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Abstract
The problem of how to determine portfolio weights so that the variance of portfolio
returns is minimized has been given considerable attention in the literature, and several
methods have been proposed. Some properties of these estimators, however, remain
unknown, and many of their relative strengths and weaknesses are therefore difficult
to assess for users. This paper contributes to the field by comparing and contrasting the
risk functions used to derive efficient portfolio weight estimators. It is argued that risk
functions commonly used to derive and evaluate estimatorsmay be inadequate and that
alternative quality criteria should be considered instead. The theoretical discussions
are supported by a Monte Carlo simulation and two empirical applications where
particular focus is set on cases where the number of assets (p) is close to the number
of observations (n).
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1 Introduction

Markowitz (1952, 1959) developed the theoretical foundation for themodern portfolio
theory1 providing investors with a tool to solve a key issue of how to distribute their
wealth among a set of available assets. The problem was postulated as a choice of a
portfoliomean return and variance of portfolio returns. This led to twoprincipleswhere
an investor for a given level of portfolio variance maximizes the portfolio return, or
likewise for a given portfolio returnminimizes the portfolio variance.Hence, according
toMarkowitz, an investor under such constraints needs only to be concerned about two
moments of the assets multivariate distribution: the mean vector and the covariance
matrix. In practical situations, these two quantities are unknown andmust be estimated
in order to perform the optimization. Many authors have shown that this optimization
procedure often fails in practice (Bai et al. 2009; Best and Grauer 1991; Kempf et al.
2002; Merton 1980). Some authors go so far as to argue that the estimation error
(sampling variance) dominates the procedure to the extent that the equally weighted
non-random portfolio performs better than those optimized from data (Frankfurter
et al. 1971; DeMiguel et al. 2009; Michaud 1989).

The estimation problem becomes particularly serious when the numbers of assets
(say p) are close to the number of observations (n). This is mainly so because the
sample covariance matrix becomes stochastically unstable andmay not even be invert-
ible. It then comes natural that the standard “plug-in” estimators, defined by simply
replacing the unknown mean vector and covariance matrix by the standard text book
estimators, should be replaced by some improved covariance estimator. A significant
number of improvements over the plug-in estimator have been developed over the last
decades (Frost and Savarino 1986; Ledoit and Wolf 2003, 2004). The vast majority
of these fall into two categorizes or families of estimators. The first category is based
on the fact that the sample covariance matrix is a poor approximation of the true
covariance matrix and, therefore, the estimation problem is concerned with develop-
ing improved estimators of the covariance. These improved estimators are then simply
substituted for the unknown parameter within Markowitz’s optimal weight function.
The other approach, which appears to be the more common one during recent years,
relies on principles developed by Stein (1956) and James and Stein (1961). With such
estimators, the standard estimator is weighted (“shrunken”) toward a non-random tar-
get quantity. This type of estimators seems to have found a new renaissance in portfolio
estimation theory, for which they appear to be particularly well suited. A sample of
some recent developments includes Bodnar et al. (2018), Frahm and Memmel (2010),
Golosnoy andOkhrin (2007), Kempf andMemmel (2006), Okhrin and Schmid (2007).
Each of these methods naturally has its own merits and uses.

Investors want to know the basic properties and the relative risk of favoring one
estimator over another before applying any specific method. There is, however, no
consensus about how the concept of “risk” should be defined. From a statistical point
of view, risk refers to some measure of the difference between a quantity of interest
(which could be either random or fixed) and our inference target. Risk is usually

1 Roy (1952) wrote a paper around the same time as Markowitz in which he developed a similar theoretical
foundation.
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expressed through moments of differences, such as the mean squared error (MSE),
but could also involve forecast bias, or angles between true and estimated vectors. It
is obvious that the optimality properties of any estimator depend on the specific risk
measure, or quality criteria, being used to describe it. Indeed, it is well known that
the ranking of estimators’ performance, such as estimators of the inverse covariance
matrix, may change or even reverse when evaluated with alternative loss functions
(Haff 1979; Muirhead 1982).

While most recent papers in portfolio optimization theory have been concerned
with the extremely important problem of developing efficient estimators of portfolio
weights and related quantities, this paper focuses on the risks associated with these
estimators. Specifically, the purpose of this paper is to compare and contrast a number
of risk measures of the GMVP estimator to give investors and developers of statis-
tical methods a fair understanding of their differences and similarities and, hence, a
foundation for determining the weight estimator that is best suited for a given specific
problem.

The paper proceeds as follows. In Sect. 2, the problem of minimum-variance port-
folio estimation is stated, Sect. 3 introduces the concept of risk function, and Sect. 4
classifies different GMVP estimators. Section 5 describes the Monte Carlo study
design and provides a discussion of the derived results. Section 6 outlines two empirical
applications, and Sect. 7 summarizes the findings and concludes.

2 Preliminaries

We consider the problem of constructing an investment portfolio �, defined as a
weighted sum of risky assets, R = (

R1, . . . , Rp
)′. In order to construct a portfolio of

assets, we define a vector of weights v ∈ R
p under the common constraint v′1 = 1,

where 1: p × 1 is a vector of ones. The mean and variance of R are defined by
μ := E [R] and � := Cov [R], respectively, where � ∈ R

p×p is positive definite by
assumption. The variance of the portfolio excess return is uniquely minimized by the
global minimum-variance portfolio (GMVP) which is given by solving the following
minimization problem:

w
(p×1)

:= argmin
v′1=1

(
v′�v

)
, (1)

and the well-known solution to (1) is given by:

w
(p×1)

= �−11

1′�−11
. (2)

The expected return and the return variance of the global minimum-variance (MV)
portfolio are given by

μMV = μ′w = μ′�−11

1′�−11
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and

σ 2
MV = w′�w = 1

1′�−11
.

The weight vector w depends on the unknown parameter �−1 which needs to be
estimated from data. The classical, or plug-in estimator, of the weight vector w is
obtained by replacing � in (2) by the inverse of the sample covariance matrix S :=
n−1 ∑n

i=1

(
Ri − R̄

) (
Ri − R̄

)′
, where R̄ := n−1 ∑n

i=1 Ri . We define this estimator
as

ŵI = S−11
1′S−11

. (3)

The distribution of ŵI when sampling from a Gaussian distribution is well established
(Okhrin and Schmid 2006; Bodnar and Zabolotskyy 2017). In particular, the estimator
S−1 is, by the law of large numbers, a consistent estimator of�−1 and the consistency
of (3) follows directly. However, it is well known that S−1 is a poor approximation
of �−1 when the number of assets p is large relative to the number of observations
n, and as a consequence ŵI will not adequately approximate w. Because of this, a
number of authors have suggested improved estimators of the GMVP weights. An
obvious solution is to simply replace S−1 with a more efficient estimator of �−1.
Another important family of improved estimators is given by Stein-type estimators,
which, in terms of our portfolio estimation problem, are of the form ŵS = aŵ+ bw0,
where a and b are constants, and w0 is a pre-determined reference portfolio, which is
usually defined non-random. If

(
ŵ − w0

)
is small, the improvement in terms of the

mean squared error E
[(
ŵ − w

)′ (ŵ − w
)]

may be considerable.

3 The risk of portfolio estimators

Generally speaking, there are several ways to view the weight vector w and the for-
mulation of the inference problem. When deriving statistical estimators and inference
procedures for portfolio weights, there is no consensus regarding which quantity to
optimize. For example, since w ∈ R

p, it is natural to think of estimators in terms of

estimating a parameter vector. Alternatively, upon noting thatw = (
1′�−11

)−1
�−11

only depends on the unknown parameter �−1 ∈ R
p×p, the inference problem may

be thought of as one concerned with estimating a matrix, a problem rather different
from that of estimating a vector. Yet another view of the inference problem is the
out-of-sample prediction variance (Frahm and Memmel 2010). It is obvious that the
properties of any estimator ŵ will depend on the quality criteria, or risk function,
being used to judge it and that no single estimator can optimize all relevant properties
simultaneously. In fact, the performance ranking of estimators of w may be changed
or even reversed when evaluated on alternative loss functions (Haff 1979; Muirhead
1982). An investor searching the literature for “the best” estimator of the GMVP is
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likely to end up with a battery of proposed estimators, each being “optimal” in some
sense. In this section, we will present and discuss similarities and differences between
a number of risk functions for the GMVP problem, some of which are commonly used
while others appears to be new in the GMVP context.

The L2-norm risk is commonly used to assess estimators of�−1 alone, i.e., without
respect to the bigger problem in which it is an ingredient. It is defined as follows:

�0

(
�̂

−1
)

:= p−1tr E

[(
�̂

−1 − �−1
)2]

.

The �0

(
�̂

−1
)
risk is clearly naïve, in the sense that it is only indirectly related to

the actual problem of estimating the optimal weight vector w. In other words, an
estimator of �−1 which is optimal with respect to �0 need not perform very well
when substituted into Eq. (2).

A risk function that is more adequate for the portfolio weight problem may be

derived as follows: The denominator of w = �−11
1′�−11

is merely a scaling factor used

to impose the length-one condition. The quantity �−11 contains all necessary infor-
mation for determining w and the task of estimating w reduces to that of estimating
�−11. A risk function for the minimum-variance portfolio estimator may accordingly
be defined by

�1

(
�̂,�

)
: = p−1E

[(
�̂

−1
1 − �1

)′
�

(
�̂

−1
1 − �−11

)]

= p−11′ {E
[(

�̂
−1 − �−1

)
�

(
�̂

−1 − �−1
)]}

1

where � is a positive semi-definite non-random matrix. Two important special cases
are given by

�1

(
�̂

−1
, I

)
= p−11′

{
E

[(
�̂

−1 − �−1
)2]}

1

and

�1

(
�̂

−1
, 11′) = p−1E

[(
1′ (�̂

−1 − �−1
)
1
)2]

.

Frahm and Memmel (2010) utilize a somewhat different risk function defined by

�2
(
ŵ,�

) := p−1E
[(
ŵ − w

)′
�

(
ŵ − w

)]
.

The �2 risk function has been used frequently in the context of estimating mean value
vectors and in regression analysis (Anderson 2003; Efron andMorris 1976; James and
Stein 1961; Muirhead 1982; Serdobolskii 2000; Srivastava 2002). This risk function
explicitly evaluates the second-order moment properties (variance plus squared bias)
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of an estimator ŵ. It allows us to conveniently split mean square errors in different
directions to w by appropriate choice of �.

Yet another risk criterion, the out-of-sample variance of ŵ′Rm , advocated by Frahm
andMemmel (2010), is somewhat different from�1 and�2. For someRm not included
in the estimate of ŵ, this variance is determined by

�3
(
ŵ

) = Var
(
ŵ′Rm

)
. (4)

Following Frahm and Memmel (2010), this variance may be decomposed as follows:

�3
(
ŵ,Rm

) = Var
[
ŵ′Rm

] = Eŵ
[
Var

[
ŵ′Rm

∣∣ ŵ
]] + Varŵ

[
E

[
ŵ′Rm

∣∣ ŵ
]]

= Eŵ
[
ŵ′�Rŵ

] + Varŵ
[
ŵ′μR

] = Eŵ
[
ŵ′�Rŵ

] + μR
′Cov

[
ŵ

]
μR

= 1

1′�−11
+ E

[(
ŵ − w

)′
�R

(
ŵ − w

)] + μR
′Cov

[
ŵ

]
μR .

The out-of-sample variance may accordingly be decomposed into three terms. The
first one, 1

1′�−11
, is the risk due to randomness of assets and hence not subject to esti-

mation issues. Frahm and Memmel (2010) argue that the third term, μ′
RCov

[
ŵ

]
μR ,

is negligible in most practical situations, and hence that the term Eŵ
[
ŵ′�Rŵ

]
is the

one of main interest to us. The decomposition of �3 specified above is, however, not
necessarily the most versatile one. An important concern with�3 is that it is a measure
of the variance of ŵ′Rm but does not depend on the actual value that Rm assigns.

A different expression of the out-of-sample variance may be obtained by condi-
tioning on Rm . We define the conditional out-of-sample variance as follows:

�4
(
ŵ, rm

) : = E
[([

ŵ′Rm − w′Rm
]∣∣Rm = rm

)2]

= Var
[
ŵ′Rm

∣∣Rm = rm
] + Bias2

[
ŵ′Rm

∣∣Rm = rm
]
.

Although�3 and�4 both describe the out-of-sample variance of ŵ′Rm , the difference
between them is that the latter conditions on Rm = rm and also emphasizes the
bias. It therefore allows for investigation of the portfolio risk when Rm assigns some
specific value. The risk of a portfolio as a function of some estimator ŵ will be
different when Rm assigns a value close to E [Rm] compared to a scenario when
Rm assigns a value far from E [Rm]. Hence, �4 allows us to investigate the risk
when, for example, the market reacts dramatically to a specific event. This matter
becomes particularly important when using an estimator which is biased because
E

[
ŵ′Rm

] = Er
[
E

[
ŵ′Rm

∣∣Rm = rm
]] = E

[
ŵ′]μR regardless of a possible bias in

ŵ. In contrast, the forecast bias conditioned on E
[
ŵ′ − w′] rm may be considerable

since it increases linearly with rm . The concept of explicitly conditioning on a specific
return value rm provides us with the possibility of assessing the behavior of a weight
estimator under certain scenarios. For example, investorsmaybeparticularly interested
in cases when the market is turbulent (‖rm‖ is large relative to σ 2

R), the market reacts
additively to an event (say rm �→ a + rm , a ∈ R

p
+) or when the market is stable

(rm ≈ E [Rm]).
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A risk perspective of estimating portfolio weights... 65

Remark (i) (Directional risks) Any estimator of the GMVP may be decomposed
into components orthogonal and parallel to w: Let A+ denote the Moore–Penrose
pseudoinverse of some matrix A. Then, the component of ŵ parallel to w is given

by v = (
w+ŵ

)
w =

(
w′ŵ
w′w

)
w and the component orthogonal to w is determined by

u = �⊥ŵ where �⊥ =
(
I −

(
ww′
w′w

))
is a projection matrix (Rao 2008, pp. 46–47).

We can thus decompose ŵ according to ŵ = v + u, where v is parallel to w and
u is orthogonal to w. Some special cases of the above-defined risk functions in the
direction orthogonal to the GMVP, which is our direction of main interest, are then

given by �1

(
�̂

−1
,�⊥

)
, �2

(
�̂

−1
,�⊥

)
, �3 (u) and �4 (u, rm). Although the risk

in a certain direction to w alone is of limited interest, it does provide some insight
into the relative performance of one estimator to another. For example, it may be

shown that E
[(
ŵI − w

)′
�⊥

(
ŵI − w

)] = 1
(n−p+1)

1
1′�−11

(
tr

{
�−1

} −
(
1′�−31
1′�−21

))
,

whereas (w0 − w)′ �⊥ (w0 − w) = p−1
(
1 − p−1

(
1′�−11

)2

1′�−21

)
(see Appendix A).

Remark (ii) (Implicit Covariance Matrix) There always exists a p.d. diagonal
matrix � such that P1 = �Pw0 or, equivalently, w0 = P�−1P′1, where w0 is
any reference portfolio (Frahm and Memmel 2010, Theorem 8). The Stein-type esti-
mator defined by ŵS = (1 − α) ŵI + αw0 is therefore associated with an “implicit”

covariance matrix estimator in the sense that there exists a matrix �̂
−1
S such that

ŵS = �̂
−1
S 1

1′�̂−1
S 1

, where �̂
−1
S = (1 − α) S−1 + α�−1

0 , 0 ≤ α ≤ 1, and �̂
−1
S may,

or may not, be positive definite. If we define our implicit covariance matrix by
�−1

S = (1 − α)S−1 + α�−1
0 = (1 − α)S−1 + α p−1I

(
1′S−11

)
, we obtain the

identity ŵs = �̂
−1
S 1

1′�̂−1
S 1

=
{
(1−α)S−1+α p−1I

(
1′S−11

)}
1

1′{(1−α)S−1+α p−1I(1′S−11)}1 = (1 − α) S−11
1′S−11 + α p−11 =

(1 − α) ŵI + αw0. This identity allows us to investigate the risk of ŵS with respect
to any risk function designed for estimators of the (inverse) covariance matrices. For

example, although �0

(
�̂

−1
)
is a function of �̂

−1
and does not involve an explicit

weight estimator, it is nevertheless possible to evaluate ŵS via �0

(
�̂

−1
S

)
.

4 Families of GMVPweight estimators

Wewill consider a fewestimators for further investigation. Thefirst one is the “standard
estimator” defined in Eq. (3). The next is suggested by Frahm and Memmel (2010)
and is defined as

ŵII = (1 − κm) ŵI + κmw0, (5)

where w0 := p−11, κm = min [κs, 1], κs = p−3
n−p+2

[
w0

′Sw0−ŵ′
I SŵI

ŵ′
I SŵI

]−1
. The estimator

in Eq. (5) may be thought of as a weighted average between the traditional estimator
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and a reference portfolio, here represented by w0 := p−11, although the reference
portfolio could essentially be any non-random portfolio such that w0

′1 = 1.
An alternative estimator within the same family was proposed by Bodnar et al.

(2018) who suggested the estimator

ŵIII = (1 − κb) ŵI + κbw0

where κb = 1 − (1−c)
(
(1−c)b′Sb1′ S−11−1

)

c+(1−c)((1−c)b′Sb1′ S−11−1)
and c = p/n.

Although the estimators ŵII and ŵIII have shown great potential in improving the
standard estimator ŵI, improved estimators can be developed fromavariety of different

points of view. In particular, resolvent-type estimators, defined by �̂
−1
k = (S + kI)−1,

k ∈ R+, have shown great potential in estimating the precision matrix, particularly in
high-dimensional settings (Holgersson and Karlsson 2012; Serdobolskii 1985).

These estimators add a small constant to the eigenvalues before inversion, thereby
creating a more stable estimator. They play an important role in spectral analysis
(Serdobolskii 1985) but have also proved to be efficient in more applied problems
(Holgersson and Karlsson 2012). The “regularizing” coefficient k imposes a (small)
bias on estimators of the precision matrix and hence offers a form of variance-bias
trade-off rather different from the Stein-type estimators. Since the poor performance
of the standard plug-in estimator is largely due to high sample variance in the precision
matrix, the resolvent estimators are interesting candidates for improved estimation of
the GMVP.

While the Stein-type estimators depend on the regularizing coefficient κ , the esti-

mator �̂
−1
k depends on the coefficient k, which usually has to be determined from

data. We will use the �0 risk to derive the optimal value of k, i.e., we search for the

value of k which minimize �0

(
�̂

−1
k

)
= E

{
p−1tr

(
�̂

−1
k − �−1

)2}
. A consistent

estimate of �0

(
�̂

−1
k

)
has been derived by Serdobolskii (2000), defined as follows:

�̂0

(
�̂

−1
k

)
= �̂−2 − 2k−1

(
p−1 − n−1

)
tr

(
S−1�̃

−1
k

)

+ 2k−1 p−1n−1
(
tr�̃

−1
k

)2 + k−2 p−1tr�̃
−2
k ,

where �̃
−1
k = (

I + k−1S
)−1

, and �̂−2 = (
1 − pn−1

)2
p−1tr

(
S−2

)+(
1 − pn−1

)
p−1

n−1
(
tr

(
S−1

))2
. The optimal value of k is defined by k̂ = min

k
�̂0

(
�̂

−1
k

)
which is

obtained numerically. A feasible resolvent-type portfolio estimator is then defined by

ŵIV = �̂
−1
k̂ 1

1′�̂−1
k̂ 1

. (6)
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Defined by Eqs. (3)–(6), we have a set of different estimators of the GMVPweights.
These will be used in aMonte Carlo simulation of the next section in order to compare
the risk functions and the performances of estimators.

5 Monte Carlo study

To investigate the efficiency of GMVP estimators from a risk perspective, we conduct
Monte Carlo experiments using three different data generating processes (DGP I, DGP
II and DGP III). DGP I is based on a multivariate normal distribution with different
covariance structures and zero mean vector, and DGP II is based on a multivariate
skewed t distribution with mean vector equal to a zero vector. DGP III is based on a
skewed distribution with nonzero mean vector. DGP I is specified as follows:

Rt ∼ Np (0,�) ,

whereRt is a vector of p different assets returns in timeperiod t , {Rt }nt=1 is independent
and identically distributed (IID), where n corresponds to the number of observations.
The specification of � will assign different values in the simulations. We will use a
Toeplitz covariance structure given by

� =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

1 φ1 φ2 · · · φ p−1

φ1 . . .
. . .

. . .
...

φ2 . . .
. . .

. . . φ2

...
. . .

. . .
. . . φ1

φ p−1 · · · φ2 φ1 1

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

,

and also a covariance matrix estimated from stock return data.
For DGP II, we first define the distribution of the vector of returns as

Rt ∼ Skewed tp (υ,λ,�, γ ) ,

where λ ∈ R
p and γ ∈ R

p are parameter vectors, � ∈ R
p×p is positive definite and

υ > 4. When γ �= 0, this yields a p dimensional skewed t distribution. There exists a
number of different multivariate distributions in the literature that all share the name
multivariate skewed t distribution (Kotz and Nadarajah 2004). In this paper, we use the
larger class of multivariate normal mixture distributions to get a skewed multivariate
distribution which is referred to as a skewed multivariate t distribution (Demarta and
McNeil 2005). This is achieved by setting

Rt = λ + W−1
t γ + W−0.5

t Xt
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68 T. Holgersson et al.

where Xt ∼ Np (0,�) and W−1
t ∼ InverseGamma (ν/2, ν/2) which is independent

of Xt . The first moments of Rt are given by

E [Rt ] = EW−1
t

[
E

[
Rt

∣∣∣W−1
t

]]
= λ + υ

υ − 2
γ ,

Cov [Rt ] = EW−1
t

[
Cov

(
Rt

∣∣∣W−1
t

)]
+ CovW−1

t

(
E

[
Rt

∣∣∣W−1
t

])

= υ

υ − 2
� + 2υ2β2

(υ − 2)2 (υ − 4)
γ γ ′.

(For details refer to Appendix B).
We assume that all stock returns are skewed to the same extent which in turn is

achieved by setting γ = β1p. Further, it is also of interest to have the DGP centered
at the zero vector and this is achieved by λ = βυ/(υ − 2)1p, hence the DGP II is
specified as Rt ∼ Skewed tp

(
υ,λ = βυ/(υ − 2)1p,�, γ = β1p

)
, with moment

E [Rt ] = 0,

and

Cov (Rt ) = υ

υ − 2
� + 2υ2β2

(υ − 2)2 (υ − 4)
11′.

Following the procedure of Holgersson and Mansoor (2013), DGP III is specified
as follows: Let Z0 ∼ χ2

(1), Q j ∼ χ2
(1),Uj ∼ χ2

(1) , j = 1, . . . , p, where all variables
are mutually and individually independent. Then, each variable Rit in Rt is equal to
Rit = Z0t + Q jt + Ujt , and hence, each variable in Rt has a χ2

(3) distribution and

covariance structure: Cov(Rt ) =

⎡

⎢⎢⎢
⎢
⎣

6 2 · · · 2
2

. . .
. . .

...
...

. . .
. . . 2

2 · · · 2 6

⎤

⎥⎥⎥
⎥
⎦
. The specifications of DGP I, II and

III are summarized in Tables 1 and 2.
Finally, as performance measures we take the five risk functions (�0 − �4), and

for each estimator
(
ŵII, ŵIII, ŵIV

)
we divide its risk by the corresponding risk for

ŵI to get their relative performance. Furthermore, for �4 we choose three different
conditioned returns, specified in Table 3.

5.1 Results fromMonte Carlo simulations

Based on the results from the Monte Carlo experiments displayed in Tables 4, 5, 6
and 7, the estimator ŵIV performs well if c is larger than 0.1 for both DGP I with
covariance structure from real data and for DGP II. But for DGP I with a Toeplitz
covariance structure, ŵIV performs well only for c close to one. On the other hand,
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Table 1 Specification of the distribution of the stochastic terms in DGP I, II III

Parameter Specification of DGP I

� i. � p×p = n−1
n∑

t=1

(
Rt − R̄

)(
Rt − R̄

)′
, R̄ = n−1

n∑

t=1
Rt , where Rt is a

vector of observed returns on p stocks

ii. � p×p = Toeplitz
(
φ0, φ1, . . . , φ p−1

)
, φ = 0.5

μ 0p×1

Parameter Specification of DGP II

Ω Ω p×p = Toeplitz
(
φ0, φ1, . . . , φ p−1

)
, ϕ = 0.5

ν 5

γ γ = β1p, β = 1

λ λ = βυ/(υ − 2)1p
μ 0p×1

� � = υ
υ−2� + 2υ2β2

(υ−2)2(υ−4)
1p1p ′

Parameter Specification of DGP III

d f 1

� � p×p = Toeplitz (6, 2, . . . , 2),

μ 3 · 1p×1

Table 2 Design of the Monte
Carlo experiments used for DGP
I, II III

Factor Symbol Design

p/n ratio (dimension in relation to
sample size)

c 0.1, 0.5, 0.98

Dimension of portfolio (number of
assets)

p 100

Number of time observations n Follows from p and

c above

Table 3 Specifications of the
conditioned observation Rt used
in �4

Risk Conditioned on observation Rt

�4
(
ŵ j |Rt

)
single random draw from specified
DGP and Rt is kept fixed over all
replicates

�4
(
ŵ j |Rt + l

)
vector l has ones in its p/2 upper
rows and zeros elsewhere

�4
(
ŵ j |2Rt

)
multiplying Rt with 2 when Rt is
generated as specified above
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Table 4 MC simulation results for DGP I with � according to Table 1 (i), (p = 100)

Estimator (1) (2) (3) (4) (5) (6) (7)
�0 �1 �2 �3 �4 �4 (Rt + 1) �4 (2Rt )

c = 0.98

ŵII 0.9975 0.9996 0.9007 0.9022 0.9020 0.9049 0.9043

ŵIII 0.8660 0.9714 0.1441 0.1971 0.1514 0.1411 0.1459

ŵIV 7.43E−09 2.38E−09 0.0132 0.0270 0.0291 0.0112 0.0115

c = 0.5

ŵII 0.8245 0.8744 0.8975 0.9599 0.8980 0.8934 0.8953

ŵIII 0.6699 0.7599 0.8108 0.9484 0.8096 0.7949 0.8023

ŵIV 0.6208 0.2027 1.1517 0.9054 1.5729 0.6837 0.4599

c = 0.1

ŵII 0.8866 0.9563 0.9786 0.9988 0.9788 0.9769 0.9774

ŵIII 0.8710 0.9501 0.9757 0.9988 0.9759 0.9735 0.9742

ŵIV 1 1 1 1 1 1 1

Columns (1)–(5) show risk�i (ŵ j ) of estimator ŵ j relative to�i (ŵI ),where i ∈ {0, 1, 2, 3, 4}, columns (6)
and (7) show �4

(
ŵ j | Rt + l

)
relative to �4

(
ŵI | Rt + l

)
and �4

(
ŵ j | 2Rt

)
relative to �4

(
ŵI | 2Rt

)
,

respectively ŵII: Frahm and Memmel (2010), ŵIII: Bodnar et al. (2018), ŵIV: resolvent-type estimator

estimator ŵIII performs best among the four estimators. This holds for all investigated
values of c. Furthermore, ŵII is a good estimator if c is not close to one, and its
performance is close to ŵIII. However, as c gets close to one, ŵII is outperformed both
by ŵIII and ŵIV.

If we examine the estimators performance under �4 (Rt + l) and�4 (2Rt ), both of
which could reflect a shock in the financial market, the result for the estimators remains
in the same internal ordering as indicated by �3. Thus, with regard to the discussed
results, the recommendation is that one should primarily consider ŵIII because it
performs well regardless of the value on c, unless c is very close to one, in which
case ŵIV is dominating. It should, however, be stressed that the above performance
rankings are made only on basis of point estimations. While more general inferences
such as interval estimation lies outside the scope of this paper, it should be mentioned
that the estimators’ performances in terms of, for example, coverage rates need not
correspond to their point estimation efficiency.

6 Empirical study

The empirical evaluation of the investigated estimators of the weights in the GMVP
is achieved through a moving window approach on two different data sets for which
we use different sampling methods. In the first method (fixed sampling method), we
simply apply the estimators on all available assets, and in the second approach (random
sampling method), we repeatedly randomly pick a given number of assets and then
evaluate the estimators performance by the one-period out-of-sample returns. The
reason for applying a moving window is that the mean-variance portfolio theory was
developed as a one-period model.
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Table 5 MC simulation results for DGP I with � according to Table 1 (ii), (p = 100)

Estimator (1) (2) (3) (4) (5) (6) (7)
�0 �1 �2 �3 �4 �4 (Rt + 1) �4 (2Rt )

c = 0.98

ŵII 0.9735 0.9987 0.4616 0.4666 0.4771 0.4354 0.4630

ŵIII 0.7139 0.9338 0.0147 0.0245 0.0156 0.0140 0.0131

ŵIV 9.05E−07 9.57E−07 0.0365 0.0485 0.0427 0.0401 0.0391

c = 0.5

ŵII 0.1745 0.0599 0.0276 0.5150 0.0243 0.0247 0.0316

ŵIII 0.2419 0.0538 0.0137 0.5083 0.0100 0.0101 0.0176

ŵIV 0.1520 0.2821 0.4407 0.7514 0.5315 0.5182 0.4667

c = 0.1

ŵII 6.7586 1.1462 0.0490 0.9075 0.0213 0.0230 0.0756

ŵIII 7.9439 1.3396 0.0508 0.9079 0.0198 0.0209 0.0820

ŵIV 0.7016 0.8513 0.8792 0.9905 0.9160 0.9100 0.8903

See Table 4

Table 6 MC simulation results for DGP II with � according to Table 1, (p = 100)

Estimator (1) (2) (3) (4) (5) (6) (7)
�0 �1 �2 �3 �4 �4 (Rt + 1) �4 (2Rt )

c = 0.98

ŵII 0.9987 0.9996 0.7997 0.7998 0.7962 0.7964 0.7963

ŵIII 0.9358 0.9658 0.0782 0.0790 0.0801 0.0802 0.0801

ŵIV 1.21E−07 5.90E−07 0.0425 0.0459 0.0488 0.0501 0.0488

c = 0.5

ŵII 0.5633 0.8330 0.6544 0.6612 0.6572 0.6575 0.6572

ŵIII 0.3755 0.7484 0.4679 0.4784 0.4726 0.4730 0.4726

ŵIV 0.1681 0.7059 0.5581 0.6349 0.6559 0.6685 0.6559

c = 0.1

ŵII 1.3380 0.9903 0.7809 0.7893 0.7800 0.7819 0.7801

ŵIII 1.3953 0.9891 0.7554 0.7648 0.7544 0.7565 0.7544

ŵIV 1.0721 0.9980 0.9255 0.9498 0.9566 0.9606 0.9566

See Table 4

6.1 Fixed sample

The evaluation procedure in the fixed sampling method is as follows: For each stock
listed on the stock exchange, we take n observations starting at time point t − n
and ending at time point t . We then calculate monthly returns, and based on these
observations, each estimator presented in this paper is used to estimate the weights of
the global minimum-variance portfolio. For each estimator, the return on the GMVP
is calculated for the first out-of-sample observation, i.e., the observation at time period
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Table 7 MC simulation results for DGP III with � according to Table 1, (p = 100)

Estimator (1) (2) (3) (4) (5) (6) (7)
�0 �1 �2 �3 �4 �4 (Rt + 1) �4 (2Rt )

c = 0.98

ŵII 0.9992 0.9999 0.4334 0.4390 0.4179 0.4168 0.4179

ŵIII 0.9672 0.9946 0.019 0.0288 0.0168 0.0121 0.0168

ŵIV 2.66E−08 1.97E−08 0.00358 0.0454 0.036 0.0358 0.0360

c = 0.5

ŵII 0.1263 0.0371 0.0242 0.5042 0.0242 0.024 0.0242

ŵIII 0.1745 0.0163 0.0106 0.4972 0.0105 0.0104 0.0105

ŵIV 0.3083 0.4337 0.5783 0.7857 0.5763 0.5766 0.5763

c = 0.1

ŵII 4.9783 0.1493 0.0124 0.9014 0.0122 0.012 0.0122

ŵIII 6.1863 0.1803 0.0191 0.9902 0.0192 0.019 0.0192

ŵIV 1 1 1 1 1 1 1

See Table 4

t +1 for each stock. We repeat this procedure, but the starting point is moved one step
forward in time (starting at time point t − n + 1 and ending at time point t + 1). The
procedure is repeated until 10 sample returns are generated. Thus, for each estimated
portfolio weight vector, the one-period out-of-sample portfolio return is calculated as:

Rt+1, j = ŵ′
jRt+1, j = I , . . . , V ,

where Rt+1 is a p × 1 vector of stock excess returns observed in time period t + 1,
ŵ j is a p × 1 vector of estimated weights for the GMVP and ŵV corresponds to an
equally weighted portfolio.

The evaluation of each estimator of the GMVP weights is based on the portfolio
risk measured by the standard deviations of the portfolio returns:

σ̂portfolio, j=
√

1

10

∑10

t=1

(
Rt, j − R̄ j

)2
, where R̄ j= 1

10

∑10

t=1
Rt, j , j=I , . . . , V .

(7)

In addition, we also calculate the out-of-sample Sharpe ratio

ˆSR j = R̄ j

σ̂portfolio, j
, j = I , . . . , V . (8)

Example 1 Stocks listed on the Nasdaq stock exchange

For this empirical application, 89 stocks with complete past values are selected from
SP100 over the period 1997-04 to 2010-07 (159 monthly returns). Note that gross
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Fig. 1 Smoothing coefficients for estimators ŵII, ŵIII applied to data from Nasdaq and Stockholm OMX
stock exchange

returns are used, i.e., the risk-free return is not subtracted. Amoving window approach
is employed with a length of 149 months, giving 10 out-of-sample returns.

Example 2 Stocks listed on the Stockholm stock exchange

In this empirical application, 112 stocks are selected out of 283 stocks listed on the
Stockholm OMX stock exchange over the period 1997-01 to 2010-06 (161 monthly
returns). The same procedure as described above is used with a moving window length
of 151 months.

The results of the empirical applications (Table 8) confirm what was already estab-
lished in the Monte Carlo simulations of Sect. 5. That is, in the empirical application
using data from the Nasdaq stock exchange in which c is around 0.6, the performances
of σ̂portfolio, j for ŵI, ŵII, ŵIII and ŵIV are relatively close to each other. However, for
the Stockholm stock exchange in which c is around 0.74, we find that both ŵIII and
ŵIV yield portfolios with much lower σ̂portfolio, j compared to ŵI and ŵII. In both
settings, ŵI is outperformed by all other estimators. On the other hand, if we shift
measure from out-of-sample standard deviation to the out-of-sample Sharpe ratio,
the performance is somewhat reversed in that ŵII performs better than ŵIV and the
equally weighted portfolio, ŵV, is then outperforming all investigated estimators. To
get a better understanding of the relative behavior of the two Stein-type estimators,
i.e., ŵII and ŵIII, their smoothing coefficients are displayed in Fig. 1. The values of
the smoothing coefficients are approximately the same, but the estimator ŵII tends to
weight heavier toward the traditional estimator (ŵI), while the estimator ŵIII puts less
weight on the traditional estimator.

6.2 Random samples

The evaluation procedure in the random sampling method is similar to the fixed
sampling method, with the difference that we are now randomly selecting without
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Table 8 Performance of GMVP
estimators applied to portfolios
from Nasdaq and Stockholm
OMX stock exchange, fixed
sampling method

ŵI ŵII ŵIII ŵIV ŵV

Nasdaq (c = 0.597)

σ̂ j 0.0589 0.0560 0.0540 0.0443 0.0540

R̄ j 0.0006 0.0021 0.0035 1.3E-05 0.0064

ˆSR j 0.0098 0.0374 0.0640 0.0003 0.1189

Stockholm OMX (c = 0.742)

σ̂ j 0.0774 0.0636 0.0447 0.0479 0.0456

R̄ j 0.0079 0.0112 0.0165 0.0085 0.0251

ˆSR j 0.1019 0.1757 0.3695 0.1773 0.5503

ŵI: standard estimator, ŵII: Frahm and Memmel (2010), ŵIII: Bodnar
et al. (2018), ŵIV: resolvent-type estimator, ŵV: equally weighted.
For definitions, see Eqs. (7) and (8). Nasdaq stock exchange: p = 89,
n = 149; Stockholm OMX stock exchange: p = 112, n = 151

replacement p = 20, 50, 80 stocks and apply the moving window approach. This pro-
cedure is then repeated 100 times which results in 100 time-series of 10 one-period
out-of-sample returns of the GMVP for each estimator. Note that c is kept constant
when shifting from the different portfolio sizes by adjusting n. Based on Eqs. (7) and
(8), we calculate the average out-of-sample variance, average out-of-sample mean
return and the average out-of-sample Sharpe ratio of the 100 replications:

Mean
(
σ̂portfolio, j

) = 1

100

100∑

i=1

σ̂portfolio,i, j , j = I, . . . ,V,

Mean
(
R̄ j

) = 1

100

100∑

i=1

σ̂portfolio,i, j , j = I, . . . ,V.

In addition to the above we also calculate the mean out-of-sample Sharpe ratio as

Mean

( ∧
SRportfolio, j

)
= 1

100

100∑

i=1

R̄i, j

σ̂portfolio,i, j
, j = I, . . . ,V.

Example 3 Stocks listed on theNasdaq stock exchange (randomsamplingmethod)
For this empirical application p = 20, 50, 80 stock are randomly selected out of 89
stocks with complete past values from SP100 over the period 1997-04 to 2010-07
(159 monthly returns). A moving window approach is employed with c = 0.537
(n = 159, 103, 47), giving 10 out-of-sample returns. This procedure is repeated 100
times.

Example 4 Stocks listed on the Stockholm stock exchange (random sampling method)

In this empirical application p = 20, 50, 80 stocks are randomly selected out of 112
stocks used in Example 2. The same procedure as described before is used where
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Table 9 Performance of GMVP estimators applied to portfolios from Nasdaq stock exchange, random
sampling method

ŵI ŵII ŵIII ŵIV ŵV

Nasdaq (p = 80,c = 0.537)

Mean(σ̂portfolio, j ) 0.0535 0.0519 0.0511 0.0432 0.0540

Mean(R̄ j ) 0.0007 0.0021 0.0032 0.0010 0.0064

Mean(
∧
SRportfolio, j ) 0.0138 0.0411 0.0629 0.0229 0.1192

Nasdaq (p = 50, c = 0.537)

Mean(σ̂portfolio, j ) 0.0535 0.0517 0.0508 0.0434 0.0540

Mean(R̄ j ) −0.0012 0.0001 0.0014 0.0023 0.0066

Mean(
∧
SRportfolio, j ) −0.0219 0.0028 0.0278 0.0540 0.1213

Nasdaq (p = 20, c = 0.537)

Mean(σ̂portfolio, j ) 0.0496 0.0469 0.0462 0.0409 0.0557

Mean(R̄ j ) 0.0035 0.0039 0.0045 0.0041 0.0068

Mean(
∧
SRportfolio, j ) 0.0701 0.0837 0.0980 0.0996 0.1225

ŵI: standard estimator, ŵII: Frahm and Memmel (2010), ŵIII: Bodnar et al. (2018),ŵIV: resolvent-type
estimator, ŵV: equally weighted. For definitions, see Eqs. (7) and (8)

a moving window is employed with c = 0.53 (n = 161, 104, 48). The results of
the empirical applications based on random sampling method (Tables 9 and 10) also
confirm what was established in the empirical applications based on fixed sampling
method. Namely, using data from the Nasdaq stock exchange in which c is around 0.5,
the performances of σ̂portfolio, j for ŵI, ŵII, ŵIII and ŵIV are relatively close to each other
but ŵII, ŵIII and ŵIV outperform ŵI and ŵV. Shifting the evaluationmeasure to the out-
of-sample Sharpe ratio yields a different picture, since now ŵV is outperforming the
other estimators while ŵI yields consistently the lowest result. But for the Stockholm
stock exchange in which c is also around 0.5, we find that ŵIII yield portfolios with
lower σ̂portfolio, j compared to ŵIV and ŵII, and all three estimators are outperforming
the regular estimator ŵI. Hence, in both settings, ŵI is outperformed by ŵII, ŵIII and
ŵIV. On the other hand, if we shift measure from out-of-sample standard deviation
to out-of-sample Sharpe ratio, the estimator ŵV is still outperforming all the other
estimators and the regular estimator ŵI yields the lowest Sharpe ratio. It is also found
that among ŵII, ŵIII and ŵIV, the performance is similar, but ŵIII has the highest
Sharpe ratio.

7 Summary

The global minimum-variance portfolio (GMVP) solution developed by Markowitz
is considered to be a fundamental concept in portfolio theory. The early researchers
investigating this matter usually applied a simple plug-in estimator for estimating the
weights and paid very little attention to the distributional property of the estimator.
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Table 10 Performance of GMVP estimators applied to portfolios from Stockholm stock exchange, random
sampling method

ŵI ŵII ŵIII ŵIV ŵV

Stockholm OMX (p = 80,c = 0.53)

Mean(σ̂portfolio, j ) 0.0502 0.0469 0.0444 0.0445 0.0460

Mean(R̄ j ) 0.0113 0.0132 0.0149 0.0125 0.0248

Mean(
∧
SRportfolio, j ) 0.2243 0.2808 0.3363 0.2798 0.5389

Stockholm OMX (p = 50, c = 0.53)

Mean(σ̂portfolio, j ) 0.0757 0.0685 0.0623 0.0684 0.0472

Mean(R̄ j ) 0.0225 0.0229 0.0232 0.0245 0.0251

Mean(
∧
SRportfolio, j ) 0.2977 0.3336 0.3722 0.3573 0.5325

Stockholm OMX (p = 20, c = 0.53)

Mean(σ̂portfolio, j ) 0.0711 0.0614 0.0533 0.0571 0.0500

Mean(R̄ j ) 0.0149 0.0168 0.0189 0.0172 0.0246

Mean(
∧
SRportfolio, j ) 0.2099 0.2743 0.3552 0.3021 0.4912

See Table 9

More recently, the full distribution of the standard estimator has been derived (Okhrin
and Schmid 2006), and it is now recognized that the standard estimator offers a poor
approximation of the true GMVP. Within a relatively short period of time, a variety
of improvements to the standard estimator have been developed. Naturally, each of
these improvements has its pros and cons, but there does not seem to be a consensus
about how to evaluate the performance, or efficiency, of GMVP estimators. Perhaps
this is because there are, in fact, several possible measures one can use for assessing
the properties of a portfolio estimator. In this paper, we discuss a number of different
risk functions for the weight estimator. These include: risk functions of covariance
matrix estimators, forecast mean square errors, directional risks and conditional risks.
The risk functions are labeled with an index determined by the degree to which they
are specialized for portfolio estimation: �2 is generally preferred over �1 which is
preferred over�0 etc. However, this ordering does notmean that�2 is uniformly better
than �1 and �0. For example, �4 does not exist in closed form for the regularized
portfolio estimator used in this paper. Hence, ŵI V has to be optimized through �0
rather than �4. In other words, one would typically use �4 or �3 as a tool for deriving
an estimator ofwGMVP, but there are settings where risk functions of lower rank-order
must be used because of their simpler functional form. A selection of recent GMVP
estimators is used in aMonte Carlo simulation for purposes of: (i) comparing different
risk measures for a given estimator and (ii) comparing different estimators for a given
risk. Moreover, a new estimator, based on a resolvent estimator, is proposed. The
analysis focuses on asset data where the number of observations (n) is comparable to
the number of assets (p). This case is important because investors might be reluctant to
use long data sets as the economy is not expected to be stable over long time periods,
and hence, investors are encountering a high-dimensional setting. The simulations are
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complemented by an analysis of two real data sets: One data set is drawn from the
Nasdaq stock exchange, and the other one employs StockholmOMXdata. The general
finding of the paper is that no estimator dominates uniformly over all risk functions.
We can, however, establish that there are dominating tendencies, in the sense that
some estimators tend to perform better with respect to most risk aspects. A Stein-type
estimator developed by Frahm and Memmel (2010) is found to perform well in cases
when n � p, whereas another Stein-type estimator proposed by Bodnar et al. (2018)
dominates when n is proportional to p. A resolvent-type estimator is found to perform
surprisingly well over a large number of settings. While this paper is restricted to
properties of point estimators, future research could involve more general inferential
aspects, such as hypotheses testing.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Appendix

From Okhrin and Schmid (2006), we have that

ŵItp
(
w,

(
σ 2�−1 − ww′)/(n − p + 1) , n − p + 1

)
,

σ 2 = w′�w = 1
1′�−11

.

Hence, E
[(
ŵI − w

) (
ŵI − w

)′] = 1
(n−p+1)

(
σ 2�−1 − ww′). Therefore,

E
[(
ŵI − w

)′
�⊥

(
ŵI − w

)] = tr
((

I − w
(

w′
w′w

))
1

(n−p+1)

(
σ 2�−1 − ww′)

)
=

σ 2

(n−p+1) tr
((

�−1 − ww′) − w
(

w′
w′w

) (
�−1 − ww′)

)
=

σ 2

(n−p+1) tr
((

I − ww′
w′w

)
�−1

)
= σ 2

(n−p+1) tr
((

I − �−111′�−1

1′�−21

)
�−1

)
=

σ 2

(n−p+1) tr
(
tr

(
�−1

) − 1′�−31
1′�−21

)
.

Also,

E
[
(w0 − w)′�⊥ (w0 − w)

] =
tr

{(
I −

(
ww′
w′w

)) (
w0w0

′ − 2w0w′ + ww′)
}

=
tr

{(
I −

(
ww′
w′w

))
w0w0

′
}

− 2tr
{(
ww′

0 − (
ww′

0
))} + tr

{(
ww′ − (

ww′))} =
p−1

(
1 − p−1

(
1′�−11

)2

1′�−21

)
.

123

http://creativecommons.org/licenses/by/4.0/


78 T. Holgersson et al.

B Appendix

Let the random vector Rt be equal to Rt = λ + W−1
t γ + W−0.5

t Xt , where Xt ∼
Np (0,�) and W−1

t ∼ InverseGamma (ν/2, ν/2) which is independent of Xt , and let
γ = β1p . Then, the moment of this distribution is given by

E [Rt ] = EW−1
t

[
E

[
Rt

∣∣∣W−1
t

]]
= λ + EW−1

t

[
W−1

t

]

γ = λ + υ

υ − 2
γ = λ + υβ

υ − 2
1p, (B.1)

and

Cov [Rt ] = EW−1
t

[
Cov

(
Rt

∣∣∣W−1
t

)]
+ CovW−1

t

(
E

[
Rt

∣∣∣W−1
t

])
. (B.2)

The first part of the r.h.s in (B.1) is equal to

EW−1
t

[
Cov

(
Rt

∣∣∣W−1
t

)]
= EW−1

t

[
Cov

(
λ + W−1

t γ + W−0.5
t Xt

∣∣∣W−1
t

)]
=

EW−1
t

[(
W−0.5

t

)2
Cov

(
Xt

∣∣∣W−1
t

)]
=

EW−1
t

[
W−1

t

]
� = ν/2

ν/2 − 1
� = ν

ν − 2
�. (B.3)

The second part of the r.h.s in (B.2) is equal to

CovW−1
t

(
E

[
Rt

∣∣∣W−1
t

])
= CovW−1

t

(
E

[
λ + W−1

t γ + W−0.5
t Xt

∣∣∣W−1
t

])

= CovW−1
t

(
λ + W−1

t γ + W−0.5
t E

[
Xt

∣∣∣W−1
t

])
= CovW−1

t

(
λ + W−1

t γ + 0
)

= CovW−1
t

(
W−1

t γ
)

= γCovW−1
t

(
W−1

t

)
γ ′

= γ
(ν/2)2

(ν/2 − 1)2 (ν/2 − 2)
γ ′ = 2υ2β2

(υ − 2)2 (υ − 4)
11′. (B.4)

Then, by substituting in equations (B.3) and (B.4) into (B.2) we have (B.5)

Cov [Rt ] = EW−1
t

[
Cov

(
Rt

∣∣∣W−1
t

)]
+ CovW−1

t

(
E

[
Rt

∣∣∣W−1
t

])

= υ

υ − 2
� + 2υ2β2

(υ − 2)2 (υ − 4)
11′. (B.5)
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