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Abstract This paper deals with the following supercritical Hénon-type equation{
−�u = |x |α|u|pα−1−εu in �,

u = 0 on ∂�,

where α > −2, ε > 0, pα = N+2+2α
N−2 , N ≥ 3, � is a smooth bounded domain in R

N

containing the origin. For ε > 0 small enough, it is shown that if α is not an even integer,
the above problem has sign-changing bubble tower solutions, which blow up at the origin.
It seems that this is the first existence result of sign-changing bubble tower solutions for the
supercritical Hénon-type equation.
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1228 D. Cao et al.

1 Introduction and main results

In this paper, we consider the existence of sign-changing bubble tower solutions for the
following supercritical Hénon-type equation{

−�u = |x |α|u|pα−1−εu in �,

u = 0 on ∂�,
(1.1)

where α > −2, ε > 0, pα = N+2+2α
N−2 , N ≥ 3, � is a smooth bounded domain in R

N

containing the origin.
When � is the unit ball B1(0) of RN , problem (1.1) becomes the well-known Hénon

equation, i.e., {
−�u = |x |αu p, u > 0, in B1(0),

u = 0, on ∂B1(0).
(1.2)

Problem (1.2) was proposed by Hénon in [15] when he studied rotating stellar structures,
which has attracted a lot of interest in recent years. Ni [21] first considered (1.2) and proved
that it possesses a positive radial solution when p ∈ (1, pα). Due to the appearance of
the weighted term |x |α , the classical moving plane method in [13] cannot be applied to
problem (1.2) when α > 0. Therefore it is quite natural to ask whether problem (1.2) with
α > 0 has non-radial solutions. Based on numerical results in [4], Smets, Su andWillem [27]
obtained the existence of non-radial solutions for 1 < p < N+2

N−2 , when α is large enough. For

p = N+2
N−2 −ε, Cao and Peng [5] showed that the ground state solution is non-radial and blows

up near the boundary of B1(0) as ε → 0. Later on, Peng [22] constructed multiple boundary
peak solutions for problem (1.2). When p = N+2

N−2 , Serra [26] proved that problem (1.2) has
a non-radial solution provided α is large enough. More recently, Wei and Yan [28] showed
that there are infinitely many non-radial positive solutions for problem (1.2) with α > 0.
For other results related to the Hénon-type problems, see [1,2,6,16,24] and the references
therein.

On the other hand, using the Pohozaev-type identity [25], we know that for p ≥ pα there
are no nontrivial solutions to problem (1.2). So it seems more interesting whether there are
solutions for p ∈ ( N+2

N−2 , pα). When p = pα − ε with small ε > 0, Gladiali and Grossi in
[11] showed that there exists a solution concentrating at origin provided 0 < α ≤ 1. By
the results in [12], the same results still hold when α is not an even integer. In [17], the
asymptotic behavior of the radial solutions obtained by Ni in [21] was analyzed as ε → 0+.
More recently, Liu and Peng [19] constructed large number of peak solutions for (1.2) with
p = N+2

N−2 + ε. However, as far as we know, it seems that there are no results on existence of

sign-changing solutions for (1.2) when p ∈ ( N+2
N−2 , pα)

Our purpose in the present paper is to construct sign-changing bubble tower solutions for
(1.1)which blowup at the origin. It seems that this is the first existence result of sign-changing
bubble tower solutions for (1.1).

The main result of this paper is as follows.

Theorem 1.1 Assume that N ≥ 3, α > −2 is not an even integer, then for any k ∈ N
+,

there exists εk > 0 such that for ε ∈ (0, εk), problem (1.1) has a sign-changing bubble tower
solution uε with exactly k nodal sets in �.

Remark 1.2 When α = 0 and � has some symmetry property, problem (1.1) has been
studied in [3] and [23]. Our results do not need any symmetry property of �. Further more,
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Sign-changing bubble tower solutions... 1229

compared with the classical Hénon equation where α > 0, our result covers the more general
case α > −2.

Remark 1.3 If� is the unit ball ofRN , then Theorem 1.1 holds for all α > −2. Actually, we
can construct a sign-changing radial bubble tower solution uε. Considering the transformation

w(s) = u(r), r = s
2

α+2 , problem (1.1) can be changed into the following problem{
−w′′ − M−1

s w′ = 4
(2+α)2

|w| M+2
M−2−εw, in (0, 1),

w′(0) = w(1) = 0,
(1.3)

where M = 2(N+α)
2+α

. When M is an integer, problem (1.3) was studied in [3]. However,
problem (1.3) can be dealt with in a similar way if M is not an integer.

Let us outline themain idea to prove Theorem 1.1. To do this, we introduce a few notations
first. For x ∈ R

N and μ > 0, set

Uμ(x) = Cα,N

(
μ

2+α
2

μ2+α + |x |2+α

) N−2
2+α

, Cα,N = ((N + α)(N − 2))
N−2
4+2α .

It is well known from [12,14] that Uμ(x) are the only radial solutions of

− �u = |x |αu pα , u > 0 in R
N . (1.4)

We define the following Emden–Fowler-type transformation

v(y,�) = T (u)(y,�) =
(
pα − 1

2

) 2
pα−1

r
N−2
2 u(r,�), (1.5)

where

r = e− pα−1
2 y,� ∈ S

N−1.

Define

D = {(y,�) ∈ R × S
N−1 : (e− pα−1

2 y,�) ∈ �}.
After these changes of variables, problem (1.1) becomes{

L(v) = σεe− 2+α
2 εy |v|pα−1−εv in D,

v = 0 on ∂D,
(1.6)

where

σε =
(
pα − 1

2

) 2ε
pα−1

and

L(v) = −v′′ + (2 + α)2

4
v −

(
pα − 1

2

)2

�SN−1v.

The energy functional corresponding to problem (1.6) is

Iε(v) = 1

2

∫
D

(
|v′|2 + (2 + α)2

4
|v|2

)
dyd� + 1

2

(
pα − 1

2

)2 ∫
D

|∇SN−1v|2dyd�

− σε

pα + 1 − ε

∫
D
e− 2+α

2 εy |v|pα+1−εdyd�.
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1230 D. Cao et al.

It is easy to see that

Iε(v) =
(
pα − 1

2

) pα+3
pα−1

Jε(u), (1.7)

where

Jε(u) = 1

2

∫
�

|∇u|2dx − 1

pα + 1 − ε

∫
�

|x |α|u|pα+1−εdx .

We observe that W (y) is the unique solution of the problem⎧⎪⎨
⎪⎩
W ′′ − (2+α)2

4 W + W pα = 0 in R,

W ′(0) = 0, W (y) > 0,

W (y) → 0 as y → ±∞,

(1.8)

where

W (y) = γα,N
e− 2+α

2 y(
1 + e− (2+α)2

N−2 y
) N−2

2+α

, γα,N =
(

(2 + α)2(N + α)

N − 2

) N−2
4+2α

.

We denote the function PUμ := Uμ+Rμ, which is the projection onto H1
0 (�) of the function

Uμ, that is, {
−�PUμ = |x |αU pα

μ in �,

PUμ = 0 on ∂�.

Then, we have

Rμ = −Cα,Nμ
N−2
2 H(x, 0) + O

(
μ

N+2+2α
2

)
,

where H(x, 0) is the Robin function.
For given 
i > 0, i = 1, 2, . . . , k, set

ξ1 = − 1

2 + α
log ε + 2

2 + α
log
1,

ξi+1 − ξi = − 2

2 + α
log ε − 2

2 + α
log
i+1, i = 1, 2, . . . , k − 1.

(1.9)

Let us write

Wi (y) = W (y − ξi ), Vi (y) = Wi (y) + �i (y), V (y) =
k∑

i=1

(−1)i Vi (y), (1.10)

where

�i (y) = T (Rμi ), μi = e− pα−1
2 ξi .

We will prove Theorem 1.1 by verifying the following result.

Theorem 1.4 Suppose that α > −2 is not an even integer. Then for any integer k ≥ 1, there
exists εk > 0 such that for ε ∈ (0, εk), problem (1.6) has a pair of solutions vε and −vε of
the form

vε = V + φε,

where ‖φε‖L∞ → 0, as ε → 0.
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Remark 1.5 Using the Emden–Fowler-type transformation (1.5), we can give the explicit
expression of solution to problem (1.1), that is,

uε(x) = Cα,N

k∑
i=1

(−1)i

⎛
⎝ M

2+α
2

i ε
(2+α)(2i−1)

2(N−2)

M2+α
i ε

(2+α)(2i−1)
N−2 + |x |2+α

⎞
⎠

N−2
2+α

(1 + o(1)),

where Mi , i = 1, 2, . . . , k are some certain positive constants (see (4.3)) and o(1) → 0
uniformly on compact subsets of � as ε → 0 .

The proof of Theorem 1.4 is motivated by [7,23]. More precisely, we will use the
Lyapunov–Schmidt reduction argument to prove Theorem 1.4, which reduces the construc-
tion of the solutions to a finite-dimensional variational problem. As a final remark, we point
out that bubble tower concentration phenomena have been observed in [3,7,8,10,18,20,23]
near the critical Sobolev exponent, i.e., α = 0. However, as far as we know, there are no such
results for α 
= 0.

This paper is organized as follows. In Sect. 2, we give some basic estimates and asymptotic
expansion. In Sect. 3, we will carry out the finite-dimensional reduction argument and the
main results will be proved in Sect. 4.

2 Energy expansion

In this section, we give some estimates and asymptotic expansion used in the later sections.

Lemma 2.1 For fixed δ > 0 and δ < 
i < δ−1, i = 1, 2, . . . , k, we have the following
estimates:∫

D
|V |pα+1dyd� = kωN−1

∫
R

W pα+1 + o(1), (2.1)∫
D

(|V |pα+1 − |V |pα+1−ε
)
dyd� = kωN−1ε

∫
R

W pα+1 logW + o(ε), (2.2)

∫
D
y|V |pα+1dyd� =

(
k∑

�=1

ξ�

)
ωN−1

∫
R

W pα+1 + o(1), (2.3)

∫
D�

W pα

i W jdyd� = o (ε) , i 
= �, (2.4)∫
D�

W pα

� Wjdyd� = a3e
− 2+α

2 |ξ�−ξ j | + o (ε) , j 
= �, (2.5)

∫
D�

⎛
⎝|V�|pα+1 − |V |pα+1 + (pα + 1)V pα

�

∑
j 
=�

(−1)�+ j V j

⎞
⎠ dyd� = o (ε) , (2.6)

∫
D�

(
W pα

� − V pα

�

)
Vjdyd� = o (ε) , j 
= �, (2.7)

where a3 = γα,NωN−1
∫
R
e− 2+α

2 yW pα , D� = {(y,�) ∈ D : η� ≤ y < η�+1}, η1 = 0, η� =
ξ�−1+ξ�

2 , � = 2, . . . , k, ηk+1 = +∞.

Proof The results are similar to Lemma 4.4 in [23], we omit the details. ��
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1232 D. Cao et al.

Next, we will calculate the asymptotic expansions of the energy functional Iε(V ).

Proposition 2.2 For any δ > 0, there exists ε0 > 0 such that for ε ∈ (0, ε0), we have the
following asymptotic expansion

Iε(V ) = ka0 + ka1ε − k2

2
a4ε log ε + ε�k(
) + εRε(
), (2.8)

where

�k(
) = ka4 log
1 + a2H(0, 0)


2
1

+
k∑

�=2

(a3
� − (k − � + 1)a4 log
�)

and Rε → 0, as ε → 0 uniformly in C1-norm on the set of 
i ’s with δ < 
i < δ−1,
i = 1, 2, . . . , k. Here ai , i = 0, 1, . . . , 4, are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = 2 + α

2(N + α)

(
pα − 1

2

) pα+3
pα−1

∫
RN

|x |αU pα+1
1 ,

a1 = ωN−1

pα + 1

(∫
R

W pα+1 logW− 1

pα + 1

∫
R

W pα+1− 2

pα − 1
log

pα − 1

2

∫
R

W pα+1
)

,

a2 = 2 + α

2(N + α)

(
pα − 1

2

) pα+3
pα−1

Cα,N

∫
RN

|x |αU pα

1 ,

a3 = γα,NωN−1

∫
R

e− 2+α
2 yW pα ,

a4 = ωN−1

pα + 1

∫
R

W pα+1.

Proof The proof is standard, and we only give a sketch here.
Note that

Iε(V ) =I0(V ) + 1

pα + 1

∫
D

|V |pα+1 − σε

pα + 1 − ε

∫
D
e− 2+α

2 εy |V |pα+1−ε

=I0(V ) − 1

pα + 1

∫
D

(
e− 2+α

2 εy − 1
)

|V |pα+1 + ka1ε + o(ε).

It follows from Lemma 2.1 that

1

pα + 1

∫
D

(
e− 2+α

2 εy − 1
)

|V |pα+1 = − (2 + α)ε

2(pα + 1)

∫
D
y|V |pα+1 + o(ε)

= −ε
a4(2 + α)

2

k∑
j=1

ξ j + o(ε).

It is easy to check that

I0(V ) −
k∑

i=1

I0(Vi ) = 1

pα + 1

∫
D

(
k∑

i=1

V pα+1
i − |V |pα+1

)
+

k∑
i, j=1,i> j

(−1)i+ j
∫
D
W pα

i V j .
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Since � j = O(e− 2+α
2 ξ j ) = O(ε

3
2 ), j ≥ 2, from Lemma 2.1, we have

I0(V ) −
k∑

i=1

I0(Vi )

= 1

pα + 1

k∑
�=1

∫
D�

⎛
⎝V pα+1

� − |V |pα+1 + (pα + 1)
∑
j<�

(−1)�+ jW pα

� Vj

⎞
⎠ + o(ε)

= −
k∑

�=1

∑
j>�

(−1)�+ j
∫
D�

W pα

� Wj + o(ε)

= a3

k−1∑
�=1

e− 2+α
2 |ξ�+1−ξ�| + o(ε).

Next, we estimate I0(Vi ), i = 1, 2, . . . , k.
Recall that

Vi = Wi + �i , �i (y) = T (Rμi ), μi = e− pα−1
2 ξi

and

I0(Vi ) =
(
pα − 1

2

) pα+3
pα−1

J0(PUμi ).

Thus, we find

J0(PUμi ) = 2 + α

2(N + α)

∫
RN

|x |αU pα+1
1

+ 2 + α

2(N + α)
Cα,N H(0, 0)μN−2

i

∫
RN

|x |αU pα

1 + O(μN
i ).

Since μi = e− pα−1
2 ξi , we find

k∑
i=1

I0(Vi ) = ka0 + a2H(0, 0)e−(2+α)ξ1 + o(ε).

Hence, we can deduce

Iε(V ) = ka0 + ka1ε + a2H(0, 0)e−(2+α)ξ1 + a3

k−1∑
�=1

e− 2+α
2 |ξ�+1−ξ�|

+ a4ε
2 + α

2

k∑
�=1

ξ� + o(ε).

By the definition of ξi , i = 1, 2, . . . , k, we can obtain (2.8) immediately and the proof of
Proposition 2.2 is concluded. ��

3 The finite-dimensional reduction

In this section, we perform the finite-dimensional procedure, which reduces problem (1.6)
to a finite-dimensional problem on R+.
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For given ξi , i = 1, 2, . . . , k, let

‖φ‖∗ = sup
(y,�)∈D

(
k∑

i=1

e− 2+α
2 σ |y−ξi |

)−1

|φ(y,�)|,

where σ > 0 is a small constant. We denote C∗ by the continuous function space defined on
D with finite norm defined as above.

Define

Z̃i (x) = μi
∂Uμi

∂μi
, μi = e− pα−1

2 ξi , i = 1, 2, . . . , k.

Then, Z̃i (x) solves

−�Z̃i (x) = pαU
pα−1
μi

Z̃i (x) in R
N .

Let P Z̃i be the projection onto H1
0 (�) of the function Z̃i (x), that is,{

−�P Z̃i = pαU
pα−1
μi Z̃i (x) in �,

P Z̃i = 0 on ∂�.

Set

Zi (y,�) = T (P Z̃i )(y,�).

Then, Zi satisfies {
L(Zi ) = pαW

pα−1
i W ′

i in D,

Zi = 0 on ∂D.

First, we consider the following linear problem⎧⎪⎨
⎪⎩
Lε(φ) = h + ∑k

j=1 c j Z j in D,

φ = 0 on ∂D,∫
D Ziφdyd� = 0, i = 1, 2, . . . , k,

(3.1)

where ci , i = 1, 2, . . . , k, are some constants and

Lε(φ) = L(φ) − (pα − ε)σεe
− 2+α

2 εy |V |pα−1−εφ.

Lemma 3.1 Assume that there are sequences εn → 0 and points 0 < ξn1 < ξn2 < · · · < ξnk
with

ξn1 → ∞, min
1≤i≤k−1

(ξni+1 − ξni ) → +∞, ξnk = o(ε−1
n ),

such that φn solves (3.1) for scalars cni and hn with ‖hn‖∗ → 0, then lim
n→∞ ‖φn‖∗ = 0.

Proof We will first show that

lim
n→∞ ‖φn‖L∞ = 0.

Arguing by contradiction, we may assume that ‖φn‖L∞ = 1. Multiplying (3.1) by Zn
� and

integrating by parts, we find

k∑
i=1

cni

∫
D
Zn
i Z

n
� dyd� =

∫
D
Lεn (Z

n
� )φndyd� −

∫
D
hn Z

n
� dyd�.
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Note that ∫
D
Zn
i Z

n
� dyd� = Cδi� + o(1)

where δi� is the Kronecker’s delta function. This defines an almost diagonal system in the
cni ’s as n → ∞.

Thus, we have

k∑
i=1

cni

∫
D
Zn
i Z

n
� =

∫
D

[
L(Zn

� ) − (pα − εn)σεn e
− 2+α

2 εn y |V |pα−1−εn Zn
�

]
φn −

∫
D
hn Z

n
� .

(3.2)
But

L(Zn
� ) = pαW

pα−1(y − ξn� )W ′(y − ξn� ),

by the dominated convergence theorem, we know that lim
n→∞ cni = 0. Assume that (yn,�n) ∈

D is such that |φn(yn,�n)| = 1, we claim that there is an � ∈ {1, . . . , k} and a fixed R > 0,
such that |ξn� − yn | ≤ R for n large enough. Otherwise, we can suppose that |ξn� − yn | → +∞
as n → +∞ for any � = 1, 2, . . . , k. Then either |yn | → +∞ or |yn | is bounded. Assume
first that |yn | → +∞.

Define

φ̃n(y,�) = φn(y + yn,�).

By the standard elliptic regularity theory, we may assume that φ̃n converges uniformly over
compact sets to a function φ̃. Set ψ̃ = T −1(φ̃), then we have

�ψ̃ = 0 in R
N\{0}.

Due to ‖φ̃n‖L∞ = 1, we see that |ψ̃(x)| ≤ |x |− N−2
2 . Hence, ψ̃ can extend smoothly to 0 to

be a harmonic function inRN with this decay condition. So, φ̃ = 0 gives a contradiction. The
fact that |yn | cannot be bounded can be handled in similar way. Thus, there exists an integer
� ∈ {1, . . . , k} and a positive number R > 0 such that for n large enough, |yn − ξn� | ≤ R.

Define again

φ̃n(y,�) = φn(y + ξn� ,�).

Thus, φ̃n converges uniformly over compact sets to a function φ̃. Set again that ψ̃ = T −1(φ̃).
Hence, ψ̃ is a nontrivial solution of

�ψ̃ + pα|x |αU pα−1
1 ψ̃ = 0 in R

N\{0}.
Moreover, |ψ̃(x)| ≤ C |x |− N−2

2 . Therefore, we obtain a classical solution inRN\{0} decaying
at infinity. It follows from [12] that it equals a linear combination of the {Z̃i } provided that
α is not an even integer. However, the orthogonality conditions imply φ̃ = 0. This is again a
contradiction. Thus, we can deduce that lim

n→∞ ‖φn‖L∞ = 0.

Next we shall establish that

lim
n→∞ ‖φn‖∗ → 0.

Now we see that (3.1) possesses the following form

− φ′′
n + (2 + α)2

4
φn −

(
pα − 1

2

)2

�SN−1φn = gn, (3.3)
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1236 D. Cao et al.

where

gn = hn + (pα − εn)σεe
− 2+α

2 εn y |V |pα−1−εnφn +
n∑

i=1

cni Z
n
i .

If 0 < σ < min{pα − 1, 1}, we find

|gn(y)| ≤ θn

k∑
i=1

e− 2+α
2 σ |y−ξni | with θn → 0.

Choosing C > 0 large enough, we see that

ϕn(y) = Cθn

k∑
i=1

e− 2+α
2 σ |y−ξni |

is a supersolution of (3.3), and −ϕn(y) will be a subsolution of (3.3). Thus,

|φn | ≤ Cθn

k∑
i=1

e− 2+α
2 σ |y−ξni |.

The following proposition is a direct consequence of Proposition 1 in [9] combining with
Lemma 3.1.

Proposition 3.2 There exist positive numbers ε0, δ0, R0, such that if

R0 < ξ1, R0 < min
i=1,...,k−1

(ξi+1 − ξi ), ξk <
δ0

ε
, (3.4)

then for all 0 < ε < ε0 and h ∈ C∗, problem (3.1) has a unique solution φ = Tε(h).
Moreover, there exists C > 0 such that

‖Tε(h)‖∗ ≤ C‖h‖∗, |ci | ≤ C‖h‖∗.
For later purposes, we need to understand the differentiability of the operator Tε on the

variables ξi . We will use the notation ξ = (ξ1, ξ2, . . . , ξk). We also consider the space L(C∗)
of the linear operator of C∗. We have the following result.

Proposition 3.3 Under the same assumptions of Proposition 3.2, the map ξ → Tε with
values in L(C∗) is of class C1. Besides, there is a constant C > 0 such that

‖DξTε‖L(C∗) ≤ C

uniformly on the vectors ξ satisfying (3.4).

Proof Fix h ∈ C∗, and let φ = Tε(h). We are interested in studying the differentiability of φ

with respect to ξ� for � = 1, 2, . . . , k. Recall that φ satisfies⎧⎪⎨
⎪⎩
Lε(φ) = h + ∑k

j=1 c j Z j in D,

φ = 0 on ∂D,∫
D Ziφdyd� = 0, i = 1, 2, . . . , k,

for certain constants ci . Differentiating the above equation with respect to ξ�, � = 1, . . . , k.
Define Y = ∂ξ�

φ and di = ∂ξ�
ci , we find⎧⎪⎨

⎪⎩
Lε(Y ) = (pα − ε)σεe− 2+α

2 εy(∂ξ�
|V |pα−1−ε)φ + c�∂ξ�

Z� + ∑k
j=1 d j Z j in D,

Y = 0 on ∂D,∫
D(Y Zi + φ∂ξ�

Zi )dyd� = 0, i = 1, 2, . . . , k.
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Set χ = Y − ∑k
i=1 bi Zi , where the constants bi satisfy

k∑
i=1

bi

∫
D
Zi Z jdyd� = 0, j 
= �,

k∑
i=1

bi

∫
D
Zi Z�dyd� = −

∫
D

φ∂ξ�
Z�dyd�.

This is also an almost diagonal system and Y = χ + ∑k
j=1 b j Z j , where

∫
D χ Z jdyd� =

0, j = 1, 2, . . . , k. Moreover, it is easy to see that χ satisfies⎧⎪⎨
⎪⎩
Lε(χ) = g + ∑k

j=1 d j Z j in D,

χ = 0 on ∂D,∫
D χ Z jdyd� = 0, j = 1, 2, . . . , k,

where

g = (pα − ε)σεe
− 2+α

2 εy(∂ξ�
|V |pα−1−ε)φ + c�∂ξ�

Z� −
k∑
j=1

b jLε(Z j ).

Then, we find

χ = Tε(g)

and

∂ξ�
φ = Tε(g) +

k∑
j=1

b j Z j .

By Proposition 3.2, we find

‖Tε(g)‖∗ ≤ C‖g‖∗.

Since

‖g‖∗ ≤ C

⎛
⎝‖φ‖∗ + |c�| +

k∑
j=1

|b j |
⎞
⎠

and

|bi | ≤ C‖φ‖∗, |ci | ≤ C‖h‖∗, ‖φ‖∗ ≤ C‖h‖∗.

Thus, we can obtain that ‖∂ξ�
φ‖∗ ≤ C‖h‖∗, and ∂ξ�

φ depends continuously on ξ for this
norm. ��

Now we consider⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L(V + φ) − σεe− 2+α

2 εy |V + φ|pα−1−ε(V + φ) =
k∑
j=1

c j Z j in D,

φ = 0 on ∂D,∫
D Ziφdyd� = 0, i = 1, 2, . . . , k.

(3.5)
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In order to solve problem (3.5), we rewrite it as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Lε(φ) = Nε(φ) + Rε +

k∑
j=1

c j Z j in D,

φ = 0 on ∂D,∫
D Ziφdyd� = 0, i = 1, 2, . . . , k,

(3.6)

where

Nε(φ) = σεe
− 2+α

2 εy (|V + φ|pα−1−ε(V + φ) − |V |pα−1−εV − (pα − ε)|V |pα−1−εφ
)

and

Rε = σεe
− 2+α

2 εy |V |pα−1−εV −
k∑

i=1

(−1)iW pα

i .

Let us fix a large number M > 0, ξ satisfies the following conditions

ξ1 >
1

2
log

1

Mε
, min

1≤i≤k−1
(ξi+1 − ξi ) > log

1

Mε
, ξk < k log

1

Mε
. (3.7)

In order to prove that (3.6) is uniquely solvable in the set that ‖φ‖∗ is small, we need to
estimate Rε and Nε(φ).

Lemma 3.4 If N ≥ 3, then

‖Nε(φ)‖∗ ≤ C‖φ‖min{pα−ε,2}∗ ,∥∥∥∥∂Nε(φ)

∂φ

∥∥∥∥∗
≤ C‖φ‖min{pα−1−ε,1}∗ .

(3.8)

Proof Since

|Nε(φ)| ≤
{
C |φ|pα−ε, pα − 1 ≤ 1,

C |V |pα−2−εφ2 + C |φ|pα−ε, pα − 1 > 1.

First, we consider the case pα − 1 ≤ 1.

|Nε(φ)| ≤ C‖φ‖pα−ε∗

(
k∑

i=1

e− 2+α
2 σ |y−ξi |

)pα−ε

≤ C‖φ‖pα−ε∗

(
k∑

i=1

e− 2+α
2 σ |y−ξi |

)
.

where we have used the fact that

k∑
i=1

e− 2+α
2 σ |y−ξi | ≤ C.

Thus, the result follows.
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Now we show the result holds for pα − 1 > 1.

|Nε(φ)| ≤C‖φ‖2∗|V |pα−2−ε

(
k∑

i=1

e− 2+α
2 σ |y−ξi |

)2

+ C‖φ‖pα−ε∗

(
k∑

i=1

e− 2+α
2 σ |y−ξi |

)pα−ε

≤C
(
‖φ‖pα−ε∗ + ‖φ‖2∗

)(
k∑

i=1

e− 2+α
2 σ |y−ξi |

)
.

Thus,

‖Nε(φ)‖∗ ≤ C‖φ‖min{pα−ε,2}∗ .

The other terms can be estimated similarly, and the proof of the lemma is completed. ��
Lemma 3.5 If N ≥ 3, then

‖Rε‖∗ ≤ Cε
1+τ
2 , ‖∂ξ Rε‖∗ ≤ Cε

1+τ
2 , (3.9)

where τ > 0 is a small constant.

Proof We give here the proof of the first one only. The second one can be obtained similarly.
Note that

Rε = (σε − 1)e− 2+α
2 εy |V |pα−1−εV + e− 2+α

2 εy (|V |pα−1−εV − |V |pα−1V
)

+ |V |pα−1V
(
e− 2+α

2 εy − 1
)

+ |V |pα−1V −
k∑

i=1

(−1)i V pα

i

+
k∑

i=1

(−1)i V pα

i −
k∑

i=1

(−1)iW pα

i

= : J1 + J2 + J3 + J4 + J5.

Recalling that

V =
k∑

i=1

(−1)i Vi , 0 ≤ Vi ≤ Wi .

Thus, we find

|J1| ≤ Cεe− 2+α
2 εy |V |pα−ε ≤ Cε

k∑
i=1

e− 2+α
2 σ |y−ξi |,

|J2| ≤ Cε| log V ||V |pα−1 ≤ Cε

k∑
i=1

e− 2+α
2 σ |y−ξi |,

|J3| =
∣∣∣(e− 2+α

2 εy − 1
)

|V |pα−1V
∣∣∣ ≤ Cεy|V |pα ≤ Cε

k∑
i=1

e− 2+α
2 σ |y−ξi |.

Next we estimate J4 and J5.
Define

χ� = ξ�−1 + ξ�

2
, � = 1, 2, . . . , k + 1, where ξ0 = inf

(y,�)∈D |y|, ξk+1 = +∞.
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Thus, for χ� ≤ y < χ�+1, we have

|J4| =
∣∣∣|V |pα−1V −

k∑
i=1

(−1)i V pα

i

∣∣∣ ≤ CV pα−1
�

⎛
⎝∑

j 
=�

Vj

⎞
⎠

≤ C
∑
j 
=�

e− 2+α
2 (pα−1)|y−ξ�|e− 2+α

2 |y−ξ j |

≤ Ce− 2+α
2 σ |y−ξ�| ∑

j 
=�

e− 2+α
2 (pα−σ−1)|y−ξ�|e− 2+α

2 |y−ξ j |

≤ Ce− 2+α
2 σ |y−ξ�| ∑

j 
=�

e− (2+α)(1+τ)
4 |ξ�−ξ�−1|

≤ Cε
1+τ
2

k∑
i=1

e− 2+α
2 σ |y−ξi |

and

|J5| =
∣∣∣∣∣

k∑
i=1

(
V pα

i − W pα

i

)∣∣∣∣∣ ≤ C
k∑

i=1

W pα−1
i |�i |

≤ CRμ1

(
e− pα−1

2 y,�
) k∑

i=1

e− 2+α
2 (pα−1)|y−ξi |e− 2+α

2 y, μ1 = e− pα−1
2 ξ1

≤ Cε
1+τ
2

k∑
i=1

e− 2+α
2 σ |y−ξi |.

Therefore, ‖Rε‖∗ ≤ Cε
1+τ
2 and the results follow. ��

The next proposition enables us to reduce the problem of finding a solution for (1.6) to a
finite-dimensional problem.

Proposition 3.6 Suppose that condition (3.7) holds. Then there exists a positive constant C
such that, for ε > 0 small enough, problem (3.6) admits a unique solution φ = φ(ξ), which
satisfies

‖φ‖∗ ≤ Cε
1+τ
2 .

Moreover, φ(ξ) is of class C1 on ξ with the ‖ · ‖∗-norm, and

‖Dξ φ‖∗ ≤ Cε
1+τ
2 ,

where τ > 0 is a small constant.

Proof Define

Aε(φ) := Tε(Nε(φ) + Rε),

then we know that problem (3.6) is equivalent to the fixed point problem φ = Aε(φ). We
will use the contraction mapping theorem to solve it.
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Set

Eρ = {φ ∈ C∗ : ‖φ‖∗ ≤ ρε
1+τ
2 },

where ρ > 0 will be fixed later.
We will show that Aε is a contraction map from Eρ to Eρ .

In fact, for ε > 0 small enough, we find

‖Aε(φ)‖∗ ≤ C‖Nε(φ) + Rε‖∗ ≤ C
(
(ρε)min{pα−ε,2} + ε

1+τ
2

)
≤ ρε

1+τ
2 ,

provided ρ is chosen large enough, but independent of ε.
Thus, Aε maps Eρ into itself. Moreover,

|Nε(φ1) − Nε(φ2)| ≤|∂φNε(tφ1 + (1 − t)φ2)||φ1 − φ2|
≤C

(
ρε

1+τ
2

)min{pα−1−ε,1} |φ1 − φ2|.
Hence,

‖Aε(φ1) − Aε(φ2)‖∗ ≤C
(
ρε

1+τ
2

)min{pα−1−ε,1} ‖φ1 − φ2‖∗

≤1

2
‖φ1 − φ2‖∗.

Thus, there is a unique φ ∈ Eρ , such that φ = Aε(φ).
Now we consider the differentiability of ξ → φ(ξ).

Let

B(ξ, φ) = φ − Tε(Nε(φ) + Rε).

First, we have B(ξ, φ(ξ)) = 0. Let us write

DφB(ξ, φ)[ψ] = ψ − Tε(ψDφNε(φ)) = ψ + M(ψ),

where

M(ψ) = −Tε(ψDφNε(φ)).

From (3.8), we find

‖M(ψ)‖∗ ≤ Cε
1+τ
2 min{pα−1−ε,1}‖ψ‖∗.

Thus, the linear operator DφB(ε, φ) is invertible in C∗ with uniformly bounded inverse
depending continuously on its parameters. Differentiating with respect to ξ , we deduce

Dξ B(ξ, φ) = −DξTε[Nε(φ) + Rε] − Tε[Dξ Nε(ξ, φ) + Dξ Rε],
where all these expressions depend continuously on their parameters.
By the implicit function theorem, we see that φ(ξ) is of class C1 and

Dξ φ = − (
DφB(ξ, φ)

)−1 [Dξ B(ξ, φ)].
Thus,

‖Dξ (φ)‖∗ ≤ C
(‖Nε(φ) + Rε‖∗ + ‖Dξ Nε(ξ, φ)‖∗ + ‖Dξ Rε‖∗

) ≤ Cε
1+τ
2 .

The proof of Proposition 3.6 is concluded. ��
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4 Proof of the main result

In this section, we will prove Theorem 1.1. As deduced in the introduction, we need to verify
Theorem 1.4. To do this, we will choose ξ such that V + φ is a solution of (1.6), where φ is
the map obtained in Proposition 3.6.
Recall that

Iε(v) = 1

2

∫
D

(
|v′|2 + (2 + α)2

4
|v|2

)
dyd� + 1

2

(
pα − 1

2

)2 ∫
D

|∇SN−1v|2dyd�

− σε

pα + 1 − ε

∫
D
e− 2+α

2 εy |v|pα+1−εdyd�.

(4.1)

Define

Kε(ξ) = Iε(V + φ).

It is now well known that if ξ is a critical point of Kε(ξ), then V + φ is a solution of (1.6).
Next, we will prove that Kε(ξ) has a critical point. To this end, we need the next lemma,
which is important in finding the critical point of Kε .

Lemma 4.1 The following expansion holds

Kε(ξ) = Iε(V ) + O(ε1+τ ), (4.2)

where O(ε1+τ ) is uniformly in the C1-sense on the vectors ξ satisfying (3.4).

Proof Using the Taylor expansion

F(u + v) = F(u) + dF(u)[v] +
∫ 1

0
(1 − t)d2F(u + tv)[v, v]dt

and the fact that ∇ Iε(V + φ)[φ] = 0, we have

Iε(V + φ) − Iε(V ) =
∫ 1

0
∇2 Iε(V + tφ)[φ, φ]tdt

=
∫ 1

0

(∫
D
(Nε(φ) + Rε)φ + (pα − ε)σε

∫
D
e− 2+α

2 εy

× (|V |pα−1−ε − |V + tφ|pα−1−ε
)
φ2

)
tdt.

Since ‖φ‖∗ ≤ Cε
1+τ
2 , we find that

∫
D

|(Nε(φ) + Rε)φ| ≤C(‖Nε(φ)‖∗ + ‖Rε‖∗)‖φ‖∗
∫
D

(
k∑

i=1

e− 2+α
2 σ |y−ξi |

)2

≤C(‖Nε(φ)‖∗ + ‖Rε‖∗)‖φ‖∗ = O(ε1+τ ),

and ∫
D

∣∣|V |pα−1−ε − |V + tφ|pα−1−ε
∣∣ φ2

≤ C‖φ‖2∗
∫
D

(
k∑

i=1

e− 2+α
2 σ |y−ξi |

)2

≤ C‖φ‖2∗.
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Thus,

Iε(V + φ) = Iε(V ) + O(ε1+τ ).

Differentiating with respect to ξ�, we see that

∂ξ� (Iε(V + φ) − Iε(V ))

=
∫ 1

0

∫
D

∂ξ�
[(Nε(φ) + Rε)φ] tdt

+ (pα − ε)σε

∫ 1

0

∫
D
e− 2+α

2 εy∂ξ�

[(|V |pα−1−ε − |V + tφ|pα−1−ε
)
φ2] tdt.

In a similar way, we have that

∂ξ�
Iε(V + φ) = ∂ξ�

Iε(V ) + O(ε1+τ ).

Thus, the result follows. ��
Proof of Theorem 1.4 Recalling that

ξ1 = − 1

2 + α
log ε + 2

2 + α
log
1,

ξi+1 − ξi = − 2

2 + α
log ε − 2

2 + α
log
i+1, i = 1, 2, . . . , k − 1,

where δ < 
i < 1
δ
, δ > 0 is a fixed constant. To simplify the notation, we denote 
 =

(
1,
2, . . . , 
k). Thus, it is sufficient to find a critical point of the function

K̃ε(
) = ε−1 (Kε(ξ(
)) − ka0) .

From Lemma 4.1 and Proposition 2.2, we have

K̃ε(
) = �k(
) + ka1 − k2

2
a4 log ε + o(1),

where the term o(1) goes to 0 uniformly as ε → 0.
It is easy to see that the function


1 → ka4 log
1 + a2H(0, 0)


2
1

has a stable minimum point 
∗
1 =

(
2a2H(0,0)

ka4

) 1
2
on (0,+∞), and for i = 2, . . . , k, the

function


i → a3
i − (k − i + 1)a4 log
i

also has a stable minimum point 
∗
i = (k−i+1)a4

a3
on (0,+∞). Thus, the function �k(
) has

a stable minimum point 
∗ = (
∗
1, . . . , 


∗
k). Therefore, for ε small enough, there exists a

critical point 
ε = (
ε
1, . . . , 


ε
k) of the function K̃ε(
), such that 
ε

i → 
∗
i as ε → 0 for

i = 1, 2, . . . , k.
For the 
ε

i (i = 1, . . . , k) obtained above, let

ξε
1 = 2

2 + α
log


ε
1

ε
1
2

, ξ ε
i = 2

2 + α
log


ε
1


ε
2 . . . 
ε

i ε
2i−1
2

, i = 2, 3, . . . , k.
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Hence, ξε = (ξε
1 , . . . , ξ ε

k ) is a critical point of Kε(ξ) and V + φ(ξε) is a solution
of (1.6). ��

Proof of Theorem 1.1 Note that 
ε
i = 
∗

i + o(1), i = 1, 2, . . . , k as ε → 0. Then

ξε
1 = 2

2 + α
log


∗
1

ε
1
2

+ o(1),

ξ ε
i = 2

2 + α
log


∗
1


∗
2 . . . 
∗

i ε
2i−1
2

+ o(1), i = 2, 3, . . . , k.

Using the fact that e− pα−1
2 ξε

i = Miε
2i−1
N−2 (1 + o(1)), i = 1, . . . , k, where

M1 =
(

1


∗
1

) 2
N−2

, Mi =
(


∗
2 . . . 
∗

i


∗
1

) 2
N−2

, i = 2, . . . , k. (4.3)

Thus, by the transformation (1.5), we find

uε(x) = Cα,N

k∑
i=1

(−1)i

⎛
⎝ M

2+α
2

i ε
(2+α)(2i−1)

2(N−2)

M2+α
i ε

(2+α)(2i−1)
N−2 + |x |2+α

⎞
⎠

N−2
2+α

(1 + o(1)),

where o(1) → 0 uniformly on compact subsets of � as ε → 0.
Let

ûε(x) =
k∑

i=1

(−1)i

⎛
⎝ M

2+α
2

i ε
(2+α)(2i−1)

2(N−2)

M2+α
i ε

(2+α)(2i−1)
N−2 + |x |2+α

⎞
⎠

N−2
2+α

=
k∑

i=1

(−1)i

⎛
⎝ 1

M
2+α
2

i ε
(2+α)(2i−1)

2(N−2) + M
− 2+α

2
i ε

− (2+α)(2i−1)
2(N−2) |x |2+α

⎞
⎠

N−2
2+α

.

Hence,
uε(x) = Cα,N ûε(x)(1 + o(1)). (4.4)

Set S j
ε = {x ∈ R

N : |x | = ε
2 j−1
N−2 }, j = 1, 2, . . . , k, and choose a compact subset K ⊂ �

such that, for ε small enough, S j
ε ⊂ K for j = 1, 2, . . . , k.

Then, for x ∈ S j
ε , we have

ûε(x) =
k∑

i=1

(−1)i

⎛
⎝ 1

M
2+α
2

i ε
(2+α)(2i−1)

2(N−2) + M
− 2+α

2
i ε

(2+α)(4 j−2i−1)
2(N−2)

⎞
⎠

N−2
2+α

= ε− 2 j−1
2

k∑
i=1

(−1)i

⎛
⎝ 1

M
2+α
2

i ε
(2+α)(i− j)

(N−2) + M
− 2+α

2
i ε

(2+α)( j−i)
(N−2)

⎞
⎠

N−2
2+α

= (−1) jε− 2 j−1
2

⎛
⎝ 1(

M
2+α
2

j + M
− 2+α

2
j

) N−2
2+α

+ o(1)

⎞
⎠ .
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Thus, for ε > 0 small enough, (−1) j ûε > 0 on S j
ε , j = 1, 2, . . . , k, which implies that

(−1) j uε > 0 on S j
ε . Therefore, uε has at least k nodal domains �1, . . . , �k such that �i

contains the sphere Siε.
Next we show that, for ε small enough, uε has at most k nodal sets. Thanks to Proposi-

tion 2.2, Lemma 4.1, (1.7) and (1.10), we have

Jε(PUμi ) → (2 + α)

2(N + α)

∫
RN

|x |αU pα+1
1 , i = 1, 2, . . . , k, as ε → 0 (4.5)

and

Jε(uε) → (2 + α)k

2(N + α)

∫
RN

|x |αU pα+1
1 , as ε → 0. (4.6)

Argue by contradiction, we can assume that there exists another nodal domain denoted by
�k+1. If α > 0, we find that

(∫
�k+1

|uε| 2N
N−2

) N−2
N ≤ C

∫
�k+1

|x |α|uε|pα+1−ε. (4.7)

Hence,

(∫
�k+1

|uε| 2N
N−2

) N−2
N ≤ C‖uε‖

2α
N−2−ε

L∞(�k+1)

∫
�k+1

|uε| 2N
N−2 .

By (4.4), we see that ‖uε‖L∞(�k+1) ≤ C . Thus,
∫
�k+1

|uε| 2N
N−2 ≥ C > 0, which implies

Jε(uε) >
(2+α)k
2(N+α)

∫
RN |x |αU pα+1

1 . This is a contradiction with (4.6). If −2 < α < 0,

by Hardy inequality, we obtain that
∫
�

|x |α|u|pα+1 ≤ C
( ∫

�
|∇u|2) pα+1

2 . Similar to the

case α = 0 in [23], we still have that Jε(uε) >
(2+α)k
2(N+α)

∫
RN |x |αU pα+1

1 and the proof of
Theorem 1.1 is finished. ��
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