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Abstract
Bilevel optimization problems have received a lot of attention in the last years and
decades. Besides numerous theoretical developments there also evolved novel solution
algorithms for mixed-integer linear bilevel problems and the most recent algorithms
use branch-and-cut techniques from mixed-integer programming that are especially
tailored for the bilevel context. In this paper, we consider MIQP-QP bilevel prob-
lems, i.e., models with a mixed-integer convex-quadratic upper level and a continuous
convex-quadratic lower level. This setting allows for a strong-duality-based transfor-
mation of the lower levelwhich yields, in general, an equivalent nonconvex single-level
reformulation of the original bilevel problem. Under reasonable assumptions, we
can derive both a multi- and a single-tree outer-approximation-based cutting-plane
algorithm. We show finite termination and correctness of both methods and present
extensive numerical results that illustrate the applicability of the approaches. It turns
out that the proposed methods are capable of solving bilevel instances with sev-
eral thousand variables and constraints and significantly outperform classical solution
approaches.
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1 Introduction

Bilevel optimization problems are used in various applications, e.g., in energy markets
[9,12,20,29,31,34,39], in critical infrastructure defense [11,16], or in pricing prob-
lems [15,40] to model hierarchical decision processes. As such, they embed one
optimization problem, the so-called lower-level problem, into the constraints of a
so-called upper-level problem. This leads to inherent nonconvexities, which render
already linear bilevel problems with a linear upper- and lower-level problem NP-hard;
see, e.g., [14,32,35].

In this work, we study mixed-integer quadratic bilevel problems of the form

min
x,ȳ

qu(x, ȳ) = 1

2
x�Hux + c�

u x + 1

2
ȳ�Gu ȳ + d�

u ȳ

s.t. Ax + B ȳ ≥ a,

xi ∈ Z ∩ [x−
i , x+

i ] for all i ∈ I :={1, . . . , |I |},
xi ∈ R for all i ∈ R:={|I | + 1, . . . , nx },
ȳ ∈ argminy

{
ql(y) = 1

2 y
�Gl y + d�

l y : CxI + Dy ≥ b, y ∈ R
ny

}
, (1)

where Hu ∈ R
nx×nx , Gu ∈ R

ny×ny , and Gl ∈ R
ny×ny are symmetric and positive

semidefinite matrices. Furthermore, we have vectors cu ∈ R
nx , du, dl ∈ R

ny , matrices
A ∈ R

mu×nx , B ∈ R
mu×ny , C ∈ R

ml×|I |, D ∈ R
ml×ny , as well as right-hand side

vectors a ∈ R
mu and b ∈ R

ml . The variables x = (xI , xR) denote the integer (xI ) and
continuous (xR) upper-level variables and y denotes the (continuous) lower-level vari-
ables. Note that we w.l.o.g. ordered the integer and continuous upper-level variables
for the ease of presentation. In this setup, the upper-level problem is a convex mixed-
integer quadratic problem (MIQP) and for fixed integer upper-level variables xI , the
lower level is a convex quadratic problem (QP), i.e., it is a parametric convex QP. In
total, we are facing an MIQP-QP bilevel problem with the following key properties:

(i) All upper-level integer variables xI are bounded.
(ii) All linking variables, i.e., upper-level variables that appear in the lower-level con-

straints, are integer.

We note that in Problem (1), we implicitly assume that all integer upper-level variables
are linking variables. However, this formulation also contains the more general case of
integer upper-level variables that do not appear in the lower-level problem by setting
some columns in the matrix C to zero.

The main motivation of this work is to exploit the two properties above to
develop a multi- and a single-tree solution approach for Problem (1) based on outer
approximation for convex mixed-integer nonlinear problems (MINLP) [18,25]. The
above-mentioned two properties are required bymany other state-of-the-art algorithms
for linear bilevel problems with purely integer linear (ILP-ILP) or mixed-integer
linear upper- and lower-level problems (MILP-MILP); see, e.g. [21,23,43,50,54].
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Outer approximation for MIQP-QP bilevel problems 463

These methods successfully use bilevel-tailored branch-and-bound or branch-and-cut
methods to solve quite large instances of hundreds or thousands of variables and con-
straints. However, they cannot directly deal with continuous lower-level problems
and/or have not yet been extended to the convex-quadratic case—if this is possible
at all. An extension of [54] to the general class of mixed-integer nonlinear bilevel
problems with integer linking variables is proposed in [41] but the computational
study therein only covers mixed-integer linear bilevel problems. In [3], the authors
use multi-parametric programming techniques to solve bilevel problems with convex
MIQPs on both levels. This algorithm explicitly allows for continuous linking vari-
ables. The backbone of the approach is the computation of the optimal solutions of the
lower-level problem as a function of the upper-level decisions. This step is very costly
and, according to the authors, it is evident that this algorithm is not intended for the
solution of larger problems. The computational study included in the paper deals with
problems up to 65 variables. In addition, the algorithm is only applicable for problems
that possess unique lower-level solutions.

Aside from mixed-integer bilevel problems, algorithms for various classes of con-
tinuous convex-quadratic bilevel problems have been proposed. However, in contrast
to algorithms for mixed-integer bilevel problems, reported numerical results for con-
tinuous convex-quadratic bilevel problems seem to cover only rather small instances.A
branch-and-bound algorithm for bilevel problems with a convex upper-level problem
and a strictly convex lower-level problem is proposed in [5]. The author demonstrates
the effectiveness of his method for problems with up to 15 variables and 20 con-
straints on each level. In [6], a convex-quadratic lower-level problem is replaced by
its Karush–Kuhn–Tucker (KKT) conditions and then a branching on the comple-
mentarity constraints is applied. The authors report results for problems with up to
60 upper-level and 40 lower-level variables. This approach is generalized from linear
upper-level to convex upper-level problems in [19]. Two different descent algorithms
for bilevel problems with a strictly convex lower level and a concave or convex upper
level are proposed in [53]. However, the authors do not provide computational results.
Recently, also neural networks are used to tackle continuous convex-quadratic bilevel
problems; see [33,42].

To the best of our knowledge, tailored algorithms formixed-integer quadratic bilevel
problems of the form (1) are neither reported nor has their efficiency been demonstrated
in a comprehensive computational study. In fact, there exist no code packages that can
be used as a benchmark for our proposed solution techniques. Thus, we use well-
known single-level reformulations based on KKT conditions and strong duality as a
benchmark in our computational study in Sect. 4.

Our contribution is the following. We consider bilevel problems with a mixed-
integer convex-quadratic upper level and a convex-quadratic lower level. For this
nonconvex problem class, we provide an equivalent reformulation to a convexMINLP
that uses strong duality of the lower level; see Sect. 2. Further, in Sect. 3 we
propose a multi- and a single-tree solution approach that are both inspired by outer-
approximation techniques for convex MINLPs. We prove the correctness of the
methods and discuss further extensions. We are not aware of any other work that
applies outer-approximation techniques from the area of convex MINLP to mixed-
integer bilevel programming. In Sect. 4, we evaluate the effectiveness of the proposed
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approaches in an extensive numerical study, in which we solve instances with up to
several thousand variables and constraints. We conclude in Sect. 5.

2 A convex single-level reformulation

Most solution techniques for bilevel problems rely on a reformulation of the bilevel
problem to a single-level problem [14]. For problems with a convex lower level, the
lower-level problem can be replaced by its nonconvex KKT conditions. Especially for
problems with linear lower-level constraints, this approach is very popular, because
it allows for a mixed-integer linear reformulation of the KKT complementarity con-
ditions using additional binary variables and big-M values; see, e.g., [26]. With this
approach the bilevel problem (1) can be equivalently transformed to the following
mixed-integer single-level problem

min
x,y,v,λ

qu(x, y) (2a)

s.t. Ax + By ≥ a, xi ∈ Z ∩ [x−
i , x+

i ] for all i ∈ I , (2b)

CxI + Dy ≥ b, (2c)

Gl y + dl = DT λ, λ ≥ 0, (2d)

v ∈ {0, 1}ml , CxI + Dy − b ≤ M1v, λ ≤ M2(1 − v), (2e)

where Constraints (2b) and (2c) model primal feasibility of the upper and lower level,
respectively. Constraint (2d) models dual feasibility of the lower-level problem with
dual lower-level variables λ ∈ R

ml≥0. Constraints (2e) ensure KKT complementarity via
additional binary variables v j and sufficiently large numbers M1 and M2. Similarly, a
strong-duality-based reformulation can be derived by replacing KKT complementar-
ity (2e) by the strong-duality equation of the lower level. This approach is significantly
less used in practice because even for linear bilevel problems one obtains nonconvex
bilinear terms due to products of primal upper-level and dual lower-level variables.
These terms can only be linearized if all linking variables are integer. Recently,
in [55], a numerical study is provided that compares the KKT approach with the
strong-duality approach for linear bilevel problems with integer linking variables and
continuous lower-level problems. The authors conclude that the strong-duality refor-
mulation works significantly better than the KKT reformulation for problems with
large lower-level problems. Other contributions that successfully apply the strong-
duality reformulation to linear bilevel problems include, e.g., [2,27,28,30,40,44].
Except from Bard, who briefly sketches the idea in [5], we are not aware of any
works that use strong duality for bilevel problems with quadratic lower levels. One
reason might be that the resulting strong-duality equation is quadratic. Opposed to
the linearized KKT reformulation, the strong-duality-based reformulation thus yields
a quadratically constrained program. Despite this drawback, we derive such a strong-
duality-based single-level reformulation after introducing some notation.
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2.1 General notation

The bilevel constraint region is denoted by

P := {(x, y) : Ax + By ≥ a, CxI + Dy ≥ b, xi ∈ Z ∩ [x−
i , x+

i ] for all i ∈ I }.

Throughout this paper, we assume that P is bounded. This set corresponds to the set
obtained by relaxing the optimality of the lower-level problem. Its projection onto the
decision space of the upper level is given by

Pu := {x : ∃ y such that (x, y) ∈ P}.

For fixed x̄ = (x̄R, x̄ I ) ∈ Pu , the lower-level feasible region is given by

Pl(x̄ I ) = {y : Dy ≥ b − Cx̄I }

and the rational reaction set of the lower level reads

M(x̄ I ) = argmin
y

{ql(y) : y ∈ Pl(x̄ I )}.

Since Gl is semidefinite, the lower level may not have a unique solution, i.e., M(x̄ I )
may not be a singleton. In such a case, we assume the optimistic bilevel solution,
i.e., ȳ ∈ M(x̄ I ) is chosen in favor of the upper level; see, e.g., Chapter 1 in [14]. In
Problem (1), this is indicated by “minx,ȳ” in the upper-level objective, i.e., the upper-
level minimizes over x and ȳ. We emphasize that single-level reformulations, like,
e.g., Problem (2), implicitly assume the optimistic bilevel solution, such that there
is no need to distinguish between y and ȳ. Further, note that our solution approach
explicitly allows for M(x̄ I ) = ∅ for some x̄ ∈ Pu . Finally, the bilevel feasible set is
given by

F = {(x, ȳ) : x ∈ Pu, ȳ ∈ M(x̄ I )}.

If F = ∅, then Problem (1) is infeasible.

2.2 Strong-duality-based nonconvex single-level reformulation

We now use strong duality of the lower-level problem to transform Problem (1) into an
equivalent nonconvex single-level problem. The parametric Lagrangian dual problem
of the parametric lower level

min
y

ql(y) s.t. Dy ≥ b − CxI (3)

with parameter xI is given by

max
λ≥0

g(xI ; λ) (4)
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with g(xI ; λ) = inf y L(xI ; y, λ); see [10]. In our setup, the Lagrangian L reads

L(xI ; y, λ) = 1

2
y�Gl y + d�

l y − λ�(CxI + Dy − b). (5)

Since L(xI ; y, λ) is convex and differentiable in y, the infimum is given by

∇yL(xI ; y, λ) = Gl y + dl − D�λ = 0. (6)

In order to denote the Lagrangian dual problem in its general form (4), we could use
Expression (6) to obtain y = G−1

l (D�λ − dl). This can then be used to substitute the
primal variable y in the Lagrangian (5) to obtain

g(xI ; λ) = −1

2
(D�λ − dl)

�G−1
l (D�λ − dl) − (CxI − b)�λ.

However, this only works if Gl is regular, e.g., if Gl is strictly definite. In the more
general case of semidefinite matrices, we can explicitly keep the primal variable y and
substitute D�λ = Gl y + dl in the Lagrangian (5). This yields the dual problem

max
y,λ

ḡ(xI ; y, λ) = −1

2
y�Gl y − (CxI − b)�λ

s.t. Gl y + dl = D�λ, λ ≥ 0.
(7)

Note that ḡ(xI ; ·) is a concave-quadratic function in y and λ because Gl is positive
semidefinite. Thus, the dual problem (7) is a parametric concave-quadratic maximiza-
tion problem over affine-linear constraints. Since Problem (7) does not involve the
inverse G−1

l , we use formulation (7) also in the case when Gl is strictly positive
definite.

In the following, we only consider x ∈ Pu , i.e., upper-level variables for which the
parametric lower-level problem is feasible. The parametric lower-level problem (3)
is a convex-quadratic minimization problem over affine-linear constraints. Conse-
quently, duality conditions applywithout requiring additional constraint qualifications;
see Chapter 5.2.3 in [10] and Theorem 24.1 in [52]. For every primal-dual feasible
point (y, λ), i.e., y ∈ Pl(xI ) and λ ≥ 0 that fulfill Gl y + dl = D�λ, weak duality

ql(y) ≥ ḡ(xI ; y, λ) (8)

holds. Furthermore, for optimal primal-dual points (y∗, λ∗), strong duality holds, i.e.,
ql(y∗) = ḡ(xI ; y∗, λ∗). Together withweak duality (8), strong duality can be enforced
by the constraint ql(y) − ḡ(xI ; y, λ) ≤ 0, i.e.,

c(xI , y, λ) := ql(y) − ḡ(xI ; y, λ) = y�Gl y + d�
l y − b�λ + λ�CxI ≤ 0. (9)
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This strong-duality inequality is convex in y but the bilinear term λ�CxI is non-
convex. Using (9), the bilevel problem (1) can be recast as the equivalent single-level
nonconvex mixed-integer quadratically constrained quadratic program (MIQCQP):

min
x,y,λ

qu(x, y)

s.t. (x, y) ∈ P,

Gl y + dl = D�λ, λ ≥ 0,

c(xI , y, λ) ≤ 0.

(10)

2.3 Convexification of the strong-duality constraint

The only nonconvexity in the strong-duality inequality (9) is the bilinear
product λ�CxI . Since the variables xI are integer, this product can be reformulated
using a binary expansion. For the ease of presentation, we w.l.o.g. assume in the fol-
lowing that x−

i = 0 for all i ∈ I . The products of binary and continuous variables can
then be linearized by several techniques. According to the numerical study in [55], the
following approach works best in a bilevel context.We express the integer variables x j
with the help of r̄ j = �log2(x+

j )� + 1 many auxiliary binary variables s jr :

s jr ∈ {0, 1}, j ∈ I , r ∈ [r̄ j ], (11a)

x j =
r̄ j∑
r=1

2r−1s jr , j ∈ I . (11b)

With this we obtain

λ�CxI =
ml∑
i=1

|I |∑
j=1

ci jλi x j =
ml∑
i=1

|I |∑
j=1

r̄ j∑
r=1

2r−1ci jλi s jr =
|I |∑
j=1

r̄ j∑
r=1

2r−1s jr

ml∑
i=1

ci jλi .

Now, we replace the binary-continuous products s jr
∑ml

i=1 ci jλi by introducing aux-
iliary continuous variables w jr and enforce

w jr = s jr

ml∑
i=1

ci jλi (12)

by the additional constraints

w jr ≤ λ j s jr , j ∈ I , r ∈ [r̄ j ], (13a)

w jr ≤
ml∑
i=1

ci jλi + λ j (s jr − 1), j ∈ I , r ∈ [r̄ j ], (13b)

w jr ≥ λ j s jr , j ∈ I , r ∈ [r̄ j ], (13c)

w jr ≥
ml∑
i=1

ci jλi + λ j (s jr − 1), j ∈ I , r ∈ [r̄ j ]. (13d)
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In this formulation, we need bounds λ j ≥ ∑ml
i=1 ci jλi , and λ j ≤ ∑ml

i=1 ci jλi which
are, in practice, often derived by some suitable big-M . The need for such bounds is also
a major drawback in the KKT-based reformulation (2). In [46], it is shown that wrong
big-Ms can lead to suboptimal solutions or points that are actually bilevel infeasible.
Unfortunately, even verifying that the bounds are correctly chosen is, in general, at
least as hard as solving the original bilevel problem; see [37]. Thus, if possible, big-Ms
should be derived using problem-specific knowledge. However, we point out that our
solution approaches introduced in Sect. 3 compute bilevel-feasible points independent
of the big-Ms. Thus, in case of too small big-Ms, our algorithms may terminate with a
suboptimal solution but never compute bilevel-infeasible points. We discuss this also
later in Sect. 3.3.

Using (11) and (13), we rewrite Constraint (9) as

ĉ(y, λ,w) := y�Gl y + d�
l y − b�λ +

|I |∑
j=1

r̄ j∑
r=1

2r−1w jr ≤ 0, (14)

which is convex in y and linear in λ andw. Note that 2r−1 ≤ x+
j holds, i.e., for reason-

able bounds x+
j , the exponential coefficients 2

r−1 can be considered as numerically
stable.

Finally, the single-level problem (10) can be stated equivalently as

min
x,y,λ,w,s

qu(x, y)

s.t. (x, y) ∈ P,

Gl y + dl = D�λ, λ ≥ 0,

λ�CxI linearization: (11), (13),

Strong duality: (14).

(15)

This is a convex MIQCQP that has more binary variables and constraints compared
to the nonconvex MIQCQP (10). We denote the feasible set of Problem (15) by �,
feasible points by z = (x, y, λ,w, s) ∈ � and optimal points by z∗. By construction
of Problem (15), we have the following equivalence result.

Lemma 1 The feasible set of Problem (15) projected on the (x, y)-space equals the
bilevel feasible set of the bilevel Problem (1), i.e.,F = Proj(x,y)(�) holds. In addition,
for every global optimal solution z∗ = (x∗, y∗, λ∗, w∗, s∗) of Problem (15), (x∗, y∗)
is a global optimal solution for Problem (1) and every global optimal solution (x∗, y∗)
of Problem (1) is part of an optimal solution z∗ of Problem (15).

3 Two outer-approximation solution approaches

Problem (15) is an MIQCQP in which the single quadratic constraint is convex.
Such problem classes can be solved, e.g., directly by modern solvers like Gurobi
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or CPLEX. On the other hand, Problem (15) belongs to the broader class of convex
MINLPs. For such problems, a variety of approaches exist, e.g., nonlinear branch-and-
bound or multi- and single-tree methods based on outer approximation, generalized
Benders decomposition, and extended cutting-planes; see [7] for a detailed sur-
vey of these methods. In this section, we introduce outer-approximation techniques
that are tailored for mixed-integer quadratic bilevel problems. The general idea is
to relax the convex-quadratic strong-duality inequality (14) of the lower level in
Problem (15) to obtain an MIQP. Strong duality is then resolved by iteratively adding
linear outer-approximation cuts. In its simplest form, this is a direct application of
Kelley’s cutting-planes approach [36], which would add linear outer-approximation
cuts until the strong-duality inequality (14) is satisfied up to a certain tolerance. Our
preliminary numerical results indicate that this requires an enormous amount of iter-
ations. We thus discuss a more sophisticated multi-tree approach and its single-tree
variant in Sects. 3.1 and 3.2.

3.1 Amulti-tree outer-approximation approach

The well-known multi-tree outer approximation for convex MINLPs was first pro-
posed in [18] and has been enhanced in [8,25]. It alternatingly solves a mixed-integer
linear master problem and a convex nonlinear problem (NLP) as a subproblem. The
master problem is a mixed-integer linear relaxation of the original convex MINLP
and is tightened subsequently by adding linear outer-approximation cuts for the con-
vex nonlinearities. The convex nonlinear subproblem results from fixing all integer
variables to the solution of the master problem in the original convex MINLP. Under
suitable assumptions, every feasible integer solution of the master problem is visited
at most once, and the algorithm terminates after a finite number of iterations with the
correct solution. The algorithm proposed in this subsection is very much inspired by
this scheme. The master problem that we solve in every iteration p ≥ 0 is given by

min
x,y,λ,w,s

qu(x, y)

s.t. (x, y) ∈ P,

Gl y + dl = D�λ, λ ≥ 0,

λ�CxI linearization: (11), (13),

c̄(ȳ�; y, λ,w) ≤ 0, � = 0, . . . , p − 1,

(Mp)

where c̄(ȳ�; y, λ,w) ≤ 0 is the linear outer-approximation cut that is added to the
master problem after every iteration. Thus, in iteration p, the master problem (Mp)
contains p outer-approximation cuts. We shed some more light on c̄ later, but first
emphasize that Problem (Mp) is a convex MIQP. This is in contrast to the standard
outer-approximation literature, where the objective function is relaxed and iteratively
approximated aswell, resulting in amixed-integer linearmaster problem.The rationale
is that, in our implementation, the main working horse is a state-of-the-art solver like
Gurobi or CPLEX. In recent years, these solvers made significant progress in solving
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convex MIQPs effectively. Thus, we want to exploit these highly evolved solvers as
much as possible.

Now, we give some more details on the linear function c̄, which is derived using
the first-order Taylor approximation of the convex strong-duality inequality (14). For
a general convex function h(v), the first-order Taylor approximation at v̄ reads

h(v̄) + ∇vh(v̄)�(v − v̄).

Applied to (14), this gives

c̄(ȳ; y, λ,w):=2 ȳ�Gl y + d�
l y − b�λ +

∑
j∈I

r̄ j∑
r=1

2r−1w jr − ȳ�Gl ȳ. (16)

Since ĉ(y, λ,w) is linear in λ and w, the first-order Taylor approximation (16) is
parameterized solely by ȳ. The effectiveness of the proposed outer-approximation
approach will depend on the actual selection of ȳ, but c̄(ȳ; y, λ,w) ≤ 0 is a valid
inequality no matter how ȳ is obtained. This is shown in the following lemma, in
which Mp denotes the feasible set of (Mp).

Lemma 2 For every iteration p ≥ 1, � ⊆ Mp ⊆ Mp−1 holds.

The consequence of Lemma 2 is that every master problem (Mp) is a relaxation of the
single-level reformulation (15).

Proof Let z = (x, y, λ,w, s) ∈ � be a feasible point of Problem (15). In particular,
z fulfills strong duality, i.e., ĉ(y, λ,w) = 0. Obviously, z ∈ M0 holds because M0

corresponds exactly to � without the strong-duality inequality (14). In addition, since
ĉ is convex, its first-order Taylor approximation is a global underestimator at any point
ȳ, i.e.,

c̄(ȳ; y, λ,w) ≤ ĉ(y, λ,w) = 0.

This holds in particular for the choice ȳ = ȳ� for any � = 1, . . . , p and p ≥ 1. Hence,
z ∈ Mp. Further, Mp ⊆ Mp−1 follows by construction. ��

In the following, we give details on how to select the linearization points ȳ. We
therefore assume that the master problem (Mp) is solvable and denote its solution by
z p = (x p, y p, λp, w p, s p). According to Kelley’s cutting plane approach [36], one
would add an outer-approximation cut (16) at the solution of the master problem, i.e.,
one would add the inequality c̄(y p; y, λ,w) ≤ 0. Kelley has shown that this yields
a convergent approach. However, in many cases this will turn out to be inefficient,
because these cuts are rather weak. The outer-approximation methods in the spirit of
[8,18,25] additionally solve a convex nonlinear subproblem that results from fixing the
integer variables in the original convex MINLP (or an auxiliary feasibility problem if
the subproblem is infeasible) to obtain suitable linearization points ȳ. In our context,
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the subproblem is given by fixing xI = x p
I and s = s p in the convex MINLP (15),

which yields the convex quadratically constrained quadratic problem (QCQP):

min
xR ,y,λ,w

qu(x
p
I , xR, y)

s.t. (x p
I , xR, y) ∈ P,

Gl y + dl = D�λ, λ ≥ 0,

w jr = s pjr

ml∑
i=1

ci jλi , j ∈ I , r ∈ [r̄ j ],

ĉ(y, λ,w) ≤ 0.

(Sp)

We denote the feasible set of (Sp) by S p and first assume S p �= ∅. The infeasible case
is discussed afterward. Let (x̄ p

R, ȳ p, λ̄p, w̄ p) be the solution of the subproblem (Sp).
For the correctness of our proposed algorithms, we need a technical assumption that
is also used in [8,18,25].

Assumption 1 For every feasible subproblem (Sp), the Abadie constraint qualification
holds at the solution (x̄ p

R, ȳ p, λ̄p, w̄ p), i.e., the tangent cone and the linearized tangent
cone coincide at (x̄ p

R, ȳ p, λ̄p, w̄ p).

A formal description of standard cones in nonlinear optimization along with the cor-
responding theory that is also required in the proof of the following lemma can be
found, e.g., in [45]. In theory, Assumption 1 is crucial for the termination of the
methods described in this section. An indication that this assumption is not fulfilled
in practice is cycling, i.e., a certain integer solution is computed more than once. In
our preliminary numerical tests, cycling hardly ever occurred for any of the proposed
approaches, such that we disabled an expensive cycling detection (e.g., storing all
integer solutions and adding a no-good-cut if an integer solution is computed for the
second time) in our computations.

We now show that it is indeed a good idea to linearize the strong-duality inequal-
ity (14) at the solution of the subproblem ȳ p instead of at the solutions of the master
problem y p.

Lemma 3 Let z p = (x p
I , x p

R, y p, λp, w p, s p) be an optimal solution of the mas-
ter problem (Mp) and assume that the subproblem (Sp) is feasible and has the
optimal solution (x̄ p

R, ȳ p, λ̄p, w̄ p). Suppose further that Assumption 1 holds and con-
sider the new master problem that is obtained by adding the outer-approximation
cut c̄(ȳ p; y, λ,w) ≤ 0 to (Mp). Then, for any feasible point of the form z =
(x p

I , xR, y, λ,w, s p) of this problem the following holds:

qu(x
p
I , xR, y) ≥ qu(x

p
I , x̄ p

R, ȳ p).

Proof We consider x p
I and s p fixed and assume that (Sp) is feasible with opti-

mal solution (x̄ p
R, ȳ p, λ̄p, w̄ p). Thus, (ȳ p, λ̄p, w̄ p) fulfills the convex strong-duality

inequality (14). Since weak duality holds anyway, we obtain ĉ(ȳ p, λ̄p, w̄ p) = 0. Now,
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let z = (x p
I , xR, y, λ,w, s p) be feasible for (Mp) and let c̄(ȳ p; y, λ,w) ≤ 0, i.e., z is

feasible for a suitably chosen master problem in iteration p + 1. In the following, we
abbreviate the vector v = (y, λ,w) for the ease of presentation. Then, we have

0 ≥ c̄(ȳ p; v) = ĉ(v̄ p) + ∇v ĉ(v̄
p)(v − v̄ p) = ∇v ĉ(v̄

p)�(v − v̄ p),

i.e., ∇v ĉ(v̄ p)�(v − v̄ p) ≤ 0, which means that (v − v̄ p) is in the linearized tangent
cone T lin

S p (v̄
p). Due to Assumption 1, T lin

S p (v̄
p) equals the tangent cone TSp (v̄ p), which

gives (v − v̄ p) ∈ TSp (v̄ p). For all directions d ∈ TSp (v̄ p), we know that the property

∇vqu(x
p
I , x̄ p

R, ȳ p)�d ≥ 0 (17)

holds. Thus, we have

qu(x
p
I , xR, y) ≥ qu(x

p
I , x̄ p

R, ȳ p) + ∇vqu(x
p
I , x̄ p

R, ȳ p)�(v − v̄ p) ≥ qu(x
p
I , x̄ p

R, ȳ p).

The first inequality follows because qu is convex, i.e., its first-order Taylor approxima-
tion is a global underestimator. The second inequality follows from Inequality (17).

��

In contrast to the slightly different setting in [25], using the solution of the subprob-
lem (Sp) as the linearization point of the outer-approximation inequality (14) does
not explicitly cut off the related integer solution x p

I . The reason is our modified mas-
ter problem, that does not linearize and approximate the convex objective function.
Nevertheless, Lemma 3 lets us conclude that every integer assignment xI that yields a
feasible subproblem (Sp) needs to be visited only once, because the objective cannot
be improved by visiting such a solution for a second time. This will be one of the key
properties to prove finite termination of our algorithm.

We now consider the case of an infeasible subproblem (Sp). In [18], it is argued
that in order to eliminate x p

I from further consideration, an integer no-good-cut must
be introduced. In our application, this is a straightforward task. The subproblem (Sp)
is fully parameterized by fixed upper-level variables x p

I . For these variables we have
a binary expansion available anyway (the variables s) so that a simple binary no-
good-cut on s can be used. However, such no-good-cuts are known to cause numerical
instabilities. As a remedy, in [25], it is proposed to derive cutting planes from an
auxiliary feasibility problem that indeed cut off the integer solution x p

I . The feasibility
problem minimizes the constraint violations of the infeasible subproblem in some
suitable sense, e.g., via the �1- or the �∞-norm. Recap that z p is a solution of the
master problem (Mp). In particular, (y p, λp) is primal-dual feasible for the lower-level
problem (3) with fixed x p

I . Thus, the latter problem also has an optimal solution that
fulfills strong duality. Since the subproblem (Sp) is infeasible, this optimal solution
must be infeasible for the upper-level constraints. On the other hand, z p must be
feasible for the subproblem (Sp) without the strong-duality inequality, because z p is
feasible for Problem (Mp). Thus, a simple feasibility problem in the sense of [25] is
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given by

min
xR ,y,λ,w

ĉ(y, λ,w)

s.t. (x p
I , xR, y) ∈ P,

Gl y + dl = D�λ, λ ≥ 0,

w jr = s pjr

ml∑
i=1

ci jλi , j ∈ I , r ∈ [r̄ j ],

(Fp)

whose objective value is strictly greater than zero, since otherwise the subproblem (Sp)
would be feasible. For a solution of (Fp), we obtain the following lemma by adapting
Lemma 1 of [25].

Lemma 4 Let z p be a solution of the master problem (Mp), let the subproblem (Sp)
be infeasible, and let (x̄ p

R, ȳ p, λ̄p, w̄ p) be a solution of the feasibility problem (Fp).
Then, ĉ(ȳ p, λ̄p, w̄ p) > 0 and every z = (x p

I , xR, y, λ,w, s p) ∈ Mp is infeasible for
the constraint

c̄(ȳ p; y, λ,w) ≤ 0. (18)

Proof Consider a fixed x p
I and assume (Sp) to be infeasible, which means that (Fp)

has an optimal solution (x̄ p
R, ȳ p, λ̄p, w̄ p) with ĉ(ȳ p, λ̄p, w̄ p) > 0. For the ease of

presentation, we again use the abbreviation v = (y, λ,w) and we rewrite the linear
constraint set of (Fp) to obtain

min
xR ,v

ĉ(v) s.t. ÃxR + B̃v ≤ b̃, D̃v = d̃. (19)

Problem (Fp), and hence Problem (19), minimizes a convex function over affine-linear
constraints. Thus, (x̄ p

R, v̄ p) fulfills the KKT conditions of Problem (19), i.e., primal
feasibility, stationarity, non-negativity of multipliers α of inequality constraints, and
complementarity. With δ denoting the multipliers of the equality constraints, the KKT
conditions read

Ãx̄ p
R + B̃v̄ p ≤ b̃, D̃v̄ p = d̃, (20a)

Ã�α = 0, (20b)

−B̃�α − D̃�δ = ∇v ĉ(v̄
p), (20c)

α ≥ 0, (20d)

α� Ãx̄ p
R + α� B̃v̄ p = α�b̃. (20e)

We recap that c̄ is derived from the first-order Taylor approximation, i.e., it holds

c̄(ȳ p; v) = ĉ(v̄ p) + ∇v ĉ(v̄
p)�(v − v̄ p).

This can be expanded to
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Algorithm 1Multi-tree Outer Approximation for MIQP-QP Bilevel Problems.
1: Initialize φ = −∞, � = ∞, and p = 0.
2: while φ < � do
3: Solve the master problem (Mp).
4: if (Mp) is infeasible then
5: Return “The bilevel problem is infeasible”.
6: else
7: Let z p be the optimal solution of (Mp) and set φ = qu(x p, y p).
8: end if
9: Solve the subproblem (Sp), or the feasibility problem (Fp) if (Sp) is infeasible, and obtain

(x̄ pR , ȳ p, λ̄p, w̄ p).

10: if (Sp) is feasible and qu(x pI , x̄ pR , ȳ p) < � then
11: Set z∗ = (x pI , x̄ pR , ȳ p, λ̄p, w̄ p, s p) and � = qu(x pI , x̄ pR , ȳ p).
12: end if
13: Add the outer approximation cut c̄(ȳ p; y, λ, w) ≤ 0 to (Mp).
14: Set p ← p + 1.
15: end while
16: Return z∗.

c̄(ȳ p; v) = ĉ(v̄ p) − (B̃�α + D̃�δ)�(v − v̄ p) (21a)

= ĉ(v̄ p) − α� B̃v + α� B̃v̄ p − δ�(D̃v − D̃v̄ p) (21b)

= ĉ(v̄ p) − α�(B̃v − b̃) − δ�(D̃v − d̃), (21c)

by using KKT stationarity (20c) (for (21a)) and re-ordering the terms (for (21b)).
Further, we replaced α� B̃v̄ p by α�b̃ according to (20e) and (20b) and D̃v̄ p by d̃
according to (20a) to obtain (21c). Now, let z = (x p

I , xR, v, s p) ∈ Mp. This implies
that v must be feasible for (Fp), respectively (19). In particular, we know that B̃v−b̃ ≤
− ÃxR and D̃v − d̃ = 0. Applying this to (21) and using (20b) yields

c̄(ȳ p; v) ≥ ĉ(v̄ p) + α� ÃxR = ĉ(v̄ p) > 0.

Thus, v violates (18). ��
We recap that, with the last lemma, we can derive cutting planes that cut off x p

I
if the subproblem (Sp) is infeasible. This is another key property for the finite termi-
nation of our approach. With this result, we are ready to present the multi-tree outer
approximation in Algorithm 1.

In every iteration p, Algorithm 1 first solves the master problem (Mp) to obtain
a solution z p. According to Lemma 2, Mp ⊆ Mp−1 and we can update the lower
boundφ byqu(x

p
I , x p

R, y p). Next, either the subproblem (Sp) or, in case of infeasibility,
the feasibility problem (Fp) is solved. If the subproblem is feasible with solution
(x̄ p

R, ȳ p, λ̄p, w̄ p), then the point (x p
I , x̄ p

R, ȳ p, λ̄p, w̄ p, s p) is feasible for the convex
single-level reformulation (15) and the upper bound is updated if qu(x

p
I , x̄ p

R, ȳ p) < �.
In this case, also z∗ is updated. We terminate when φ ≥ � is achieved and return the
best solution z∗. We now show the correctness of this approach.

Theorem 1 Algorithm 1 terminates after a finite number of iterations at an optimal
solution of Problem (1) or with an indication that the problem is infeasible.
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The following proof is adapted from [25].

Proof First of all, note that all master problems are bounded since P is assumed
to be bounded. We next show finiteness of Algorithm 1. If Problem (1) is feasi-
ble, then we can follow from Lemma 3 that at most one integer solution is visited
twice. Whenever an integer solution is visited for a second time, φ ≥ � holds and
the algorithm terminates. On the other hand, if Problem (1) is infeasible, then every
subproblem (Sp) is infeasible. According to Lemma 4, the integer solution x p

I is infea-
sible for the master problem in iteration p + 1, which results in an infeasible master
problem after a finite number of iterations. Thus, finiteness follows from the finite
number of integer solutions for Problem (1).

Second, we show that Algorithm 1 always terminates at a solution of Problem (1),
if it is feasible. We denote a (possibly non-unique) optimal solution of Problem (1)
by (x∗

I , x
∗
R, y∗) with objective function value q∗

u = qu(x∗
I , x

∗
R, y∗). Now assume that

Algorithm 1 terminates with a solution (x ′
I , x

′
R, y′, λ′, w′, s′) and objective function

value � = qu(x ′
I , x

′
R, y′). It is obvious that (x ′

I , x
′
R, y′, λ′) is feasible for the non-

convex single-level reformulation (10). According to Lemma 1, (x ′
I , x

′
R, y′) is then

feasible for the original bilevel problem, which gives q∗
u ≤ � = qu(x ′

I , x
′
R, y′). On

the other hand, Lemma 2 together with Lemma 1 state that every master problem (Mp)
is a relaxation of the original bilevel problem (1), i.e., φ ≤ q∗

u . Since Algorithm 1 only
terminates when φ ≥ �, we obtain qu(x∗

I , x
∗
R, y∗) = qu(x ′

I , x
′
R, y′). ��

In the remainder of this subsection we discuss some enhancements of Algorithm 1.

Additional outer-approximation cuts Since the outer-approximation cuts of the form
of (16) are globally valid, we can add cuts also for points other than the solution
of the subproblem. One point that comes for free is the solution z p of the master
problem, i.e., we can add a cut (16) for the point y p. This is an outer-approximation
cut in the sense of Kelley [36]. Further, we can add outer-approximation cuts for all
feasible solutions that are encountered in the process of solving themaster problem.

Early termination of the master problem It is sufficient for the correctness of the
entire algorithm that the master problem provides a new integer-feasible point.
Since the outer-approximation cuts are constructed in a way that already visited
integer solutions of the previous iterations have an objective value worse or equal
to the incumbent �, we can stop the master problem with the first improving
integer-feasible solution, i.e., a solution that has an objective value better than the
incumbent �; see also [25]. This strategy mimics the single-tree approach that is
stated in Sect. 3.2.

Warmstarting the master problem Warmstarting mixed-integer problems can be a
very effective strategy because it may produce a tight initial upper bound and
help to keep the branch-and-bound trees small. Since the incumbent solution z∗ is
feasible for everymaster problem, it is reasonable to warmstart themaster problems
with this solution.

The performance of the plain Algorithm 1 as well as the effectiveness of thementioned
enhancements is evaluated in Sect. 4.
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3.2 A single-tree outer-approximation approach

The multi-tree outer-approximation approach from Sect. 3.1 can also be cast into a
single branch-and-bound tree. In the context of general convexMINLPs, this approach
is known as LP/NLP-based branch-and-bound (LP/NLP-BB) and was first introduced
in [47]. LP/NLP-BB avoids the time-consuming solution of subsequently updated
mixed-integer master problems by branching on the integer variables of an initial
master problem and solving continuous relaxations of the subsequently updatedmaster
problem at every branch-and-bound node.Whenever such a relaxation results in a new
integer solutionwith a better objective value than the incumbent, the solution process is
interrupted. In this event the convex nonlinear subproblem with fixed integer variables
is solved and the master problem is updated by an outer-approximation cut derived
from the solution of the subproblem. In this view, LP/NLP-BB can be interpreted as
a branch-and-cut algorithm that requires the solution of NLPs to separate cuts. For
additional implementation details we refer to [1,8].

If we apply such a single-tree approach to our setup, the initial master problem is
given by Problem (Mp) for p = 0, i.e., this corresponds exactly to the initial multi-tree
master problem. In this view, the problem that is solved at every branch-and-bound
node is the continuous relaxation of Problem (Mp) with bounds �, u ∈ R

|I | on the
integer variables, i.e., the QP:

min
x,y,λ,w,s

qu(x, y)

s.t. Ax + By ≥ a, CxI + Dy ≥ b,

l ≤ xI ≤ u,

Gl y + dl = D�λ, λ ≥ 0,

λ�CxI linearization: (11), (13),

c̄(ȳ�; y, λ,w) ≤ 0, � = 0, . . . , p − 1.

(Np(l, u))

The index p in (Np(l, u)) corresponds to the number of added strong-duality cuts.
The specific values for l and u follow from branching. As opposed to the textbook
LP/NLP-BB that solves an LP at every branch-and-bound node, we solve a QP. Thus,
we rather perform a QP/NLP-BB.

We now state a tailored single-tree approach for bilevel problems of the form (1)
in Algorithm 2. The rationale is the following. The algorithm subsequently solves
QPs of the form (Np(l, u)), starting with the root-node problem for p = 0, l = x−,
and u = x+. Whenever such a QP is infeasible or its objective function value can
not improve the incumbent, then this problem can be removed from the set of open
problems O once and for all. In case the solution of Problem (Np(l, u)) is integer
feasible, then the corresponding subproblem (Sp)—or the feasibility problem (Fp) if
the subproblem is infeasible—is solved. One key difference of LP/NLP-BB compared
to a standard branch-and-bound is that this solved subproblem must not be pruned
but needs to be updated with an appropriate outer-approximation cut. Moreover, all
other open problems in O need to be updated as well. Finally, if Problem (Np(l, u))
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Algorithm 2 Single-Tree Outer Approximation for MIQP-QP Bilevel Problems.
1: Initialize � = ∞, p = 0, l = x−, u = x+, and z∗ = none.
2: Initialize the set of open node problems O:={(Np(l, u))}
3: while O �= ∅ do
4: Remove a QP (Np(l, u)) fromO and solve it to obtain a solution zl,u .
5: if (Np(l, u)) is infeasible or qu(xl,u , yl,u) ≥ � then
6: Subtree can be pruned. Continue.
7: else if zl,u is integer feasible and qu(xl,u , yl,u) < � then
8: Set x pI = xl,uI and s p = sl,u and solve the subproblem (Sp) or the feasibility problem (Fp) to

obtain (x̄ pR , ȳ p, λ̄p, w̄ p).

9: if (Sp) is feasible and qu(x pI , x̄ pR , ȳ p) < � then
10: Set z∗ = (x pI , x̄ pR , ȳ p, λ̄p, w̄ p, s p) and � = qu(x pI , x̄ pR , ȳ p).
11: end if
12: Re-add the problem: O ← O ∪ {(Np(l, u))}.
13: Add the outer-approximation cut c̄(ȳ p; y, λ, w) ≤ 0 to all problems in O.
14: Set p ← p + 1.
15: else
16: Branch on a fractional x pi , i ∈ I , to obtain new bounds l1, u1 and l2, u2.

17: Update O ← O ∪ {Mp(l1, u1),Mp(l2, u2)}.
18: end if
19: end while
20: Return z∗ or, if z∗ is none, return “The bilevel problem is infeasible”.

is feasible but the solution is not integer feasible, one branches on a fractional integer
variable to obtain two new open problems. Similar to themulti-tree approach, only one
integer assignment—the optimal one—is computed twice during the solution process.
Finiteness follows again from the finite number of possible integer assignments. At
some point all problems in the set O are infeasible, O is emptied, and the algorithm
terminates. If all subproblems turned out to be infeasible, then z∗ is never updated and
the infeasibility of the bilevel problem is correctly detected. All together, we obtain
the following correctness theorem.

Theorem 2 Algorithm 2 terminates after a finite number of iterations with an optimal
solution of Problem (1) or with an indication that the problem is infeasible.

Since all arguments mainly follow from the proof of Theorem 1, we refrain from a
formal proof of Theorem 2. We close this subsection by discussing some possible
enhancements of Algorithm 2.

Additional outer-approximation cuts Similar to the multi-tree approach, we can
enhance Algorithm 2 by adding outer-approximation cuts for all integer-feasible
solutions zl,u with qu(xl,u, yl,u) ≥ �, i.e., integer-feasible solutions that do not ful-
fill the if-condition in Line 7 in Algorithm 2. This can be done, e.g., by storing these
non-improving integer-feasible solutions and adding outer-approximation cuts for
these solutions together with the cut that is added in Line 13.

Advanced initialization Initializing the single-tree approach with a bilevel-feasible
solution may be beneficial for various reasons. First, in the initial master prob-
lem (Mp) for p = 0, the constraints for the binary expansion (11) and for
the linearization (13) are redundant, because they are not yet coupled by any
outer-approximation cut. When the master problem is equipped with an initial
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outer-approximation cut, however, then all parts of the model are coupled and the
solver can effectively presolve the entire model before solving the root-node prob-
lem, i.e., (Np(l, u)) for p = 0, l = x−, and u = x+. In addition, this initial
outer-approximation cut results in a tighter root-node problem.
Second, an initial bilevel-feasible solution can be used to pass an incumbent solu-
tion z∗ to Algorithm 2 and to compute an initial upper bound �. This may allow to
prune parts of the search tree right in the beginning. An initial bilevel-feasible point
can be obtained, e.g., by finding a feasible or optimal point for Problem (Mp) for
p = 0 and solving the corresponding subproblem. This mimics the first iteration
of the multi-tree approach.

We evaluate the plain Algorithm 2 and these enhancements in Sect. 4.

3.3 Exploiting the bilevel structure

The two outer-approximation algorithms stated in the previous sections are an appli-
cation of the approaches in [8,25] and [47], respectively. The effectiveness of both
algorithms will depend, among other aspects, on the following properties:

(i) The ability to solve the master problem(s) effectively.
(ii) The number of integer-feasible solutions of the master problem that need to be

evaluated.
(iii) The ability to solve the subproblems effectively.

Aspect (i) is addressed by the various enhancements stated in Sects. 3.1 and 3.2,
respectively. For the latter two aspects, we can exploit the specific bilevel structure of
Problem (1). We explain this on the example of the multi-tree method in Algorithm 1,
but the same explanations hold for the single-tree approach in Algorithm 2 as well.

We first discuss aspect (ii). In general, the number of integer-feasible solutions of
the master problem coincides with the number of subproblems that need to be solved.
In the worst case, the algorithm needs to consider every integer-feasible solution of the
initial master problem.However, for bilevel problems of the form (1), there is hope that
one needs to evaluate only a few subproblems. The hypothesis is the following. Both
the upper- and the lower-level objective functions are convex-quadratic in y and are to
be minimized. This means that explicit min-max problems for which the upper level
minimizes a function that the follower maximizes, cannot arise for quadratic bilevel
problems of the form (1), unless all matrices Hu , Gu , and Gl are 0. Thus, the solution
of the early master problems (that mainly abstract from lower-level optimality) might
already be a good estimate of the optimal lower-level solution, depending on how
competitive the two objective functions are. As a consequence, it might be quite likely
that the first few solutions of the master problem already contain a close-to-optimal
or even optimal integer upper-level decision xI . Hence, the solution of the respective
subproblem already provides a very tight upper bound �. This is, of course, instance-
specific and we discuss this in more detail in Sect. 4.6.

We now turn to aspect (iii). Both Algorithm 1 and Algorithm 2 require the solution
of the subproblem (Sp). It is easy to see that the variables w can be eliminated in this
convex QCQP. The resulting problem is then equivalent to fixing xI = x p

I directly
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in the original nonconvex MINLP (10). Note that for fixed integer variables, (10) is
a convex QCQP as well. While the full subproblem (Sp) is more in line with the
standard literature on outer approximation for convex MINLPs and makes it easier
to proof correctness, it is better to use Problem (10) with fixed integer variables in
the actual implementation for the following reasons. First, Problem (10) is smaller
than (Sp). Second, and more importantly, Problem (10) does not contain any big-M .
As already discussed in Sect. 2, a wrong big-M can result in terminating with points
that are actually bilevel-infeasible or suboptimal. When using Problem (10) as the
subproblem, the former case can never appear. This is an huge advantage compared
to solving the two single-level reformulations (2) and (15) directly, which may indeed
terminate with points that are actually bilevel-infeasible.

Further, we can replace the subproblem (Sp) (respectively Problem (10) with fixed
integers) by two easier problems. For the parametric lower-level problem (3), the
optimal value function is given by

q∗
l (xI ) := min

y
{ql(y) : y ∈ Pl(xI )}. (22)

It is well known that the bilevel problem (1) can be reformulated as an equivalent
single-level problem using the optimal value function (22); see, e.g., [13, Chapter
5.6]:

min
xI ,xR ,y

qu(xI , xR, y) (23a)

s.t. (xI , xR, y) ∈ P, (23b)

ql(y) ≤ q∗
l (xI ). (23c)

It thus follows directly from Lemma 1 that Problem (15) and Problem (23) are equiv-
alent in the following sense.

Lemma 5 The feasible set of Problem (15) projected on the (x, y)-space coincides
with the feasible set of Problem (23). In addition, for every global optimal solution
z∗ = (x∗, y∗, λ∗, w∗, s∗) of Problem (15), (x∗, y∗) is a global optimal solution for
Problem (23) and every global optimal solution (x∗, y∗) of Problem (23) can be
extended to a global optimal solution z∗ of Problem (15).

This enables to solve the subproblem in a bilevel-specific way as follows.

Remark 1 We can replace Step 9 of Algorithm 1 (or Step 8 of Algorithm 2) by first
solving the parametric lower-level problem (3) with fixed integer linking variables
xI = x p

I to obtain a (possibly ambiguous) lower-level solution ỹ p and the corre-
sponding objective function value ql(ỹ p) = q∗

l (x p
I ). Then, we solve Problem (23)

with fixed xI = x p
I , which is a convex QCQP, to obtain an optimistic bilevel solu-

tion (x p
I , x̄ p

R, ȳ p). In other words, instead of solving subproblem (Sp), we can solve a
convex QP and a convex QCQP that is considerably smaller than (Sp).

In case the lower-level problem has a unique solution, Remark 1 can be strengthened.
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Remark 2 If the matrix Gl is positive definite, then the lower-level problem has a
unique solution and M(x̄ I ) is a singleton. In this case we can replace Step 9 of Algo-
rithm 1 (or Step 8 of Algorithm 2) by subsequently solving the parametric lower-level
QP (3) with fixed integer upper-level variables x p

I to obtain the unique lower-level
solution ȳ p, and solving the upper-level problem

min
xR

qu(x
p
I , xR, ȳ p) s.t. A

(
x p
I

xR

)
+ B ȳ p ≥ a, (24)

in which all integer upper-level variables are fixed to x p
I and all lower-level variables

are fixed to the unique solution ȳ p. Problem (24) is a convex QP as well.

With this remark, the large QCQP (Sp) can be replaced by two considerably easier
QPs. We discuss the effectiveness of Remarks 1 and 2 in Sect. 4.

4 Computational study

In this section, we provide detailed numerical results for the methods proposed in
the previous sections. Besides mean and median running times and counts of solved
subproblems, the evaluations and comparisons rely on performance profiles according
to [17]. For every test instance i we compute ratios ri,s = ti,s/min{ti,s : s ∈ S},
where S is the set of the solution approaches and ti,s is the running time of a solver s
for instance i , given in wall-clock seconds. Each performance profile in this section
shows the percentage of instances (y-axis) for which the performance ratio ri,s of
approach s is within a factor τ ≥ 1 (log-scaled x-axis) of the best possible ratio.
Before we go into the details, we provide some information on the computational
setup in Sect. 4.1. We then specify the test set that we use throughout the study in
Sect. 4.2. We also compare the two benchmark approaches of solving the KKT-based
reformulation (2) and the strong-duality-based reformulation (15) in this section. In
Sects. 4.3 and 4.4, we evaluate the results for different variants of the multi- and the
single-tree approach, respectively. In Sect. 4.5, we compare both methods and also test
their performance against the benchmark. Finally, we evaluate the impact of different
modifications of the test set on running times in Sect. 4.6.

4.1 Computational setup

We implemented all solution approaches usingC++-11 and usedGCC 7.3.0 as the com-
piler. All optimization problems, i.e., all convex (MI)(QC)QP problems, are solved by
Gurobi 9.0.1 using its C interface.1 The single-tree approach of Sect. 3.2 is realized
using lazy constraint callbacks of Gurobi that are invoked whenever a new integer-
feasible solution with an objective value better than the bilevel incumbent is found.
Note however that using Gurobi’s lazy constraint callbacks requires to set the parame-
ter LazyConstraints to 1, which avoids certain reductions and transformations during

1 Since Gurobi’s C interface offers more flexibility compared to the C++ interface, we wrote a C++wrapper
around Gurobi’s C interface.
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the presolve that are incompatible with lazy constraints. For all solution approaches we
set the NumericFocus parameter to a value of 3, which results in increased numerical
accuracy. Further, we tightened Gurobi’s integer feasibility tolerance from its default
value 10−5 to 10−9 throughout all computations. The rationale is to prevent numeri-
cal inaccuracies caused by products of binary variables and big-M values, e.g., in the
Constraints (13). All big-M values are fixed to 105. For each solution attempt, we set a
time limit of 3600s. The computational experiments have been executed on a compute
cluster using compute nodes with Xeon E3-1240 v6 CPUs with 4 cores, 3.7 GHz, and
32 GB RAM; see [49] for more details.

4.2 Selection of the test set and evaluation of the benchmarks

Our test set is based on a subset of theMIQP-QP test set used in [38], but is extended by
the additional instance classes DENEGRE, INTER-ASSIG, and INTER-KP, which turned
out to be too easy for the local optimality considerations in [38]. On the other hand,
some of the instance classes used in [38] are too hard to be solved to global optimality,
i.e., for most instances of the respective instance class, every tested solver exceeds
the time limit. For this reason, we excluded the instance classes GENERALIZED, GK,
KP, MIPLIB2010, MIPLIB2017, and OR from our test set. All instances used in this
paper are based onMILP-MILP instances from the literature; see the “Ref” column in
Table 1 for a reference to the original MILP-MILP test set. The MIQP-QP instances
were generated by relaxing all integrality conditions in the lower-level problem and by
enforcing continuous linking variables to be integer. Further, we added quadratic terms
to both objective functions. To this end, we randomly generated quadratic matrices Q,
R, and S of suitable sizes and entries in [− 4

√
σ , 4

√
σ ] with σ = max{‖cu‖∞, ‖du‖∞}

(or σ = ‖dl‖∞). We then set Hu = Q�Q, Gu = R�R, and Gl = S�S + D, where
D is a diagonal matrix with entries in [1, 4

√‖dl‖∞]. This approach renders Hu and Gu

positive semidefinite andGl positive definite.2 This allows to evaluate both Remarks 1
and 2 on the full test set. Note that for the sake of completeness, we also provide results
for semidefinite matrices Gl in Sect. 4.6. The full test set Ifull contains 757 instances,
which is—to the best of our knowledge—the largest test set of MIQP-QP bilevel
problems considered for approaches that compute global optimal solutions of these
models. Before we thin out this test set to compare the various methods on a more
balanced set, we first compare the two benchmark approaches introduced in Sect. 2
on the full test set Ifull.

We therefore briefly recap the twomethods. The first approach (KKT-MIQP) solves
a reformulated and linearized single-level problem, inwhich the lower level is replaced
by its KKT conditions. The KKT complementarity conditions are linearized with a
big-M formulation. This yields the convex MIQP (2), which can be solved directly
using solvers such asGurobi or CPLEX. This approach is very popular and widely used
in applied bilevel optimization. Similarly, using strong duality of the lower level and
convexifying the strong-duality inequality yields the convex MIQCQP (15). We call

2 The MATLAB function that we implemented to generate the matrices and a brief documentation thereof
can be found in the GitHub repository under https://github.com/m-schmidt-math-opt/qp-bilevel-matrix-
generator.
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Fig. 1 Log-scaled performance profiles for the benchmark approaches KKT-MIQP and SD-MIQCQP on
those instances in Ifull that at least one of the two approaches solves (left) and on those instances in Ifull
that both approaches solve (right)

this approach SD-MIQCQP in the following. Instead of applying outer-approximation
algorithms to this problem as proposed in Sect. 3, one can also solve this problem
directly. Solvers like Gurobi then either apply a linear outer approximation or solve a
continuous QCP relaxation at every branch-and-bound node. The exact method can be
set via the MIQCPMethod parameter that we left at its default value −1. This setting
automatically chooses the best strategy. In rare cases (5 instances) this resulted in
unsolved node relaxations and thus a suboptimal termination.We count these instances
as unsolved by SD-MIQCQP. We also emphasize again, that KKT-MIQP and SD-
MIQCQPmake use of a big-M value. Thismay result in bilevel-infeasible “solutions”,
which is not the case for the proposed outer-approximation algorithms. Thus, we
implemented an ex-post sanity check that computes the relative strong-duality error
of the lower level for a given solution (x, y, λ):

χ(x, y, λ) :=c(xI , y, λ)/|ql(y)|.

Whenever the error χ(x, y, λ) exceeds the tolerance of 10−4, we consider the instance
as unsolved for the respective solver. This never occurred forKKT-MIQPbut happened
in 19 cases for SD-MIQCQP.

In Fig. 1 (left) we compare the running times of KKT-MIQP and SD-MIQCQP
on those 561 instances in Ifull that at least one of the two benchmark approaches
solves. It is obvious that SD-MIQCQP is the better and more reliable approach. It
solves around 95% of the instances of the subset and is the faster method for most
of these instances. In contrast, KKT-MIQP is only capable of solving around 60% of
the instances. Figure 1 (right) compares the running times of KKT-MIQP and SD-
MIQCQP on the subset of 310 instances that both benchmark approaches solve. Also
on this subset, SD-MIQCQP is the dominating approach. This is interesting, since the
KKT reformulation is themost used approach in applied bilevel optimization.Note that
these results are in line with the study in [55], which reveals that a strong-duality-based
reformulation outperforms aKKT-based reformulation formixed-integer linear bilevel
problems with integer linking variables and considerably large lower-level problems.
Due to this clear dominance, we exclude KKT-MIQP from our further considerations.
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Table 1 Details of the test set I per instance class

nx ny |I | maxi∈I x+
i mu ml

References Size Min Max Min Max Min Max Min Max Min Max Min Max

CLIQUE [24] 55 546 1593 586 1653 546 1593 1 1 1 1 1326 3363

DENEGRE [16] 25 5 15 5 15 5 15 1500 1500 0 0 20 20

IMKP [22] 68 15 105 15 105 15 105 1 1 1 29 16 106

INT0SUM [48] 6 110 360 110 360 110 360 10 10 44 144 44 144

INTER-ASSIG [16] 10 25 25 25 25 25 25 1 1 1 1 45 45

INTER-CLIQUE [51] 14 19 94 27 109 19 94 1 1 1 1 54 280

INTER-FIRE [4] 51 22 79 44 158 22 79 1 1 1 1 41 974

INTER-KP [16] 47 20 40 20 40 20 40 1 1 1 1 21 41

MIPLIB [22] 8 9 90 3 253 9 90 1 1 0 0 15 331

XULARGE [54] 49 500 1000 500 1000 500 1000 10 10 200 400 200 400

XUWANG [21] 90 10 460 10 460 10 460 10 10 4 184 4 184

We now thin out the test set Ifull to obtain a more balanced set for the outer-
approximation methods that we evaluate in the following and for SD-MIQCQP. We
remove 7 instances that exceed the memory limit for all above-mentioned approaches
and 1 instance that is proven to be infeasible by all approaches. Further, we exclude
177 instances that are too easy, i.e., that all approaches solve within 1s. In addition,
we also exclude 149 instances that cannot be solved to global optimality by any of
the approaches within the time limit of 3600s. The resulting final test set I contains
|I| = 423 instances with up to several thousand variables and constraints. Note that
we checked that the objective function values and best bounds provided by different
approaches are consistent for each instance. This is not guaranteed due to possibly
wrong big-M values. All instances in I passed this ex-post optimality check. More
details on the instances in I can be found in Table 1.

Besides the resulting size of each instance class (“Size”), we also specify the min-
imum and maximum number of upper-level and lower-level variables (nx , ny) and
constraints (mu,ml ), as well as the minimum and maximum number of linking vari-
ables (|I |) and of the maximum upper bound of the linking variables (maxi∈I x+

i ).
The densities of the objective function matrices Hu , Gu , and Gl of the instances in I
are displayed in Fig. 2.

Finally, we mention that we later also analyze the performance of the various
methods on the instance set Ihard that contains those 149 instances that none of the
tested approaches can solve within the time limit.

4.3 Evaluation of themulti-tree approach

We now evaluate the following different parameterizations of the multi-tree approach
as described in Sect. 3.1:

MT A basic variant without any enhancements, i.e., the plain Algorithm 1.
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Fig. 2 Sizes nx resp. ny (x-axis) and densities (y-axis) of the matrices Hu ∈ R
nx×nx , Gu ∈ R

ny×ny , and
Gl ∈ R

ny×ny for the instances in set I

Fig. 3 Log-scaled performance profiles for different variants of the multi-tree approach that use Remark 2
on the instances in I that at least one multi-tree approach solves (left) and for the best multi-tree approach
that uses Remark 2 compared to when the standard subproblem (Sp) is used on the instances in I that at
least one of the two approaches solves (right)

MT-K Like MT but additional Kelley-type cutting planes (“K”) are used.
MT-K-F Themaster problem terminates as soon as a first (“F”) improving integer-

feasible solution is found and after every iteration additional Kelley-
type cutting planes are added for every non-improving integer-feasible
solution found by the master problem.

MT-K-F-W Like MT-K-F but every master problem is warmstarted (“W”) using the
best available bilevel-feasible solution.

Since Gl is positive definite for the test set I, we use Remark 2 as the default method
for solving the subproblem, which dominates the method proposed in Remark 1.
Later, we also compare the best setting among these four variants with an equivalent
setting that uses the standard subproblem (Sp), i.e., Problem (10) with fixed integer
variables; see the discussion in Sect. 3.3. Note that we assess Remark 1 on instances
with positive semidefinite matrices Gl—an instance class, for which Remark 2 is not
applicable—separately in Sect. 4.6.

Figure 3 (left) shows the performanceprofile of the four variants on the 406 instances
in I that at least one of the four methods can solve.
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Table 2 Running times (in sec), number of solved subproblems, and time spent in the subproblems for all
tested multi-tree variants on the subset of instances in I that every multi-tree approach solves

Running time Solved subproblems Time in subproblems
Mean Median Mean Median Mean Median

MT 342.50 34.74 21.43 6.00 3.33 0.16

MT-K 186.15 17.88 5.85 4.00 1.63 0.08

MT-K-F 201.99 18.48 19.37 10.00 4.22 0.16

MT-K-F-W 193.75 19.18 20.34 11.00 4.20 0.15

MT-STD 347.93 23.74 20.24 11.00 152.10 3.16

It turns out that MT-K clearly outperforms MT, which means that adding Kelley-
type cutting planes improves the performance. In addition, MT-K-F dominates MT-K
in terms of reliability, i.e., it solves more instances. MT-K-F in turn is dominated
by MT-K-F-W, which obviously outperforms all other tested variants. In fact, MT-
K-F-W is the fastest method for almost 50% of the instances. Further, it is the most
reliable approach and solves almost every instance that anyof themulti-tree approaches
solves. Overall, according to Fig. 3 (left), MT-K-F-W is the winner among the four
tested variants. It is noteworthy, however, that the performance profiles suggest that
the difference in MT-K, MT-K-F, and MT-K-F-W mostly lies in the reliability of the
approaches, i.e., in the number of solved instances.

In Fig. 3 (right), we compare the “winner setting” MT-K-F-W with a variant
with the same settings than the former approach but that uses the “standard outer-
approximation” subproblem (Sp) instead of the bilevel-tailored strategy proposed in
Remark 2. We label the latter approach by MT-STD as an abbreviation for MT-K-F-
W-STD. Note that the underlying instance set covers those 404 instances in I that
can be solved by at least one of the two methods. The performance profile shows that
MT-STD is clearly dominated by MT-K-F-W, which is the faster method for around
85% of the instances. This highlights the usefulness of applying Remark 2 to solve
the subproblem in a bilevel-tailored way.

The conclusions drawn from the performance profiles are underlined by the mean
and median running times displayed in Table 2. Note that, in order to have a fair
comparison, we used for the computation of the numbers in Table 2 the 339 instances
in I that every multi-tree solver can solve. It can be seen that MT-K, MT-K-F, and
MT-K-F-W have considerably shorter mean and median running times than MT. The
differences across the former three approaches are however negligible. This supports
the conclusion drawn from the performance profiles in Fig. 3 (left): The algorith-
mic enhancements mainly yield an increased number of solved instances but, on the
instances that all approaches can solve, no significant differences can be observed. In
fact, MT-K-F-W neither has the shortest mean running time nor the shortest median
running time. Table 2 also shows the mean and median number of solved subproblems
(or feasibility problems), which corresponds to the number of evaluated integer-
feasible solutions (or to the number of iterations minus 1, since per construction,
the last iteration computes a specific integer solution for the second time). The table
reveals that addingKelley-type outer-approximation cuts reduces the number of solved
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subproblems by almost 75% in the mean (MT-K vs. MT). On the other hand, termi-
nating the master problem early increases the number of solved subproblems again
by almost 300% in the mean (MT-K-F vs. MT-K). This is expected and these addi-
tional iterations are obviously overcompensated by a reduction in the running time
per iteration, i.e., the master problem terminates much faster. Note that the number
of solved subproblems is more or less identical for MT-K-F-W and MT-STD. This is
expected, since apart from the solution routine for the subproblem, the algorithmic
setting is the same for these two approaches. However, the time spent for solving the
subproblems drastically increases, if the standard subproblem is used. The mean and
median times spent in the subproblems clearly justify the bilevel-tailored solution of
the subproblems as proposed in Remark 2.

4.4 Evaluation of the single-tree approach

We now analyze the single-tree approach described in Sect. 3.2 in the following vari-
ants:

ST A basic variant without any enhancements as stated in Algorithm 2.
ST-K Additional Kelley-type cutting planes (“K”) are added for every non-

improving integer-feasible solution found.
ST-K-C Like ST-K but an initial bilevel-feasible solution is computed (if avail-

able) to add an initial outer-approximation cut (“C”).
ST-K-C-S Like ST-K-C but the initial bilevel-feasible solution is used to set start

values (“S”) for z∗ and �.

Again, all these variants apply Remark 2 to solve the subproblems. Later, we compare
the winner setting to an equivalent setting that uses subproblem (Sp) instead, i.e.,
Problem (10) with fixed integer variables; see the discussion in Sect. 3.3.

We compare the running times of the four variants using the performance profiles
in Fig. 4 (left) on those 409 instances in I that can be solved by at least one of the four
approaches.

The first observation is that the plots for ST and ST-K almostmatch. Thismeans that
additional Kelley-type cutting planes for all non-improving integer-feasible solutions
do not make a significant difference, which is in contrast to the results for the multi-
tree approach. One explanation might be that the performance boost that is observed
in the multi-tree method is mainly due to more effective presolving of the individual
master problems when additional cuts are added. This is, of course, not possible in the
single-tree approach. On the contrary, adding an initial outer-approximation cut is very
beneficial. The methods without this initial cut, ST and ST-K, are clearly dominated
by ST-K-C. The latter is in turn slightly dominated by ST-K-C-S, the variant that also
sets starting values according to the initial bilevel-feasible solution. ST-K-C-S is the
fastest method for around 50% of the instances and it solves more instances than any
other single-tree variant. Thus, ST-K-C-S is the “winner setting” for the single-tree
approach.

In Fig. 4 (right), we compare this winner setting to a variant with the same settings
but that uses the “standard outer-approximation” subproblem (Sp). We use the label
ST-STDas an abbreviation for ST-K-C-S-STD for this variant. The underlying instance
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Fig. 4 Log-scaled performance profiles for different variants of the single-tree approach that use Remark 2
on the instances in I that at least one single-tree approach solves (left) and for the best single-tree approach
that uses Remark 2 compared to when the standard subproblem (Sp) is used on the instances in I that at
least one of the two approaches solves (right)

Table 3 Running times (in sec), number of solved subproblems, and time spent in the subproblems for all
tested single-tree variants on the subset of instances in I that every single-tree approach solves

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

ST 301.14 13.31 105.26 18.00 5.72 1.33

ST-K 263.54 12.08 46.92 14.00 4.73 0.79

ST-K-C 188.69 10.49 45.99 14.00 4.33 0.66

ST-K-C-S 168.85 9.15 46.84 14.00 3.91 0.67

ST-STD 270.12 15.18 47.05 14.00 98.81 2.33

set consists of the 401 instances in I that can be solved by ST-K-C-S or ST-STD. The
performance profile shows that ST-K-C-S is the faster method for around 80% of the
instances and it also solves more instances than ST-STD. This suggests, that it clearly
makes sense to solve the subproblem in a bilevel-tailored way.

The conclusions drawn from the performance profiles in Fig. 4 are also visible in
Table 3, which displays statistics on running times and on the number of solved sub-
problems. The instances underlying the analysis in Table 3 consist of the 359 instances
in I that all single-tree variants (including ST-STD) solve. Note that this renders a
comparison of Tables 2 and 3 invalid, because the underlying instance sets are dif-
ferent. Looking at the running times in Table 3, we see that ST-K-C-S has the lowest
mean running time, which is almost half of the mean running time of ST. Additionally,
the median running times are dominated by ST-K-C-S, which supports the conclusion
drawn from Fig. 4 (left): ST-K-C-S is the best parameterization of the single-tree
approach. Looking at the number of solved subproblems, it is interesting to see that
the additionalKelley-type cutting planes decrease themean number of solved subprob-
lems significantly, although in terms of running times only a slightly positive effect can
be observed (ST-K vs. ST). This may indicate that there is a handful of instances that
require to solve many subproblems when no additional Kelley-type cutting planes are
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Fig. 5 Log-scaled performance profile for the winner configurations of the multi-tree and single-tree
approaches compared to the benchmark SD-MIQCQP on the instances in I that at least one of the three
methods solves (left) and an ECDF plot of the gaps on the instances in Ihard (right)

Table 4 Running times (in sec), number of solved subproblems, and time spent in the subproblems for
the best outer-approximation approaches and the benchmark on the subset of instances in I that all the
considered approaches solve

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 233.26 31.79 47.09 14.00 2.54 0.20

SD-MIQCQP 403.73 25.59 – – – –

ST-K-C-S 189.20 11.04 55.90 16.00 4.55 0.80

added. In contrast, the other two algorithmic enhancements show hardly any effect on
the number of solved subproblems (ST-K-C and ST-K-C-S vs. ST-K). Since ST-STD
is set up in the same way as ST-K-C-S, it is clear that the mean and median numbers
of solved subproblems are similar. However, the time spent for the subproblems sig-
nificantly increases when (Sp) is used (ST-STD vs. ST-K-C-S), such that ST-STD has
significantly longer running times in the mean and median. Again, this justifies the
bilevel-tailored solution of the subproblems as proposed in Remark 2.

4.5 Comparison of themulti- and single-tree approaches with the benchmark

We now compare the best parameterizations of the multi- and single-tree approach
(MT-K-F-W and ST-K-C-S) with the benchmark approach SD-MIQCQP. Fig-
ure 5 (left) shows performance profiles of the running times for those 419 instances
that at least one of the three methods solves. Obviously, both outer-approximation
approaches dominate the benchmark SD-MIQCQP. They are more reliable and solve
around 95% of the 419 instances compared to around 85% solved by SD-MIQCQP.
The outer-approximation methods are also the faster methods. In particular, ST-K-C-
S is the fastest approach for more than 60% of the instances and is the dominating
approach according to the performance profiles.
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We analyze this in more detail by looking at mean and median running times
displayed in Table 4. This table is based on those 338 instances in I that all three
approaches can solve. Restricted to these instances, SD-MIQCQP is a factor of around
1.7 slower compared to MT-K-F-W in the mean, but it is slightly the faster method
in the median. However, as seen in Fig. 5 (left), MT-K-F-W is the more reliable
method. In contrast, SD-MIQCQP is a factor of more than 2 slower in the mean and
almost 2.5 in the median compared to ST-K-C-S—without taking the 55 instances into
account that SD-MIQCQP cannot solve within the time limit but that are solved by
ST-K-C-S. Compared to MT-K-F-W, the single-tree method is almost 3 times faster
in the median, although it needs to solve more subproblems in the mean and median
and thus significantly spends more time in the subproblems. The reason for that may
simply lie in the nature of the methods: The single-tree approach needs to search only
one branch-and-bound tree. Overall, the single-tree approach ST-K-C-S is the winner
approach on the test set I. For a more detailed evaluation of the three methods, we
provide performance profiles and mean and median running times per instance class
as well as tables with running times and gaps per instance in Appendix 1. The figures
and tables therein underline the observations discussed in this subsection.

We also evaluate the performance of the three methods on the hard instances Ihard

that none approach can solve within the time limit. Therefore, we show plots of the
empirical cumulative distribution functions (ECDF) of the optimality gaps of each
method obtained after the time limit in Fig. 5 (right). The x-axis shows the gap in
percent while the y-axis shows the percentage of instances. The figure reveals that after
3600s, ST-K-C-S has the smallest optimality gap and is thus the preferable method
also on the instances in Ihard. In addition, the two outer-approximation variants are
more robust in the sense that they provide gaps within 100% for more instances than
SD-MIQCQP does. However, the differences between the three methods are not very
pronounced.

The effectiveness of our methods is also underlined in that extent that the charm
of solving the MIQCQP (15) directly, i.e., applying SD-MIQCQP, lies, among other
things, in the exploitation of the numerical stability of modern solvers. This contains,
e.g., an elaborate numerical polishing of the outer-approximation cuts and managing
these cuts in cut pools—numerical details that we mostly abstracted from in our
implementation. Incorporating such aspects in our implementationwould certainly not
harm our results, but it can be expected that a more elaborated implementation would
lead to an even greater domination of our approaches compared to the benchmark
approaches.

4.6 Sensitivity on specific test set properties

Finally, we analyze the performance of the outer-approximation algorithms MT-K-F-
W and ST-K-C-S in comparison to the benchmark SD-MIQCQP under three different
modifications of the test set I.

First, we adapt the matrix Gl to be positive semidefinite instead of positive def-
inite for every instance in I. We label this adapted test set by Ipsd. Note that with
this modification, all instances in Ipsd may have ambiguous lower-level solutions
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Fig. 6 Log-scaled performance
profile for MT-R1, MT-STD,
ST-R1, and ST-STD compared
to the benchmark SD-MIQCQP
on the instances in Ipsd that at
least one of the five approaches
solves

Table 5 Running times (in sec), number of solved subproblems, and time spent in the subproblems for
MT-R1, MT-STD, ST-R1, ST-STD, and the benchmark SD-MIQCQP on the subset of instances in Ipsd
that all five approaches solve

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-R1 223.70 30.49 37.40 13.00 20.29 2.52

MT-STD 282.87 29.24 40.34 12.00 75.09 1.42

SD-MIQCQP 340.82 23.26 – – – –

ST-R1 224.14 14.36 47.38 13.00 31.65 4.20

ST-STD 229.02 12.03 46.63 13.00 81.58 2.04

such that Remark 2 is not applicable anymore. We thus equip the multi- and single-
tree approaches with the subproblem routine according to Remark 1 and label these
approaches by MT-R1 and ST-R1 as abbreviations for MT-K-F-W-R1 and ST-K-C-
S-R1, respectively. Note that MT-STD and ST-STD, i.e., MT-K-F-W and ST-K-C-S
equipped with the standard subproblem, as well as the benchmark approach SD-
MIQCQP, are also applicable for the instance set Ipsd. We thus compare these five
methods on the 417 instances in Ipsd that at least one of the five methods solves using
the performance profiles shown in Fig. 6.

It can be seen that the single-tree methods are still the dominating ones among the
tested approaches, both in terms of running times and also in terms of reliability. Fur-
ther, the multi-tree approaches still dominate the benchmark SD-MIQCQP. Thus, the
outer-approximation methods outperform the benchmark, although not as pronounced
as for the standard test set I. The maximum factor τ is approximately 14 in Fig. 6
compared to 100 in Fig. 5 (left). This can be expected, since the subproblem routines
are more expensive compared to approaches that make use of Remark 2. Figure 6 also
suggests that using Remark 1 is not beneficial over simply using the standard outer-
approximation subproblem. Thus, for instances with ambiguous lower-level solutions,
ST-STD is themethod of choice. This is underlined bymean andmedian running times
as well as the numbers of solved subproblems that are shown in Table 5.

The table reveals also another interesting aspect. While the mean and median num-
ber of solved subproblems is very comparable for ST-R1 and ST-STD (as well as
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Fig. 7 Log-scaled performance
profile for MT-K-F-W,
ST-K-C-S, and the benchmark
SD-MIQCQP on the instances in
Ilc that at least one of the three
approaches solves

Table 6 Running times (in sec), number of solved subproblems and time spent in the subproblems for
MT-K-F-W, ST-K-C-S, and the benchmark SD-MIQCQP on the subset of instances in Ilc that all three
approaches solve

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 138.30 9.14 10.34 1.00 0.50 0.14

SD-MIQCQP 501.77 20.90 – – – –

ST-K-C-S 118.97 7.12 11.10 1.00 0.64 0.24

for MT-R1 vs. MT-STD), the mean and median times spent in the subproblems dif-
fer significantly. While the first aspect can be expected due to the same algorithmic
setting, the latter aspect is interesting. ST-STD spends more than twice the time of
ST-R1 in the subproblems in the mean, but it only spends half of the time of ST-R1
in the subproblem in the median. Thus, there seem to be few instances for which the
standard subproblem (Sp) is very challenging, but for the most instances it is much
easier to solve than subsequently solving the two problems (3) and (23) as proposed
by Remark 1.

Second, we choose the entries of the matrices Q, R, S, and D to be in [− 2
√

σ , 2
√

σ ]
respectively [1,√σ ] with σ = max{‖cu‖∞, ‖du‖∞} (or σ = ‖dl‖∞) instead of
[− 4

√
σ , 4

√
σ ]. In this setting, the coefficients of the resulting matrices Hu = Q�Q,

Gu = R�R, and Gl = S�S + D have larger absolute values and an analysis of the
resulting matrices revealed that also the size of the spectrum, i.e., the range between
the smallest and largest eigenvalue, increases compared to the matrices described
in Sect. 4.2. We label this modified test set as I lc and compare the methods MT-K-F-
W, ST-K-C-S, and SD-MIQCQO. Performance profiles of those 400 instances in I lc

that can be solved by at least one of the three methods is shown in Fig. 7.
In comparison to the standard test set I, see Fig. 5, the dominance of the outer-

approximation approaches is even more pronounced. The reason for this behavior is
that the outer-approximation methods need to solve significantly less subproblems on
the test set I lc; see Table 6.

In fact, for at least half of the instances in I lc the outer-approximation methods
need to solve only 1 subproblem; see the median numbers of solved subproblems in
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Table 6. In addition, there is not much difference between themulti- and the single-tree
method; see Fig. 7 and the mean and median running times in Table 6. One possible
explanation follows the discussion in Sect. 3.3. For many instances, the linear parts
in the upper- and lower-level objective functions model a min-max structure. This
structure cannot be “purely” present in our quadratic setting. Thus, choosing larger
coefficients in the quadratic parts reduces the min-max structure and the two objective
functions are more aligned, such that the first or second integer solution xI of the
master problem already yields the bilevel optimal solution. Overall, the properties of
the involved matrices of the quadratic terms seem to have a significant impact on the
effectiveness of the outer approximation algorithms.

Third, we highlight that for almost all instance classes in I, the linking variables
are binary. The reason is that most of these instances originate from MILP-MILP
interdiction instances, in which the integer variables are binary by nature. In addition,
for many instances in XUWANG and XULARGE that have lower and upper bounds of
0 and 10, the implied bounds are in fact 0 and 1, because the right-hand side values of
these randomly generated instances limit the feasible region of the linking variables.
In [54] it is pointed out that enlarging the feasible set of the original MILP-MILP
instances by changing the right-hand side vectors renders the instances very hard
to solve. We observed the same pattern for the MIQP-QP variants in a preliminary
numerical test. In our notation, all entries in A, B, a, C , D, and b are non-positive.
Decreasing the right-hand side vectors renders most of the instances too hard to be
solved by any of the proposed outer-approximation or benchmarkmethods. On the one
hand, this underlines the general hardness of MIQP-QP bilevel problems with general
integer (i.e., not binary) linking variables. On the other hand, the instances XUWANG
and XULARGE are randomly generated and it is not clear whether these observations
generalize to “real-world” bilevel instances.

5 Conclusion

In this paper, we considered bilevel problems with a convex-quadratic mixed-integer
upper level and a convex-quadratic lower level. Further, all linking variables are
assumed to be bounded integers. For such problems, we proposed an equivalent trans-
formation to a single-level convex MINLP and developed a multi- and a single-tree
outer-approximation algorithm that we derived from algorithms for general convex
MINLPs. We further proposed enhancements of these algorithms that exploit the
bilevel-specific structure of the problem. Finally, we proved the correctness of the
methods and carried out an extensive numerical study.

The study revealed that the two proposed outer-approximation algorithms outper-
form known benchmark approaches. For bilevel problems with unique lower-level
solutions, the proposed bilevel-tailored solution of the subproblem turned out to be
very effective. Even for instances with ambiguous lower-level problems, the novel
algorithms perform better than the benchmark approaches. In general, the single-tree
outer approximation implementation performs better than the multi-tree counterpart
and is, in our opinion, the preferred method.
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For both methods several questions remain open. Following the discussion in
Sect. 4.6, the impact of the objective function matrices and their spectra as well as the
performance on instances with non-binary linking variables needs further assessment.
Up to know, this is however not possible due to a lack of bilevel instances with such
properties. An interesting direction for future research can be to drop the integral-
ity condition on the linking variables. This would require, e.g., spatial branching on
linking variables but may also introduce some pitfalls like unattainable bilevel solu-
tions; see [43]. Another question is whether one can introduce integer variables to
the lower level, i.e., considering MIQP-MIQP bilevel problems. Certainly, the strong-
duality-based reformulation for convex lower-level problems would not be applicable
anymore, but one could use a more general single-level reformulation like the value-
function reformulation, as it is done, e.g., for MILP-MILP bilevel problems in [21].
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Appendix A: Detailed results

In this section, we provide more detailed results for the benchmark approach SD-
MIQCQP as well as for MT-K-F-W and ST-K-C-S. For each instance class specified
in Table 1, we provide

(i) performance profiles for all instances of the class that can be solved by at least
one of the three methods;

(ii) a table with mean and median running times and number of solved subproblems
for all instances of the class that could be solved by all three approaches;

(iii) a table with the exit status, gap, and running time of each solver for each instance
of the class.

In the latter tables, a status “optimal” means that the instance has been solved to global
optimality, “time limit” specifies that the time limit has been reached, “suboptimal”
indicates a suboptimal termination due to unsolved node relaxations, and “numerics”
denotes numerical issues detected in an ex-post feasibility check. Note that the last
status is only relevant for SD-MIQCQP. For each instance, we mark the best running
time using bold font.
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A.1 Results for CLIQUE

Figure 8, Tables 7 and 8 show the results for the instance class CLIQUE.

Fig. 8 Log-scaled performance
profile for the instances in I
belonging to the class CLIQUE
that can be solved by at least one
approach

Table 7 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class CLIQUE that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 606.42 406.37 1.00 1.00 2.02 1.65

SD-MIQCQP 1357.71 1198.74 – – – –

ST-K-C-S 587.04 392.28 1.00 1.00 2.03 1.66
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Table 8 Exit status, gap, and running time for every instance in I belonging to the class CLIQUE

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

normalClique40-70-1 Optimal 0.00 373.04 Optimal 0.0 110.05 Optimal 0.00 113.24

normalClique40-70-2 Optimal 0.00 369.69 Optimal 0.0 100.47 Optimal 0.00 97.42

normalClique40-70-3 Optimal 0.00 289.83 Optimal 0.0 140.19 Optimal 0.00 139.51

normalClique40-70-4 Optimal 0.00 257.63 Optimal 0.0 136.47 Optimal 0.00 127.54

normalClique40-70-5 Optimal 0.00 350.39 Optimal 0.0 91.68 Optimal 0.00 92.67

normalClique40-70-6 Optimal 0.00 322.25 Optimal 0.0 132.26 Optimal 0.00 142.48

normalClique40-70-7 Optimal 0.00 335.94 Optimal 0.0 109.09 Optimal 0.00 117.05

normalClique40-70-8 Optimal 0.00 400.47 Optimal 0.0 108.85 Optimal 0.00 144.90

normalClique40-70-9 Optimal 0.00 366.14 Optimal 0.0 127.73 Optimal 0.00 127.41

normalClique40-70-10 Optimal 0.00 407.76 Optimal 0.0 119.37 Optimal 0.00 106.55

normalClique40-90-1 Optimal 0.00 585.19 Optimal 0.0 250.06 Optimal 0.00 263.49

normalClique40-90-2 Optimal 0.00 775.76 Optimal 0.0 278.78 Optimal 0.00 364.20

normalClique40-90-3 Optimal 0.00 521.93 Optimal 0.0 266.40 Optimal 0.00 319.08

normalClique40-90-4 Optimal 0.00 280.62 Optimal 0.0 219.40 Optimal 0.00 209.49

normalClique40-90-5 Optimal 0.00 822.14 Optimal 0.0 328.74 Optimal 0.00 315.67

normalClique40-90-6 Optimal 0.00 843.31 Optimal 0.0 338.44 Optimal 0.00 351.19

normalClique40-90-7 Optimal 0.00 1091.98 Optimal 0.0 415.62 Optimal 0.00 558.84

normalClique40-90-8 Optimal 0.00 656.00 Optimal 0.0 196.99 Optimal 0.00 185.95

normalClique40-90-9 Optimal 0.00 352.58 Optimal 0.0 272.36 Optimal 0.00 254.31

normalClique40-90-10 Optimal 0.00 616.73 Optimal 0.0 397.12 Optimal 0.00 287.48

normalClique50-70-1 Optimal 0.00 1581.87 Optimal 0.0 613.21 Optimal 0.00 652.19

normalClique50-70-2 Optimal 0.00 1625.99 Optimal 0.0 534.33 Optimal 0.00 548.84

normalClique50-70-3 Optimal 0.00 1857.00 Optimal 0.0 618.52 Optimal 0.00 608.52

normalClique50-70-4 Optimal 0.00 1364.65 Optimal 0.0 317.41 Optimal 0.00 349.81

normalClique50-70-5 Optimal 0.00 1643.38 Optimal 0.0 545.34 Optimal 0.00 533.66

normalClique50-70-6 Optimal 0.00 1307.56 Optimal 0.0 636.85 Optimal 0.00 433.87

normalClique50-70-7 Optimal 0.00 1390.13 Optimal 0.0 418.98 Optimal 0.00 510.08

normalClique50-70-8 Optimal 0.00 1638.54 Optimal 0.0 609.33 Optimal 0.00 673.89
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Table 8 continued

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

normalClique50-70-9 Optimal 0.00 1530.60 Optimal 0.0 501.33 Optimal 0.00 420.35

normalClique50-70-10 Optimal 0.00 1305.50 Optimal 0.0 566.46 Optimal 0.00 687.50

normalClique50-90-1 Optimal 0.00 3203.79 Optimal 0.0 1463.11 Optimal 0.00 2231.93

normalClique50-90-2 Time limit 0.00 3612.06 Optimal 0.0 1495.54 Optimal 0.00 1161.41

normalClique50-90-3 Optimal 0.00 2375.81 Optimal 0.0 1314.81 Optimal 0.00 1263.55

normalClique50-90-4 Optimal 0.00 3483.73 Optimal 0.0 3299.91 Optimal 0.00 1990.24

normalClique50-90-5 Optimal 0.00 2713.89 Optimal 0.0 995.94 Optimal 0.00 862.32

normalClique50-90-6 Optimal 0.00 2517.60 Optimal 0.0 1133.98 Optimal 0.00 1080.39

normalClique50-90-7 Optimal 0.00 3589.76 Optimal 0.0 1254.83 Optimal 0.00 1338.87

normalClique50-90-8 Optimal 0.00 2553.33 Optimal 0.0 1128.11 Optimal 0.00 1002.23

normalClique50-90-9 Optimal 0.00 3192.67 Optimal 0.0 1612.44 Optimal 0.00 1369.13

normalClique50-90-10 Optimal 0.00 3205.23 Optimal 0.0 1361.15 Optimal 0.00 1408.86

normalClique60-70-1 Time limit 0.07 3600.02 Optimal 0.0 1557.44 Optimal 0.00 1388.07

normalClique60-70-2 Time limit 0.78 3600.04 Optimal 0.0 2283.10 Time limit 0.19 3600.12

normalClique60-70-3 Time limit 0.47 3600.21 Optimal 0.0 1447.52 Optimal 0.00 2713.71

normalClique60-70-4 Optimal 0.00 2206.92 Optimal 0.0 1190.69 Optimal 0.00 1197.08

normalClique60-70-5 Time limit 1.12 3600.29 Optimal 0.0 1723.88 Optimal 0.00 2108.85

normalClique60-70-6 Time limit 0.61 3600.04 Optimal 0.0 1479.36 Optimal 0.00 1409.20

normalClique60-70-7 Time limit 0.33 3600.02 Optimal 0.0 2098.55 Optimal 0.00 1904.26

normalClique60-70-8 Time limit 1.44 3600.02 Optimal 0.0 2557.95 Optimal 0.00 1602.48

normalClique60-70-9 Time limit 0.00 3616.98 Optimal 0.0 1900.93 Optimal 0.00 1874.10

normalClique60-70-10 Time limit 0.00 3600.21 Optimal 0.0 2070.09 Optimal 0.00 1850.07

normalClique60-90-3 Time limit 22.66 3600.15 Optimal 0.0 3119.34 Time limit 0.02 3600.07

normalClique60-90-5 Time limit 26.08 3600.05 Time limit 100.0 3600.17 Time limit 5.67 3600.25

normalClique60-90-6 Time limit 22.98 3600.40 Optimal 0.0 3269.06 Optimal 0.00 3376.79

normalClique60-90-9 Time limit 23.68 3600.46 Time limit 100.0 3600.33 Optimal 0.00 3381.69

normalClique60-90-10 Time limit 22.97 3600.19 Optimal 0.0 2948.06 Time limit 18.74 3600.03

Bold values indicates the fastest running time
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A.2 Results for DENEGRE

Figure 9, Tables 9 and 10 show the results for the instance class DENEGRE.

Fig. 9 Log-scaled performance
profile for the instances in I
belonging to the class DENEGRE
that can be solved by at least one
approach

Table 9 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class DENEGRE that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 11.28 4.34 10.21 9.00 0.02 0.01

SD-MIQCQP 22.65 4.10 – – – –

ST-K-C-S 9.93 3.01 11.05 12.00 0.08 0.09

Table 10 Exit status, gap, and running time for every instance in I belonging to the class DENEGRE

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

miblp_20_15_50_0110_10_2 Numerics – 0.11 Optimal 0.0 0.10 Optimal 0.0 0.09

miblp_20_15_50_0110_10_4 Optimal 0.0 0.35 Optimal 0.0 1.10 Optimal 0.0 0.27

miblp_20_20_50_0110_5_1 Optimal 0.0 44.41 Optimal 0.0 18.93 Optimal 0.0 11.03

miblp_20_20_50_0110_5_2 Optimal 0.0 2.23 Optimal 0.0 1.90 Optimal 0.0 1.47

miblp_20_20_50_0110_5_4 Optimal 0.0 13.51 Optimal 0.0 12.15 Optimal 0.0 9.04

miblp_20_20_50_0110_5_6 Numerics – 0.50 Optimal 0.0 0.81 Optimal 0.0 0.75

miblp_20_20_50_0110_5_7 Optimal 0.0 65.24 Optimal 0.0 18.72 Optimal 0.0 21.80

miblp_20_20_50_0110_5_9 Optimal 0.0 76.00 Optimal 0.0 22.08 Optimal 0.0 19.47

miblp_20_20_50_0110_5_10 Optimal 0.0 2.67 Optimal 0.0 2.31 Optimal 0.0 2.14

miblp_20_20_50_0110_5_12 Numerics – 0.54 Optimal 0.0 0.36 Optimal 0.0 0.35
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Table 10 continued

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

miblp_20_20_50_0110_5_13 Optimal 0.0 21.19 Optimal 0.0 9.20 Optimal 0.0 8.39

miblp_20_20_50_0110_5_14 Optimal 0.0 12.99 Optimal 0.0 7.93 Optimal 0.0 7.19

miblp_20_20_50_0110_5_15 Optimal 0.0 4.10 Optimal 0.0 1.81 Optimal 0.0 1.88

miblp_20_20_50_0110_5_16 Optimal 0.0 44.54 Optimal 0.0 25.89 Optimal 0.0 27.07

miblp_20_20_50_0110_5_17 Numerics – 38.83 Optimal 0.0 13.36 Optimal 0.0 12.53

miblp_20_20_50_0110_10_2 Optimal 0.0 2.18 Optimal 0.0 4.34 Optimal 0.0 2.34

miblp_20_20_50_0110_10_3 Optimal 0.0 2.90 Optimal 0.0 3.03 Optimal 0.0 3.01

miblp_20_20_50_0110_10_4 Optimal 0.0 1.74 Optimal 0.0 1.90 Optimal 0.0 1.48

miblp_20_20_50_0110_10_5 Optimal 0.0 3.57 Optimal 0.0 3.93 Optimal 0.0 2.48

miblp_20_20_50_0110_10_6 Optimal 0.0 111.70 Optimal 0.0 67.78 Optimal 0.0 62.34

miblp_20_20_50_0110_10_7 Optimal 0.0 17.12 Optimal 0.0 7.39 Optimal 0.0 4.80

miblp_20_20_50_0110_10_8 Optimal 0.0 2.01 Optimal 0.0 1.85 Optimal 0.0 0.91

miblp_20_20_50_0110_10_10 Optimal 0.0 1.90 Optimal 0.0 2.16 Optimal 0.0 1.61

miblp_20_20_50_0110_15_8 Numerics – 0.13 Optimal 0.0 0.15 Optimal 0.0 0.14

miblp_20_20_50_0110_15_10 Numerics – 0.10 Optimal 0.0 0.07 Optimal 0.0 0.06

Bold values indicates the fastest running time

A.3 Results for IMKP

Figure 10, Tables 11 and 12 show the results for the instance class IMKP.

Fig. 10 Log-scaled performance
profile for the instances in I
belonging to the class IMKP that
can be solved by at least one
approach
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Table 11 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class IMKP that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 375.47 54.21 186.64 130.00 0.35 0.18

SD-MIQCQP 251.66 29.50 – – – –

ST-K-C-S 41.81 8.45 230.21 172.00 1.82 1.17

Table 12 Exit status, gap, and running time for every instance in I belonging to the class IMKP

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

hp1.dat-0 Optimal 0.00 9.36 Optimal 0.00 23.62 Optimal 0.00 4.56

hp1.dat-50 Optimal 0.00 68.93 Optimal 0.00 98.39 Optimal 0.00 15.23

hp1.dat-100 Optimal 0.00 238.16 Optimal 0.00 1726.23 Optimal 0.00 56.73

hp2.dat-0 Optimal 0.00 581.87 Optimal 0.00 863.22 Optimal 0.00 114.22

hp2.dat-50 Optimal 0.00 604.56 Optimal 0.00 475.87 Optimal 0.00 69.62

hp2.dat-100 Time limit 2.41 3600.01 Time limit 25.15 3600.01 Optimal 0.00 491.51

pb1.dat-0 Optimal 0.00 13.92 Optimal 0.00 47.45 Optimal 0.00 6.23

pb1.dat-50 Optimal 0.00 54.91 Optimal 0.00 160.58 Optimal 0.00 23.29

pb1.dat-100 Optimal 0.00 43.58 Optimal 0.00 66.27 Optimal 0.00 9.44

pb2.dat-0 Optimal 0.00 998.67 Time limit 17.07 3600.00 Optimal 0.00 330.41

pb2.dat-50 Optimal 0.00 1864.53 Optimal 0.00 911.59 Optimal 0.00 87.37

pb2.dat-100 Optimal 0.00 2016.35 Optimal 0.00 3199.23 Optimal 0.00 297.77

pb4.dat-50 Optimal 0.00 0.92 Optimal 0.00 1.53 Optimal 0.00 0.73

pb5.dat-0 Optimal 0.00 53.74 Optimal 0.00 187.19 Optimal 0.00 10.53

pb5.dat-50 Optimal 0.00 66.40 Optimal 0.00 76.05 Optimal 0.00 8.10

pb5.dat-100 Optimal 0.00 104.70 Optimal 0.00 148.33 Optimal 0.00 16.15

pb6.dat-0 Optimal 0.00 737.00 Optimal 0.00 2415.26 Optimal 0.00 217.65

pb6.dat-50 Optimal 0.00 30.93 Optimal 0.00 160.34 Optimal 0.00 12.31

pb6.dat-100 Optimal 0.00 24.00 Optimal 0.00 180.92 Optimal 0.00 8.22

pb7.dat-0 Time limit 21.47 3600.01 Optimal 0.00 3170.62 Optimal 0.00 949.22

pb7.dat-50 Time limit 26.71 3600.00 Time limit 41.89 3600.02 Time limit 5.31 3600.00

pet3.dat-0 Optimal 0.00 0.18 Optimal 0.00 0.70 Optimal 0.00 0.17

pet3.dat-50 Optimal 0.00 0.24 Optimal 0.00 0.59 Optimal 0.00 0.10

pet3.dat-100 Optimal 0.00 0.20 Optimal 0.00 0.51 Optimal 0.00 0.07

pet4.dat-0 Optimal 0.00 0.66 Optimal 0.00 1.46 Optimal 0.00 0.45

pet4.dat-50 Optimal 0.00 0.87 Optimal 0.00 5.88 Optimal 0.00 0.59

pet4.dat-100 Optimal 0.00 2.58 Optimal 0.00 28.69 Optimal 0.00 1.23

pet5.dat-0 Optimal 0.00 40.53 Optimal 0.00 35.40 Optimal 0.00 12.63

pet5.dat-50 Optimal 0.00 29.50 Optimal 0.00 111.80 Optimal 0.00 8.78

pet5.dat-100 Optimal 0.00 54.20 Optimal 0.00 58.58 Optimal 0.00 8.45
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Table 12 continued

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

pet6.dat-0 Time limit 14.99 3600.01 Time limit 37.31 3600.02 Optimal 0.00 2260.87

pet6.dat-100 Optimal 0.00 1683.56 Optimal 0.00 3118.95 Optimal 0.00 263.56

weing3.dat-50 Optimal 0.00 0.36 Optimal 0.00 0.96 Optimal 0.00 0.18

weing4.dat-50 Optimal 0.00 0.15 Optimal 0.00 1.01 Optimal 0.00 0.16

weing8.dat-50 Optimal 0.00 19.49 Optimal 0.00 33.77 Optimal 0.00 9.70

weish01.dat-0 Optimal 0.00 11.63 Optimal 0.00 32.78 Optimal 0.00 4.11

weish01.dat-50 Optimal 0.00 59.58 Optimal 0.00 122.00 Optimal 0.00 11.06

weish01.dat-100 Optimal 0.00 104.93 Optimal 0.00 166.41 Optimal 0.00 17.86

weish02.dat-0 Optimal 0.00 4.28 Optimal 0.00 30.96 Optimal 0.00 3.67

weish02.dat-50 Optimal 0.00 7.33 Optimal 0.00 16.21 Optimal 0.00 2.56

weish02.dat-100 Optimal 0.00 6.12 Optimal 0.00 9.73 Optimal 0.00 2.06

weish03.dat-0 Optimal 0.00 6.79 Optimal 0.00 22.30 Optimal 0.00 3.30

weish03.dat-50 Optimal 0.00 7.18 Optimal 0.00 34.59 Optimal 0.00 3.72

weish03.dat-100 Optimal 0.00 8.30 Optimal 0.00 30.95 Optimal 0.00 3.62

weish04.dat-0 Optimal 0.00 12.11 Optimal 0.00 19.18 Optimal 0.00 2.01

weish04.dat-50 Optimal 0.00 13.73 Optimal 0.00 33.19 Optimal 0.00 5.31

weish04.dat-100 Optimal 0.00 2.75 Optimal 0.00 6.80 Optimal 0.00 1.56

weish05.dat-0 Optimal 0.00 5.70 Optimal 0.00 7.12 Optimal 0.00 2.33

weish05.dat-50 Optimal 0.00 16.08 Optimal 0.00 26.01 Optimal 0.00 5.16

weish05.dat-100 Optimal 0.00 2.73 Optimal 0.00 3.39 Optimal 0.00 0.52

weish06.dat-50 Optimal 0.00 1125.84 Optimal 0.00 328.41 Optimal 0.00 95.03

weish06.dat-100 Optimal 0.00 3413.24 Time limit 20.03 3600.01 Optimal 0.00 474.51

weish07.dat-0 Optimal 0.00 1298.08 Time limit 43.06 3600.01 Optimal 0.00 349.98

weish07.dat-50 Optimal 0.00 242.92 Optimal 0.00 481.89 Optimal 0.00 48.38

weish07.dat-100 Time limit 31.82 3600.05 Time limit 49.64 3600.01 Time limit 4.47 3600.00

weish08.dat-0 Optimal 0.00 919.85 Optimal 0.00 1502.95 Optimal 0.00 257.36

weish08.dat-50 Time limit 20.30 3600.01 Time limit 56.42 3600.00 Optimal 0.00 1107.42

weish08.dat-100 Time limit 13.62 3600.01 Time limit 58.60 3600.00 Optimal 0.00 1743.53

weish09.dat-0 Optimal 0.00 334.19 Optimal 0.00 263.44 Optimal 0.00 69.56

weish09.dat-50 Optimal 0.00 60.86 Optimal 0.00 221.16 Optimal 0.00 19.77

weish09.dat-100 Optimal 0.00 34.11 Optimal 0.00 54.21 Optimal 0.00 12.44

weish10.dat-100 Time limit 23.93 3600.01 Time limit 57.96 3600.02 Optimal 0.00 842.24

weish11.dat-0 Time limit 19.38 3600.01 Time limit 46.45 3600.01 Optimal 0.00 1671.50

weish11.dat-50 Optimal 0.00 1367.17 Optimal 0.00 1874.42 Optimal 0.00 240.13

weish11.dat-100 Time limit 16.52 3600.01 Time limit 56.88 3600.00 Optimal 0.00 840.72

weish12.dat-50 Time limit 18.56 3600.01 Time limit 26.84 3600.03 Optimal 0.00 1111.43

weish13.dat-0 Optimal 0.00 637.29 Optimal 0.00 471.30 Optimal 0.00 140.42

weish13.dat-50 Time limit 20.53 3600.01 Optimal 0.00 3227.19 Optimal 0.00 1249.43

Bold values indicates the fastest running time
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A.4 Results for INT0SUM

Figure 11, Tables 13 and 14 show the results for the instance class INT0SUM.

Fig. 11 Log-scaled performance
profile for the instances in I
belonging to the class INT0SUM
that can be solved by at least one
approach

Table 13 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class INT0SUM that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 375.47 54.21 186.64 130.00 0.35 0.18

SD-MIQCQP 251.66 29.50 – – – –

ST-K-C-S 41.81 8.45 230.21 172.00 1.82 1.17

Table 14 Exit status, gap, and running time for every instance in I belonging to the class INT0SUM

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

int0sum_i0_110 Optimal 0.0 1.15 Optimal 0.0 1.97 Optimal 0.0 0.91

int0sum_i0_160 Optimal 0.0 2.03 Optimal 0.0 0.80 Optimal 0.0 1.20

int0sum_i0_210 Optimal 0.0 2.00 Optimal 0.0 2.23 Optimal 0.0 1.29

int0sum_i0_260 Optimal 0.0 4.61 Optimal 0.0 6.55 Optimal 0.0 2.71

int0sum_i0_310 Optimal 0.0 26.04 Optimal 0.0 7.25 Optimal 0.0 5.07

int0sum_i0_360 Optimal 0.0 35.56 Optimal 0.0 8.66 Optimal 0.0 5.99

Bold values indicates the fastest running time
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A.5 Results for INTER-ASSIG

Figure 12, Tables 15 and 16 show the results for the instance class INTER-ASSIG.

Fig. 12 Log-scaled performance
profile for the instances in I
belonging to the class
INTER-ASSIG that can be solved
by at least one approach

Table 15 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class INTER-ASSIG that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 0.72 0.59 14.30 13.00 0.03 0.03

SD-MIQCQP 0.25 0.22 – – – –

ST-K-C-S 0.27 0.24 16.40 15.00 0.14 0.13

Table 16 Exit status, gap, and running time for every instance in I belonging to the class INTER-ASSIG

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

2AP05-1 Optimal 0.0 0.28 Optimal 0.0 0.56 Optimal 0.0 0.25

2AP05-4 Optimal 0.0 0.18 Optimal 0.0 0.61 Optimal 0.0 0.23

2AP05-7 Optimal 0.0 0.44 Optimal 0.0 1.18 Optimal 0.0 0.43

2AP05-9 Optimal 0.0 0.20 Optimal 0.0 0.55 Optimal 0.0 0.23

2AP05-10 Optimal 0.0 0.20 Optimal 0.0 0.55 Optimal 0.0 0.24

2AP05-14 Optimal 0.0 0.22 Optimal 0.0 0.61 Optimal 0.0 0.20

2AP05-15 Optimal 0.0 0.21 Optimal 0.0 0.54 Optimal 0.0 0.22

2AP05-16 Optimal 0.0 0.23 Optimal 0.0 1.24 Optimal 0.0 0.32

2AP05-18 Optimal 0.0 0.37 Optimal 0.0 0.89 Optimal 0.0 0.40

2AP05-22 Optimal 0.0 0.18 Optimal 0.0 0.52 Optimal 0.0 0.22
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A.6 Results for INTER-CLIQUE

Figure 13, Tables 17 and 18 show the results for the instance class INTER-CLIQUE.

Fig. 13 Log-scaled performance
profile for the instances in I
belonging to the class
INTER-CLIQUE that can be
solved by at least one approach

Table 17 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class INTER-CLIQUE that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 0.25 0.22 1.00 1.00 0.02 0.03

SD-MIQCQP 1.37 1.19 – – – –

ST-K-C-S 0.29 0.27 1.00 1.00 0.03 0.03

Table 18 Exit status, gap, and running time for every instance in I belonging to the class INTER-CLIQUE

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

plusBCPIns_8_7_1.txt Numerics – 0.10 Optimal 0.0 0.02 Optimal 0.0 0.02

plusBCPIns_8_7_3.txt Numerics – 0.09 Optimal 0.0 0.01 Optimal 0.0 0.02

plusBCPIns_8_7_7.txt Numerics – 0.11 Optimal 0.0 0.02 Optimal 0.0 0.02

plusBCPIns_8_9_8.txt Numerics – 0.12 Optimal 0.0 0.02 Optimal 0.0 0.02

plusBCPIns_10_7_1.txt Numerics – 0.17 Optimal 0.0 0.03 Optimal 0.0 0.03

plusBCPIns_10_7_6.txt Numerics – 0.15 Optimal 0.0 0.03 Optimal 0.0 0.03

plusBCPIns_10_7_7.txt Numerics – 0.16 Optimal 0.0 0.03 Optimal 0.0 0.03

plusBCPIns_10_7_8.txt Numerics – 0.17 Optimal 0.0 0.02 Optimal 0.0 0.03

plusBCPIns_10_9_4.txt Numerics – 0.19 Optimal 0.0 0.04 Optimal 0.0 0.03

plusBCPIns_15_7_5.txt Optimal 0.0 1.47 Optimal 0.0 0.18 Optimal 0.0 0.20

plusBCPIns_15_7_6.txt Optimal 0.0 2.11 Optimal 0.0 0.18 Optimal 0.0 0.19
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Table 18 continued

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

plusBCPIns_15_7_7.txt Optimal 0.0 1.19 Optimal 0.0 0.22 Optimal 0.0 0.27

plusBCPIns_15_9_3.txt Optimal 0.0 1.04 Optimal 0.0 0.30 Optimal 0.0 0.42

plusBCPIns_15_9_8.txt Optimal 0.0 1.02 Optimal 0.0 0.36 Optimal 0.0 0.35

Bold values indicates the fastest running time

A.7 Results for INTER-FIRE

Figure 14, Tables 19 and 20 show the results for the instance class INTER-FIRE.

Fig. 14 Log-scaled performance
profile for the instances in I
belonging to the class
INTER-FIRE that can be solved by
at least one approach

Table 19 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class INTER-FIRE that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 3.24 2.92 1.06 1.00 0.06 0.04

SD-MIQCQP 11.25 5.03 – – – –

ST-K-C-S 4.66 2.90 1.00 1.00 0.06 0.04
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A.8 Results for INTER-KP

Figure 15, Tables 21 and 22 show the results for the instance class INTER-KP.

Fig. 15 Log-scaled performance
profile for the instances in I
belonging to the class INTER-KP
that can be solved by at least one
approach

Table 21 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class INTER-KP that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 342.80 40.38 77.35 50.00 0.08 0.05

SD-MIQCQP 580.29 50.54 – – – –

ST-K-C-S 149.14 12.71 90.08 45.00 0.53 0.28

Table 22 Exit status, gap, and running time for every instance in I belonging to the class INTER-KP

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

K5020W01.KNP Optimal 0.00 1.06 Optimal 0.00 1.19 Optimal 0.0 0.61

K5020W02.KNP Optimal 0.00 1.18 Optimal 0.00 1.18 Optimal 0.0 0.46

K5020W04.KNP Optimal 0.00 0.55 Optimal 0.00 0.77 Optimal 0.0 0.39

K5020W05.KNP Optimal 0.00 2.19 Optimal 0.00 4.52 Optimal 0.0 1.27

K5020W06.KNP Optimal 0.00 0.24 Optimal 0.00 0.62 Optimal 0.0 0.29

K5020W08.KNP Optimal 0.00 3.71 Optimal 0.00 5.15 Optimal 0.0 1.87

K5020W10.KNP Optimal 0.00 0.33 Optimal 0.00 0.45 Optimal 0.0 0.27

K5020W11.KNP Optimal 0.00 1.09 Optimal 0.00 1.46 Optimal 0.0 0.35

K5020W13.KNP Optimal 0.00 0.91 Optimal 0.00 1.17 Optimal 0.0 0.27

K5020W14.KNP Optimal 0.00 0.54 Optimal 0.00 1.02 Optimal 0.0 0.54
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Table 22 continued

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

K5020W15.KNP Optimal 0.00 0.25 Optimal 0.00 0.30 Optimal 0.0 0.19

K5020W16.KNP Optimal 0.00 0.66 Optimal 0.00 0.58 Optimal 0.0 0.38

K5020W17.KNP Optimal 0.00 0.90 Optimal 0.00 1.18 Optimal 0.0 0.37

K5020W19.KNP Optimal 0.00 4.24 Optimal 0.00 4.10 Optimal 0.0 1.97

K5020W20.KNP Optimal 0.00 0.56 Optimal 0.00 0.74 Optimal 0.0 0.33

K5030W01.KNP Optimal 0.00 334.26 Optimal 0.00 62.91 Optimal 0.0 37.71

K5030W02.KNP Optimal 0.00 82.33 Optimal 0.00 45.20 Optimal 0.0 27.73

K5030W03.KNP Optimal 0.00 97.08 Optimal 0.00 80.82 Optimal 0.0 24.94

K5030W04.KNP Optimal 0.00 256.26 Optimal 0.00 122.60 Optimal 0.0 53.03

K5030W05.KNP Optimal 0.00 1347.74 Optimal 0.00 242.66 Optimal 0.0 132.69

K5030W06.KNP Optimal 0.00 26.62 Optimal 0.00 20.14 Optimal 0.0 9.15

K5030W07.KNP Optimal 0.00 403.59 Optimal 0.00 460.04 Optimal 0.0 76.46

K5030W08.KNP Optimal 0.00 2901.78 Optimal 0.00 2347.61 Optimal 0.0 665.08

K5030W09.KNP Optimal 0.00 15.95 Optimal 0.00 12.07 Optimal 0.0 7.77

K5030W10.KNP Optimal 0.00 64.58 Optimal 0.00 48.35 Optimal 0.0 15.70

K5030W11.KNP Optimal 0.00 100.67 Optimal 0.00 135.82 Optimal 0.0 25.36

K5030W12.KNP Optimal 0.00 60.57 Optimal 0.00 8.41 Optimal 0.0 6.88

K5030W13.KNP Optimal 0.00 50.75 Optimal 0.00 45.94 Optimal 0.0 17.24

K5030W14.KNP Optimal 0.00 18.16 Optimal 0.00 17.06 Optimal 0.0 7.56

K5030W15.KNP Optimal 0.00 231.28 Optimal 0.00 131.68 Optimal 0.0 55.31

K5030W16.KNP Optimal 0.00 89.72 Optimal 0.00 67.24 Optimal 0.0 18.94

K5030W17.KNP Optimal 0.00 208.46 Optimal 0.00 131.98 Optimal 0.0 49.46

K5030W18.KNP Optimal 0.00 45.92 Optimal 0.00 42.77 Optimal 0.0 11.31

K5030W19.KNP Optimal 0.00 2141.94 Optimal 0.00 2408.28 Optimal 0.0 618.34

K5030W20.KNP Optimal 0.00 50.32 Optimal 0.00 37.99 Optimal 0.0 14.12

K5040W02.KNP Optimal 0.00 3558.61 Optimal 0.00 1631.27 Optimal 0.0 1091.81

K5040W03.KNP Optimal 0.00 1804.02 Optimal 0.00 1666.88 Optimal 0.0 417.12

K5040W04.KNP Time limit 14.98 3600.00 Time limit 18.27 3600.47 Optimal 0.0 1792.87

K5040W06.KNP Time limit 11.18 3600.00 Optimal 0.00 1545.70 Optimal 0.0 1189.43

K5040W09.KNP Optimal 0.00 2792.56 Optimal 0.00 1657.71 Optimal 0.0 1189.71

K5040W10.KNP Time limit 11.09 3600.00 Optimal 0.00 971.59 Optimal 0.0 1129.36

K5040W12.KNP Time limit 15.48 3600.00 Optimal 0.00 1113.04 Optimal 0.0 817.67

K5040W13.KNP Optimal 0.00 2917.00 Optimal 0.00 1467.52 Optimal 0.0 844.68

K5040W14.KNP Time limit 18.86 3600.00 Optimal 0.00 2422.98 Optimal 0.0 2288.78

K5040W16.KNP Optimal 0.00 3593.20 Optimal 0.00 794.46 Optimal 0.0 537.96

K5040W18.KNP Time limit 10.68 3600.00 Optimal 0.00 2902.33 Optimal 0.0 1236.55

K5040W20.KNP Time limit 13.46 3600.00 Optimal 0.00 1708.49 Optimal 0.0 957.17

Bold values indicates the fastest running time
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A.9 Results for MIPLIB

Figure 16, Tables 23 and 24 show the results for the instance class MIPLIB.

Fig. 16 Log-scaled performance
profile for the instances in I
belonging to the class MIPLIB
that can be solved by at least one
approach

Table 23 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class MIPLIB that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 9.15 2.24 7.62 4.50 0.17 0.04

SD-MIQCQP 4.21 1.85 – – – –

ST-K-C-S 2.29 1.05 9.88 8.50 0.35 0.13

Table 24 Exit status, gap, and running time for every instance in I belonging to the class MIPLIB

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

enigma-0.100000 Optimal 0.0 0.66 Optimal 0.0 0.77 Optimal 0.0 1.15

enigma-0.500000 Optimal 0.0 12.13 Optimal 0.0 4.76 Optimal 0.0 1.53

enigma-0.900000 Optimal 0.0 1.05 Optimal 0.0 2.76 Optimal 0.0 0.74

lseu-0.900000 Optimal 0.0 0.98 Optimal 0.0 0.65 Optimal 0.0 0.60

p0033-0.100000 Optimal 0.0 2.52 Optimal 0.0 0.12 Optimal 0.0 0.19

p0201-0.900000 Optimal 0.0 11.96 Optimal 0.0 58.66 Optimal 0.0 11.58

p0282-0.900000 Optimal 0.0 3.18 Optimal 0.0 3.75 Optimal 0.0 1.59

stein45-0.100000 Optimal 0.0 1.18 Optimal 0.0 1.72 Optimal 0.0 0.96

Bold values indicates the fastest running time
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A.10 Results for XULARGE

Figure 17, Tables 25 and 26 show the results for the instance class XULARGE.

Fig. 17 Log-scaled performance
profile for the instances in I
belonging to the class XULARGE
that can be solved by at least one
approach

Table 25 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class XULARGE that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 334.39 262.69 22.75 21.00 19.27 15.42

SD-MIQCQP 648.82 424.62 – – – –

ST-K-C-S 1172.12 1017.47 22.75 22.50 32.39 25.93

Table 26 Exit status, gap, and running time for every instance in I belonging to the class XULARGE

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

xuLarge500-1 Optimal 0.00 121.00 Optimal 0.00 175.12 Optimal 0.00 537.25

xuLarge500-2 Optimal 0.00 1714.55 Optimal 0.00 362.34 Optimal 0.00 365.64

xuLarge500-3 Optimal 0.00 151.09 Optimal 0.00 138.98 Optimal 0.00 118.73

xuLarge500-4 Optimal 0.00 212.83 Optimal 0.00 103.97 Optimal 0.00 103.68

xuLarge500-5 Optimal 0.00 1459.84 Optimal 0.00 161.21 Optimal 0.00 380.26

xuLarge500-6 Optimal 0.00 263.79 Optimal 0.00 86.42 Optimal 0.00 256.90

xuLarge500-7 Time limit 76.61 3600.57 Optimal 0.00 675.98 Optimal 0.00 127.10

xuLarge500-8 Optimal 0.00 1562.00 Time limit 74.98 3600.01 Optimal 0.00 336.60

xuLarge500-9 Optimal 0.00 765.19 Optimal 0.00 292.37 Optimal 0.00 2102.37
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Table 26 continued

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

xuLarge500-10 Optimal 0.00 1791.55 Time limit 100.50 3600.03 Optimal 0.00 215.41

xuLarge600-1 Time limit 0.00 3612.50 Optimal 0.00 225.28 Optimal 0.00 1809.43

xuLarge600-2 Optimal 0.00 207.46 Optimal 0.00 611.78 Optimal 0.00 1021.83

xuLarge600-3 Optimal 0.00 237.78 Optimal 0.00 379.92 Optimal 0.00 1063.74

xuLarge600-4 Optimal 0.00 384.68 Optimal 0.00 226.74 Optimal 0.00 575.84

xuLarge600-5 Optimal 0.00 274.75 Optimal 0.00 120.33 Optimal 0.00 714.46

xuLarge600-6 Optimal 0.00 331.57 Optimal 0.00 420.66 Optimal 0.00 696.44

xuLarge600-7 Optimal 0.00 191.48 Optimal 0.00 63.90 Optimal 0.00 612.92

xuLarge600-8 Optimal 0.00 256.13 Optimal 0.00 266.16 Optimal 0.00 789.83

xuLarge600-9 Optimal 0.00 2080.12 Optimal 0.00 559.52 Optimal 0.00 1013.10

xuLarge600-10 Optimal 0.00 1191.29 Optimal 0.00 523.90 Optimal 0.00 1051.19

xuLarge700-1 Time limit 112.82 3622.08 Optimal 0.00 1507.66 Time limit 80.89 3600.08

xuLarge700-2 Optimal 0.00 433.36 Optimal 0.00 589.76 Optimal 0.00 2362.92

xuLarge700-3 Time limit 0.00 3601.56 Optimal 0.00 815.84 Optimal 0.00 2107.97

xuLarge700-4 Optimal 0.00 1443.02 Time limit 150.16 3600.03 Optimal 0.00 1923.37

xuLarge700-5 Optimal 0.00 415.87 Optimal 0.00 104.44 Optimal 0.00 2314.45

xuLarge700-6 Optimal 0.00 494.81 Optimal 0.00 259.23 Optimal 0.00 1541.30

xuLarge700-7 Time limit 128.47 3600.05 Optimal 0.00 2158.58 Time limit 101.57 3600.09

xuLarge700-8 Time limit 79.22 3619.03 Optimal 0.00 1345.66 Optimal 0.00 2460.28

xuLarge700-9 Optimal 0.00 435.40 Optimal 0.00 833.66 Suboptimal 121.18 1761.38

xuLarge700-10 Optimal 0.00 528.58 Optimal 0.00 215.11 Optimal 0.00 1035.78

xuLarge800-1 Time limit 75.22 3606.32 Optimal 0.00 628.20 Time limit 38.31 3600.16

xuLarge800-3 Optimal 0.00 875.94 Optimal 0.00 844.45 Optimal 0.00 2258.26

xuLarge800-4 Time limit 198.99 3600.13 Optimal 0.00 2476.00 Time limit 98.35 3600.10

xuLarge800-5 Suboptimal 118.06 396.01 Optimal 0.00 568.34 Suboptimal 62.31 2471.99

xuLarge800-6 Optimal 0.00 1731.05 Optimal 0.00 720.83 Time limit 135.52 3600.03

xuLarge800-7 Optimal 0.00 450.49 Optimal 0.00 747.31 Optimal 0.00 2010.81

xuLarge800-8 Optimal 0.00 620.22 Optimal 0.00 247.94 Optimal 0.00 2309.24

xuLarge800-9 Optimal 0.00 638.98 Optimal 0.00 498.95 Time limit 117.47 3600.21

xuLarge800-10 Optimal 0.00 1908.76 Optimal 0.00 523.82 Optimal 0.00 2894.05

xuLarge900-2 Optimal 0.00 758.57 Optimal 0.00 2039.72 Time limit 150.34 3600.15

xuLarge900-3 Optimal 0.00 696.52 Optimal 0.00 1009.42 Time limit 102.17 3600.25

xuLarge900-4 Optimal 0.00 1639.29 Optimal 0.00 1481.57 Time limit 120.23 3600.11

xuLarge900-5 Time limit 139.56 3600.05 Time limit 189.09 3600.03 Time limit 140.06 3600.19

xuLarge900-6 Optimal 0.00 949.70 Optimal 0.00 1206.07 Time limit 144.54 3600.37

xuLarge900-8 Time limit 674.08 3624.87 Optimal 0.00 491.74 Time limit 96.86 3600.04
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Table 26 continued

SD-MIQCQP MT-K-F-W ST-K-C-S

Instance Status Gap Time Status Gap Time Status Gap Time

xuLarge900-10 Optimal 0.00 1570.63 Optimal 0.00 1748.17 Time limit 151.39 3600.09

xuLarge1000-3 Optimal 0.00 1903.67 Optimal 0.00 1137.92 Time limit 121.02 3600.27

xuLarge1000-7 Optimal 0.00 1601.50 Optimal 0.00 708.71 Time limit 126.23 3600.29

xuLarge1000-8 Optimal 0.00 2046.20 Optimal 0.00 500.56 Time limit 84.41 3600.13

Bold values indicates the fastest running time

A.11 Results for XUWANG

Figure 18, Tables 27 and 28 show the results for the instance class XUWANG.

Fig. 18 Log-scaled performance
profile for the instances in I
belonging to the class XUWANG
that can be solved by at least one
approach

Table 27 Running times (in sec), number of solved subproblems and time spent in the subproblems (in sec)
for the instances in I belonging to the class XUWANG that can be solved by every approach

Running time Solved subproblems Time in subproblems

Mean Median Mean Median Mean Median

MT-K-F-W 145.01 46.09 21.77 18.50 3.34 1.78

SD-MIQCQP 336.72 25.09 – – – –

ST-K-C-S 43.12 13.48 22.94 22.00 6.41 3.88
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