > \ell} (-1)^{\ell + j} \int_{D_{\ell}} W_{\ell}^{p_{\alpha}} W_{j} + o(\varepsilon) \\ &= a_{3} \sum_{\ell=1}^{k-1} e^{-\frac{2 + \alpha}{2} |\xi_{\ell+1} - \xi_{\ell}|} + o(\varepsilon). \end{split}$$

Next, we estimate $I_0(V_i)$, i = 1, 2, ..., k. Recall that

$$V_i = W_i + \Pi_i, \quad \Pi_i(y) = \mathcal{T}(R_{\mu_i}), \ \mu_i = e^{-\frac{p_\alpha - 1}{2}\xi_i}$$

and

$$I_0(V_i) = \left(\frac{p_{\alpha} - 1}{2}\right)^{\frac{p_{\alpha} + 3}{p_{\alpha} - 1}} J_0(PU_{\mu_i}).$$

Thus, we find

$$J_{0}(PU_{\mu_{i}}) = \frac{2+\alpha}{2(N+\alpha)} \int_{\mathbb{R}^{N}} |x|^{\alpha} U_{1}^{p_{\alpha}+1} + \frac{2+\alpha}{2(N+\alpha)} C_{\alpha,N} H(0,0) \mu_{i}^{N-2} \int_{\mathbb{R}^{N}} |x|^{\alpha} U_{1}^{p_{\alpha}} + O(\mu_{i}^{N}).$$

Since $\mu_i = e^{-\frac{p_\alpha - 1}{2}\xi_i}$, we find

$$\sum_{i=1}^{k} I_0(V_i) = ka_0 + a_2 H(0,0) e^{-(2+\alpha)\xi_1} + o(\varepsilon).$$

Hence, we can deduce

$$\begin{split} I_{\varepsilon}(V) &= ka_0 + ka_1\varepsilon + a_2 H(0,0)e^{-(2+\alpha)\xi_1} + a_3 \sum_{\ell=1}^{k-1} e^{-\frac{2+\alpha}{2}|\xi_{\ell+1} - \xi_{\ell}|} \\ &+ a_4 \varepsilon \frac{2+\alpha}{2} \sum_{\ell=1}^k \xi_{\ell} + o(\varepsilon). \end{split}$$

By the definition of ξ_i , i = 1, 2, ..., k, we can obtain (2.8) immediately and the proof of Proposition 2.2 is concluded.

3 The finite-dimensional reduction

In this section, we perform the finite-dimensional procedure, which reduces problem (1.6) to a finite-dimensional problem on \mathbb{R}_+ .

For given ξ_i , $i = 1, 2, \ldots, k$, let

$$\|\phi\|_{*} = \sup_{(y,\Theta)\in D} \left(\sum_{i=1}^{k} e^{-\frac{2+\alpha}{2}\sigma|y-\xi_{i}|} \right)^{-1} |\phi(y,\Theta)|,$$

where $\sigma > 0$ is a small constant. We denote C_* by the continuous function space defined on D with finite norm defined as above.

Define

$$\tilde{Z}_i(x) = \mu_i \frac{\partial U_{\mu_i}}{\partial \mu_i}, \qquad \mu_i = e^{-\frac{p\alpha-1}{2}\xi_i}, \ i = 1, 2, \dots, k.$$

Then, $\tilde{Z}_i(x)$ solves

$$-\Delta \tilde{Z}_i(x) = p_\alpha U_{\mu_i}^{p_\alpha - 1} \tilde{Z}_i(x) \text{ in } \mathbb{R}^N.$$

Let $P\tilde{Z}_i$ be the projection onto $H_0^1(\Omega)$ of the function $\tilde{Z}_i(x)$, that is,

$$\begin{cases} -\Delta P \tilde{Z}_i = p_\alpha U_{\mu_i}^{p_\alpha - 1} \tilde{Z}_i(x) & \text{in } \Omega, \\ P \tilde{Z}_i = 0 & \text{on } \partial \Omega. \end{cases}$$

Set

$$Z_i(y,\Theta) = \mathcal{T}(PZ_i)(y,\Theta).$$

Then, Z_i satisfies

$$\begin{cases} L(Z_i) = p_{\alpha} W_i^{p_{\alpha}-1} W_i' & \text{in } D, \\ Z_i = 0 & \text{on } \partial D. \end{cases}$$

First, we consider the following linear problem

$$\begin{cases} \mathbb{L}_{\varepsilon}(\phi) = h + \sum_{j=1}^{k} c_j Z_j & \text{in } D, \\ \phi = 0 & \text{on } \partial D, \\ \int_D Z_i \phi \mathrm{dy} \mathrm{d}\Theta = 0, \quad i = 1, 2, \dots, k, \end{cases}$$
(3.1)

where c_i , i = 1, 2, ..., k, are some constants and

$$\mathbb{L}_{\varepsilon}(\phi) = L(\phi) - (p_{\alpha} - \varepsilon)\sigma_{\varepsilon}e^{-\frac{2+\alpha}{2}\varepsilon y}|V|^{p_{\alpha} - 1 - \varepsilon}\phi.$$

Lemma 3.1 Assume that there are sequences $\varepsilon_n \to 0$ and points $0 < \xi_1^n < \xi_2^n < \cdots < \xi_k^n$ with

$$\xi_1^n \to \infty, \quad \min_{1 \le i \le k-1} (\xi_{i+1}^n - \xi_i^n) \to +\infty, \quad \xi_k^n = o(\varepsilon_n^{-1})$$

such that ϕ_n solves (3.1) for scalars c_i^n and h_n with $||h_n||_* \to 0$, then $\lim_{n \to \infty} ||\phi_n||_* = 0$.

Proof We will first show that

$$\lim_{n\to\infty}\|\phi_n\|_{L^\infty}=0.$$

Arguing by contradiction, we may assume that $\|\phi_n\|_{L^{\infty}} = 1$. Multiplying (3.1) by Z_{ℓ}^n and integrating by parts, we find

$$\sum_{i=1}^{k} c_i^n \int_D Z_i^n Z_\ell^n \mathrm{d} y \mathrm{d} \Theta = \int_D \mathbb{L}_{\varepsilon_n} (Z_\ell^n) \phi_n \mathrm{d} y \mathrm{d} \Theta - \int_D h_n Z_\ell^n \mathrm{d} y \mathrm{d} \Theta.$$

Note that

$$\int_D Z_i^n Z_\ell^n \mathrm{d} y \mathrm{d} \Theta = C \delta_{i\ell} + o(1)$$

where $\delta_{i\ell}$ is the Kronecker's delta function. This defines an almost diagonal system in the c_i^n 's as $n \to \infty$.

Thus, we have

$$\sum_{i=1}^{k} c_i^n \int_D Z_i^n Z_\ell^n = \int_D \left[L(Z_\ell^n) - (p_\alpha - \varepsilon_n) \sigma_{\varepsilon_n} e^{-\frac{2+\alpha}{2}\varepsilon_n y} |V|^{p_\alpha - 1 - \varepsilon_n} Z_\ell^n \right] \phi_n - \int_D h_n Z_\ell^n.$$
(3.2)

But

$$L(Z_{\ell}^{n}) = p_{\alpha}W^{p_{\alpha}-1}(y-\xi_{\ell}^{n})W'(y-\xi_{\ell}^{n}),$$

by the dominated convergence theorem, we know that $\lim_{n\to\infty} c_i^n = 0$. Assume that $(y_n, \Theta_n) \in D$ is such that $|\phi_n(y_n, \Theta_n)| = 1$, we claim that there is an $\ell \in \{1, \ldots, k\}$ and a fixed R > 0, such that $|\xi_{\ell}^n - y_n| \le R$ for *n* large enough. Otherwise, we can suppose that $|\xi_{\ell}^n - y_n| \to +\infty$ as $n \to +\infty$ for any $\ell = 1, 2, \ldots, k$. Then either $|y_n| \to +\infty$ or $|y_n|$ is bounded. Assume first that $|y_n| \to +\infty$.

Define

$$\phi_n(y,\Theta) = \phi_n(y+y_n,\Theta).$$

By the standard elliptic regularity theory, we may assume that $\tilde{\phi}_n$ converges uniformly over compact sets to a function $\tilde{\phi}$. Set $\tilde{\psi} = \mathcal{T}^{-1}(\tilde{\phi})$, then we have

$$\Delta \tilde{\psi} = 0$$
 in $\mathbb{R}^N \setminus \{0\}$.

Due to $\|\tilde{\phi}_n\|_{L^{\infty}} = 1$, we see that $|\tilde{\psi}(x)| \le |x|^{-\frac{N-2}{2}}$. Hence, $\tilde{\psi}$ can extend smoothly to 0 to be a harmonic function in \mathbb{R}^N with this decay condition. So, $\tilde{\phi} = 0$ gives a contradiction. The fact that $|y_n|$ cannot be bounded can be handled in similar way. Thus, there exists an integer $\ell \in \{1, \ldots, k\}$ and a positive number R > 0 such that for *n* large enough, $|y_n - \xi_{\ell}^n| \le R$.

Define again

$$\tilde{\phi}_n(y,\Theta) = \phi_n(y + \xi_\ell^n,\Theta).$$

Thus, $\tilde{\phi}_n$ converges uniformly over compact sets to a function $\tilde{\phi}$. Set again that $\tilde{\psi} = \mathcal{T}^{-1}(\tilde{\phi})$. Hence, $\tilde{\psi}$ is a nontrivial solution of

$$\Delta \tilde{\psi} + p_{\alpha} |x|^{\alpha} U_1^{p_{\alpha} - 1} \tilde{\psi} = 0 \text{ in } \mathbb{R}^N \setminus \{0\}.$$

Moreover, $|\tilde{\psi}(x)| \leq C|x|^{-\frac{N-2}{2}}$. Therefore, we obtain a classical solution in $\mathbb{R}^N \setminus \{0\}$ decaying at infinity. It follows from [12] that it equals a linear combination of the $\{\tilde{Z}_i\}$ provided that α is not an even integer. However, the orthogonality conditions imply $\tilde{\phi} = 0$. This is again a contradiction. Thus, we can deduce that $\lim_{n \to \infty} \|\phi_n\|_{L^{\infty}} = 0$.

Next we shall establish that

$$\lim_{n\to\infty}\|\phi_n\|_*\to 0.$$

Now we see that (3.1) possesses the following form

$$-\phi_n'' + \frac{(2+\alpha)^2}{4}\phi_n - \left(\frac{p_\alpha - 1}{2}\right)^2 \Delta_{\mathbb{S}^{N-1}}\phi_n = g_n,$$
(3.3)

where

$$g_n = h_n + (p_\alpha - \varepsilon_n) \sigma_{\varepsilon} e^{-\frac{2+\alpha}{2}\varepsilon_n y} |V|^{p_\alpha - 1 - \varepsilon_n} \phi_n + \sum_{i=1}^n c_i^n Z_i^n.$$

If $0 < \sigma < \min\{p_{\alpha} - 1, 1\}$, we find

$$|g_n(y)| \le \theta_n \sum_{i=1}^k e^{-\frac{2+\alpha}{2}\sigma|y-\xi_i^n|}$$
 with $\theta_n \to 0$.

Choosing C > 0 large enough, we see that

$$\varphi_n(\mathbf{y}) = C\theta_n \sum_{i=1}^k e^{-\frac{2+\alpha}{2}\sigma|\mathbf{y}-\boldsymbol{\xi}_i^n|}$$

is a supersolution of (3.3), and $-\varphi_n(y)$ will be a subsolution of (3.3). Thus,

$$|\phi_n| \le C\theta_n \sum_{i=1}^k e^{-\frac{2+\alpha}{2}\sigma|y-\xi_i^n|}.$$

The following proposition is a direct consequence of Proposition 1 in [9] combining with Lemma 3.1.

Proposition 3.2 *There exist positive numbers* ε_0 , δ_0 , R_0 , such that if

$$R_0 < \xi_1, \quad R_0 < \min_{i=1,\dots,k-1} (\xi_{i+1} - \xi_i), \quad \xi_k < \frac{\delta_0}{\varepsilon},$$
 (3.4)

then for all $0 < \varepsilon < \varepsilon_0$ and $h \in C_*$, problem (3.1) has a unique solution $\phi = T_{\varepsilon}(h)$. Moreover, there exists C > 0 such that

$$||T_{\varepsilon}(h)||_{*} \leq C ||h||_{*}, |c_{i}| \leq C ||h||_{*}$$

For later purposes, we need to understand the differentiability of the operator T_{ε} on the variables ξ_i . We will use the notation $\xi = (\xi_1, \xi_2, \dots, \xi_k)$. We also consider the space $L(C_*)$ of the linear operator of C_* . We have the following result.

Proposition 3.3 Under the same assumptions of Proposition 3.2, the map $\xi \to T_{\varepsilon}$ with values in $L(C_*)$ is of class C^1 . Besides, there is a constant C > 0 such that

$$\|D_{\xi}T_{\varepsilon}\|_{L(\mathcal{C}_*)} \le C$$

uniformly on the vectors ξ satisfying (3.4).

Proof Fix $h \in C_*$, and let $\phi = T_{\varepsilon}(h)$. We are interested in studying the differentiability of ϕ with respect to ξ_{ℓ} for $\ell = 1, 2, ..., k$. Recall that ϕ satisfies

$$\begin{cases} \mathbb{L}_{\varepsilon}(\phi) = h + \sum_{j=1}^{k} c_j Z_j & \text{in } D, \\ \phi = 0 & \text{on } \partial D, \\ \int_D Z_i \phi dy d\Theta = 0, \quad i = 1, 2, \dots, k, \end{cases}$$

for certain constants c_i . Differentiating the above equation with respect to ξ_ℓ , $\ell = 1, ..., k$. Define $Y = \partial_{\xi_\ell} \phi$ and $d_i = \partial_{\xi_\ell} c_i$, we find

$$\begin{cases} \mathbb{L}_{\varepsilon}(Y) = (p_{\alpha} - \varepsilon)\sigma_{\varepsilon}e^{-\frac{2+\alpha}{2}\varepsilon y}(\partial_{\xi_{\ell}}|V|^{p_{\alpha}-1-\varepsilon})\phi + c_{\ell}\partial_{\xi_{\ell}}Z_{\ell} + \sum_{j=1}^{k}d_{j}Z_{j} & \text{in } D, \\ Y = 0 & \text{on } \partial D, \\ \int_{D}(YZ_{i} + \phi\partial_{\xi_{\ell}}Z_{i})\mathrm{d}y\mathrm{d}\Theta = 0, \quad i = 1, 2, \dots, k. \end{cases}$$

Set $\chi = Y - \sum_{i=1}^{k} b_i Z_i$, where the constants b_i satisfy

$$\sum_{i=1}^{k} b_i \int_D Z_i Z_j dy d\Theta = 0, \quad j \neq \ell,$$

$$\sum_{i=1}^{k} b_i \int_D Z_i Z_\ell dy d\Theta = -\int_D \phi \partial_{\xi_\ell} Z_\ell dy d\Theta.$$

This is also an almost diagonal system and $Y = \chi + \sum_{j=1}^{k} b_j Z_j$, where $\int_D \chi Z_j dy d\Theta = 0$, j = 1, 2, ..., k. Moreover, it is easy to see that χ satisfies

$$\begin{cases} \mathbb{L}_{\varepsilon}(\chi) = g + \sum_{j=1}^{k} d_j Z_j & \text{in } D, \\ \chi = 0 & \text{on } \partial D, \\ \int_D \chi Z_j dy d\Theta = 0, \ j = 1, 2, \dots, k, \end{cases}$$

where

$$g = (p_{\alpha} - \varepsilon)\sigma_{\varepsilon}e^{-\frac{2+\alpha}{2}\varepsilon y}(\partial_{\xi_{\ell}}|V|^{p_{\alpha}-1-\varepsilon})\phi + c_{\ell}\partial_{\xi_{\ell}}Z_{\ell} - \sum_{j=1}^{\kappa}b_{j}\mathbb{L}_{\varepsilon}(Z_{j}).$$

Then, we find

$$\chi = T_{\varepsilon}(g)$$

and

$$\partial_{\xi_{\ell}}\phi = T_{\varepsilon}(g) + \sum_{j=1}^{k} b_j Z_j.$$

By Proposition 3.2, we find

$$||T_{\varepsilon}(g)||_* \leq C ||g||_*.$$

Since

$$\|g\|_* \le C\left(\|\phi\|_* + |c_\ell| + \sum_{j=1}^k |b_j|\right)$$

and

$$b_i | \leq C \|\phi\|_*, \ |c_i| \leq C \|h\|_*, \ \|\phi\|_* \leq C \|h\|_*.$$

Thus, we can obtain that $\|\partial_{\xi_{\ell}}\phi\|_* \leq C \|h\|_*$, and $\partial_{\xi_{\ell}}\phi$ depends continuously on ξ for this norm.

Now we consider

$$\begin{cases} L(V+\phi) - \sigma_{\varepsilon} e^{-\frac{2+\alpha}{2}\varepsilon y} |V+\phi|^{p_{\alpha}-1-\varepsilon} (V+\phi) = \sum_{j=1}^{k} c_{j} Z_{j} \text{ in } D, \\ \phi = 0 \text{ on } \partial D, \\ \int_{D} Z_{i} \phi dy d\Theta = 0, \quad i = 1, 2, \dots, k. \end{cases}$$

$$(3.5)$$

In order to solve problem (3.5), we rewrite it as

$$\begin{cases} \mathbb{L}_{\varepsilon}(\phi) = N_{\varepsilon}(\phi) + R_{\varepsilon} + \sum_{j=1}^{k} c_{j} Z_{j} & \text{in } D, \\ \phi = 0 & \text{on } \partial D, \\ \int_{D} Z_{i} \phi dy d\Theta = 0, \quad i = 1, 2, \dots, k, \end{cases}$$
(3.6)

where

$$N_{\varepsilon}(\phi) = \sigma_{\varepsilon} e^{-\frac{2+\alpha}{2}\varepsilon y} \left(|V + \phi|^{p_{\alpha} - 1 - \varepsilon} (V + \phi) - |V|^{p_{\alpha} - 1 - \varepsilon} V - (p_{\alpha} - \varepsilon) |V|^{p_{\alpha} - 1 - \varepsilon} \phi \right)$$

and

$$R_{\varepsilon} = \sigma_{\varepsilon} e^{-\frac{2+\alpha}{2}\varepsilon y} |V|^{p_{\alpha}-1-\varepsilon} V - \sum_{i=1}^{k} (-1)^{i} W_{i}^{p_{\alpha}}$$

Let us fix a large number $M > 0, \xi$ satisfies the following conditions

$$\xi_1 > \frac{1}{2} \log \frac{1}{M\varepsilon}, \quad \min_{1 \le i \le k-1} (\xi_{i+1} - \xi_i) > \log \frac{1}{M\varepsilon}, \quad \xi_k < k \log \frac{1}{M\varepsilon}. \tag{3.7}$$

In order to prove that (3.6) is uniquely solvable in the set that $\|\phi\|_*$ is small, we need to estimate R_{ε} and $N_{\varepsilon}(\phi)$.

Lemma 3.4 If $N \ge 3$, then

$$\|N_{\varepsilon}(\phi)\|_{*} \leq C \|\phi\|_{*}^{\min\{p_{\alpha}-\varepsilon,2\}},$$

$$\left\|\frac{\partial N_{\varepsilon}(\phi)}{\partial \phi}\right\|_{*} \leq C \|\phi\|_{*}^{\min\{p_{\alpha}-1-\varepsilon,1\}}.$$
(3.8)

Proof Since

$$|N_{\varepsilon}(\phi)| \leq \begin{cases} C|\phi|^{p_{\alpha}-\varepsilon}, & p_{\alpha}-1 \leq 1, \\ C|V|^{p_{\alpha}-2-\varepsilon}\phi^{2}+C|\phi|^{p_{\alpha}-\varepsilon}, & p_{\alpha}-1 > 1. \end{cases}$$

First, we consider the case $p_{\alpha} - 1 \leq 1$.

$$\begin{aligned} |N_{\varepsilon}(\phi)| &\leq C \|\phi\|_{*}^{p_{\alpha}-\varepsilon} \left(\sum_{i=1}^{k} e^{-\frac{2+\alpha}{2}\sigma|y-\xi_{i}|}\right)^{p_{\alpha}-\varepsilon} \\ &\leq C \|\phi\|_{*}^{p_{\alpha}-\varepsilon} \left(\sum_{i=1}^{k} e^{-\frac{2+\alpha}{2}\sigma|y-\xi_{i}|}\right). \end{aligned}$$

where we have used the fact that

$$\sum_{i=1}^k e^{-\frac{2+\alpha}{2}\sigma|y-\xi_i|} \le C.$$

Thus, the result follows.

Now we show the result holds for $p_{\alpha} - 1 > 1$.

$$\begin{split} |N_{\varepsilon}(\phi)| &\leq C \|\phi\|_{*}^{2} |V|^{p_{\alpha}-2-\varepsilon} \left(\sum_{i=1}^{k} e^{-\frac{2+\alpha}{2}\sigma|y-\xi_{i}|} \right)^{2} + C \|\phi\|_{*}^{p_{\alpha}-\varepsilon} \left(\sum_{i=1}^{k} e^{-\frac{2+\alpha}{2}\sigma|y-\xi_{i}|} \right)^{p_{\alpha}-\varepsilon} \\ &\leq C \left(\|\phi\|_{*}^{p_{\alpha}-\varepsilon} + \|\phi\|_{*}^{2} \right) \left(\sum_{i=1}^{k} e^{-\frac{2+\alpha}{2}\sigma|y-\xi_{i}|} \right). \end{split}$$

Thus,

$$\|N_{\varepsilon}(\phi)\|_{*} \leq C \|\phi\|_{*}^{\min\{p_{\alpha}-\varepsilon,2\}}$$

The other terms can be estimated similarly, and the proof of the lemma is completed.

Lemma 3.5 If $N \ge 3$, then

$$\|R_{\varepsilon}\|_{*} \leq C\varepsilon^{\frac{1+\tau}{2}}, \quad \|\partial_{\xi}R_{\varepsilon}\|_{*} \leq C\varepsilon^{\frac{1+\tau}{2}}, \tag{3.9}$$

where $\tau > 0$ is a small constant.

Proof We give here the proof of the first one only. The second one can be obtained similarly. Note that

$$\begin{aligned} R_{\varepsilon} &= (\sigma_{\varepsilon} - 1)e^{-\frac{2+\alpha}{2}\varepsilon y} |V|^{p_{\alpha} - 1 - \varepsilon} V + e^{-\frac{2+\alpha}{2}\varepsilon y} \left(|V|^{p_{\alpha} - 1 - \varepsilon} V - |V|^{p_{\alpha} - 1} V \right) \\ &+ |V|^{p_{\alpha} - 1} V \left(e^{-\frac{2+\alpha}{2}\varepsilon y} - 1 \right) + |V|^{p_{\alpha} - 1} V - \sum_{i=1}^{k} (-1)^{i} V_{i}^{p_{\alpha}} \\ &+ \sum_{i=1}^{k} (-1)^{i} V_{i}^{p_{\alpha}} - \sum_{i=1}^{k} (-1)^{i} W_{i}^{p_{\alpha}} \\ &= : J_{1} + J_{2} + J_{3} + J_{4} + J_{5}. \end{aligned}$$

Recalling that

$$V = \sum_{i=1}^{k} (-1)^{i} V_{i}, \quad 0 \le V_{i} \le W_{i}.$$

Thus, we find

$$\begin{aligned} |J_1| &\leq C\varepsilon e^{-\frac{2+\alpha}{2}\varepsilon y} |V|^{p_{\alpha}-\varepsilon} \leq C\varepsilon \sum_{i=1}^k e^{-\frac{2+\alpha}{2}\sigma|y-\xi_i|}, \\ |J_2| &\leq C\varepsilon |\log V| |V|^{p_{\alpha}-1} \leq C\varepsilon \sum_{i=1}^k e^{-\frac{2+\alpha}{2}\sigma|y-\xi_i|}, \\ |J_3| &= \left| \left(e^{-\frac{2+\alpha}{2}\varepsilon y} - 1 \right) |V|^{p_{\alpha}-1} V \right| \leq C\varepsilon y |V|^{p_{\alpha}} \leq C\varepsilon \sum_{i=1}^k e^{-\frac{2+\alpha}{2}\sigma|y-\xi_i|}. \end{aligned}$$

Next we estimate J_4 and J_5 . Define

,

$$\chi_{\ell} = \frac{\xi_{\ell-1} + \xi_{\ell}}{2}, \quad \ell = 1, 2, \dots, k+1, \text{ where } \xi_0 = \inf_{(y,\Theta) \in D} |y|, \quad \xi_{k+1} = +\infty.$$

D Springer

Thus, for $\chi_{\ell} \leq y < \chi_{\ell+1}$, we have

$$\begin{aligned} |J_4| &= \left| |V|^{p_{\alpha}-1}V - \sum_{i=1}^{k} (-1)^{i} V_{i}^{p_{\alpha}} \right| \leq C V_{\ell}^{p_{\alpha}-1} \left(\sum_{j \neq \ell} V_{j} \right) \\ &\leq C \sum_{j \neq \ell} e^{-\frac{2+\alpha}{2} (p_{\alpha}-1)|y-\xi_{\ell}|} e^{-\frac{2+\alpha}{2} |y-\xi_{j}|} \\ &\leq C e^{-\frac{2+\alpha}{2} \sigma |y-\xi_{\ell}|} \sum_{j \neq \ell} e^{-\frac{2+\alpha}{2} (p_{\alpha}-\sigma-1)|y-\xi_{\ell}|} e^{-\frac{2+\alpha}{2} |y-\xi_{j}|} \\ &\leq C e^{-\frac{2+\alpha}{2} \sigma |y-\xi_{\ell}|} \sum_{j \neq \ell} e^{-\frac{(2+\alpha)(1+\tau)}{4} |\xi_{\ell}-\xi_{\ell-1}|} \\ &\leq C \varepsilon^{\frac{1+\tau}{2}} \sum_{i=1}^{k} e^{-\frac{2+\alpha}{2} \sigma |y-\xi_{i}|} \end{aligned}$$

and

$$\begin{split} |J_{5}| &= \left| \sum_{i=1}^{k} \left(V_{i}^{p_{\alpha}} - W_{i}^{p_{\alpha}} \right) \right| \leq C \sum_{i=1}^{k} W_{i}^{p_{\alpha}-1} |\Pi_{i}| \\ &\leq C R_{\mu_{1}} \left(e^{-\frac{p_{\alpha}-1}{2}y}, \Theta \right) \sum_{i=1}^{k} e^{-\frac{2+\alpha}{2}(p_{\alpha}-1)|y-\xi_{i}|} e^{-\frac{2+\alpha}{2}y}, \ \mu_{1} = e^{-\frac{p_{\alpha}-1}{2}\xi_{1}} \\ &\leq C \varepsilon^{\frac{1+\tau}{2}} \sum_{i=1}^{k} e^{-\frac{2+\alpha}{2}\sigma|y-\xi_{i}|}. \end{split}$$

Therefore, $||R_{\varepsilon}||_* \leq C\varepsilon^{\frac{1+\tau}{2}}$ and the results follow.

The next proposition enables us to reduce the problem of finding a solution for (1.6) to a finite-dimensional problem.

Proposition 3.6 Suppose that condition (3.7) holds. Then there exists a positive constant *C* such that, for $\varepsilon > 0$ small enough, problem (3.6) admits a unique solution $\phi = \phi(\xi)$, which satisfies

$$\|\phi\|_* \le C\varepsilon^{\frac{1+\tau}{2}}.$$

Moreover, $\phi(\xi)$ *is of class* C^1 *on* ξ *with the* $\|\cdot\|_*$ *-norm, and*

$$\|D_{\xi}\phi\|_* \le C\varepsilon^{\frac{1+\tau}{2}},$$

where $\tau > 0$ is a small constant.

Proof Define

$$A_{\varepsilon}(\phi) := T_{\varepsilon}(N_{\varepsilon}(\phi) + R_{\varepsilon}),$$

then we know that problem (3.6) is equivalent to the fixed point problem $\phi = A_{\varepsilon}(\phi)$. We will use the contraction mapping theorem to solve it.

Deringer

Set

$$E_{\rho} = \{ \phi \in \mathcal{C}_* : \|\phi\|_* \le \rho \varepsilon^{\frac{1+\tau}{2}} \},\$$

where $\rho > 0$ will be fixed later.

We will show that A_{ε} is a contraction map from E_{ρ} to E_{ρ} .

In fact, for $\varepsilon > 0$ small enough, we find

$$\|A_{\varepsilon}(\phi)\|_{*} \leq C \|N_{\varepsilon}(\phi) + R_{\varepsilon}\|_{*} \leq C \left((\rho \varepsilon)^{\min\{p_{\alpha} - \varepsilon, 2\}} + \varepsilon^{\frac{1+r}{2}} \right) \leq \rho \varepsilon^{\frac{1+r}{2}},$$

provided ρ is chosen large enough, but independent of ε . Thus, A_{ε} maps E_{ρ} into itself. Moreover,

$$\begin{aligned} |N_{\varepsilon}(\phi_1) - N_{\varepsilon}(\phi_2)| &\leq |\partial_{\phi} N_{\varepsilon}(t\phi_1 + (1-t)\phi_2)| |\phi_1 - \phi_2| \\ &\leq C \left(\rho \varepsilon^{\frac{1+\tau}{2}}\right)^{\min\{p_{\alpha} - 1 - \varepsilon, 1\}} |\phi_1 - \phi_2|. \end{aligned}$$

Hence,

$$\begin{split} \|A_{\varepsilon}(\phi_1) - A_{\varepsilon}(\phi_2)\|_* &\leq C \left(\rho \varepsilon^{\frac{1+\tau}{2}}\right)^{\min\{p_{\alpha} - 1 - \varepsilon, 1\}} \|\phi_1 - \phi_2\|_* \\ &\leq \frac{1}{2} \|\phi_1 - \phi_2\|_*. \end{split}$$

Thus, there is a unique $\phi \in E_{\rho}$, such that $\phi = A_{\varepsilon}(\phi)$.

Now we consider the differentiability of $\xi \to \phi(\xi)$. Let

$$B(\xi,\phi) = \phi - T_{\varepsilon}(N_{\varepsilon}(\phi) + R_{\varepsilon}).$$

First, we have $B(\xi, \phi(\xi)) = 0$. Let us write

$$D_{\phi}B(\xi,\phi)[\psi] = \psi - T_{\varepsilon}(\psi D_{\phi}N_{\varepsilon}(\phi)) = \psi + M(\psi),$$

where

$$M(\psi) = -T_{\varepsilon}(\psi D_{\phi} N_{\varepsilon}(\phi)).$$

From (3.8), we find

$$\|M(\psi)\|_* \le C\varepsilon^{\frac{1+\tau}{2}\min\{p_\alpha - 1 - \varepsilon, 1\}} \|\psi\|_*$$

Thus, the linear operator $D_{\phi}B(\varepsilon, \phi)$ is invertible in C_* with uniformly bounded inverse depending continuously on its parameters. Differentiating with respect to ξ , we deduce

$$D_{\xi}B(\xi,\phi) = -D_{\xi}T_{\varepsilon}[N_{\varepsilon}(\phi) + R_{\varepsilon}] - T_{\varepsilon}[D_{\xi}N_{\varepsilon}(\xi,\phi) + D_{\xi}R_{\varepsilon}],$$

where all these expressions depend continuously on their parameters. By the implicit function theorem, we see that $\phi(\xi)$ is of class C^1 and

$$D_{\xi}\phi = -\left(D_{\phi}B(\xi,\phi)\right)^{-1}\left[D_{\xi}B(\xi,\phi)\right]$$

Thus,

$$\|D_{\xi}(\phi)\|_{*} \leq C\left(\|N_{\varepsilon}(\phi) + R_{\varepsilon}\|_{*} + \|D_{\xi}N_{\varepsilon}(\xi,\phi)\|_{*} + \|D_{\xi}R_{\varepsilon}\|_{*}\right) \leq C\varepsilon^{\frac{1+\varepsilon}{2}}$$

The proof of Proposition 3.6 is concluded.

 $1 \pm \tau$

4 Proof of the main result

In this section, we will prove Theorem 1.1. As deduced in the introduction, we need to verify Theorem 1.4. To do this, we will choose ξ such that $V + \phi$ is a solution of (1.6), where ϕ is the map obtained in Proposition 3.6.

Recall that

$$I_{\varepsilon}(v) = \frac{1}{2} \int_{D} \left(|v'|^{2} + \frac{(2+\alpha)^{2}}{4} |v|^{2} \right) dy d\Theta + \frac{1}{2} \left(\frac{p_{\alpha} - 1}{2} \right)^{2} \int_{D} |\nabla_{\mathbb{S}^{N-1}} v|^{2} dy d\Theta$$

$$- \frac{\sigma_{\varepsilon}}{p_{\alpha} + 1 - \varepsilon} \int_{D} e^{-\frac{2+\alpha}{2} \varepsilon y} |v|^{p_{\alpha} + 1 - \varepsilon} dy d\Theta.$$
(4.1)

Define

$$K_{\varepsilon}(\xi) = I_{\varepsilon}(V + \phi).$$

It is now well known that if ξ is a critical point of $K_{\varepsilon}(\xi)$, then $V + \phi$ is a solution of (1.6). Next, we will prove that $K_{\varepsilon}(\xi)$ has a critical point. To this end, we need the next lemma, which is important in finding the critical point of K_{ε} .

Lemma 4.1 The following expansion holds

$$K_{\varepsilon}(\xi) = I_{\varepsilon}(V) + O(\varepsilon^{1+\tau}), \qquad (4.2)$$

where $O(\varepsilon^{1+\tau})$ is uniformly in the C^1 -sense on the vectors ξ satisfying (3.4).

Proof Using the Taylor expansion

$$F(u+v) = F(u) + dF(u)[v] + \int_0^1 (1-t)d^2F(u+tv)[v,v]dt$$

and the fact that $\nabla I_{\varepsilon}(V + \phi)[\phi] = 0$, we have

$$\begin{split} I_{\varepsilon}(V+\phi) - I_{\varepsilon}(V) &= \int_{0}^{1} \nabla^{2} I_{\varepsilon}(V+t\phi) [\phi,\phi] t dt \\ &= \int_{0}^{1} \left(\int_{D} (N_{\varepsilon}(\phi) + R_{\varepsilon})\phi + (p_{\alpha} - \varepsilon)\sigma_{\varepsilon} \int_{D} e^{-\frac{2+\alpha}{2}\varepsilon y} \right. \\ &\times \left(|V|^{p_{\alpha} - 1 - \varepsilon} - |V + t\phi|^{p_{\alpha} - 1 - \varepsilon} \right) \phi^{2} \right) t dt. \end{split}$$

Since $\|\phi\|_* \leq C\varepsilon^{\frac{1+\tau}{2}}$, we find that

$$\begin{split} \int_{D} |(N_{\varepsilon}(\phi) + R_{\varepsilon})\phi| &\leq C(\|N_{\varepsilon}(\phi)\|_{*} + \|R_{\varepsilon}\|_{*})\|\phi\|_{*} \int_{D} \left(\sum_{i=1}^{k} e^{-\frac{2+\alpha}{2}\sigma|y-\xi_{i}|}\right)^{2} \\ &\leq C(\|N_{\varepsilon}(\phi)\|_{*} + \|R_{\varepsilon}\|_{*})\|\phi\|_{*} = O(\varepsilon^{1+\tau}), \end{split}$$

and

$$\begin{split} &\int_{D} \left| |V|^{p_{\alpha}-1-\varepsilon} - |V+t\phi|^{p_{\alpha}-1-\varepsilon} \right| \phi^{2} \\ &\leq C \|\phi\|_{*}^{2} \int_{D} \left(\sum_{i=1}^{k} e^{-\frac{2+\alpha}{2}\sigma|y-\xi_{i}|} \right)^{2} \\ &\leq C \|\phi\|_{*}^{2}. \end{split}$$

🖄 Springer

Thus,

$$I_{\varepsilon}(V + \phi) = I_{\varepsilon}(V) + O(\varepsilon^{1+\tau}).$$

Differentiating with respect to ξ_{ℓ} , we see that

$$\begin{split} \partial_{\xi_{\ell}} \left(I_{\varepsilon}(V+\phi) - I_{\varepsilon}(V) \right) \\ &= \int_{0}^{1} \int_{D} \partial_{\xi_{\ell}} \left[(N_{\varepsilon}(\phi) + R_{\varepsilon})\phi \right] t dt \\ &+ (p_{\alpha} - \varepsilon) \sigma_{\varepsilon} \int_{0}^{1} \int_{D} e^{-\frac{2+\alpha}{2}\varepsilon y} \partial_{\xi_{\ell}} \left[\left(|V|^{p_{\alpha} - 1 - \varepsilon} - |V + t\phi|^{p_{\alpha} - 1 - \varepsilon} \right) \phi^{2} \right] t dt. \end{split}$$

In a similar way, we have that

$$\partial_{\xi_{\ell}} I_{\varepsilon}(V + \phi) = \partial_{\xi_{\ell}} I_{\varepsilon}(V) + O(\varepsilon^{1+\tau}).$$

Thus, the result follows.

Proof of Theorem 1.4 Recalling that

$$\xi_1 = -\frac{1}{2+\alpha}\log\varepsilon + \frac{2}{2+\alpha}\log\Lambda_1,$$

$$\xi_{i+1} - \xi_i = -\frac{2}{2+\alpha}\log\varepsilon - \frac{2}{2+\alpha}\log\Lambda_{i+1}, \quad i = 1, 2, \dots, k-1,$$

where $\delta < \Lambda_i < \frac{1}{\delta}, \delta > 0$ is a fixed constant. To simplify the notation, we denote $\Lambda = (\Lambda_1, \Lambda_2, \dots, \Lambda_k)$. Thus, it is sufficient to find a critical point of the function

$$\widetilde{K}_{\varepsilon}(\Lambda) = \varepsilon^{-1} \left(K_{\varepsilon}(\xi(\Lambda)) - ka_0 \right).$$

From Lemma 4.1 and Proposition 2.2, we have

$$\widetilde{K}_{\varepsilon}(\Lambda) = \Psi_k(\Lambda) + ka_1 - \frac{k^2}{2}a_4\log\varepsilon + o(1),$$

where the term o(1) goes to 0 uniformly as $\varepsilon \to 0$.

It is easy to see that the function

$$\Lambda_1 \to ka_4 \log \Lambda_1 + \frac{a_2 H(0,0)}{\Lambda_1^2}$$

has a stable minimum point $\Lambda_1^* = \left(\frac{2a_2H(0,0)}{ka_4}\right)^{\frac{1}{2}}$ on $(0, +\infty)$, and for $i = 2, \ldots, k$, the function

$$\Lambda_i \rightarrow a_3 \Lambda_i - (k - i + 1) a_4 \log \Lambda_i$$

also has a stable minimum point $\Lambda_i^* = \frac{(k-i+1)a_4}{a_3}$ on $(0, +\infty)$. Thus, the function $\Psi_k(\Lambda)$ has a stable minimum point $\Lambda^* = (\Lambda_1^*, \ldots, \Lambda_k^*)$. Therefore, for ε small enough, there exists a critical point $\Lambda^{\varepsilon} = (\Lambda_1^{\varepsilon}, \ldots, \Lambda_k^{\varepsilon})$ of the function $\widetilde{K}_{\varepsilon}(\Lambda)$, such that $\Lambda_i^{\varepsilon} \to \Lambda_i^*$ as $\varepsilon \to 0$ for $i = 1, 2, \ldots, k$.

For the Λ_i^{ε} (i = 1, ..., k) obtained above, let

$$\xi_1^{\varepsilon} = \frac{2}{2+\alpha} \log \frac{\Lambda_1^{\varepsilon}}{\varepsilon^{\frac{1}{2}}}, \ \xi_i^{\varepsilon} = \frac{2}{2+\alpha} \log \frac{\Lambda_1^{\varepsilon}}{\Lambda_2^{\varepsilon} \dots \Lambda_i^{\varepsilon} \varepsilon^{\frac{2i-1}{2}}}, \ i = 2, 3, \dots, k.$$

Description Springer

Hence, $\xi^{\varepsilon} = (\xi_1^{\varepsilon}, \dots, \xi_k^{\varepsilon})$ is a critical point of $K_{\varepsilon}(\xi)$ and $V + \phi(\xi^{\varepsilon})$ is a solution of (1.6).

Proof of Theorem 1.1 Note that $\Lambda_i^{\varepsilon} = \Lambda_i^* + o(1), i = 1, 2, ..., k$ as $\varepsilon \to 0$. Then

$$\xi_{1}^{\varepsilon} = \frac{2}{2+\alpha} \log \frac{\Lambda_{1}^{\varepsilon}}{\varepsilon^{\frac{1}{2}}} + o(1),$$

$$\xi_{i}^{\varepsilon} = \frac{2}{2+\alpha} \log \frac{\Lambda_{1}^{\varepsilon}}{\Lambda_{2}^{\varepsilon} \dots \Lambda_{i}^{\varepsilon} \varepsilon^{\frac{2i-1}{2}}} + o(1), \quad i = 2, 3, \dots, k$$

Using the fact that $e^{-\frac{p\alpha-1}{2}\xi_i^\varepsilon} = M_i \varepsilon^{\frac{2i-1}{N-2}} (1+o(1)), i = 1, \dots, k$, where

$$M_{1} = \left(\frac{1}{\Lambda_{1}^{*}}\right)^{\frac{2}{N-2}}, \quad M_{i} = \left(\frac{\Lambda_{2}^{*}\dots\Lambda_{i}^{*}}{\Lambda_{1}^{*}}\right)^{\frac{2}{N-2}}, \quad i = 2,\dots,k.$$
(4.3)

Thus, by the transformation (1.5), we find

$$u_{\varepsilon}(x) = C_{\alpha,N} \sum_{i=1}^{k} (-1)^{i} \left(\frac{M_{i}^{\frac{2+\alpha}{2}} \varepsilon^{\frac{(2+\alpha)(2i-1)}{2(N-2)}}}{M_{i}^{2+\alpha} \varepsilon^{\frac{(2+\alpha)(2i-1)}{N-2}} + |x|^{2+\alpha}} \right)^{\frac{N-2}{2+\alpha}} (1+o(1))$$

where $o(1) \to 0$ uniformly on compact subsets of Ω as $\varepsilon \to 0$. Let

$$\begin{split} \hat{u}_{\varepsilon}(x) &= \sum_{i=1}^{k} (-1)^{i} \left(\frac{M_{i}^{\frac{2+\alpha}{2}} \varepsilon^{\frac{(2+\alpha)(2i-1)}{2(N-2)}}}{M_{i}^{2+\alpha} \varepsilon^{\frac{(2+\alpha)(2i-1)}{N-2}} + |x|^{2+\alpha}} \right)^{\frac{N-2}{2+\alpha}} \\ &= \sum_{i=1}^{k} (-1)^{i} \left(\frac{1}{M_{i}^{\frac{2+\alpha}{2}} \varepsilon^{\frac{(2+\alpha)(2i-1)}{2(N-2)}} + M_{i}^{-\frac{2+\alpha}{2}} \varepsilon^{-\frac{(2+\alpha)(2i-1)}{2(N-2)}} |x|^{2+\alpha}} \right)^{\frac{N-2}{2+\alpha}}. \end{split}$$

Hence,

$$u_{\varepsilon}(x) = C_{\alpha,N}\hat{u}_{\varepsilon}(x)(1+o(1)).$$
(4.4)

N O

Set $S_{\varepsilon}^{j} = \{x \in \mathbb{R}^{N} : |x| = \varepsilon^{\frac{2j-1}{N-2}}\}, j = 1, 2, ..., k$, and choose a compact subset $K \subset \Omega$ such that, for ε small enough, $S_{\varepsilon}^{j} \subset K$ for j = 1, 2, ..., k. Then, for $x \in S_{\varepsilon}^{j}$, we have

$$\begin{split} \hat{u}_{\varepsilon}(x) &= \sum_{i=1}^{k} (-1)^{i} \left(\frac{1}{M_{i}^{\frac{2+\alpha}{2}} \varepsilon^{\frac{(2+\alpha)(2i-1)}{2(N-2)}} + M_{i}^{-\frac{2+\alpha}{2}} \varepsilon^{\frac{(2+\alpha)(4j-2i-1)}{2(N-2)}}} \right)^{\frac{N-2}{2+\alpha}} \\ &= \varepsilon^{-\frac{2j-1}{2}} \sum_{i=1}^{k} (-1)^{i} \left(\frac{1}{M_{i}^{\frac{2+\alpha}{2}} \varepsilon^{\frac{(2+\alpha)(i-j)}{(N-2)}} + M_{i}^{-\frac{2+\alpha}{2}} \varepsilon^{\frac{(2+\alpha)(j-i)}{(N-2)}}} \right)^{\frac{N-2}{2+\alpha}} \\ &= (-1)^{j} \varepsilon^{-\frac{2j-1}{2}} \left(\frac{1}{(M_{j}^{\frac{2+\alpha}{2}} + M_{j}^{-\frac{2+\alpha}{2}})^{\frac{N-2}{2+\alpha}}} + o(1) \right). \end{split}$$

🖄 Springer

Thus, for $\varepsilon > 0$ small enough, $(-1)^{j}\hat{u}_{\varepsilon} > 0$ on S_{ε}^{j} , j = 1, 2, ..., k, which implies that $(-1)^{j}u_{\varepsilon} > 0$ on S_{ε}^{j} . Therefore, u_{ε} has at least k nodal domains $\Omega_{1}, ..., \Omega_{k}$ such that Ω_{i} contains the sphere S_{ε}^{i} .

Next we show that, for ε small enough, u_{ε} has at most k nodal sets. Thanks to Proposition 2.2, Lemma 4.1, (1.7) and (1.10), we have

$$J_{\varepsilon}(PU_{\mu_i}) \to \frac{(2+\alpha)}{2(N+\alpha)} \int_{\mathbb{R}^N} |x|^{\alpha} U_1^{p_{\alpha}+1}, \quad i = 1, 2, \dots, k, \text{ as } \varepsilon \to 0$$
(4.5)

and

$$J_{\varepsilon}(u_{\varepsilon}) \to \frac{(2+\alpha)k}{2(N+\alpha)} \int_{\mathbb{R}^N} |x|^{\alpha} U_1^{p_{\alpha}+1}, \text{ as } \varepsilon \to 0.$$
(4.6)

Argue by contradiction, we can assume that there exists another nodal domain denoted by Ω_{k+1} . If $\alpha > 0$, we find that

$$\left(\int_{\Omega_{k+1}} |u_{\varepsilon}|^{\frac{2N}{N-2}}\right)^{\frac{N-2}{N}} \le C \int_{\Omega_{k+1}} |x|^{\alpha} |u_{\varepsilon}|^{p_{\alpha}+1-\varepsilon}.$$
(4.7)

Hence,

$$\left(\int_{\Omega_{k+1}} |u_{\varepsilon}|^{\frac{2N}{N-2}}\right)^{\frac{N-2}{N}} \leq C \|u_{\varepsilon}\|_{L^{\infty}(\Omega_{k+1})}^{\frac{2\alpha}{N-2}-\varepsilon} \int_{\Omega_{k+1}} |u_{\varepsilon}|^{\frac{2N}{N-2}}$$

By (4.4), we see that $||u_{\varepsilon}||_{L^{\infty}(\Omega_{k+1})} \leq C$. Thus, $\int_{\Omega_{k+1}} |u_{\varepsilon}|^{\frac{2N}{N-2}} \geq C > 0$, which implies $J_{\varepsilon}(u_{\varepsilon}) > \frac{(2+\alpha)k}{2(N+\alpha)} \int_{\mathbb{R}^{N}} |x|^{\alpha} U_{1}^{p_{\alpha}+1}$. This is a contradiction with (4.6). If $-2 < \alpha < 0$, by Hardy inequality, we obtain that $\int_{\Omega} |x|^{\alpha} |u|^{p_{\alpha}+1} \leq C \left(\int_{\Omega} |\nabla u|^{2} \right)^{\frac{p_{\alpha}+1}{2}}$. Similar to the case $\alpha = 0$ in [23], we still have that $J_{\varepsilon}(u_{\varepsilon}) > \frac{(2+\alpha)k}{2(N+\alpha)} \int_{\mathbb{R}^{N}} |x|^{\alpha} U_{1}^{p_{\alpha}+1}$ and the proof of Theorem 1.1 is finished.

Acknowledgements The authors would like to thank the referee for the careful reading of the paper and insightful comments. Z. Liu was supported by funds from the NSFC (No. 11501166); S. Peng was partially supported by funds from the NSFC (No. 11571130).

References

- Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. Ann. Inst. H. Poincare Anal. Non Linaire 23, 803–828 (2006)
- Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. II. J. Differ. Equ. 216, 78–108 (2005)
- Contreras, A., del Pino, M.: Nodal bubble-tower solutions to radial elliptic problems near criticality. Discrete Contin. Dyn. Syst. 16, 525–539 (2006)
- Chen, G., Ni, W.-M., Zhou, J.: Algorithms and visualization for solutions of nonlinear elliptic equations. Int. J. Bifurc. Chaos 10, 1565–1612 (2000)
- Cao, D., Peng, S.: The asymptotic behavior of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278, 1–17 (2003)
- Cao, D., Peng, S., Yan, S.: Asymptotic behavior of the ground state solutions for Hénon equation. IMA J. Appl. Math 74, 468–480 (2009)
- del Pino, M., Dolbeault, J., Musso, M.: "Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem. J. Differ. Equ. 193, 280–306 (2003)
- del Pino, M., Dolbeault, J., Musso, M.: The Brezis-Nirenberg problem near criticality in dimension 3. J. Math. Pures Appl. 83, 1405–1456 (2004)

- Del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri-Corons problem. Calc. Var. 16, 113–145 (2003)
- Ge, Y., Jing, R., Pacard, F.: Bubble towers for supercritical semilinear elliptic equations. J. Funct. Anal. 221, 251–302 (2005)
- Gladiali, F., Grossi, M.: Supercritical elliptic problem with nonautonomous nonlinearities. J. Differ. Equ. 253, 2616–2645 (2012)
- Gladiali, F., Grossi, M., Neves, S.L.N.: Nonradial solutions for the Hénon equation in ℝ^N. Adv. Math. 249, 1–36 (2013)
- 13. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^N . Commun. Math. Phys. 68, 202–243 (1979)
- Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 24, 525–598 (1981)
- Hénon, M.: Numerical experiments on the stability of spherical stellar systems. Astron. Astrophys. 24, 229–238 (1973)
- Hirano, N.: Existence of positive solutions for the Hénon equation involving critical Sobolev exponent. J. Differ. Equ. 247, 1311–1333 (2009)
- Li, S., Peng, S.: Asymptotic behavior on the Hénon equation with supercritical exponent. Sci. China Math. 52, 2185–2194 (2009)
- Liu, Z.: Nodal bubble-tower solutions for a semilinear elliptic problem with competing powers. Discrete Contin. Dyn. Syst. 37(10), 5299–5317 (2017)
- Liu, Z., Peng, S.: Solutions with large number of peaks for the supercritical Hénon equation. Pac. J. Math. 280, 115–139 (2016)
- Musso, M., Pistoia, A.: Sign changing solution to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains. J. Math. Pures Appl. 86, 510–528 (2006)
- Ni, W.-M.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 6, 801–807 (1982)
- Peng, S.: Multiple boundary concentrating solutions to Dirichlet problem of Hénon equation. Acta Math. Appl. Sin. 22, 137–162 (2006)
- Pistoia, A., Weth, T.: Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 325–340 (2007)
- Pistoia, A., Serra, E.: Multi-peak solutions for the Hénon equation with slightly subcritical growth. Math. Z. 256, 75–97 (2007)
- 25. Pohozaev, S.: Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$. Soviet Math. Dokl. 6, 1408–1411 (1965)
- Serra, E.: Non-radial positive solutions for the Hénon equation with critical growth. Calc. Var. Partial Differ. Equ. 23, 301–326 (2005)
- Smets, D., Su, J., Willem, M.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4, 467–480 (2002)
- Wei, J., Yan, S.: Infinitely many non-radial solutions for the Hénon equation with critical growth. Rev. Mat. Iberoam. 29, 997–1020 (2013)