
Knowledge and Information Systems (2020) 62:2613–2651
https://doi.org/10.1007/s10115-019-01432-4

REGULAR PAPER

Location histogram privacy by Sensitive Location Hiding and
Target Histogram Avoidance/Resemblance

Grigorios Loukides1 · George Theodorakopoulos2

Received: 15 August 2018 / Revised: 4 December 2019 / Accepted: 8 December 2019 /
Published online: 31 December 2019
© The Author(s) 2019

Abstract
A location histogram is comprised of the number of times a user has visited locations as they
move in an area of interest, and it is often obtained from the user in the context of applications
such as recommendation and advertising. However, a location histogram that leaves a user’s
computer or devicemay threaten privacy when it contains visits to locations that the user does
not want to disclose (sensitive locations), or when it can be used to profile the user in a way
that leads to price discrimination and unsolicited advertising (e.g., as “wealthy” or “minority
member”).Ourwork introduces twoprivacynotions to protect a location histogram from these
threats: Sensitive Location Hiding, which aims at concealing all visits to sensitive locations,
and Target Avoidance/Resemblance, which aims at concealing the similarity/dissimilarity of
the user’s histogram to a target histogram that corresponds to an undesired/desired profile.
We formulate an optimization problem around each notion: Sensitive LocationHiding (SLH),
which seeks to construct a histogram that is as similar as possible to the user’s histogram but
associates all visits with nonsensitive locations, and Target Avoidance/Resemblance (TA/TR),
which seeks to construct a histogram that is as dissimilar/similar as possible to a given target
histogram but remains useful for getting a good response from the application that analyzes
the histogram.We develop an optimal algorithm for each notion, which operates on a notion-
specific search space graph and finds a shortest or longest path in the graph that corresponds to
a solution histogram. In addition, we develop a greedy heuristic for the TA/TR problem,which
operates directly on a user’s histogram. Our experiments demonstrate that all algorithms are
effective at preserving the distribution of locations in a histogram and the quality of location
recommendation. They also demonstrate that the heuristic produces near-optimal solutions
while being orders of magnitude faster than the optimal algorithm for TA/TR.

Keywords Location privacy · Histogram privacy · Location-based services · Dynamic
programming

B George Theodorakopoulos
TheodorakopoulosG@cardiff.ac.uk

Grigorios Loukides
grigorios.loukides@kcl.ac.uk

1 Department of Informatics, King’s College London, London, UK

2 School of Computer Science and Informatics, Cardiff University, Cardiff, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-019-01432-4&domain=pdf
http://orcid.org/0000-0003-2701-7809

2614 G. Loukides, G. Theodorakopoulos

1 Introduction

A location histogram is a statistical summary of a user’s whereabouts, comprised of the
number of times a user has visited each location in an area of interest. Location histograms
are often obtained from users, in the context of applications including recommendation
[28,29,65], advertising [14,21], and location pattern discovery [64]. For example, a recom-
mender application typically employs a set of location histograms each corresponding to
a different user (i.e., a user-location matrix) as a training set, and it aims at recommending
locations that a user may be interested in visiting based on the user’s histogram [65]. Location
histograms are also often visualized or analyzed directly [68].

However, a location histogram that leaves a user’s computer or device may pose a threat to
the user’s privacy. This happens when the histogram contains visits to sensitive locations that
the user does not want to disclose, because they are associated with confidential information
(e.g., a temple is associated with a religion, and the headquarters of a political organization
with certain political beliefs), or when the histogram can be used to profile the user (e.g.,
as “wealthy” or “minority member”) leading to price discrimination [37,38] and unsolicited
advertising [5]. For example, if the histogram reveals that a user frequently visits expen-
sive restaurants, a targeted-advertisement application may display to the user advertisements
about products and services that are priced higher than normal [37,38].

In this work, we introduce two novel notions of histogram privacy, Sensitive Location
Hiding and Target Avoidance/Resemblance, for protecting against the disclosure of sensitive
locations and user profiling, respectively. Sensitive Location Hiding aims at concealing all
visits to user-specified sensitive locations, by producing a sanitized histogram, in which the
frequencies associated with the sensitive locations are equal to zero. This protects a user from
an adversary who receives the sanitized histogram, knows the set of locations considered to
be sensitive, and tries to infer which of these sensitive locations were visited by the user. By
enforcing the notion of Sensitive Location Hiding, users are able to disseminate their location
histogram in order to benefit from location-based services, such as location recommendation,
while being protected from the inference of their sensitive locations and the aforementioned
consequences such inference may have.

TargetAvoidance aims at concealing the fact that the user’s histogram is similar to an unde-
sirable histogram that, if disseminated, would lead to undesired user profiling. For example,
a user may wish to make their histogram dissimilar to a target histogram of a typical wealthy
person, containing frequent visits to expensive restaurants, to avoid price discrimination [37].
As another example, a user’s location histogram may allow the inference of the user’s politi-
cal affiliation, religious beliefs, and sexual orientation, which may lead to emotional distress,
harassment, or even persecution. Thus, a user would wish to avoid disseminating a histogram
that is similar to histograms that can lead to such undesirable inferences. This protects from
adversaries who use the sanitized histogram and the target histogram of a person with an
undesirable profile, to infer that the user’s histogram resembles the latter histogram.

Target Resemblance is a variant of Target Avoidance, in which the user expressly wishes
to make their histogram similar to the target histogram representing a desirable profile.
For example, the desirable target histogram for a tourist could be that of a local resident
in order to avoid discriminatory practices toward tourists (e.g., price discrimination). As
another example, consider a company that engages in secret discriminatory hiring practices
by preferentially hiring members of a particular demographic group. There are cases where
companies have been shown to discriminate based on sexual orientation when hiring [57].
In these cases, a person who wishes to be hired will want to make their histogram resemble

123

Location histogram privacy by Sensitive Location Hiding… 2615

that of an heterosexual person, so as to avoid discriminatory treatment. The target histogram
may be specified by the users themselves, or selected with the help of domain experts (see
Sect. 3.3). Enforcing Target Resemblance protects from adversaries who use the sanitized
histogram and the target histogram of a person with a desirable profile, to infer that the user’s
histogram does not resemble the latter histogram.

Comparing Target Avoidance and Target Resemblance, we see that in both cases the adver-
sary aims to infer whether or not the sanitized histogram resembles a given target histogram.
The difference is that, in Target Avoidance, the user wants the adversary to conclude that
there is no resemblance, whereas in Target Resemblance the user wants the opposite.

Our privacy notions can be achieved by histogram sanitization, i.e., by changing the fre-
quencies of location visits in the histogram. However, sanitization incurs a quality (utility)
loss,whichmust be controlled to ensure that the user obtains a good response from the applica-
tionwhich uses their sanitized histogram.To achieve this balance between privacy and quality,
we define an optimization problem around each privacy notion: the Sensitive LocationHiding
(SLH) problem, which seeks to construct a sanitized histogram with minimum quality loss,
and the Target Avoidance/Resemblance (TA/TR) problem, which seeks to avoid/resemble the
target to a level at least equal to a user-provided privacy parameter, while ensuring that the
quality loss does not exceed a user-provided quality parameter. If it is impossible to satisfy
both the privacy and the quality requirements, then the problem has no solution.

Neither notion can be achieved by existing methods for histogram sanitization. The aim
of existing methods is to either (I) prevent the inference of the exact frequencies of the his-
togram (i.e., the number of visits to one or more locations) [2,16,23,26,45,61,68], or (II)
make a user’s histogram indistinguishable from a set of histograms belonging to other users
[18,20,60]. Their aim is neither to hide sensitive locations, nor to avoid/resemble a target
histogram. The privacy notions we introduce in the paper are important to achieve in real
applications, as we discuss in Examples 2.1 and 2.2 in Sect. 2.

Therefore, we develop new methods for achieving the SLH and the TA/TR notions: (I)
an optimal algorithm for SLH, called LHO (Location Hiding Optimal), (II) an optimal algo-
rithm for TR, called RO (Resemblance Optimal), and (III) a greedy heuristic for TR, called
RH (Resemblance Heuristic). Because TA and TR are similar, we focus on TR and discuss
TA briefly.

Our methods are both effective and efficient, as demonstrated by experiments using two
real datasets derived from the Foursquare location-based social network [62], which together
contain approximately 3400 histograms. In terms of effectiveness, all algorithms achieve
the corresponding notions, or announce that it is impossible to achieve them, and they are
additionally able to preserve: (I) the distribution of locations in a histogram, which is useful
in applications such as aggregate query answering and classification [32,68], and (II) the
quality of location recommendation based on collaborative filtering [35]. In addition, the
heuristic produces near-optimal solutions (up to 1.5% worse than the optimal), with respect
to preserving distribution similarity. In terms of efficiency, all algorithms scale well with the
histogram parameters, requiring from less than 1 second (the LHO algorithm) to 5 minutes
(the RO algorithm). In addition, the RH heuristic is more efficient than the optimal algorithm
by at least two orders of magnitude.

We note that our notions are framed in the context of location histograms but can be
applied to any histogram. For example, they could be applied to a histogram comprised of
webpage visits. The resultant sanitized histogram would then conceal visits to webpages that
a user does not want to disclose, or it would resemble/avoid a target histogram for protecting
the user from targeted advertising based on their webpage visits.

123

2616 G. Loukides, G. Theodorakopoulos

Organization We provide an overview of and motivation for our approach in Sect. 2; we
introduce formal notation, and we formalize the privacy notions, the adversary models, and
the optimization problems we solve in Sect. 3; we describe our algorithms and our heuristics
in Sect. 4; we evaluate our approach in Sect. 5; we discuss related work in Sect. 6; and we
conclude the paper in Sect. 7.

2 Overview andmotivation of our approach

This section provides examples to motivate the need for Sensitive Location Hiding and Tar-
get Resemblance and also provides a high-level overview of the optimization problems and
methods for solving them.

2.1 Sensitive Location Hiding

Given a set of sensitive locations, a histogram satisfies the notion of Sensitive LocationHiding
when the frequency of each of its sensitive locations is zero. Clearly, one simple strategy to
achieve this notion is by setting the frequency of each sensitive location of a given histogram
to zero. However, this strategy may have a substantial negative impact on the quality (utility)
of the histogram in location histogram applications. This is because it reduces the size (sum
of frequencies) of the histogram. A size reduction should be avoided because some important
statistics depend on the size of the histogram. An example of such statistics is the fraction of
all users’ visits to a particular location in a city (i.e., the ratio between the sumof the frequency
of the location over all users’ histograms and the sum of the sizes of these histograms), which
is a simple indicator of the popularity of the location. Another example is the average number
of visits to a location (i.e., the ratio between the size of the user’s histogram and the number
of locations in the histogram), which is used in location recommendation [7,35].

A different strategy that achieves the Sensitive Location Hiding notion, while preserving
the size of the histogram, is to redistribute the frequency counts of the sensitive locations
to nonsensitive ones. However, the redistribution needs to be performed in a way that pre-
serves the quality (utility) of the histogram in location histogram applications. The impact
of each possible redistribution on quality must be quantified, and the selected redistribution
strategy must be the one with the lower impact. We quantify the impact of a redistribution
strategy with a quality distance function, similarly to most works on histogram sanitization
[2,26,61,68]. This function offers generality, because different functions can be chosen for
different applications.

The above discussion motivates the formulation of the Sensitive Location Hiding (SLH)
optimization problem: given a histogram H , a set of sensitive locations, and a quality distance
function, produce a sanitized histogram H ′ such that the frequency of each sensitive location
in H ′ is 0, H ′ is as similar as possible to H , and H ′ has the same size as H . Similarity is
measured with the quality distance function.

In Sect. 3.2, we give a formal definition of the SLH optimization problem, discuss the
adversary model it provides protection against, and show that the problem is weaklyNP-hard
[41]. In addition, we discuss a variation of the problem which relaxes the size requirement
and can be easily dealt with by our algorithms.

To illustrate the SLH notion and the SLH problem, we now provide Example 2.1, which
is inspired from approaches on privacy-preserving recommendation [48,58]. However, the
SLH notion and problem are not tied to recommendation and cannot be handled with existing
approaches.

123

Location histogram privacy by Sensitive Location Hiding… 2617

0

5

10

15

20

a b c d e f g h

locations

fr
eq

ue
nc

y
(c

ou
nt

)

(a) H

0

5

10

15

20

a b c d e f

locations

(b) H by LHO

0

5

10

15

20

a b c d e f g h

locations

(c) H in TR

0

5

10

15

20

a b c d e f g h

locations

(d) HRO by RO

0

5

10

15

20

a b c d e f g h

locations

(e) HRH by RH

Fig. 1 a Location histogram. b Sanitized histogram produced by the LHO algorithm when g and h are
sensitive locations and the quality distance function is Jensen–Shannon divergence [30] (only positive counts
are illustrated). cTarget histogramused in theTR problem.dSanitized histogramproduced by theRO algorithm
when applied with the target histogram in c. e Sanitized histogram produced by the RH heuristic when applied
with the target histogram in (c)

Example 2.1 (Illustration of the SLH notion and SLH problem) An application provides loca-
tion recommendations to users by analyzing their location profiles. To obtain a recommended
location, a user must send 50 location visits to the application in the form of a location his-
togram. To compute the recommended location, the application uses common mining tasks,
such as discovering frequent location patterns in the user’s histogram and finding similar
histograms to it [67]. The location histogram H of a user Alice is shown in Fig. 1a. The
histogram contains the number of times Alice visited each of the locations a to h. Alice is
not willing to provide H to the application, because the last two locations in H , g and h, are
sensitive, but she still wishes to receive a “good” recommended location by the application.
Therefore, Alice solves the SLH problem and obtains the sanitized histogram H ′ shown in
Fig. 1b. The sanitized histogram preserves privacy, because it does not contain the sensi-
tive locations. It can be sent to the application to receive a fairly accurate recommendation,
because it contains 50 visits to nonsensitive locations (the visits to sensitive locations are zero
and not shown) and is as “similar” as possible to H , to the extent permitted by the privacy
requirement. ��

Tooptimally solve theSLH problem, theLHO algorithmfinds the exact number of sensitive
location visits that need to be redistributed into each nonsensitive bin (bin corresponding to
a nonsensitive location), so that all sensitive location visits are redistributed and quality is
optimally preserved, with respect to the quality distance function. That is, the algorithm
determines the frequency of each nonsensitive location of the sanitized histogram H ′, so
that H ′ has the same size with the given histogram H and is as similar as possible to it,
with respect to the quality distance function. However, it is computationally prohibitive to
directly compute the quality of each possible redistribution of the sensitive location visits
into the nonsensitive bins and then select the optimal solution. This follows from the fact that

there are O
((K+m−1

m−1

))
ways to redistribute K sensitive location visits into m nonsensitive

bins (each way corresponds to a weak composition of K [6]). Therefore, LHO solves the
problem by modeling it as a shortest path problem between two specific nodes, s and t , of a
directed acyclic graph (DAG) (see Fig. 2). The node s is labeled (0, 0), and each other node
is labeled (i, j), where i ∈ [1,m] corresponds to a nonsensitive location Li and j ∈ [0, K]
corresponds to the number of sensitive location visits that will be redistributed into the
nonsensitive bins 1, . . . , i of the sanitized histogram H ′. For example, the label (m, K) of
the node t denotes the redistribution of all K sensitive location visits to all m nonsensitive
bins of H ′. We may refer to a node using its label. The graph contains an edge from each

123

2618 G. Loukides, G. Theodorakopoulos

Fig. 2 Graph constructed by the Location Hiding Optimal (LHO) algorithm. The shortest path from s to t
corresponds to the optimal solution of the SLH problem. Each node (i, j), i ∈ [1,m], j ∈ [0, K], in the path
denotes the redistribution of j sensitive location visits into the nonsensitive bins 1, . . . , i . The path corresponds
to the optimal way of redistributing all K sensitive location visits into all m nonsensitive bins. The weight of
the edge ((i, j), (i + 1, j + k)) denotes the impact on quality caused by redistributing k sensitive location
visits into the nonsensitive bin i + 1, and the sum of the edge weights of this path e1 + · · · + em quantifies the
quality distance between the optimal solution and H

node (i, j) to each node (i + 1, j + k) with k ∈ [0, K − j], where k denotes the number of
sensitive location visits that are redistributed into the nonsensitive bin i + 1. For example,
the edge ((i, j), (i + 1, j + k)) = ((1, 1), (2, 1)) denotes that k = 0 visits are redistributed
into the nonsensitive bin i + 1 = 2. Each edge ((i, j), (i + 1, j + k)) has a weight that
quantifies the impact on quality caused by the redistribution of k sensitive location visits into
the nonsensitive bin i + 1. Every path from s to t corresponds to a feasible solution of the
SLH problem. This is because the nodes in the path uniquely determine how all K sensitive
location visits will be redistributed into all m nonsensitive bins of H ′ (see property (I) in
Sect. 4.1). In addition, the length (sum of edge weights) of the path is equal to the quality
distance between the corresponding solution H ′ and H (see property (II) in Sect. 4.1). Thus,
the shortest path from s to t corresponds to a histogram H ′ that is as similar as possible to
H , and therefore, it is the optimal solution of the SLH optimization problem. For example,
applying the LHO algorithm to the histogram of Fig. 1a, when the locations g and h are
sensitive and the quality distance function is Jensen–Shannon divergence (see Sect. 3.1.1),
produces the sanitized histogram in Fig. 1b. Note that the visits to g and h are redistributed
into all nonsensitive bins, so that the sanitized histogram is as similar as possible to the
histogram of Fig. 1a. A formal description of the LHO algorithm, as well as the analysis of
the algorithm is provided in Sect. 4.1.

2.2 Target Resemblance

Given a target histogram, a histogram satisfies the notion of Target Resemblance when it is
similar enough to the target. A privacy distance function quantifies similarity, and a privacy
parameter quantifies the threshold for determining whether the two histograms are similar
enough.

Clearly, any histogram can be easily modified to be arbitrarily similar to a given target
histogram, by simply redistributing all its frequency counts so that they are exactly equal to

123

Location histogram privacy by Sensitive Location Hiding… 2619

the counts in the target histogram. However, as in the case of SLH, a simplistic redistribution
can deteriorate quality unacceptably. Themodification to the histogrammust balance between
resemblance to the target histogramand similarity to the original histogram.Aquality distance
function quantifies the quality loss caused by the modification, and a quality parameter
quantifies the threshold for determining whether the loss is acceptable or not.

The above discussion motivates the formulation of the Target Resemblance (TR) opti-
mization problem: given a histogram H , a target histogram H ′′, a quality distance function
and a quality parameter ε, a privacy distance function and a privacy parameter c, produce a
sanitized histogram H ′ such that its quality distance from H is at most ε, its privacy distance
from H ′′ is minimized, and its size is the same as H . If the resulting privacy distance of H ′
from H ′′ is larger than c, then there is no solution.

In Sect. 3.3, we give a formal definition of the TR problem, discuss the adversary model it
provides protection against, and we show that it is weakly NP-hard. In addition, we discuss
a variation that relaxes the size requirement and can be easily dealt with by our algorithms.
To illustrate the TR privacy notion and optimization problem, we provide Example 2.2.

Example 2.2 (Illustration of the T R notion and problem, continuing from Example 2.1)
Fig. 1a shows the location histogram H of a user, Bob, who wants to use the location
recommendation application. Bob is not willing to provide H to the application, because he
is concerned about price discrimination, as a result of frequent visits to locations f (“air-
port”) and g (“5-star hotel”). To achieve his purpose, Bob can solve the Target Resemblance
(TR) problem to generate a histogram that resembles the target histogram H ′′ in Fig. 1c.
H ′′ reflects a budget-conscious person, because in H ′′ the frequencies of locations a (“train
station”), b (“2-star hotel”), and c (“3-star hotel”) are relatively high, whereas the frequencies
of f and g are relatively low. Hence, H ′′ is likely to attract lower-priced recommendations
than H would, and it is definitely more likely to prevent price discrimination [37,38]. The
resemblance to H ′′ is satisfied by generating a sanitized histogram H ′

RO (RO for “Resem-
blance Optimal”) that minimizes a privacy distance function between the sanitized histogram
and H ′′. In parallel, Bob still wishes to receive a “good” recommended location by the appli-
cation. This quality requirement is satisfied by limiting the dissimilarity between H and the
sanitized histogram H ′

RO to a maximum of ε = 0.05, as measured by a quality distance func-
tion, so that the sanitization preserves the similarity between H and other users’ histograms,
which helps compute a “good” recommended location [35]. After solving the TR problem,
Bob obtains the sanitized histogram H ′

RO in Fig. 1d, which is almost identical to the target
H ′′. ��

To optimally solve the TR problem, the Resemblance Optimal (RO) algorithm finds the
exact number of location visits that need to be added into, or removed from, each bin of
a histogram H , so that the resultant sanitized histogram H ′ is as similar as possible to the
target histogram H ′′, and no more dissimilar from H than what is allowed by the quality

threshold ε. Again, the large number of potential solutions, given by O
((N+n−1

n−1

))
, where N

is the size of H and n is its length, prohibits directly computing the quality of each possible
solution and selecting the optimal solution. Therefore, RO solves the problem by modeling
it as a constrained shortest path problem in a DAG (see Fig. 3). The graph contains a path
(u00, u

N1
1 , . . . , uNn

n) for each allocation of N = Nn counts to the n bins of the histogram
(i.e., each allocation corresponds to a possible solution to the Target Resemblance problem,
ignoring the quality constraint), where a node uNi

i corresponds to allocating Ni counts to bins
1 up to and including i . The length of a path is equal to the dissimilarity of the corresponding
allocation to the target histogram H ′′, whereas the cost of the path is equal to the quality loss

123

2620 G. Loukides, G. Theodorakopoulos

u00

(2,0)

...

...

...

...

...

...

t

...

t

target
node

unN

L1 L2 L3 ... Ln-1 Ln
locations

p1,q1
p2,q2

longest
 path

0

N

1

N-1

c
o
u
n
t
sp

n ,q
n

pn-1 ,qn-1

start
node

Fig. 3 Graph constructed by the Resemblance Optimal (RO) algorithm. The shortest path from u00 to uNn
with cost at most ε corresponds to the optimal solution of the TR problem. The nodes of this path correspond
to the optimal way of allocating counts to all bins. The edge weights of this path are (privacy, quality loss)

pairs (p1, q1), . . . , (pn , qn). The two weights of an edge u
Ni
i to u

Ni+k
i+1 are the privacy and quality effects

of allocating exactly k counts to bin i + 1 of the solution histogram. The sum
∑

i∈[1,n] pi quantifies the
dissimilarity between the optimal solution and the target histogram (smaller is better) and the sum

∑
i∈[1,n] qi

quantifies the total quality loss, which should be at most ε

as compared to the user’s histogram H . The algorithm finds the shortest path among those
whose cost does not exceed the quality threshold ε. As the graph is a DAG, to find the optimal
solution it suffices to explore it in breadth-first search order. First, we compute constrained
shortest paths to all nodes that correspond to bin 1: uN1

1 , N1 = 0, . . . , N ; then, we extend

these paths to all nodes that correspond to bin 2: uN2
2 , N2 = 0, . . . , N and we prune them

if they violate the quality constraint; we continue all the way to uNn−1
n−1 , Nn−1 = 0, . . . , N

and finally to the node uNn
n , Nn = N . The shortest path to that final node corresponds to the

optimal valid allocation of N counts to bins 1, . . . , n.
When solution optimality is not necessary, the TR problem can be solved more efficiently

by the RH heuristic. RH differs from the RO algorithm in that it restricts the set of bins in the
histogram H whose number of location visits can increase or decrease. Specifically, it works
in a greedy fashion, iteratively “moving” frequency counts from source bins to destination
bins. The source bins have higher frequency in H than in the target histogram H ′′, whereas the
destination bins have lower frequency in H than in H ′′. Thus, moving counts from source to
destination binsmakes the sanitized histogrammore andmore similar to the target histogram,
but it incurs a quality loss due to changes in frequency counts. Therefore, to control the loss
of quality, moves are performed for as long as the quality distance of the resultant sanitized
histogram from H does not exceed the quality threshold. Example 2.3 below illustrates the
RO algorithm and the RH heuristic.

Example 2.3 (Illustration of the RO algorithm and RH heuristic, continuing from Exam-
ple 2.2) Bob applies RO to his histogram H in Fig. 1a, using the target histogram H ′′ in
Fig. 1c, the quality threshold ε = 0.05, and the Jensen–Shannon divergence to measure
dissimilarity from H ′′ and from H . The algorithm produces the sanitized histogram H ′

RO
in Fig. 1d, which is as similar to H ′′ as allowed by the specified threshold. Similarly, Bob
applies RH and obtains the sanitized histogram H ′

RH in Fig. 1e. Comparing H ′
RO and H ′

RH
to H ′′, we observe that H ′

RO is very similar to H ′′, while H ′
RH is slightly less similar (e.g.,

123

Location histogram privacy by Sensitive Location Hiding… 2621

Table 1 Acronyms and notation

Acronym Meaning

SLH Sensitive Location Hiding (input: H , L ′, dq (), output: H ′)
LHO Location Hiding Optimal (optimal algorithm for SLH)

TR Target Resemblance (input: H , H ′′, dp(), dq (), ε, output: H ′)
RO Resemblance Optimal (optimal algorithm for TR)

RH Resemblance Heuristic (heuristic for TR)

TA Target Avoidance (input: H , H ′′, dp(), dq (), ε, output: H ′)
JS Jensen–Shannon divergence (distance function used in the evaluation)

Notation Meaning

L = {L1, . . . , L |L|} Set of semantic locations that a user can visit

L ′ ⊆ L Set of sensitive locations (for SLH)

Hn,N Set of all histograms of length n, n ≤ |L|, and size N

H = (f (L1), . . . , f (Ln)) Histogram of nonnegative frequencies (counts)

of visits to locations L1, . . . , Ln ∈ L, n ≤ |L|
H ′ Sanitized histogram

H ′′ Target histogram (for TA and TR)

ε Maximum quality loss threshold (for TA and TR)

dp(H ′, H ′′) Privacy distance function (for TA and TR)

dq (H , H ′) Quality distance function (measures quality loss)

the frequencies of f and g are equal in H ′′ and H ′
RO , while they are not equal in H ′′ and

H ′
RH). However, H

′
RH is still useful for getting a good recommendation from the application,

because the quality loss (dissimilarity to H) does not exceed ε. ��

3 Background, problem definitions, and adversary models

In this section, we define some preliminary concepts, and then, we formally define the SLH,
TA, and TR optimization problems. A summary of the most important notation we introduce
is in Table 1.

3.1 Preliminaries

We consider an area of interest, modeled as a finite set of semantic locations L =
{L1, . . . , L |L|} of cardinality |L|, where a location Li , i ∈ [1, |L|], is, e.g., “Italian Restau-
rant,” “Cinema,” or “Museum.”

We also consider a user who moves in this area. The user’s histogram is a vector of integer
frequencies H = (f (L1), . . . , f (Ln)), where n ≤ |L| is the length of the histogram. Each
location Li , i ∈ [1, n], has a frequency f (Li) > 0, when Li was visited by the user, or
f (Li) = 0 otherwise. We may refer to frequencies as counts.
We use H [i] to refer to the i-th element, or bin, of H , and N , or size, to refer to the

L1-norm |H |1 = ∑
i∈[1,n] H [i] of H . We use Hn,N to denote the set of all histograms of

length n and size N .

123

2622 G. Loukides, G. Theodorakopoulos

Having compiled H , the user wishes to submit it to a location-based application. Before
submitting it, the user transforms it into a sanitized histogram H ′ (in a way to be made
concrete in Problems 3.1 and 3.2 below) and then submits H ′ to the application. Next, the
application returns a response to the user. Depending on the sanitization required, H ′ may
contain zero-frequency counts for some locations, or itmay contain nonzero frequency counts
for locations that the user never visited. If the userwishes, we can easily guarantee that H ′ will
not contain nonzero frequency counts for locations that the user never visited, by assigning
an infinite cost dq(H [i], H ′[i]) for each such location Li .

3.1.1 Quality loss

Since the user submits H ′, which is in general different from H , therewill be a negative impact
on the quality of the application response. The resulting loss in quality is measured by a qual-
ity distance function dq(H , H ′). For every pair H , H ′, we require that dq(H , H ′) ≥ 0, and
that H = H ′ implies dq(H , H ′) = 0. In addition, we require dq to decompose as a sum over
bins, i.e., there must be a function q such that dq(H , H ′) = ∑

i∈[1,n] q(H [i], H ′[i]). Most
distances used in data mining applications in which distances between histograms/vectors
must be preserved (e.g., Jensen–Shannon divergence (JS-divergence) [30], Jeffrey’s diver-
gence [45], L2-distance (Euclidean distance) and squared Euclidean distance [66], variational
distance [30], Pearson χ2 distance [30], and Neyman χ2 distance [30]) decompose as a sum
over bins.

We use JS-divergence as the objective function dq in our experiments (see Sect. 5). JS-
divergence is a standard measure for quantifying distances between probability distributions,
which is often used in histogram/vector classification [36] and clustering [40]. Given two
histograms H1, H2, the JS-divergence between them is defined as

J S(H1, H2) = 1

2 · N ·
∑

i∈[1,n]

(
H1[i] · log2

(
2 · H1[i]

H1[i] + H2[i]
)

+ H2[i] · log2
(

2 · H2[i]
H1[i] + H2[i]

))
.

with the convention 0 · log2(0) = 0. JS-divergence is bounded in [0, 1] [30], and
J S(H1, H2) = 0 implies no quality loss. As explained in [27], JS-divergence can also
be easily extended to capture semantic similarity requirements (e.g., An Italian Restaurant
is more similar to a French Restaurant than to an American Cinema), when this is needed in
applications. The extended measure, called smoothed JS-divergence, requires preprocessing
the histogram by kernel smoothing and then applying JS-divergence to the preprocessed
histogram. Incorporating smoothed JS-divergence in our methods is straightforward and left
for future work.

3.2 The sensitive Location Hiding problem: adversary model and formal definition

As discussed in the Introduction and in Sect. 2, the Sensitive Location Hiding (SLH) privacy
notion aims to conceal all visits to sensitive locations. We formulate the adversary model and
the desired privacy property for the SLH notion as follows.

The adversary knows: (I) the sanitized histogram H ′ that the user submits, (II) the set
of all possible sensitive locations L ′, and (III) the fact that, if H ′ is fake, then it must have
been produced by the LHO algorithm in our paper. The adversary has no other background
knowledge. The adversary succeeds if, based on their knowledge, they manage to determine
whether or not the user visited one or more of the sensitive locations in L ′.

123

Location histogram privacy by Sensitive Location Hiding… 2623

The desired privacy property is the negation of the adversary’s success criterion. That is,
the adversary must not be able to infer, from the sanitized histogram, that the user has visited
any of the sensitive locations.

We formally define the corresponding optimization problem as follows:

Problem 3.1 (Sensitive Location Hiding (SLH)) Given a histogram H ∈ Hn,N , a subset
L ′ ⊆ L of sensitive locations, and a quality distance function dq(), construct a sanitized
histogram H ′ ∈ Hn,N that

minimizes
H ′∈Hn,N

dq(H , H ′)

subject to H ′[i] = 0 for each location Li ∈ L ′.
Intuitively, the SLH problem requires constructing a sanitized histogram by redistributing

the counts of the sensitive locations of H into bins that correspond to nonsensitive locations,
in the best possible way according to dq . The sensitive locations are specified by the user
based on their preferences.

In the SLH problem formulation, we follow the user-centric (or personalized) approach to
privacy that is employed in [1,3,13,50]. This approach requires the users to specify their own
privacy preferences, so that these preferences are best reflected in the produced solutions.
However, not all users may possess knowledge allowing them to identify certain locations in
their histograms as sensitive. Yet, such users often know that a class of locations are sensitive,
or theydonotwant to be associatedwith a class of locations [31,59]. For instance, several users
may not want to be associated with visits to any type of clinic or adult entertainment location.
In this case, users may employ a taxonomy1 to identify classes of sensitive locations, which
requires less detailed knowledge. This method is inspired by [31,59] and simply requires a
user to select one or more nodes in the taxonomy. If a node u that is not a leaf is selected,
then all locations corresponding to leaves in the subtree rooted at u will be considered as
sensitive. If the selected node u is a leaf, then its corresponding location will be considered
as sensitive. Such taxonomies already exist for location-based data, and they can also be
automatically constructed based on machine learning techniques [55]. For example, in the
Foursquare taxonomy (see Sect. 5), there is an aggregate category (internal node) “Medical
center” which contains more specific categories (leaves) “Hospital,” “Rehab center,” etc.

Theorem 3.1 The SLH problem is weakly NP-hard.

Proof See Appendix (Sect. A.1). ��
Clearly, the SLH problem seeks to produce a sanitized histogram H ′ with the same size

as H . As discussed in the Introduction, this allows preserving statistics that depend on the
size of the histogram, which are important in location-based applications, such as location
recommendation. However, it is also possible to require the sanitized histogram H ′ to have a
given size instead (e.g., when an application requires a histogram to have a certain number of
location counts, or in pathological caseswhere redistribution leads to undesirable/implausible
histograms). This leads to a variation of the SLH problem, referred to as SLHr , which requires
redistributing r ≥ 0 counts of sensitive locations into the bins corresponding to nonsensitive
locations. Note the following choices for r in SLHr : (I) for r = 0, the SLHr problem
requires constructing a sanitized histogram where each sensitive location has count 0 and

1 A taxonomy (also known as hierarchy) is a tree structure, in which the root corresponds to the most general
location “any,” there is a leaf node for each sensitive location, and the internal nodes of the taxonomycorrespond
to aggregate/coarse sensitive locations.

123

2624 G. Loukides, G. Theodorakopoulos

each nonsensitive location has a count equal to that of its count in H . Such a histogram
is trivial to produce, by simply replacing the count of each sensitive location with 0. (II)
For r = ∑

Li∈L ′ f (Li) (i.e., equal to the total count of sensitive locations), SLHr becomes
equivalent to the SLH problem. (III) For r >

∑
Li∈L ′ f (Li), the SLHr problem requires

constructing a sanitized histogram with larger size than H . As we will explain in Sect. 4.1,
it is straightforward to optimally solve SLHr based on our LHO algorithm.

3.2.1 Solutions to the SLH optimization problem satisfy the desired privacy property

Theadversary cannot distinguishbetween auserAwhohasonlyvisitednonsensitive locations
and thus submits a non-sanitized histogram HA, and a user B who has visited some sensitive
locations and the algorithm has produced a sanitized histogram H ′

B that is identical to HA.
This is because every possible sanitized histogram that the LHO algorithm can output is a
valid histogram that could have legitimately been produced by a user. Note that, if there are
histograms that cannot be produced by a legitimate user, LHO can be trivially adapted to
never output such histograms. This adaptation is easy because all histograms are encoded
as paths in a graph, so illegitimate histograms are also paths in the graph, referred to as
illegitimate paths, and these histograms can be avoided by simply changing the shortest path
finding algorithm to an algorithm that finds a shortest path which is not contained in a given
subset of illegitimate paths [44].

3.3 The Target Resemblance problem: adversary model and formal definition

As discussed in the Introduction and in Sect. 2, for the Target Resemblance (TR) privacy
notion the user specifies a target histogram H ′′ to resemble, a quality parameter ε and a privacy
parameter c. The objective of the TR optimization problem is to create a sanitized histogram
H ′ that is as similar as possible to H ′′, subject to the quality constraint dq(H , H ′) ≤ ε. The
privacy distance function that quantifies the notion of similarity is denoted dp(H ′, H ′′). If
dp(H ′, H ′′) > c, then H ′ is not acceptable, because it is not similar enough to the target.

The function dp(H ′, H ′′) is nonnegative, and it must decompose as a sum over bins, i.e.,
there must be a function p such that dp(H ′, H ′′) = ∑

i∈[1,n] p(H ′[i], H ′′[i]), using zeros to
fill inmissing location counts. InTR, privacy ismaximumwhen H ′ = H ′′ (dp(H ′, H ′′) = 0),
because there is no better resemblance than being identical.Any functionwith these properties
would be suitable as dp (e.g., JS-divergence, or L2-distance). We use JS-divergence as dp in
our experiments (see Sect. 5).

We can formulate the adversary model and the desired privacy property for this problem
as follows: the adversary knows (I) the histogram H ′ that the user submits, (II) a target
histogram H ′′, (III) a privacy distance function dp(), and (IV) a privacy parameter c.

Upon receiving H ′, the adversary compares it to the target H ′′ in order to profile the user.
For example, if an adversary wants to determine whether the user is a member of a particular
ethnic/religious/social group, the target histogram is the histogram of a typical member of
that group. Formally, the adversary makes this determination by comparing dp(H ′, H ′′) to
c, i.e., by comparing the privacy distance between the user’s submitted histogram H ′ and
H ′′ to the privacy parameter c. If dp(H ′, H ′′) ≤ c, the adversary concludes that the user is a
member of the group, otherwise they conclude that the user is not a member of the group. The
adversary has no other background knowledge. In particular, the adversary does not know
whether the user submitted their true histogram or the user submitted a modified histogram

123

Location histogram privacy by Sensitive Location Hiding… 2625

aiming to resemble a particular target histogram. The adversary succeeds if they conclude
that the user is not a member of the group, i.e., dp(H ′, H ′′) > c.

The desired privacy property is the negation of the adversary’s success criterion. In T R,
the desired privacy property is dp(H ′, H ′′) ≤ c.

We formally define the corresponding optimization problem as follows:

Problem 3.2 (Target Resemblance (TR)) Given two histograms H , H ′′ ∈ Hn,N , a privacy
distance function dp(), a privacy parameter c, a quality distance function dq(), and maximum
quality loss threshold ε ≥ 0, construct a sanitized histogram H ′ ∈ Hn,N that

minimizes
H ′∈Hn,N

dp(H
′, H ′′)

subject to dq(H , H ′) ≤ ε.

If the resulting H ′ is such that dp(H ′, H ′′) > c, then it is impossible to achieve both the
desired privacy property and the desired quality constraint.

Intuitively, the TR problem requires constructing a sanitized histogram H ′ of the same
length and size with H and H ′′ that offers the best possible privacy by being as similar as
possible to the target histogram H ′′ according to dp , while incurring a quality loss at most ε
according to dq .

The function dq is selected by the location-based application provider (recipient of the
sanitized histogram) and is provided to the user together with an intuitive explanation of
what different values of dq() mean for quality. For example, dq() ≥ 0.8 means “very low
quality,” 0.6 ≤ dq() ≤ 0.8 means “low quality” etc., where “quality” refers to the quality
of the application response (e.g., recommendation) that the user receives. Then, in the spirit
of user-centric (or personalized) privacy [19,51], the user uses the above explanation by the
provider to choose a value of ε that corresponds to his/her tolerance for quality loss.

The problem requires the user to specify the target histogram H ′′. However, some users
may not possess sufficient knowledge to perform this task, even though they want to resemble
a person with certain characteristics (e.g., a wealthy person). In these cases, H ′′ can be
constructed as follows. The user chooses a target probability distribution h′′ from a repository
of probability distributions that are constructed by domain experts and labeled accordingly
(e.g., a distribution corresponding to a “wealthy” profile, a “tourist” profile, a “healthy person”
profile [22,56]), in the same way that experts compile, e.g., adblock filters (lists of URLs to
block) or lists of virus signatures for antivirus software. To choose one of these profiles, the
user looks for a label that they want to resemble. This setup is very similar to other papers in
the literature [1,13].

Note that the distribution h′′ may be defined on a different set of locations from the user’s
histogram H , in which case both are expanded to cover all locations in either h′′ or H , with
zero values for the new locations. Then, each entry h′′[i] is multiplied by the size N of the
user’s histogram H to create the target histogram H ′′[i] (see Sect. 4.2). So, in effect, H ′′ is
the expected histogram by a hypothetical user that picks N locations from the distribution
h′′. By the above construction, H ′′ and H are of the same length n and size N , but note that
H ′′ may not have integer counts, because H ′′[i] = N · h′′[i] is not necessarily an integer.
Strictly speaking, this violates the requirement of histograms to have integer counts, but that
is not a problem for our methods, because the privacy distance functions do not need integer
arguments. However, we do require the histogram H ′ that the algorithms output to have
integer counts.

Theorem 3.2 The TR problem is weakly NP-hard.

123

2626 G. Loukides, G. Theodorakopoulos

Proof See Appendix (Sect. A.2). ��
Clearly, the TR problem requires constructing a sanitized histogram H ′ with the same size

as H and H ′′. That is, it assumes that the desirable target histogram H ′′ has the same counts
as H , but these counts are distributed differently from H . However, it is also possible to relax
this assumption. This leads to a variation of the TR problem, referred to as TR|H ′′|1 , which
instead requires the sanitized histogram H ′ to only have the same size as H ′′, while it can
be different from the size of H . It is straightforward to optimally (resp., heuristically) solve
TR|H ′′|1 based on our RO algorithm (resp., based on our RH heuristic) (see Sect. 4.2).

3.3.1 Solutions to the TR optimization problem satisfy the desired privacy property

The T R problem tries to minimize dp(H ′, H ′′), while satisfying the quality constraint
dq(H , H ′) ≤ ε. Of course, a particular choice of ε affects privacy. If ε is low, an algorithm
for the TR problem may output an H ′ that is the same or very similar to H , because all
histograms that satisfy the specified quality constraint are close to H . Then, the user has to
decide whether this H ′ is safe to release.

Given the privacy parameter c, it is not safe to release H ′ when dp(H ′, H ′′) > c. If
dp(H ′, H ′′) > c, the user will decide not to release any histogram at all. Alternatively, the
user may want to re-run the algorithm with a larger ε, i.e., to sacrifice more quality in order
to achieve the privacy requirement.

The user’s decision may depend on the intuitive meaning of the function used for dp . For
example, if dp is Pearson χ2 and the target H ′′ models a “wealthy” user, then dp(H ′, H ′′)
quantifies how much more likely it is that H ′ has been produced by a user who follows the
“wealthy” profile compared to any other profile.2 Thus, if this likelihood ratio exceeds c,
then the user may not want to release that H ′.

It is also trivial to exclude solutions with dp(H ′, H ′′) > c by modifying our methods to
disregard such solutions and terminate if no solution exists. In conclusion, the user either
submits a histogram that satisfies the privacy property, or nothing at all.

3.4 The Target Avoidance problem

As mentioned above, Target Avoidance (TA) is a variant of the Target Resemblance (TR)
problem, which we briefly discuss below. The algorithms for the TA problem are very similar
to those for TR and are omitted; for details see [33].

Problem 3.3 (Target Avoidance (TA)) Given two histograms H , H ′′ ∈ Hn,N , a privacy dis-
tance function dp(), a privacy parameter c, a quality distance function dq(), and maximum
quality loss threshold ε ≥ 0, construct a sanitized histogram H ′ ∈ Hn,N that

maximizes
H ′∈Hn,N

dp(H
′, H ′′)

subject to dq(H , H ′) ≤ ε.

If the resulting H ′ is such that dp(H ′, H ′′) < c, then it is impossible to achieve both the
desired privacy property and the desired quality constraint.

Intuitively, the TA problem requires constructing a sanitized histogram H ′ of the same
length and size with H and H ′′. The sanitized histogram must offer the best possible privacy

2 We refer the interested reader to statistics textbooks for more details [25].

123

Location histogram privacy by Sensitive Location Hiding… 2627

by being as dissimilar as possible to the target histogram H ′′ according to dp , while incurring
a quality loss at most ε according to dq . The threshold ε and target histogram H ′′ are specified
by the user based on their preferences. For example, the user can set H ′′ to H , in order to
avoid H itself, or to a part of H that contains the locations that characterize an undesirable
profile (e.g., frequent visits to airports) or are frequented by a certain ethnic minority (which
may help infer that an individual belongs to the minority). The user could also choose H ′′
with the help of domain experts, as in the T R problem.

In terms of an adversary model, the adversary has the same knowledge as in TR and they
succeed if dp(H ′, H ′′) < c. If the algorithm does not produce an H ′′ such that dp(H ′, H ′′) ≥
c, then the user can either not submit any histogram at all, or the user may want to re-run the
algorithm with a larger ε. The proof that the TA problem leads to a solution satisfying the
desired privacy property is similar to that for TR (omitted).

Theorem 3.3 The TA problem is weakly NP-hard.

Proof Omitted (see [33]). ��
The TA problem is very similar to the TR problem. This is established through a reduction

from TA to TR that is given in Appendix (Sect. A.3). There is also a variation of TA, referred
to as TA|H ′′|1 , which requires the sanitized histogram H ′ to have the same size as H ′′, but not
necessarily as H . Again, our methods can easily deal with this variation.

4 Algorithms

Since the SLH, TR, and TA problems are weakly NP-hard, it is possible to design pseu-
dopolynomial algorithms to optimally solve them. Such algorithms run in polynomial time
in the numerical value of the input [41].We present optimal algorithms based on shortest path
problems for the SLH and TR problems. In addition, we present a heuristic algorithm for the
TR problem, which is more efficient than the optimal algorithm by two orders of magnitude
and finds solutions of comparable quality. Furthermore, we explain how our methods can
deal with the variations SLHr and T R|H ′′|1 of the SLH and TR problem, respectively.

4.1 LHO: an optimal algorithm for SLH

This section presents Location Hiding Optimal (LHO), which optimally solves the SLH
problem. Before presenting LHO, as motivation, we consider a simple algorithm which
distributes the counts of the sensitive location(s) to the nonsensitive bin(s) proportionally to
the counts of the nonsensitive bins. Thus, it aims to construct an H ′ by initializing it to H

and then increasing the count of each nonsensitive bin H ′[i] by x[i] = H [i] ·
∑

i∈L′ H [i]∑
i∈L\L′ H [i] =

H [i] · K
N−K , while assigning 0 to each sensitive bin. While intuitive, this algorithm fails

to construct an H ′, for a given histogram H and distance function dq , when x[i] is not an
integer, and also it may lead to solutions with large dq(H , H ′) (i.e., low data utility), as it
does not take into account the input distance function dq .

We now discuss the LHO algorithm. Without loss of generality, we assume that the
nonsensitive locations correspond to the first n − |L ′| bins of the original histogram
H = (f (L1), . . . , f (Ln)), while the remaining |L ′| bins correspond to the sensitive loca-
tions. The total count of sensitive locations in H is K = ∑

Li∈L ′ f (Li). LHO must move
(redistribute) these counts into the nonsensitive bins, while minimizing the quality error dq().

123

2628 G. Loukides, G. Theodorakopoulos

(0,0)

(1,0)

(1,1)

(1,K)

(2,0)

(2,1)

...

(2,K)

...

...

...

...

(n-|L'|,0)

...

(n-|L'|,1)

(n-|L'|,K)

(2,0)

E1,0

E1,1

E1,j

E1,K

E2,0

E2,1

...

E2,0

E2,0

En-|L'|,0

En-|L'|,0

En-|L'|,1

Layer 0 Layer 1 Layer 2 Layer n-|L'|

Fig. 4 Search space graph GLHO for the Sensitive Location Hiding problem. Layer 0 contains the node
(0, 0) and each of the layers 1 to n − |L ′| contains K + 1 nodes. Each edge connects nodes of consecutive
layers and has a weight equal to the error Ei+1,k , where i + 1 is the layer of the end node of the edge and
k is the count of sensitive locations. Ei+1,k represents the impact of redistributing (i.e., adding) k counts
into the i + 1 bin of the sanitized histogram H ′, which is initialized to the original histogram H . That is,
Ei+1,k = q(H [i + 1], H ′[i + 1] + k). The missing nodes and edges are denoted with “. . .”

The LHO algorithm is founded on the following observation: the optimal way of redis-
tributing counts to each nonsensitive bin of H ′ corresponds to a shortest path between two
specific nodes of a search space graph GLHO(V , E), where V and E are the set of nodes and
set of edges ofGLHO, respectively. In the following, we discuss the construction ofGLHO and
the correspondence between this shortest path and the solution to the SLH problem. Then,
we discuss the LHO algorithm.

GLHO is a multipartite directed acyclic graph (DAG) (see Fig. 4) such that:

– It contains n − |L ′| + 1 layers of nodes. Layer 0 comprises a single node, and layers
1, . . . , n − |L ′| comprise K + 1 nodes each. Each layer 1, . . . , n − |L ′| corresponds to
a nonsensitive bin.

– The single node in layer 0 is labeled (0, 0), and each node in layer i ∈ [1, n − |L ′|] is
labeled (i, j), where j denotes the redistribution (i.e., addition) of j counts to bins 1 up
to and including i of the sanitized histogram. We may refer to nodes of GLHO using their
labels.

– There is an edge ((i, j), (i + 1, j + k)) from node (i, j) to node (i + 1, j + k), for each
i ∈ [0, n − |L ′| − 1], where k ≥ 0, j + k ≤ K . That is, each node labeled (i, j) is
connected to every node in the following layer i + 1 that corresponds to a count of at
least j .

– Each edge ((i, j), (i + 1, j + k)) is associated with a weight equal to the error Ei+1,k =
q(H [i + 1], H [i + 1] + k). The error Ei+1,k quantifies the impact on quality that is
incurred by redistributing (i.e., adding) k counts into bin i + 1.

Let P be a path comprised of nodes (0, 0), (1, k1), . . ., (n − |L ′|, kn−|L ′|) of GLHO. The
properties below easily follow from the construction of GLHO:

(I) The path P corresponds to an addition of ki −ki−1 counts to the i-th bin of the histogram,
for each i ∈ [1, n − |L ′|], where k0 = 0.

(II) The length of P is equal to the total weight E1,k1 + . . . , En−|L ′|,kn−|L′ | of the edges in P .
This total weight is the total quality loss incurred by the allocation corresponding to P .

123

Location histogram privacy by Sensitive Location Hiding… 2629

Thus, the path P corresponds to a sanitized histogram H ′ whose first n−|L ′| bins have counts
H [i] + (ki − ki−1), i = 1, . . . , n − |L ′|, and dq(H , H ′) is equal to

∑n−|L ′|
i=1 q(H [i], H [i] +

ki − ki−1). For example, the path comprised of nodes (0, 0), (1, K), . . . , (n − |L ′|, K) in
Fig. 4 corresponds to a sanitized histogram H ′ in which all K sensitive counts have been
moved to the first bin. The quality loss in this case is just dq(H , H ′) = q(H [1], H [1] + K),
as all other bins have the same counts in both H and H ′.

Conversely, each possible allocation of the K sensitive counts into nonsensitive bins
corresponds to a path between the nodes (0, 0) and (n − |L ′|, K) of GLHO, which represents
a feasible solution to the SLH problem. Therefore, the shortest path between the nodes (0, 0)
and (n−|L ′|, K)) ofGLHO (i.e., the pathwith theminimum length E1,k1+. . . , En−|L ′|,K ; ties
are broken arbitrarily) represents a sanitized histogram H ′ = (H [1]+ (k1 − k0), . . . , H [n−
|L ′|] + (K − kn−|L ′|−1), 0, . . . , 0), which is the optimal solution to SLH. This is because H ′
has minimum dq(H , H ′), the same size with H , and a zero count for each sensitive location.

We now present the pseudocode of the LHO algorithm. In step 1, the algorithm constructs
the search space graph GLHO. In step 2, the algorithm finds a shortest path between the nodes
(0, 0) and (n − |L ′|, K) of GLHO. In step 3, the sanitized histogram H ′ corresponding to the
shortest path (i.e., the optimal solution to the SLH problem) is created and, last, in step 4, H ′
is returned.

Algorithm: LHO (Location Hiding Optimal)
Input: Histogram H , set of sensitive locations L ′, quality distance function dq
Output: Sanitized histogram H ′

1 Construct the search space graph GLHO
2 ((0, 0), (1, k1), . . . , (n − |L ′|, K)) ← the shortest path from node (0, 0) to node

(n − |L ′|, K) in GLHO
3 H ′ ← (H [1] + k1, H [2] + (k2 − k1), . . . , H [n − |L ′|] + (K − kn−|L ′|−1), 0, . . . , 0)
4 return H ′

Example 4.1 LHO is applied to the histogram H = (7, 2, 3, 2, 13, 12, 8, 3) in Fig. 1a. The
set of sensitive locations L ′ contains the locations g and h with counts 8 and 3, respectively,
and the quality distance function dq is JS-divergence. In step 1, the algorithm constructs the
search space graph in Fig. 5. The graph has n− |L ′| + 1 = 7 layers of nodes, where n = 8 is
the length of H and |L ′| = 2 is the number of sensitive locations. Layer 0 contains the node
(0, 0) and each other layer contains K + 1 = 12 nodes, where K = 11 is the total count of
sensitive locations in H . Each node in layers 1, . . . , 6 is labeled (i, j); i denotes the layer
of the node and j denotes the counts of sensitive locations that are redistributed into bins
1, . . . , i . For example, the node (6, 11) denotes that all 11 counts of the sensitive locations
are added into bins 1, . . . , 6. In addition, there is an edge with weight Ei+1,k between each
node (i, j) and every node (i + 1, j + k), for each k ∈ [0, K − j]. The weight Ei+1,k

quantifies the increase to JS-divergence incurred by redistributing (i.e., adding) k counts of
sensitive locations into bin i + 1. For example, the node (0, 0) is connected to the nodes
(1, 0), . . . , (1, 11), and the edge ((0, 0), (1, 2)) has weight E1,2 ≈ 1.8 × 10−3, because
adding 2 counts into the first bin increases JS-divergence by approximately 1.8 × 10−3. In
step 2, LHO finds the shortest path from the node (0, 0) to the node (6, 11), shown in Fig. 5,
and in step 3 it constructs the sanitized histogram H ′ = (9, 3, 4, 3, 16, 15, 0, 0) (see Fig. 1b)
that corresponds to the shortest path. Note that j in the label (i, j) of each node in the shortest
path corresponds to the counts of sensitive locations that are added into bins 1, . . . , i in H ′.
Last, in step 4, H ′ is returned. ��

123

2630 G. Loukides, G. Theodorakopoulos

(0,0)

(1,0)

(1,1)

(1,11)

(2,0)

(2,1)

...

(2,11)

...

...

...

...

(6,0)

...

(6,1)

(6,11)

(2,0)

E1,0

E1,1

E1,j

E1,11

E2,0

E2,1

...

E2,0

E2,0

E6,0

E6,0

E6,1

Layer 0 Layer 1 Layer 2 Layer 6

Search space graph GLHO:n=8, K=11, |L'|=2

(0,0) (1,2) (2,3) (3,4) (4,5) (5,8) (6,11)

Shortest path and edge weights (errors)

Edge weights (errors)
for the shortest path

E1,2 E2,1 E3,1 E4,1 E5,3 E6,3

Fig. 5 Search space graph GLHO for Example 4.1 (the missing nodes and edges are denoted with “. . .”), and
shortest path along with its corresponding weights

The time complexity of LHO is O
(
(n − |L ′|) · K 2 + S

)
, where (n−|L ′|) · K 2 is the cost

of constructingGLHO (step 1) and S is the cost of finding the shortest path (step 2). Construct-
ing GLHO takes O

(
(n − |L ′|) · K 2

)
time, because GLHO contains O

(
(n − |L ′|) · K)

nodes

and O
(
K + 1 + (n − |L ′| − 1) · (K

2

)) = O
(
(n − |L|) · K 2

)
edges, and the computation of

each edge weight Ei+1,k takes O(1) time, because it is computed by accessing a single pair
of bins from H and H ′. The cost S is determined by the shortest path algorithm (e.g., it is
O

(
(n − |L|) · K 2 · log (

(n − |L ′|) · K 2
))

for Dijkstra’s algorithm with binary heap [47]).
Note, the variation SLHr in Sect. 3.2 can be optimally solved by applying LHO with

K = r .

4.2 Optimal algorithm for Target Resemblance

In this section, we model and solve the TR problem as a constrained shortest path problem on
a specially constructed search space graph GTR. It follows immediately that the TA problem
can be seen as a longest path problem on the same graph. Because the graph is a DAG,
computing longest and shortest paths has the same complexity [47]: by visiting the graph
nodes in breadth-first search order, we can simply keep track of the shortest (or longest) path
to each node. We can even solve the two problems in one pass. We focus on the TR problem,
which we solve optimally with the Resemblance Optimal (RO) algorithm.

In the following, we discuss the construction of GTR and then provide the pseudocode of
RO.

From the histogram H and the distance functions dp and dq , we construct a multipartite
DAG GTR = (V , E), as follows (see also Fig. 6):

– There are n · (N + 1) + 1 nodes in V , where n and N are the length and the size of the
histogram H , respectively.

– The nodes are arranged in layers 0, 1, . . . , n, with layer 0 having a single node and layers
1, . . . , n having N + 1 nodes each. Layer i ∈ [1, n] corresponds to bin i (location Li)
in the histogram. Node j ∈ [0, N] in layer i corresponds to the allocation of a total of j
frequency counts to histogram bins 1 up to and including i .

123

Location histogram privacy by Sensitive Location Hiding… 2631

(0,0)

(1,0)

(1,1)

(1,N)

(2,0)

(2,1)

...

(2,N)

...

...

...

...

(n,0)

(n,1)

...

(n,N)

(p er
r,q

er
r)

1,0

...

Layer 0 Layer 1 Layer 2 Layer n

(perr,q
err)

1,1

(perr ,qerr) 1,j

(perr ,qerr) 1,N

(perr,qerr)2
,0

(perr ,qerr) 2,1

(perr,qerr)n
,0

(perr ,qerr) n,1

(perr,qerr)n
,0

Fig. 6 Search space graph GTR for the Target Resemblance problem. Layer 0 is an auxiliary layer that just
contains the node (0, 0). Layer i = 1, . . . , n corresponds to bin i of the sanitized histogram, and node (i, j)
corresponds to allocating j = 1, . . . , N counts to bins 1 up to and including i . A path from (0, 0) to (n, N)

completely defines an allocation of N counts to n bins. The weight of the edge from (i, j) to (i + 1, j + k)
is the privacy and quality error of allocating exactly k counts to bin i + 1. As these errors are additive, the
admissible paths are those whose total q-length is less than the threshold ε. Among them, the p-shortest path
from (0, 0) to (n, N) corresponds to the optimal solution to TR, because it also has q-length at most ε

– The single node in layer 0 is labeled (0, 0), and each node j in every other layer i is
labeled (i, j). We may refer to nodes of GTR using their labels.

– The edges in E go from each node (i, j) to each node (i + 1, j + k), k ≥ 0, j + k ≤ N ,
i.e., to each node in the following layer that has a frequency count at least equal to j .

– The weight of an edge from (i, j) to (i + 1, j + k) is the pair (perr, qerr)i+1,k of the
privacy and quality errors of allocating exactly k counts to bin i + 1 of the sanitized
histogram: perr = p(k, H ′′[i + 1]), qerr = q(H [i + 1], k). The p-length of a path is
the sum of its perr weights. We will refer to the path with the minimum p-length as the
p-shortest path. Similarly, the q-length of a path is the sum of its qerr weights.

At this point, note two important differences between the edge weights of GTR and GLHO

(Sect. 4.1): first, andmost obvious, the edgeweights inGTR are pairs of (privacy error, quality
error), whereas in SLH the weights are quality errors. Second, in GTR the weight of edge
from (i, j) to (i + 1, j + k) corresponds to setting H ′[i + 1] exactly equal to k, whereas in
GLHO that edge weight would correspond to setting H ′[i + 1] equal to H [i + 1] + k.

From the construction of GTR, it follows that there is a 1 − 1 correspondence between
a sanitized histogram H ′ ∈ Hn,N and a path from (0, 0) to (n, N) in GTR. Therefore, to
solve the TR problem, we need to find the path from (0, 0) to (n, N) with minimum p-length
among the paths whose q-length is at most ε. Then, it is straightforward to construct the
histogram from the path.

We now provide the pseudocode of the RO algorithm. We assume that the preprocessing
needed to construct H ′′ from h′′ is done before the actual algorithm runs, and also H and H ′′
have been expanded to be defined on the same set of locations, if needed (see Sect. 3.3 for
details on h′′). Also, for the moment, we assume that dq takes nonnegative integer values.

In step 1, RO constructs the graph GTR. In steps 2–6, the algorithm iterates over each node
v of the graph and associates with it a vector Vv , indexed by all possible values of dq . The
elements of Vv are initialized to 0 for node (0, 0), and to ∞ for any other node of GTR. Next,

123

2632 G. Loukides, G. Theodorakopoulos

Algorithm: RO (Resemblance Optimal)
Input: Histogram H , target histogram H ′′, privacy distance function dp , quality distance function

dq , maximum quality loss threshold ε

Output: Sanitized histogram H ′
1 Construct the graph GT R
2 foreach node v in GT R do
3 if the label of v is (0, 0) then
4 Associate the node v with a vector Vv s.t. Vv[k] = 0, for each integer k ∈ [0, ε]
5 else
6 Associate the node v with a vector Vv s. t. Vv[k] = ∞, for each integer k ∈ [0, ε]
7 foreach node v in GT R in increasing lexicographic order starting from node (1, 0) do
8 foreach element k of Vv do
9 Vv[k] = min(u,v)∈E,qerr (u,v)≤k {Vu [k − qerr (u, v)] + perr (u, v)}

10 ((0, 0), (1, j1), . . . , (n, N)) ← the shortest path from node (0, 0) to node (n, N) in
GT R . Its p-length is equal to the minimum element of Vv

for node v = (n, N).
11 H ′ ← (j1, j2 − j1, . . . , N − jN−1)

12 return H ′

in steps 7–9, RO iterates over the nodes of GTR in increasing lexicographic order, starting
from node (1, 0), and for each node v it updates all the elements of Vv . Each element Vv[k]
is updated using the following dynamic programming equation:

Vv[k] = min
(u,v)∈E,qerr(u,v)≤k

{Vu[k − qerr(u, v)] + perr(u, v)}. (4.1)

The element Vv[k] is equal to the p-length of the p-shortest path from (0, 0) to node v with
q-length exactly equal to k. Thus, as explained above, this path is a feasible solution to the
TR problem, and so the optimal solution to TR is the p-shortest path from (0, 0) to (n, N)

(i.e., the path corresponding to the minimum element of the vector V(n,N)). The nodes of this
path are found in step 10, and its corresponding histogram H ′ is constructed in step 11.

We now consider the general case in which the values of q-length of a path from (0, 0) to
(n, N) are not necessarily integer. We first show that the q-length of this path is polynomial
in N , in Theorem 4.1 below. Then, we show that the number of values of q-length for all
paths is polynomial in N , which implies that these values are not too many to store in the
vectors Vu .

Theorem 4.1 The q-length of a path from (0, 0) to (n, N) can only take a polynomial (in N)
number of values.

Proof The number of possible allocations of N elements to n bins, where some of the bins
may be left empty, is equal to the number of n-tuples of nonnegative integers f1, . . . , fN that
sum to N . Such tuples are called weak compositions of N into n parts (weak, because zeros
are allowed), and their total number is

(
N + n − 1

n − 1

)
= (N + 1) . . . (N + n − 1)

(n − 1)! , (4.2)

which is a polynomial in N [6]. ��
Equation 4.2 gives all possible q-lengths for a path from (0, 0) to (n, N). We also need to

keep intermediate q-length values in the vectors Vv , i.e., q-lengths for paths from (0, 0) to
nodes in any layer 1, . . . , n. But each intermediate allocation has at most as many q-length
values as the final one, because an intermediate allocation allocates at most N elements to

123

Location histogram privacy by Sensitive Location Hiding… 2633

(0,0)

(1,0)

(1,1)

(1,50)

(2,0)

(2,1)

...

(2,50)

...

...

...

...

(8,0)

(8,1)

...

(8,50)

(pe
rr,

qe
rr)

1,0
...

 Layer 0 Layer 1 Layer 8

(perr,qerr)
1,1

(perr,qerr) 1,j

(perr,qerr) 1,50

(perr,qerr)2,0

(perr,qerr) 2,1

(perr,qerr)8,0

(perr,qerr) 8,1

(perr,qerr)8,0

Search space graph GTR : n=8, N=50 Edge weights
(pairs (perr,qerr))
for the shortest path

(0,0) (1,10)

Shortest path and edge weights (pairs of errors)
(qerr,perr)1,10

(2,16)
(qerr,perr)2,6

(3,21)
(qerr,perr)3,5

(4,23)
(qerr,perr)4,2

(5,37)
(qerr,perr)5,14

(6,42)
(qerr,perr)6,5

(7,47)
(qerr,perr)7,5

(8,50)
(qerr,perr)8,3

Fig. 7 Search space graph GTR for Example 4.2 (the missing nodes and edges are denoted with “. . .”), and
shortest path along with its corresponding edge weights

at most n bins. As there are n stages of intermediate allocations, we have in total at most
n · (N+n−1

n−1

)
values, i.e., a polynomial in N .

Example 4.2 RO is applied to the histogram H = (7, 2, 3, 2, 13, 12, 8, 3) in Fig. 1a, using
the target histogram H ′′ = (10, 8, 6, 2, 13, 4, 4, 3) in Fig. 1c, JS-divergence as the quality
distance function dq and the privacy distance function dp , and ε = 0.05. In step 1, the
algorithm constructs the search space graph in Fig. 7. The graph has n + 1 = 9 layers of
nodes, where n = 8 is the length of H . Layer 0 contains the node (0, 0) and each other
layer contains N + 1 = 51 nodes, where N = 50 is the size of H . Each node in layers
1, . . . , 8 is labeled (i, j); i ∈ [1, 8] denotes the layer of the node and corresponds to bin
i , while j ∈ [0, 50] denotes the counts allocated to bins 1, . . . , i . For example, the node
(8, 50) denotes that all 50 counts of H are allocated to bins 1, . . . , 8. In addition, there is
an edge from each node (i, j) to every node (i + 1, j + k), for each k ∈ [0, 50 − j]. The
edge weight is a pair (perr, qerr), where the privacy error perr (respectively, quality error qerr)
quantifies the error with respect to JS-divergence that is incurred by allocating k counts to bin
i + 1 of the sanitized histogram (see Fig. 7). For example, the node (0, 0) is connected to the
nodes (1, 0), . . . , (1, 50), and the edge ((0, 0), (1, 10)) has (perr, qerr)1,10 = (0, 3.8×10−3),
incurred by allocating 10 counts to the first bin. In steps 2–9, RO computes the vector Vu

for each node u. In step 10, the algorithm finds the shortest path from node (0, 0) to node
(8, 50) with qerr ≤ ε (see Fig. 7), and in step 11 it constructs the sanitized histogram
H ′ = (10, 6, 5, 2, 14, 5, 5, 3) that corresponds to the shortest path (see Fig. 1d). Note that
j in the label (i, j) of each node in the shortest path corresponds to the counts of sensitive
locations that are allocated to bins 1, . . . , i in H ′. Last, in step 12, H ′ is returned. ��

The time complexity of the RO algorithm is O((n · N)2 · (N+n−1
n−1

)
). The total cost is the

sum of the cost of constructing GTR and of finding the constrained shortest path from (0, 0)
to (n, N).

The construction of GTR takes O(n · N 2) time. This is because the algorithm constructs
O(n · (N + 1) + 1) = O(n · N) nodes, each of which has O(N) outgoing edges, for a total
of O(n · N 2) edges. Note also that the computation of each edge weight takes O(1) time.
The cost of computing the shortest path is O((n · N)2 · (N+n−1

n−1

)
). This is because it requires

(I) constructing a vector Vv with O(n · (N+n−1
n−1

)
) entries, for each node v of the O(n · N)

nodes of GTR, which takes O(n2 · N · (N+n−1
n−1

)
) time, and (II) updating each entry of Vv

123

2634 G. Loukides, G. Theodorakopoulos

once, which takes O(N) time per node since there are O(N) incoming edges to each node

(see Eq. 4.1), for a total of O
(
(n · N)2 · (N+n−1

n−1

))
across all nodes.

Note, the variation TR|H ′′|1 in Sect. 3.3 can be optimally solved by using RO to allocate
|H ′′|1 counts instead.

4.3 Heuristic for Target Resemblance

Our heuristic RH for the Target Resemblance problem works in a greedy fashion to avoid
the cost of constructing and searching the search space graph.

Algorithm: RH (Resemblance Heuristic)
Input: Histogram H , target histogram H ′′, privacy distance function dp , quality distance funct. dq ,

quality thr. ε
Output: Sanitized histogram H ′

1 SrcBins ← {i such that H [i] > H ′′[i]}
2 Dst Bins ← {i such that H [i] < H ′′[i]}
3 H ′ ← H
4 εrem ← ε // Remaining quality budget
5 while SrcBins �= ∅ do

// Perform the best move on H ′
6 (H ′, OptΔdq) ← BestMove(H ′, H ′′, SrcBins, Dst Bins, εrem)

// Exit if the remaining budget is exhausted
7 if OptΔdq = −1 then
8 break

// Update the remaining budget
9 εrem ← εrem − OptΔdq

// Update the set of source and dest. bins
10 SrcBins ← {i such that H ′[i] > H ′′[i]}
11 Dst Bins ← {i such that H ′[i] < H ′′[i]}
12 return H ′

The main idea in RH is to try to greedily reduce the differences in the counts of corre-
sponding bins between H and H ′′. As can be seen in the pseudocode (steps 1 and 2), RH
identifies source bins, i.e., bins in H with more counts in H than in H ′′, and destination bins,
bins with fewer counts in H than in H ′′. Bins with equal counts in H and H ′′ are ignored.
Then, in steps 3 and 4, H ′ is initialized to the original histogram H and the remaining quality
budget εrem to the quality threshold ε. In steps 5 and 6, RH moves some counts from a source
bin to a destination bin using a function BestMove.

As can be seen in the pseudocode of BestMove (steps 4–6), the function searches all
possible ways (“moves”) to move k counts from a source bin i to a destination bin j . For
each move, BestMove computes the privacy effect�dp and the quality effect�dq (steps 10

and 11), and it selects the move that maximizes the ratio �dp
�dq

, subject to the constraint that

�dq cannot exceed the remaining quality budget εrem (steps 12–15).3 The rationale is to

3 Note that �dq > 0, because �dq is the sum of two positive terms (in square brackets): �dq =
dq (H ′

tmp, H)−dq (H ′, H) = q(H ′
tmp[i], H [i])+q(H ′

tmp[j], H [j])−q(H ′[i], H [i])−q(H ′[j], H [j]) =[
q(H ′[i] − k, H [i]) − q(H ′[i], H [i])]+[

q(H ′[j] + k, H [j]) − q(H ′[j], H [j])] .The first term is positive:
bin i is a source bin, which means H ′[i] ≤ H [i]. But H ′[i] − k < H ′[i], so the distance q(H ′[i] − k, H [i])
is larger than q(H ′[i], H [i]). Similarly, the second term is positive, because bin j is a destination bin.

123

Location histogram privacy by Sensitive Location Hiding… 2635

Function: BestMove
Input: Sanitized histogram H ′, target histogram H ′′, Set of source bins SrcBins, Set of destination

bins Dst Bins, Remaining budget εrem , Privacy distance function dp , Quality distance
function dq

Output: Sanitized histogram H ′ after performing the best move, difference in dq incurred by the best
move

1 MaxRatio ← 0
2 OptΔdq ← −1
3 H ′

BestMove ← H ′
4 foreach bin i in SrcBins do
5 foreach bin j �= i in Dst Bins do
6 foreach k ∈ [1, H ′[i]] do

// Try moving k counts from a source bin H ′[i] to a
destination bin H ′[j]

7 H ′
tmp ← H ′

8 H ′
tmp[i] ← H ′[i] − k

9 H ′
tmp[j] ← H ′[j] + k

10 Δdp ←
∣∣∣dp(H ′

tmp, H
′′) − dp(H ′, H ′′)

∣∣∣
11 Δdq ← dq (H ′

tmp, H) − dq (H ′, H)

// Store the best sanitized histogram so far, its ratio
and remaining budget

12 if
Δdp
Δdq

> MaxRatio and Δdq < εrem then

13 H ′
BestMove ← H ′

tmp

14 MaxRatio ← Δdp
Δdq

15 OptΔdq ← Δdq
16 H ′ ← H ′

BestMove
17 return (H ′, OptΔdq)

prioritize moves with a large improvement in privacy �dp and a small reduction in quality
�dq .

Next, in step 7, RH checks whether the remaining budget is exhausted. If it is, no more
moves are performed (step 8). Otherwise, in steps 9–11, RH reduces the quality budget
by Opt�dq (i.e., by the quality effect of the best move) and updates the sets of source
and destination bins by no longer considering as source or destination bins any bins whose
count has become equal to the corresponding bin in H ′′. Moves continue until the budget
is exhausted or there are no more source/destination bins. Since moves cannot increase the
count of a source bin nor increase the remaining quality budget, RH will always termi-
nate.

The time complexity ofRH is O(n3 ·N). This is because the loop in step 5 runs O(n) times
(once per source bin), and each time there is a cost of O(n2 · N) incurred by BestMove. The
cost of BestMove is O(n2 · N), because there are O(n2) source/destination bin pairs, and
for each pair O(N) temporary moves are performed. The time complexity analysis refers to
the worst case. In practice, a histogram can be sanitized with a smaller number of moves (i.e.,
executions of BestMoves), and the heuristics scale well with respect to n. For example, in
our experiments, the heuristics scale close to linearly with respect to n.

Last, we note that the RH heuristic can also directly deal with the variation TR|H ′′|1 of the
TR problem (see Sect. 3.3). This is because RH does not pose any restriction on the size of
H ′′, so H ′′ can have a different size than that of H .

123

2636 G. Loukides, G. Theodorakopoulos

Table 2 Characteristics of datasets

Dataset # histograms Mean of length n Max. length n Mean of size N

NYC 1083 40.28 139 209.99

TKY 2293 32.36 158 221.57

5 Evaluation

In this section, we evaluate our algorithms and heuristics in terms of effectiveness and effi-
ciency. We do not compare against existing histogram sanitization methods, because they
cannot be used to solve the problems we consider (see Sect. 6.2).

5.1 Setup and datasets

To calculate the loss in quality (utility) incurred by replacing the original histogram H with
the sanitized histogram H ′, we compute the distance dq(H , H ′), where dq is the Jensen–
Shannon (JS) divergence (Sect. 3.1.1). Our algorithms can optimize other measures, leading
to qualitatively similar results [33]. In addition, we measure how well sanitization preserves
the quality of location recommendation.

Location recommendation suggests to a user, referred to as active user and denoted with
α, a location that might interest them. We measure the impact of sanitization on recommen-
dation quality based on the recommendation error [35], defined, for an active user α and a
location Lα

test , as the difference between fα(Lα
test), the user’s true frequency of visits to Lα

test ,
and rα(Lα

test), the frequency of visits as predicted by the recommendation algorithm. We use
both the absolute error | fα(Lα

test) − rα(Lα
test)| and the square error (fα(Lα

test) − rα(Lα
test))

2.
We compute recommendations based on the dataset of original user histograms, and then
based on the dataset of sanitized histograms as follows: (I) each of these datasets is ran-
domly partitioned into a training set Dtrain with 90% of the histograms and a test set Dtest

with 10% of the histograms, (II) the absolute (or square) recommendation error considering
each user in Dtest as α is computed, and (III) the errors are averaged to obtain two popu-
lar measures; Mean Absolute Error MAE and Root Mean Square Error. For the absolute
error, MAE(Dtest) = 1

|Dtest |
∑

(α,Lα
test)

| fα(Lα
test) − rα(Lα

test)|, and Root Mean Square Error

RMSE(Dtest) =
√

1
|Dtest |

∑
(α,Lα

test)
(fα(Lα

test) − rα(Lα
test))

2. For the square error, MAE and

RMSE are defined similarly.
All algorithms are implemented in Python and applied to the New York City (NYC) and

Tokyo (TKY) datasets, which were also used in [39,63,64]. The datasets were downloaded
from [62] and include long-term check-in data in New York city and Tokyo, collected from
Foursquare from April 12, 2012 to February 16, 2013. Each record in the datasets contains a
location that was visited by a user at a certain time and corresponds to a leaf in the Foursquare
taxonomy (available at https://developer.foursquare.com/docs/resources/categories). There
are in total 713 locations in the taxonomy, and on average each user visits fewer than 41 loca-
tions. For each dataset, we produce the input histograms for our algorithms by constructing
one histogram H per user. The histogram H contains a count f (Li) > 0 for every location
Li visited by the user. That is, H is constructed based on the user’s values (location visits),
which is line with histogram sanitization methods [2,16,23,26,45,61,68]. Table 2 shows the
characteristics ofNYC andTKY, andTable 3 shows the default values used in our experiments.

123

https://developer.foursquare.com/docs/resources/categories

Location histogram privacy by Sensitive Location Hiding… 2637

Table 3 Default values for each
dataset w.r.t: length n, total
frequency of sensitive locations
K , number of sensitive locations
|L ′|, threshold ε, and histogram
size N

Dataset n K |L ′| ε N

NYC 25 20 5 5 × 10−3 100

TKY 35 20 5 5 × 10−3 100

(a) NYC (b) NYC (c) TKY (d) TKY

Fig. 8 JS-divergence versus length n: a Median JS-divergence for histograms of length n in NYC. b JS-
divergence for each histogram with K = 20 in NYC. c Median JS-divergence for histograms of length n in
TKY. d JS-divergence for each histogram with K = 20 in TKY

Wealso construct synthetic histograms by appending zeros to a histogramof length n = 78
and size N = 192 in NYC and to a histogram of n = 99 and N = 642 in TKY, and their
length is up to 400, including the zero-frequency bins. We use the synthetic histograms to
test the impact of length on the runtime performance of our methods. In total, we test the
algorithms on approximately 3400 different histograms. All experiments ran on an Intel Xeon
at 2.60GHz with 256GB of RAM.

5.2 Evaluation of the LHO algorithm

We evaluate the quality and runtime of LHO as a function of (I) n, the length of the original
histogram, (II) K , the total frequency of sensitive locations, and (III) |L ′|, the number of
sensitive locations. We consider JS-divergence as dq() and an L ′ comprised of 5 sensitive
locations selected randomly, unless stated otherwise.

5.2.1 Quality preservation for the LHO algorithm

Impact of histogram length n We show that JS-divergence decreases with n, in Fig. 8 (the y
axis is in logarithmic scale). This is because there are more bins whose counts may increase:
the space considered by LHO is larger and the change can be “smoothed” over more bins.
Also, the JS-divergence scores are low, suggesting that sanitization preserves the distribution
of nonsensitive locations fairly well.

Impact of total frequency of sensitive locations K We show that JS-divergence increases
with K in Fig. 9 (the y-axes are in logarithmic scale). This is because there are more counts
that must be redistributed into the bins of nonsensitive locations, and this incurs more distor-
tion. Note, the JS-divergence scores are low, suggesting that the distribution of nonsensitive
locations is preserved fairly well.

Impact of number of sensitive locations |L ′| We show that JS-divergence increases with
|L ′|, in Fig. 10a, b. This is because there are (I) more counts that need to be redistributed

123

2638 G. Loukides, G. Theodorakopoulos

(a) NYC (b) NYC (c) TKY (d) TKY

Fig. 9 JS-divergence versus total frequency of sensitive locations K : a Median JS-divergence for varying K
in NYC. b JS-divergence for each histogram with n = 30 in NYC. c Median JS-divergence for varying K in
TKY. d JS-divergence for each histogram with n = 40 in TKY

(a) NYC (b) TKY

0.0

0.5

1.0

1.5

1 2 5 10

M
A

E

Original
LHO

(c) NYC

0.0

0.5

1.0

1.5

1 2 5 10

|L’||L’|

R
M

S
E

Original
LHO

(d) NYC

Fig. 10 Cumulative Distribution Function of JS-divergence (i.e., ratio of histograms with JS-divergence at
most equal to a score in x axis) versus |L ′| for: a NYC, and b TKY. Recommendation quality versus |L ′| w.r.t:
c MAE , and d RMSE

into the bins of the nonsensitive locations, and (II) fewer bins to which the counts may
be redistributed into, and, as demonstrated above, both (I) and (II) incur more distortion.
However, the distributions of the original histograms are preservedwell evenwhen |L ′| = 10,
with 90% of them having a JS-divergence score of at most 0.07. The remaining histograms
have higher scores because on average 70% of their locations are treated as sensitive.

Recommendation quality Figure 10c, d show that MAE and RMSE are not substantially
affectedby sanitization, for all tested |L ′|values.The change inMAE andRMSE is on average
0.1% and 2.4%, respectively. This suggests that recommendation quality is preserved fairly
well.

5.2.2 Runtime performance for the LHO algorithm

We evaluate the runtime performance of LHO as a function of (I) n, (II) K , and (III) |L ′|.
To isolate the effect of each parameter, we vary just one and keep the other two fixed. We
then examine the joint impact of all three parameters, which is given by the time complex-
ity formula O

(
(n − |L ′|) · K 2 · log((n − |L ′|) · K 2)

)
, because we used Dijkstra’s algorithm

with binary heap to find shortest paths (see Sect. 4.1). For brevity, we use λ to denote
(n − |L ′|) · K 2 · log((n − |L ′|) · K 2). Thus, we expect the runtime to be linear in λ.

Impact of histogram length n We show that runtime increases with n, in Fig. 11a, b. This
is because, when n is larger, there are more bins into which the counts may be redistributed.
More bins means that the multipartite graph GTR, created by LHO, has more layers (and
consequently more nodes and edges).

123

Location histogram privacy by Sensitive Location Hiding… 2639

(a) NYC (b) TKY
n

R
un

tim
e

(s
)

100 200 300 400

20
40

60
80

LHO

y=0.017 ⋅ x − 26.9

R2=0.974

(c) NYC
n

R
un

tim
e

(s
)

100 200 300 400

10
20

30
40

50
60

LHO

y=0.012 ⋅ x − 18.9

R2=0.97

(d) TKY

Fig. 11 Runtime versus length n, for each histogram with K = 20 in: a NYC, and b TKY. Runtime versus
length n, for synthetic histograms with varying n, K = 20, and: c N = 192, d N = 642

(a) NYC (b) TKY

Fig. 12 Runtime versus K , for each histogram with: a n = 30, and b n = 40

Note also that runtime increases linearly with n (i.e., the linear regression models in
Fig. 11a, b are good fit), as expected by the time complexity analysis (see Sect. 4.1), and that
the algorithm took less than 3 seconds. We also show that runtime increases linearly with
n when the algorithm is applied to the synthetic histograms, which are more demanding to
sanitize (see Fig. 11c, d).

Impact of total frequency of sensitive locations K We show that runtime increases with
K , in Fig. 12a, b. This is because there are more counts that are redistributed into the bins
of nonsensitive locations when K is larger. That is, the graph GTR contains more edges
and nodes. The runtime increases approximately quadratically with K (i.e., the quadratic
regression models in Fig. 12a, b are good fit), as expected by the time complexity analysis
(see Sect. 4.1), and LHO took less than 100 seconds.

Impact of number of sensitive locations |L ′| We show that runtime increases with |L ′|, in
Fig. 13a, b. This is because there are (I) more counts that need to be redistributed into the bins
of the nonsensitive locations, and (II) fewer bins to which the counts may be redistributed
to, and, as demonstrated above, the impact of more counts on runtime is larger than that of
fewer bins (quadratic increase vs. linear decrease). For example, 95% of the histograms in
the NYC dataset take less than 1 second to be sanitized when |L ′| = 1, but the corresponding
percentage was 25% when |L ′| = 10. However, the algorithm remains efficient even for
|L ′| = 10, with 99% of the histograms in NYC requiring less than 5 minutes to be sanitized.

Joint impact of n, K , |L ′| In Fig. 13c, d, we report results for all histograms inNYCandTKY,
respectively. Note that runtime increases linearly with λ = (n−|L ′|)·K 2 ·log((n−|L ′|)·K 2)

123

2640 G. Loukides, G. Theodorakopoulos

(a) NYC (b) TKY (c) NYC (d) TKY

Fig. 13 Cumulative Distribution Function of runtime (i.e., ratio of histograms with runtime at most equal to
a score in x axis) versus |L ′| for: a each histogram in NYC, and b each histogram in TKY. Runtime versus
λ = (n − |L ′|) · K 2 · log((n − |L ′|) · K 2) (i.e., joint impact of n, K , |L ′| according to the time complexity
analysis) for: c each histogram in NYC, and d each histogram in TKY

(i.e., the linear regressionmodels are goodfit). This is in linewith the time complexity analysis
(see Sect. 4.1).

5.3 Target Resemblance

We evaluate the quality and runtime of RO and RH, as a function of (I) n, (II) N , and (III)
ε. We additionally examine the impact of the target histogram H ′′ on the runtime, as well
as the runtime of RO and RH when applied to histograms with large (up to the maximum
possible) length. To measure quality, we use JS-divergence (see [33] for similar results w.r.t.
L2 distance). Unless stated otherwise, H ′′ is a “uniform” histogram that has the same size,
N , and length, n, as H , and each of its counts is approximately equal to N

n . Aiming to
resemble a uniform histogram indicates a user with strong privacy requirements, since the
uniform distribution has the maximum entropy (i.e., provides the least information about the
frequencies in H to an attacker with no knowledge except N and n). Moreover, uniform
target histograms are difficult to resemble, because the original histograms typically follow
skewed distributions.

Impact of length n To illustrate the impact of n on quality and privacy, we present results
obtained for randomly selected histograms of varying n and N = 100. We do not report the
median of all histograms of certain n, because the results followed skewed distributions.

5.3.1 Quality and privacy for the RO algorithm and the RH heuristic

We show that the privacy measure dp (JS-divergence) decreases with n, in Fig. 14a, b. This
is because the larger number of bins gives more choices to the methods to reduce dp without
substantially increasing dq . Note, RO and RH achieve very similar results, suggesting that
RH is effective: the dp values for RH were no more than 1% and 2.1% higher for NYC and
TKY, respectively.

We also show that the quality measure dq (JS-divergence) is not affected by n and, as
expected, it does not exceed the threshold ε, in Fig. 14c, d. RO finds solutions with larger dq
than RH. This is because RH works in a greedy fashion. That is, the initial bins are sanitized
heavily, which increases dq and does not leave much room for sanitizing the subsequent bins
without exceeding ε.

123

Location histogram privacy by Sensitive Location Hiding… 2641

0.0

0.1

0.2

0.3

0.4

26 33 38 42
n

JS
−

di
ve

rg
en

ce
 −

 d
p

RO
RH

(a) NYC

0.0

0.2

0.4

0.6

14 20 30 35 40
n

JS
−

di
ve

rg
en

ce
 −

 d
p

RO
RH

(b) TKY

0.000

0.002

0.004

0.006

26 33 38 42
n

JS
−

di
ve

rg
en

ce
 −

 d
q

JS
−

di
ve

rg
en

ce
 −

 d
q

RO
RH

(c) NYC (d) TKY

RH

Fig. 14 dp versus length n for histograms with N = 100 in: a NYC. b TKY. dq versus length n for histograms
with N = 100 in: c NYC. d TKY

Fig. 15 a dp versus size N , b dq
versus size N , for histograms
with n = 25 in NYC

0.0

0.2

0.4

0.6

109116127140188232
N

JS
−

di
ve

rg
en

ce
 −

 d
p

RO
RH

(a) NYC

0.000

0.002

0.004

0.006

0.008

109 116 127 140 188 232
N

JS
−

di
ve

rg
en

ce
 −

 d
q

RO
RH

(b) NYC

ε

0.00

0.05

0.10

0.15

0.20

1 2 4 6 8 10 12 14 16
(10 3)

JS
di

ve
rg

en
ce

 d

p RO
RH

(a)

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016

1 2 4 6 8 10 12 14 16
(10 3)

JS
di

ve
rg

en
ce

 d

q RO
RH

(b)

Fig. 16 a dp versus threshold ε, b dq versus threshold ε, for a histogram with n = 40 and N = 100 in NYC

Impact of size N To illustrate the impact of N on quality and privacy, we present results
obtained for randomly selected histograms of varying N with n = 25 for NYC. The results
for TKY are similar (omitted). We do not report the median of all histograms of certain N ,
because the results followed skewed distributions.

We show that the privacy measure dp (JS-divergence) increases with N , in Fig. 15a. This
is because there are more counts that need to change (increase or decrease) to minimize dp
subject to dq ≤ ε. The results for RH are very close to those for RO; the dp scores for RH
are no more than 1.8% larger. This suggests that RH is an effective heuristic.

We also show that the quality measure dq (JS-divergence) is not affected by N and that
it does not exceed the threshold ε, in Fig. 15b. Again, RO finds solutions with larger dq
than RH. This is because, due to its greedy nature, RH sanitizes heavily the first bins, which
increases dq and prevents the sanitization of subsequent bins without exceeding ε.

Impact of threshold ε We show that dp (JS-divergence) decreases with ε, in Fig. 16a. This
is because both RO and RH consider a larger space of possible solutions when ε is larger,
and thus they are able to find a better solution with respect to dp .

123

2642 G. Loukides, G. Theodorakopoulos

0.0

0.5

1.0

1.5

0.5 1 5 10

ε ⋅ (10−3)
M

A
E

Original
RO
RH

(a) NYC

0.0

0.5

1.0

1.5

0.5 1 5 10

ε ⋅ (10−3)

R
M

S
E

Original
RO
RH

(b) NYC

Fig. 17 Recommendation quality for varying ε w.r.t.: a MAE , and b RMSE

n

R
un

tim
e

(s
)

25 30 35 40 45

10
− 2

10
−1

10
0

10
1

10
2

RO
RH
linear RH

(a)
n

R
un

tim
e

(s
)

70 90 110 130 150

10
− 3

10
−1

10
1

10
2

RO
RH

(b) NYC
n

R
un

tim
e

(s
)

70 90 110 130 160

10
−3

10
−1

10
1

10
2

10
3 RO

RH

(c) TKY
n

R
un

tim
e

(s
)

100 200 300 400

10
−3

10
−1

10
1

RO
RH
linear RH

(d) NYC

Fig. 18 Runtime versus length n, for: a each histogram with N = 100 in NYC, b each histogram with n > 75
in NYC, c each histogram with n > 75 in TKY, and d synthetic histograms with varying length and N = 192

In addition, the results for RH and RO are very similar; the dp for RH is at most 2.4%
(on average 0.5%) higher than that for RO. We also show that the quality measure dq (JS-
divergence) for both RO and RH is close to ε, in Fig. 16b. Again, the dq scores of RO are
slightly larger than those of RH, because RH works in a greedy fashion, as explained above.

Recommendation quality Figure 17a, b shows that MAE and RMSE are not substantially
affected by sanitization, for all tested ε values. This suggests that recommendation quality is
preserved well. In some cases, the MAE and RMSE scores for the sanitized histograms were
lower (better) than those for the original ones. This is because the recommendation scores
for these histograms approach their corresponding true location counts after sanitization.

5.3.2 Runtime performance for the RO algorithm and the RH heuristic

Impact of length nWe show that the runtime of both RO and RH increases with n, in Fig. 18a.
This is because RO runs on a multipartite graph, GTR, with more layers n, and RH needs to
consider more bins n. RH is at least two orders of magnitude more efficient than RO. Note
that RH scales close to linearly with n, which shows that the efficiency of RH is better than
what is predicted by the worst-case time complexity analysis in Sect. 4.3.

To further investigate the impact of length on runtime, we apply RO and RH to each
histogram with length larger than 75 in NYC and TKY (see Fig. 18b, c). There are 17 and 7
such histograms in NYC and TKY, respectively. These histograms are generally demanding
to sanitize, because they also have large size (up to 2061). Again, we observe that RH is more
efficient than RO by at least two orders of magnitude. In these experiments, we use ε = 10−5.
For larger ε values, the difference between the two algorithms increases, because RH scales
better than RO with respect to ε, as explained above. Repeating the same experiment using
the synthetic histograms (see Figs. 18d, 19a), we find that both RO and RH scale well with
n, and RH scales close to linearly with n.

123

Location histogram privacy by Sensitive Location Hiding… 2643

n

R
un

tim
e

(s
)

100 200 300 400

10
−3

10
−1

10
1

10
3 ear

RO
RH
linear RH

(a) TKY
N

R
un

tim
e

(s
)

100 150 200 250

10
−3

10
−1

10
1

10
3 RO

RH

(b) (c) (d)

Fig. 19 Runtime versus: a Length n, for synthetic histograms with varying length and N = 642. b Size N ,
for each histogram with n = 25 in NYC. c Threshold ε, for a histogram with n = 40 and N = 100 in NYC.
d JS-divergence between a histogram H with n = 40 and N = 100 in NYC and different target histograms
with increasing JS-divergence from H

Impact of size N We show that the runtime of both RO and RH increases with N , in Fig. 19b.
This is because the multipartite graph GTR built by RO has more nodes O(N · n) and thus
more paths, and RH needs to consider more “moves” from source to destination bins. Again,
RH is at least two orders of magnitude more efficient than RO.

Impact of threshold ε We show that the runtime of both RO and RH increases with ε, in
Fig. 19c. This is because, when ε is larger, the multipartite graph built by RO has more
edges and thus more paths, and RH considers more “moves” from source to destination bins.
RH is at least two orders of magnitude more efficient than RO, and it scales better with ε,
i.e., linearly versus quadratically (proportionally to ε4). This suggests that RH is a practical
heuristic for large ε values, given that it produces solutions similar to those of RO.

Impact of target histogram H ′′ We show that the runtime of RH increases with the distance
J S(H , H ′′), for different target histograms H ′′, in Fig. 19d. This is because RH has more
choices (i.e., there are more ways to transfer the counts of a source bin to a destination bin,
when J S(H , H ′′) is larger). In this experiment, we use ε = 0.5, because the runtimes with
the default ε value are too small (few milliseconds) to obtain a meaningful result. We do not
report the result for RO, because its runtime is not affected by the target histograms. The
reason is that RO builds the same multipartite graph for each target histogram H ′′, since H ′′
has the same length n and size N with H .

6 Related work

This paper is at the intersection of location privacy and histogramprivacy,which are discussed
in Sects. 6.1 and 6.2, respectively. We also discuss privacy-preserving recommendation in
Sect. 6.3, as a potential application of our methods.

6.1 Location privacy

Research on location privacy focuses on (I) location-based services (LBS), or (II) location
data publishing.

123

2644 G. Loukides, G. Theodorakopoulos

Research on LBS is mostly inspired from applications running on GPS-enabled mobile
devices like smartphones and tablets—but also cars. Consequently, it addresses privacy for
users who need to send data on the fly (as they move about), to a server that will provide them
with some useful service (e.g., the location of the nearest restaurant). Privacy mechanisms
in such scenarios need to make protection decisions on the fly, without knowing the future
locations that the user will visit [8,18,50,51]. For example, [50] proposes a method for
preventing the inference of locations that have been or will be visited by a user, based on
what the user shares at any moment with a location-based service. Other recent research
protects sensitive spatiotemporal location sequences [1]. As another example, [18] proposes
a method that prevents an LBS server from aggregating the locations sent by a user into a
histogram and then associating this histogram with the user. The method perturbs the user’s
locations one by one, before they are sent to the LBS server, by adding noise to them in order
to enforce the privacy notion of geo-indistinguishability [9].

Research on location data publishing is inspired from the publication of large datasets,
possibly as a database. Consequently, it addresses more static scenarios, in which the whole
dataset to be protected is given to the protection algorithm as input [4,10–12,15,43,53,54].
There areworks showing the feasibility of attacks on pseudonymized data (i.e., data inwhich a
user’s identifying information is representedby a random id) [4], or on completely anonymized
data (i.e., a sequence (e1, . . . , en), where the event ei = (l, t), i ∈ [1, n], represents a visit to
location l at time t and is not associated to a specific user) [54]. For example, reference [54]
shows how an attacker can use completely anonymized data to associate a user with their
event subsequence (path). There are also works [11,12,15,43,53] which propose methods for
anonymizing user-specific location data (i.e., a dataset where each record corresponds to a
different user and contains a sequence of locations visited by the user and/or the time that
these visits occurred). For example, reference [53] proposes algorithms for preventing the
inference of a user’s sensitive locations by an attacker knowing a subsequence of the user’s
locations. The algorithms of [53] use suppression (deletion) of locations and splitting of user
sequences into carefully selected subsequences.

Yet, no research in location privacy has aimed to protect histograms of locations. The
object/fact to be protected has been either a single location (in the LBS setting), or a
(sub)sequence of locations (in the location data publishing setting). However, protecting
single locations separately provides no guarantee about the effect on the histogram as a
whole. It could happen that, e.g., each individual location is replaced with another location,
so no single location is disclosed/compromised, but the histogram as a whole is very similar
or even identical with the original one. Similarly, protecting location data could again lead
to the same problem. It could happen that individual locations in a user’s sequence are modi-
fied, but the histogram remains unprotected. Thus, works on LBS or location data publishing
cannot be used as alternatives to our approach.

6.2 Histogram privacy

Research on histogram privacy is inspired from applications where a histogram is published
as a statistical summary (approximation) of the distribution of an attribute in a (relational)
dataset. For example, consider a dataset,where each record contains the zip-code of a different
individual. The distribution of the zip-code attribute in the dataset can be represented with a
histogram, where each bin is associated with a different zip-code value and the bin frequency
(count) is the number of individuals in the dataset who live in the zip-code. Publishing
such histograms is useful for performing count query answering and data mining tasks (e.g.,

123

Location histogram privacy by Sensitive Location Hiding… 2645

clustering), but it may lead to the disclosure of sensitive information about individuals [2,
16,23,26,45,61,68]. For instance, consider an adversary who knows the names of all three
individuals, i1, i2, and i3, in a (non-released) dataset but the zip-codes of only i1 and i2.When
the published histogram contains the count of each zip-code in the dataset, the adversary
can infer the zip-code of i3 from the histogram. To prevent this type of disclosure, the
frequencies in the histogram are perturbed, typically by noise addition, in order to satisfy
differential privacy [17]. Informally, differential privacy ensures that the inferences that can
be made by an adversary about an individual will be approximately independent of whether
the individual’s record is included in the dataset or not.

Several works have applied differential privacy to sanitize histograms [2,16,23,26,45,
61,68]. A straightforward way to achieve this is by adding noise to the frequency of each
bin of the histogram, according to the Laplace mechanism [17]. However, this procedure
results in excessive utility loss [2]. Therefore, existing works [2,16,23,26,45,61,68] employ
clustering to reduce the loss of utility, in three steps: (I) they cluster bins with similar fre-
quencies together. (II) They apply the Laplace mechanism to the average (mean or median)
of the frequencies in each cluster, to obtain a “noisy center” of the cluster. (III) They pub-
lish a histogram where each frequency bin in each cluster is replaced by the noisy center
of its corresponding cluster. While clustering incurs some utility loss, it reduces the noise
that is added by the Laplace mechanism, leading to better overall utility. Specifically, the
works of [2,61] require each cluster to be formed of adjacent bins, while the work of [23]
requires each cluster to have the same number of bins. Subsequent works [16,26,45,68] lift
these restrictions to further improve utility. For example, reference [68] proposes a cluster-
ing framework, which can be instantiated by optimal or heuristic algorithms that trade-off
the utility loss incurred by clustering with the utility loss incurred by the Laplace mecha-
nism.

At a high level, our work is similar to the works in [2,16,23,26,45,61,68], in that it aims
to protect a histogram (or it can be applied to each histogram in a dataset of histograms).
However, it differs from the works in [2,16,23,26,45,61,68] along two dimensions: (I) it
considers a histogram that represents the locations associated to a single user, instead of a
histogramrepresenting thevalues ofmanydifferent individuals in an attribute of anunderlying
dataset. (II) It sanitizes a histogram by redistributing counts between bins, as specified by
Problems 3.1, 3.2, and 3.3, instead of adding noise into the counts. Thus, the methods in
[2,16,23,26,45,61,68] cannot be used to deal with the problems we consider. In fact, applying
any of the methods in [2,16,23,26,45,61,68] to a histogram that represents the locations of a
single userwould simply prevent the inference of the exact frequencies (counts) of locations in
the user’s histogram. It would not protect against the disclosure of visits to sensitive locations
(i.e., it cannot solve the SLH problem), nor against the disclosure of the fact that the histogram
is similar/dissimilar to a target histogram (i.e., it cannot solve the TA/TR problem).

A different, less related class of works can be used to protect a histogram by making it
indistinguishablewithin a set of histograms that is published [20,60]. Theseworks differ from
ours in their setting, in their privacy notion, or both. They differ in terms of setting because
they consider a set of histograms (or more generally, vectors of frequencies [20,60]) rather
than a single histogram with the location information of a single user. They differ in terms of
privacy notion because they aim to prevent the disclosure of the identity of individuals, from
the published set of histograms (i.e., the association of a histogram with identity information
that is known to an attacker), rather than the inference of location information from a single
histogram.

123

2646 G. Loukides, G. Theodorakopoulos

6.3 Privacy-preserving recommendation

There are several privacy-preserving recommendation methods. Most of them (e.g., [34,46])
assume there is a trusted server that applies privacy protection (e.g., anonymization) jointly
to the data of many users. Unlike these methods, we assume a different setting, in which
the user protects their histogram by themselves. Our setting is conceptually similar to the
untrusted server setting [42,48,49], in which a user protects their data prior to disseminat-
ing them. Specifically, [48,49] propose methods in which a user applies differential privacy,
while [42] proposes a method in which the user applies randomized perturbation. The pri-
vacy objective of these methods is to prevent the inference of exact user values. In contrast,
we do not directly aim to prevent the inference of exact user values: our privacy notions are
formalized by the SLH and TA/TR problems. Also, we do not require that the protected his-
tograms will be used in the task of recommendation, although we experimentally show that
the protected histograms that are produced by our approach allow preserving the accuracy
of recommendation fairly well.

7 Conclusion

In this paper, we propose two new notions of histogram privacy, Sensitive Location Hiding
and Target Avoidance/Resemblance, which lead to the following optimization problems: the
Sensitive Location Hiding problem (SLH), which seeks to enforce the notion of Sensitive
Location Hiding with optimal quality, and the Target Avoidance/Resemblance (TA/TR) prob-
lem, which seeks to enforce Target Avoidance/Resemblance with bounded quality loss. We
also propose optimal algorithms for each problem, as well as an efficient heuristic for the
TA/TR problem. Our experiments demonstrate that our methods are effective at preserving
the distribution of locations in a histogram, as well as the quality of recommendations based
on these locations, while being fairly efficient.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

A.1 Proof of weak NP-hardness for the SLH problem

We first reduce the weakly NP-hardMultiple Choice Knapsack (MCK) problem [24] to the
special case of SLH, where |L ′| = 1. The MCK problem is defined as follows4:

min
∑

i∈[1,m]

∑
j∈Ci

ci j · xi j (A.1)

4 The problem also appears with ≥ in constraint I [52]. This variation is referred to as MCK≥ and can be
transformed to MCK in polynomial time [24].

123

http://creativecommons.org/licenses/by/4.0/

Location histogram privacy by Sensitive Location Hiding… 2647

subject to: (I)
∑

i∈[1,m]
∑

j∈Ci
wi j · xi j = b, (II)

∑
j∈Ci

xi j = 1, i = 1, . . .m, and (III)
xi j ∈ {0, 1}, i = 1, . . . ,m, j ∈ Ci .
In MCK , we are given a set of elements subdivided into m, mutually exclusive classes,

C1, . . . ,Cm , and a knapsack. Each class Ci has |Ci | elements. Each element j ∈ Ci has a
cost ci j ≥ 0 and a weight wi j . The goal is to minimize the total cost (Eq. A.1) by filling
the knapsack with one element from each class (constraint II), such that the weights of the
elements in the knapsack satisfy the constraint I, where b ≥ 0 is a constant. The variable xi j
takes a value 1, if the element j is chosen from class Ci and 0 otherwise (constraint III).

We map a given instance IMCK to an instance ISLH of the special case of SLH in poly-
nomial time, as follows:

(I) Each class Ci , i ∈ [1,m], is mapped to a location Li /∈ L ′ whose count f (Li) in H is
arbitrary.

(II) A sensitive location Lm+1 ∈ L ′ (without loss of generality) is considered. The count
of Lm+1 in H is set to f (Lm+1) = b. Thus, H = (f (L1), . . . , f (Lm), b).

(III) Each element xi j with weight wi j and cost ci j is mapped to an operation on H , which
decreases f (Lm+1) by wi j and increases f (Li) by wi j (i.e., transfers wi j visits from
Lm+1 to Li) and incurs q(H , H ′[i]) = ci j . If there are multiple operations such that
q(H , H ′[i]) = ci j (e.g., when q is the L1 distance), we select one arbitrarily. When
xi j = 1, its corresponding operation is applied to H . The result of applying all opera-
tions on H is referred to as the sanitized histogram H ′.

We prove the correspondence between a solution S to IMCK and a solution H ′ to ISLH ,
as follows: we first prove that, if S is a solution to IMCK , then H ′ is a solution to ISLH .
Since

∑
i∈[1,m]

∑
j∈Ci

wi j · xi j = b, f (Lm+1) is decreased by b. Thus, H ′[m + 1] = 0
(i.e., all visits to Lm+1 are transferred to nonsensitive locations) and

∑
i∈[1,m+1] H ′[i] =∑

i :Li /∈L ′ H ′[i] = |H |1 (i.e., H ′ has the same size with H). By construction, H ′ has also
the same length with H . Since

∑
i∈[1,m]

∑
j∈Ci

ci j · xi j is minimum,
∑

i∈[1,m] q(H , H ′[i])
is minimum. Also, q(H , H ′[m + 1]) (i.e., the loss for transferring all visits from Lm+1 to
nonsensitive locations) is constant. Thus,dq(H , H ′) = ∑

i∈[1,m+1] q(H , H ′[i]) isminimum.
Therefore, H ′ is a solution to ISLH .

We now prove that, if H ′ is a solution to ISLH , then S is a solution to IMCK . Since∑
i s.t . Li /∈L ′ H ′[i] = |H |1, it holds that H ′[m + 1] = 0. Thus, f (Lm+1) is decreased by

b (all visits to Lm+1 were transferred to nonsensitive locations) and
∑

i∈[1,m]
∑

j∈Ci
wi j ·

xi j = b. Since dq(H , H ′) = (
∑

i∈[1,m] q(H , H ′[i])) + q(H , H ′[m + 1]) is minimum
and q(H , H ′[m + 1]) is constant,

∑
i∈[1,m] q(H , H ′[i]) is minimum. This implies that∑

i∈[1,m]
∑

j∈Ci
ci j · xi j is minimum. Thus, S is a solution to IMCK .

Therefore, the special case of the SLH problem with |L ′| = 1 is weakly NP-hard, and,
clearly, the SLH problem with |L ′| ≥ 1, is also weakly NP-hard.

A.2 Proof of weak NP-hardness for the TR problem

We reduce the weakly NP-hardMultiple Choice Knapsack (MCK≥) problem [24,52] to the
TR problem. The MCK≥ problem is defined as follows:

min
∑

i∈[1,n]

∑
j∈Ci

ci j · xi j (A.2)

subject to: (I)
∑

i∈[1,n]
∑

j∈Ci
wi j · xi j ≥ b, (II)

∑
j∈Ci

xi j = 1, i = 1, . . . n, and (III)
xi j ∈ {0, 1}, i = 1, . . . , n, j ∈ Ci . In MCK≥, we are given a set of elements subdivided into

123

2648 G. Loukides, G. Theodorakopoulos

n, mutually exclusive classes, C1, . . . ,Cn , and a knapsack. Each class Ci has |Ci | elements.
Each element j ∈ Ci has a cost ci j ≥ 0 and a weight wi j . The goal is to minimize the total
cost (Eq. A.2) by filling the knapsack with one element from each class (constraint II), such
that the weights of the elements in the knapsack satisfy the constraint I, where b ≥ 0 is a
constant. The variable xi j takes a value 1, if the element j is chosen from class Ci and 0
otherwise (constraint III).

We map a given instance IMCK≥ to an instance ITR of TR in polynomial time, as follows:

(I) Each class Ci , i ∈ [1, n], is mapped to a location Li , which has an arbitrary count in
H and a possibly different, arbitrary count in H ′′.

(II) The constant ε is set to n − b
maxi∈[1,n], j∈Ci wi j

.

(III) We choose q() and p() to be normalized in [0, 1] such that each element xi j with
weightwi j and cost ci j is mapped to a value ki j such that the following conditions hold:
q(H , H [i] + ki j) = 1 − wi j

maxi∈[1,n], j∈Ci wi j
and p(H [i] + ki j , H ′′) = ci j

maxi∈[1,n], j∈Ci ci j
.

The normalization of q() and p() can be done in polynomial time because q() and
p() can take O(N · n) values. If there are multiple values of ki j satisfying the two
conditions, one of these values is selected arbitrarily. When xi j = 1, ki j is added into
H [i], obtaining H ′[i] = H [i] + ki j .

We prove the correspondence between a solution S to IMCK≥ and a solution H ′ to ITR:
We first prove that, if S is a solution to IMCK≥ , then H ′ is a solution to ITR. Since∑
i∈[1,n]

∑
j∈Ci

ci j · xi j is minimum,
∑

i∈[1,n]
(
(maxi∈[1,n], j∈Ci ci j) · p(H ′[i], H ′′)

)
is mini-

mum. Thus, dp(H ′, H ′′) = ∑
i∈[1,n] p(H ′[i], H ′′) is minimum. Since

∑
i∈[1,n]

∑
j∈Ci

wi j ·
xi j ≥ b and b = maxi∈[1,n], j∈Ci wi j · (n − ε), it holds that

∑
i∈[1,n](1 − q(H , H [i] +

ki j)) ≥ n − ε. This implies n − dq(H , H ′) ≥ n − ε and dq(H , H ′) ≤ ε.
Therefore, H ′ is a solution to ITR. We now prove that, if H ′ is a solution to ITR,
then S is a solution to IMCK≥ . Since dp(H ′, H ′′) = ∑

i∈[1,n] p(H ′[i], H ′′) is min-
imum,

∑
i∈[1,n]

(
(maxi∈[1,n], j∈Ci ci j) · p(H ′[i], H ′′[i])) is minimum. This implies that∑

i∈[1,n]
∑

j∈Ci
ci j · xi j is minimum. Since dq(H , H ′) = ∑

i∈[1,n] q(H , H ′[i]) ≤ ε and ε =
n− b

maxi∈[1,n], j∈Ci wi j
, it holds that n−∑

i∈[1,n] q(H , H ′[i]) ≥ n− ε = b
maxi∈[1,n], j∈Ci wi j

. This

implies
∑

i∈[1,n](1−q(H , H [i]+ki j)) ≥ b
maxi∈[1,n], j∈Ci wi j

and
∑

i∈[1,n]
∑

j∈Ci
wi j ·xi j ≥ b.

Thus, S is a solution to IMCK≥ . Therefore, TR is weakly NP-hard.

A.3 Reduction from the TA to the TR problem

The TA problem can be reduced to TR in polynomial time: given an instance IT A of TA,
we can construct an instance ITR of TR in polynomial time, by mapping H and H ′′ to
histograms HTR = H and H ′′

TR = H ′′, defining dp(H ′
TR, H ′′

TR) = 1+1
dp(H ′,H ′′)+1 ∈ (0, 2] and

dq(HTR, H ′
TR) = dq(H , H ′), and setting εTR = ε. Given a feasible solution H ′

TR of ITR, we
canmap it back to a feasible solution H ′ of IT A with cost dp(H ′, H ′′) = 1+1

dp(H ′
TR,H ′′

TR)
−1 ≥ 0

in polynomial time. This requires constructing H ′ = H ′
TR, which clearly is a solution to IT A.

References

1. Abul O, Bayrak C (2018) From location to location pattern privacy in location-based services. Knowl Inf
Syst 56(3):533–557. https://doi.org/10.1007/s10115-017-1146-x

123

https://doi.org/10.1007/s10115-017-1146-x

Location histogram privacy by Sensitive Location Hiding… 2649

2. Acs G, Castelluccia C, Chen R (2012) Differentially private histogram publishing through lossy com-
pression. In: ICDM, pp 1–10

3. Ağır B, Huguenin K, Hengartner U, Hubaux JP (2016) On the privacy implications of location semantics.
Proc Priv Enhanc Technol 2016(4):165–183

4. Arapinis M, Mancini LI, Ritter E, Ryan M (2014) Privacy through pseudonymity in mobile telephony
systems. In: NDSS

5. BettiniC,RiboniD (2015)Privacyprotection in pervasive systems: state of the art and technical challenges.
Pervasive Mobile Comput 17(Part B):159–174

6. Bóna M (2011) A walk through combinatorics: an introduction to enumeration and graph theory. World
Scientific, Singapore

7. Breese JS, Heckerman D, Kadie C (1998) Empirical analysis of predictive algorithms for collaborative
filtering. In: Uncertainty in artificial intelligence, pp 43–52

8. ChatzikokolakisK,AndrésME,BordenabeNE, Palamidessi C (2013)Broadening the scope of differential
privacy using metrics. In: PETS, pp 82–102

9. Chatzikokolakis K, Palamidessi C, Stronati M (2015) Location privacy via geo-indistinguishability. ACM
SIGLOG News 2(3):46–69

10. ChenR,AcsG, Castelluccia C (2012)Differentially private sequential data publication via variable-length
n-grams. In: CCS, pp 638–649

11. Chen R, Fung BCM, Mohammed N, Desai BC, Wang K (2013) Privacy-preserving trajectory data pub-
lishing by local suppression. Inf Sci 231:83–97

12. Cicek AE, NergizME, Saygin Y (2014) Ensuring location diversity in privacy-preserving spatio-temporal
data publishing. VLDB J 23(4):609–625

13. Damiani ML, Bertino E, Silvestri C et al (2010) The probe framework for the personalized cloaking of
private locations. Trans Data Priv 3(2):123–148

14. Dao TH, Jeong SR, Ahn H (2012) A novel recommendation model of location-based advertising. Expert
Syst Appl 39(3):3731–3739

15. Domingo-Ferrer J, Trujillo-Rasua R (2012) Microaggregation- and permutation-based anonymization of
movement data. Inf Sci 208:55–80

16. Doudalis S, Mehrotra S (2017) SORTAKI: framework to integrate sorting with differential private his-
togramming algorithms. In: PST

17. Dwork C, McSherry F, Nissim K, Smith A (2006) Calibrating noise to sensitivity in private data analysis.
In: Theory of cryptography, pp 265–284

18. Fawaz K, Shin KG (2014) Location privacy protection for smartphone users. In: CCS. ACM, New York,
pp 239–250

19. Gedik B, Liu L (2008) Protecting location privacy with personalized k-anonymity: architecture and
algorithms. IEEE Trans Mob Comput 7(1):1–18

20. Ghinita G, Karras P, Kalnis P, Mamoulis N (2007) Fast data anonymization with low information loss.
In: VLDB, pp 758–769

21. Ghose A, Li B, Liu S (2015) Digitizing offline shopping behavior towards mobile marketing. In: Inter-
national conference on information systems

22. Hasan S, Ukkusuri SV (2015) Location contexts of user check-ins to model urban geo life-style patterns.
PLoS ONE 10(5):e0124819

23. Kellaris G, Papadopoulos S (2013) Practical differential privacy via grouping and smoothing. In: PVLDB,
pp 301–312

24. Kellerer H, Pferschy U, Pisinger D (2004) The multiple-choice knapsack problem. Springer, Berlin, pp
317–347

25. Le Boudec JY (2010) Performance evaluation of computer and communication systems. EPFL Press,
Lausanne

26. Li H, Cui J, Lin X, Ma J (2016) Improving the utility in differential private histogram publishing: theo-
retical study and practice. In: IEEE big data, pp 1100–1109

27. Li T, Li N, Zhang J (2009) Modeling and integrating background knowledge in data anonymization. In:
ICDE, pp 6–17

28. Lian D, Ge Y, Zhang F, Yuan NJ, Xie X, Zhou T, Rui Y (2015) Content-aware collaborative filtering for
location recommendation based on human mobility data. In: ICDM, pp 261–270

29. Lian D, Zhao C, Xie X, Sun G, Chen E, Rui Y (2014) GeoMF: joint geographical modeling and matrix
factorization for point-of-interest recommendation. In: KDD, pp 831–840

30. Lin J (1991) Divergence measures based on the Shannon entropy. IEEE Trans Inf Theor 37(1):145–151
31. Loukides G, Gkoulalas-Divanis A, Shao J (2013) Efficient and flexible anonymization of transaction data.

Knowl Inf Syst 36(1):153–210
32. Loukides G, Gwadera R (2015) Optimal event sequence sanitization. In: SIAM SDM, pp 775–783

123

2650 G. Loukides, G. Theodorakopoulos

33. Loukides G, Theodorakopoulos G (2019) Location histogram privacy by sensitive location hiding and
target histogram avoidance/resemblance (extended version). arXiv:1912.00055

34. McSherry F, Mironov I (2009) Differentially private recommender systems: building privacy into the
Netflix prize contenders. In: KDD, pp 627–636

35. Melville P, Sindhwani V (2017) Recommender systems. Springer, Berlin, pp 1056–1066
36. Melville P, Yang SM, Saar-Tsechansky M, Mooney R (2005) Active learning for probability estimation

using Jensen–Shannon divergence. In: ECML, pp 268–279
37. Mikians J, Gyarmati L, Erramilli V, Laoutaris N (2012) Detecting price and search discrimination on the

internet. In: HotNets, pp 79–84
38. Mikians J, Gyarmati L, Erramilli V, Laoutaris N (2013) Crowd-assisted search for price discrimination

in e-commerce: first results. In: CoNext, pp 1–6
39. Murakami T, Kanemura A, Hino H (2017) Group sparsity tensor factorization for re-identification of open

mobility traces. IEEE Trans Inf Forensics Sec 12(3):689–704
40. Nielsen F,NockR,Amari Si (2014)On clustering histogramswith k-means by usingmixedα-divergences.

Entropy 16:3273–3301
41. Papadimitriou CH (1994) Computational complexity. Addison-Wesley, Boston
42. Polat H, Du W (2003) Privacy-preserving collaborative filtering using randomized perturbation tech-

niques. In: ICDM, pp 625–628
43. Poulis G, Skiadopoulos S, Loukides G, Gkoulalas-Divanis A (2014) Apriori-based algorithms for km-

anonymizing trajectory data. Trans Data Priv 7(2):165–194
44. Pugliese L, Di P, Guerriero F (2013) Dynamic programming approaches to solve the shortest path problem

with forbidden paths. Optim Methods Softw 28(2):221–255
45. QardajiW,YangW, Li N (2013) Understanding hierarchical methods for differentially private histograms.

PVLDB 6(14):1954–1965
46. Sakuma J, Osame T (2018) Recommendation with k-anonymized ratings. Trans Data Priv 11(1):47–60
47. Sedgewick R, Wanye K (2011) Algorithms. Addison-Wesley, Boston
48. Shen Y, Jin H (2014) Privacy-preserving personalized recommendation: an instance-based approach via

differential privacy. In: ICDM, pp 540–549
49. Shen Y, Jin H (2016) Epicrec: towards practical differentially private framework for personalized recom-

mendation. In: CCS, pp 180–191
50. Shokri R, Theodorakopoulos G, Troncoso C (2017) Privacy games along location traces: a game-theoretic

framework for optimizing location privacy. ACM Trans Privacy Secur (TOPS) 19(4):11
51. Shokri R, Theodorakopoulos G, Troncoso C, Hubaux JP, Boudec JYL (2012) Protecting location privacy:

optimal strategy against localization attacks. In: CCS, pp 617–627
52. Sinha P, Zoltners AA (1979) The multiple-choice knapsack problem. Oper Res 27(3):503–515
53. Terrovitis M, Poulis G, Mamoulis N, Skiadopoulos S (2017) Local suppression and splitting techniques

for privacy preserving publication of trajectories. IEEE Trans Knowl Data Eng 29(7):1466–1479
54. Tsoukaneri G, Theodorakopoulos G, Leather H, Marina MK (2016) On the inference of user paths from

anonymized mobility data. In: IEEE European symposium on security and privacy, pp 199–213
55. Velardi P, Cucchiarelli A, Petit M (2007) A taxonomy learning method and its application to characterize

a scientific web community. IEEE Trans Knowl Data Eng 19(2):180–191
56. Vissers T, Nikiforakis N, Bielova N, JoosenW (2014) Crying wolf? On the price discrimination of online

airline tickets. In: HotPETs 2014
57. Weichselbaumer D (2003) Sexual orientation discrimination in hiring. Labour Econ 10(6):629–642
58. Wu Z, Li G, Liu Q, Xu G, Chen E (2018) Covering the sensitive subjects to protect personal privacy in

personalized recommendation. IEEE Trans Serv Comput 11(3):493–506
59. Xiao X, Tao Y (2006) Personalized privacy preservation. In: Proceedings of the 2006 ACM SIGMOD

international conference on management of data, SIGMOD’06. ACM, New York, pp 229–240
60. Xu J, Wang W, Pei J, Wang X, Shi B, Fu AWC (2006) Utility-based anonymization using local recoding.

In: KDD, pp 785–790
61. Xu J, Zhang Z, Xiao X, Yang Y, Yu G, Winslett M (2013) Differentially private histogram publication.

VLDB J 22(6):797–822
62. Yang D (2017) https://sites.google.com/site/yangdingqi/home/foursquare-dataset
63. Yang D, Zhang D, Zheng VW, Yu Z (2015) Modeling user activity preference by leveraging user spatial

temporal characteristics in lbsns. IEEE Trans Syst Man Cybern 45(1):129–142
64. Yao Z, Fu Y, Liu B, Liu Y, Xiong H (2016) POI recommendation: A temporal matching between POI

popularity and user regularity. In: ICDM, pp 549–558
65. Yu Y, Chen X (2015) A survey of point-of-interest recommendation in location-based social networks.

In: AAAI workshop on trajectory-based behavior analytics

123

http://arxiv.org/abs/1912.00055
https://sites.google.com/site/yangdingqi/home/foursquare-dataset

Location histogram privacy by Sensitive Location Hiding… 2651

66. Zaki MJ Jr, Meira W (2014) Data mining and analysis: fundamental concepts and algorithms. Cambridge
University Press, Cambridge

67. Zhang H, Yan Z, Yang J, Tapia EM, Crandall DJ (2014) mFingerprint: privacy-preserving user modeling
with multimodal mobile device footprints. In: SBP, pp 195–203

68. Zhang X, Chen R, Xu J, Meng X, Xie Y (2014) Towards accurate histogram publication under differential
privacy. In: SIAM SDM, pp 587–595

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Grigorios Loukides is currently an Assistant Professor (Lecturer) in the
Department of Informatics, King’s College London. Before joining King’s,
he was a Royal Academy of Engineering Research Fellow, hosted at Cardiff
University, and prior to that he was a Postdoctoral Research Fellow at Van-
derbilt University. Grigorios obtained a Ph.D. degree in Computer Science
from Cardiff University. His research interests are in data privacy, data min-
ing, and biomedical informatics.

George Theodorakopoulos is a Senior Lecturer at the School of Com-
puter Science and Informatics, Cardiff University, which he joined in
2012. From 2007 to 2011, he was a Senior Researcher at the Ecole
Polytechnique Federale de Lausanne (EPFL), Switzerland. He received
the M.S. and Ph.D. degrees from the University of Maryland, College
Park, MD, USA, in 2004 and 2007, in both electrical and computer
engineering. His research interests are in data privacy and security in
computer networks.

123

	Location histogram privacy by Sensitive Location Hiding and Target Histogram Avoidance/Resemblance
	Abstract
	1 Introduction
	2 Overview and motivation of our approach
	2.1 Sensitive Location Hiding
	2.2 Target Resemblance

	3 Background, problem definitions, and adversary models
	3.1 Preliminaries
	3.1.1 Quality loss

	3.2 The sensitive Location Hiding problem: adversary model and formal definition
	3.2.1 Solutions to the SLH optimization problem satisfy the desired privacy property

	3.3 The Target Resemblance problem: adversary model and formal definition
	3.3.1 Solutions to the TR optimization problem satisfy the desired privacy property

	3.4 The Target Avoidance problem

	4 Algorithms
	4.1 LHO: an optimal algorithm for SLH
	4.2 Optimal algorithm for Target Resemblance
	4.3 Heuristic for Target Resemblance

	5 Evaluation
	5.1 Setup and datasets
	5.2 Evaluation of the LHO algorithm
	5.2.1 Quality preservation for the LHO algorithm
	5.2.2 Runtime performance for the LHO algorithm

	5.3 Target Resemblance
	5.3.1 Quality and privacy for the RO algorithm and the RH heuristic
	5.3.2 Runtime performance for the RO algorithm and the RH heuristic

	6 Related work
	6.1 Location privacy
	6.2 Histogram privacy
	6.3 Privacy-preserving recommendation

	7 Conclusion
	A Appendix
	A.1 Proof of weak NP-hardness for the SLH problem
	A.2 Proof of weak NP-hardness for the TR problem
	A.3 Reduction from the TA to the TR problem

	References

