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Abstract We propose a complete-search algorithm for solving a class of non-convex,
possibly infinite-dimensional, optimization problems to global optimality. We assume
that the optimization variables are in a bounded subset of a Hilbert space, and we
determine worst-case run-time bounds for the algorithm under certain regularity con-
ditions of the cost functional and the constraint set. Because these run-time bounds are
independent of the number of optimization variables and, in particular, are valid for
optimization problems with infinitely many optimization variables, we prove that the
algorithm converges to an ε-suboptimal global solution within finite run-time for any
given termination tolerance ε > 0. Finally, we illustrate these results for a problem of
calculus of variations.

Keywords Infinite-dimensional optimization · Complete search · Branch-and-lift ·
Convergence analysis · Complexity analysis
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1 Introduction

Infinite-dimensional optimization problems arise in many research fields, including
optimal control [7,8,24,54], optimization with partial differential equations (PDE)
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222 B. Houska, B. Chachuat

embedded [22], and shape/topology optimization [5]. In practice, these problems are
often solved approximately by applying discretization techniques; the original infinite-
dimensional problem is replaced by a finite-dimensional approximation that can then
be tackled using standard optimization techniques. However, the resulting discretized
optimization problems may comprise a large number of optimization variables, which
grows unbounded as the accuracy of the approximation is refined. Unfortunately,
worst-case run-time bounds for complete-search algorithms in nonlinear program-
ming (NLP) scale poorly with the number of optimization variables. For instance, the
worst-case run-time of spatial branch-and-bound [17,44] scales exponentially with the
number of optimization variables. In contrast, algorithms for solving convex optimiza-
tion problems in polynomial run-time are known [11,40], e.g. in linear programming
(LP) or convex quadratic programming (QP). While these efficient algorithms enable
the solution of very large-scale convex optimization problems, such as structured or
sparse problems, in general their worst-case run-time bounds also grow unbounded as
the number of decision variables tends to infinity.

Existing theory and algorithms that directly analyze and exploit the infinite-
dimensional nature of an optimization problem are mainly found in the field of convex
optimization. For themost part, these algorithms rely on duality in convex optimization
in order to construct upper and lower bounds on the optimal solution value, although
establishing strong duality in infinite-dimensional problems can prove difficult. In
this context, infinite-dimensional linear programming problems have been analyzed
thoroughly [3]. A variety of algorithms are also available for dealing with convex
infinite-dimensional optimization problems, some of which have been analyzed in
generic Banach spaces [14], as well as certain tailored algorithms for continuous lin-
ear programming [4,13,32].

In the field of non-convex optimization, problems with an infinite number of vari-
ables are typically studied in a local neighborhood of a stationary point. For instance,
local optimality in continuous-time optimal control problems can be analyzed by using
Pontryagin’s maximum principle [46], and a number of local optimal control algo-
rithms are based on this analysis [6,12,51,54]. More generally, approaches in the
classical field of variational analysis [37] rely on local analysis concepts, from which
information about global extrema may not be derived in general. In fact, non-convex
infinite-dimensional optimization remains an open field of research and, to the best of
our knowledge, there currently are no generic complete-search algorithms for solving
such problems to global optimality.

This paper asks the question whether a global optimization algorithm can be con-
structed, whose worst-case run-time complexity is independent of the number of
optimization variables thereof, such that this algorithm would remain tractable for
infinite-dimensional optimization problems. Clearly, devising such an algorithm may
only be possible for a certain class of optimization problems. Interestingly, the fact
that the “complexity” or “hardness” of an optimization problem does not necessarily
depend on the number of optimization variables has been observed—and it is in fact
exploited—in state-of-the-art global optimization solvers for NLP/MINLP, although
these observations are still to be analyzed in full detail. For instance, instead of apply-
ing a branch-and-bound algorithm in the original space of optimization variables,
global NLP/MINLP solvers such as BARON [49,52] or ANTIGONE [34] proceed

123



Global optimization in Hilbert space 223

by lifting the problem to a higher-dimensional space via the introduction of auxiliary
variables from the DAG decomposition of the objective and constraint functions. In
a different context, the solution of a lifted problem in a higher-dimensional space has
become popular in numerical optimal control, where the so-called multiple-shooting
methods often outperform their single-shooting counterparts despite the fact that the
former calls for the solution a larger-scale (discretized) NLP problem [7,8]. This idea
that certain optimization problems become easier to solve than equivalent problems
in fewer variables is also central to the work on lifted Newton methods [2]. To the
best of our knowledge, such behaviors cannot be explained currently with results
from the field of complexity analysis, which typically give monotonically increasing
worst-case run-time bounds as the number of optimization variables increases. In this
respect, these run-time bounds therefore predict the opposite behavior to what can
sometimes be observed in practice.

1.1 Problem formulation

The focus of this paper is on complete-search algorithms for solving non-convex
optimization problems of the form:

inf
x∈C F(x) , (1)

where F : H → R and C ⊆ H denote the cost functional and the constraint set,
respectively; and the domain H of this problem is a (possibly infinite-dimensional)
Hilbert space with respect to the inner product 〈·, ·〉 : H × H → R. The theoretical
considerations in the paper do not assume a separable Hilbert space, although our
various illustrating examples are based on separable spaces.

Definition 1 A feasible point x∗ ∈ C is said to be an ε-suboptimal global solution—or
ε-global optimum–of (1), with ε > 0, if

∀x ∈ C, F(x∗) ≤ F(x) + ε .

Wemake the following assumptions regarding the geometry ofC throughout the paper.

Assumption 1 The constraint setC is convex, has a nonempty relative interior, and is
bounded with respect to the induced norm on H ; that is, there exists a constant γ < ∞
such that

∀x ∈ C, ‖x‖H := √〈x, x〉 ≤ γ .

Our main objective in this paper is to develop an algorithm that can locate an ε-
suboptimal global optimum of Problem (1), in finite run-time for any given accuracy
ε > 0, provided that F satisfies certain regularity conditions alongside Assumption 1.

123



224 B. Houska, B. Chachuat

Remark 1 Certain infinite-dimensional optimization problems are formulated in a
Banach space (B, ‖ · ‖) rather than a Hilbert space, for instance in the field of
optimal control of partial differential equations in order to analyze the existence of
extrema [22]. The optimization problem (1) becomes

inf
x∈Ĉ

F̂(x) (2)

with F̂ : B → R and Ĉ a convex bounded subset of B. Provided that:

1. the Hilbert space H ⊆ B is convex and dense in (B, ‖ · ‖);
2. the function F̂ is upper semi-continuous in Ĉ ; and
3. the constraint set Ĉ has a nonempty relative interior;

we may nonetheless consider Problem (1) with C := Ĉ ∩ H instead of (2), for any
ε-suboptimal global solution of the former is also an ε-suboptimal global solution of
(2), and both problems have such ε-suboptimal points. Because Conditions 1–3 are
often satisfied in practical applications, it is for the purpose of this paper not restrictive
to assume that the domain of the optimization variables is indeed a Hilbert space.

1.2 Outline and contributions

The paper starts by discussing several regularity conditions for sets and functionals
defined in a Hilbert space in Sect. 2, based on which complete-search algorithms can
be constructedwhose run-time is independent of the number of optimization variables.
Such an algorithm is presented in Sect. 3 and analyzed in Sect. 4, which constitutes
the main contributions and novelty. A numerical case study is presented in Sect. 5 in
order to illustrate the main results, before concluding the paper in Sect. 6.

Although certain of these algorithmic ideas are inspired by a recent paper on
global optimal control [25], we develop herein a much more general framework for
optimization in Hilbert space. Besides, Sect. 4 derives novel worst-case complexity
estimates for the proposed algorithm. We argue that these ideas could help lay the
foundations towards new ways of analyzing the complexity of certain optimization
problems based on their structural properties rather than their number of optimiza-
tion variables. Although the run-time estimates for the proposed algorithm remain
conservative, they indicate that complexity in numerical optimization does not neces-
sarily depend on whether the problem at hand being small-scale, large-scale, or even
infinite-dimensional.

2 Some regularity conditions for sets and functionals in Hilbert space

This section builds upon basic concepts in infinite-dimensional Hilbert spaces in order
to arrive at certain regularity conditions for sets and functionals defined in such spaces.
Our focusing on Hilbert space is motivated by the ability to construct an orthogonal
basis Φ0, Φ1, . . . ∈ H such that
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Global optimization in Hilbert space 225

∀i, j ∈ N,
1

σi
〈Φi , Φ j 〉 = δi, j :=

{
0 if i 
= j,
1 otherwise,

for some scalars σ0, σ1, . . . ∈ R
++. We make the following assumption throughout

the paper:

Assumption 2 The basis functions Φk are uniformly bounded with respect to ‖ · ‖H .
Equipped with such a basis, we can define the associated projection functions PM :
H → H for each M ∈ N as

∀x ∈ H, PM (x) :=
M∑

k=0

〈x, Φk〉
σk

Φk .

A natural question to ask at this point, is what can be said about the distance between
an element x ∈ H and its projection PM (x) for a given M ∈ N.

Definition 2 We call D(M, x) := ‖ x − PM (x) ‖H the distance between an element
x ∈ H and its projection PM (x). Moreover, given the constraint setC ⊆ H , we define

DC (M) := sup
x∈C

D(M, x) .

Lemma 1 Under Assumption 1, the function DC : N → R is uniformly bounded
from above by γ .

Proof For each M ∈ N, we have

[
DC (M)

]2 = sup
x∈C

‖ x − PM (x) ‖2H ≤ ‖ x ‖2H .

The result follows by Assumption 1. ��
Despite being uniformly bounded, the function DC (M) may not converge to zero as
M → ∞ in an infinite-dimensional Hilbert space in general. Such lack of convergence
is illustrated in the following example.

Example 1 Consider the case that all the basis functions Φ0, Φ1, . . . are in the con-
straint set C , and define the sequence {xk}k∈N with xk := Φk+1. For all k ∈ N, we
have Pk(xk) = 0, and therefore

DC (k) ≥ D(k, xk) = ‖ xk − Pk(xk) ‖H = ‖ xk ‖H = 1 .

��
This behavior is unfortunate because the existence of minimizers to Problem (1) can-
not be ascertained without making further regularity assumptions. Moreover, for a
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sequence (xk)k∈N of feasible points of Problem (1) converging to an infimum, it could
be that

lim sup
M→∞

lim sup
k→∞

D(M, xk) 
= lim sup
k→∞

lim sup
M→∞

D(M, xk) .

That is, any attempt to approximate the infimum by constructing a sequence of finite
parameterizations of the optimization variable x could in principle be unsuccessful.

A principal aim of the following sections is to develop an optimization algorithm,
whose convergence to an ε-global optimumof Problem (1) can be certified. But instead
of making assumptions about the existence, or even the regularity, of theminimizers of
Problem (1), we shall impose suitable regularity conditions on the objective function
F in (1). In preparation for this analysis, we start by formalizing a particular notion
of regularity for the elements of H .

Definition 3 An element g ∈ H is said to be regular for the constraint set C if

lim
M→∞ RC (M, g) = 0 with RC (M, g) := DC (M)D(M, g) . (3)

Moreover, we call the function RC (·, g) : N → R
+ the convergence rate at g on C .

Theorem 1 For any g ∈ H, we have

∀M ∈ N, sup
x∈C

| 〈g, x − PM (x)〉 | ≤ RC (M, g) . (4)

In the particular case of g being a regular element for C, we have

lim
M→∞ sup

x∈C
| 〈g, x − PM (x)〉 | = 0 .

Proof Let M ∈ N, and consider the optimization problem

V M := sup
x∈C

〈g, x − PM (x)〉 = sup
x∈C

〈g, w〉 ,

where we have introduced the variable w := x − PM (x) such that

∀x ∈ C, ‖w‖H ≤ DC (M) .

Since the functions Φ0, . . . , ΦM are orthogonal to each other, we have 〈Φk, w〉 = 0
for all k ∈ {0, . . . , M}, and it follows that

V M ≤ sup
w∈H

〈g, w〉 s.t. 〈Φ0, w〉 = · · · = 〈ΦM , w〉 = 0 , ‖w‖H ≤ DC (M) .

Next, we use duality to obtain

V M ≤ inf
λ∈RM+1

sup
w∈H

〈

g −
M∑

k=0

λkΦk , w

〉

s.t. ‖w‖H ≤ DC (M) ,
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where λ ∈ R
M+1 are multipliers associated with the constraints 〈Φk, w〉 = 0 for

k ∈ {0, . . . , M}. Applying the Cauchy-Schwarz inequality gives

∀λ ∈ R
M+1, V M ≤

∥∥∥∥∥
g −

M∑

k=0

λkΦk

∥∥∥∥∥
H

DC (M) ,

and with the particular choice λ∗
k := 〈g,Φk 〉

σk
for each k ∈ {0, . . . , M}, we have

V M ≤ ‖g − PM (g)‖H DC (M) = RC (M, g) .

The optimal value of the minimization problem

V M := inf
x∈C 〈g, x − PM (x)〉

can be estimated analogously, giving V M ≥ −RC (M, g), and the result follows. ��

The following example establishes the regularity of piecewise smooth functions
with a finite number of singularities in the Hilbert space of square-integrable functions
with the Legendre polynomials as orthogonal basis functions.

Example 2 We consider the Hilbert space H = L2[0, 1] of standard square-integrable
functions on the interval [0, 1] equipped with the standard inner product, 〈 f, g〉 :=∫ 1
0 f (s)g(s)ds, and we choose the Legendre polynomials on the interval [0, 1] with
weighting factors σk = 1

2k+1 as orthogonal basis functions (Φk)k∈N. Our focus is on
piecewise smooth functions g : [0, 1] → Rwith a given finite number of singularities,
for which we want to establish regularity in the sense of Definition 3 for a bounded
constraint set C ⊂ L2[0, 1].

There are numerous results on approximating functions using polynomials, includ-
ing convergence rate estimates [15]. One such result in [48] shows that any piecewise
smooth function f : [0, 1] → R can be approximated with a polynomial pMf :
[0, 1] → R of degree M such that

∀y ∈ [0, 1],
∥∥∥ f (y) − pMf (y)

∥∥∥ ≤ K1 exp
(−K2M

αd(y)β
)

, (5)

for any given α, β > 0 with either α < 1 and β ≥ α, or α = 1 and β > 1; some
constants K1, K2 > 0; and where d(y) denotes the distance to the nearest singularity.
In particular, the following convergence rate estimate can be derived using this result
in the present example, for any piecewise smooth functions g : [0, 1] → R with a
finite number of singularities:
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228 B. Houska, B. Chachuat

RC (M, g) = ‖g − PM (g)‖2 DC (M) = inf
λ

∥∥∥∥∥
g −

M∑

k=0

λkΦk

∥∥∥∥∥
2

DC (M)

(Lemma 1)≤ inf
λ

∥∥∥∥∥
g −

M∑

k=0

λkΦk

∥∥∥∥∥
2

γ ≤ K√
M

for some constant K < ∞. In order to establish the very last part of the above
inequality, it is enough to consider a function g with a single singularity, e.g., at the
mid-point y = 1

2 , and using α = β = 1
2 :

1

inf
λ

∥∥∥∥∥
g −

M∑

k=0

λkΦk

∥∥∥∥∥
2

≤
√∫ 1

0
K 2
1 exp

(
−2K2

√
M |y − 1/2|

)
dy

=
√√√√√

K 2
1[

K2
√
M
]2 + O

(
1√
M

exp
(
−K2

√
M
))

= O
(
M−1/2

)
. (6)

Convergence rate estimates for k-times differentiable and piecewise smooth functions
can be obtained in a similar way, using for instance the results in [15,48]. ��

A useful generalization of Definition 3 and a corollary of Theorem 1 are given
below.

Definition 4 A set G ⊆ H is said to be regular for C if

lim
M→∞ RC (M,G) = 0 with RC (M,G) := sup

g∈G
RC (M, g) .

Moreover, we call the function RC (·,G) : N → R
+ the worst-case convergence rate

for G on C .

Corollary 1 For any regular set G ⊆ H, we have

lim
M→∞ sup

g∈G,
x∈C

| 〈g, x − PM (x)〉 | = 0 .

Remark 2 While any subset of the Euclidean space R
n is trivially regular for a given

bounded subset C ⊂ R
n , only certain subsets/subspaces of an infinite-dimensional

Hilbert space happen to be regular. Consider for instance the space of square-integrable
functions, H := L2[a, b], and letGp be any subset of p-times differentiable functions
on [a, b], with uniformly Lipschitz-continuous p-th derivatives. It can be shown—e.g.,

1 We have used the integration formula
∫

e
√
ax dx = 2e

√
ax (

√
ax − 1)

a
+ C for the integral term in (6).
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from the analysis in [27] using the standard trigonometric Fourier basis, or from the
results in [55] using the Legendre polynomial basis—that

RC (M,Gp) ≤ O
(
log(M)M−p−1

)
≤ O

(
M−p) ,

for any bounded constraint set C ⊂ L2[a, b], and Gp is thereby regular for C . This
leads to a rather typical situation, whereby the stronger the regularity assumptions on
the function class, the faster the convergence of the associated worst-case convergence
rate R(·,Gp)—an increase in the convergence rate order log(M)M−p−1 with p in this
instance. In the limit of smooth (C∞) functions, it can even be established—e.g., using
standard results from Fourier analysis [19,28]—that the convergence rate becomes
exponential,

RC (M,G∞) ≤ O (exp(−βM)) with β > 0 .

Example 2 (Continued) Consider the following set of unit-step functions

Gt := { xt | t ∈ [0, 1]} with ∀τ ∈ [0, 1], xt (τ ) :=
{
1 if τ ≤ t,
0 otherwise,

for which we want to establish regularity in the sense of Definition 4. Using earlier
results in Example 2, it is known that the function x0.5 can be approximated with a
sequence of polynomials pM0.5 : [0, 1] → R of degree M such that

∥∥∥x0.5 − pM0.5

∥∥∥
2

≤ O
(
M−1/2

)
.

For every t ∈ [0, 1] likewise, we can construct the family of polynomials

∀τ ∈ [0, 1], pMt (τ ) := pM0.5

(
1 − t + τ

2

)
.

Since the latter satisfy the same property as x0.5 that

∥∥∥xt − pMt

∥∥∥
2

≤ K√
M

,

where the constant K < ∞ is independent of t or M , we have RC (M,Gt ) ≤
O
(
M−1/2

)
.

This example can be generalized to other classes of functions. For instance, given
any smooth function f ∈ L2[0, 1], the subset

G f := { g ∈ H | ∃t ∈ [0, 1] : g(τ ) = f (τ ) if τ ≤ t; g(τ ) = 0 otherwise}

is regular in H , and also satisfies RC (M,G f ) ≤ O
(
M−1/2

)
. This result can be

established bywriting the elements inG f as the product between the piecewise smooth
function f and the function xt , and then approximating the factors separately. ��
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In the remainder of this section, we analyze and illustrate a regularity condition for
the cost functional in Problem (1).

Definition 5 The functional F : H → R is said to be strongly Lipschitz-continuous
on C if there exists a bounded subset G ⊂ H which is regular on C and a constant
L < ∞ such that

∀e ∈ H, sup
x∈C

|F(x + e) − F(x)| ≤ L sup
g∈G

| 〈g, e〉| . (7)

Remark 3 In the special case of an affine functional F , given by

F(x) := F0 + 〈ĝ, x〉

where F0 ∈ H , and ĝ ∈ H is a regular element for C , the condition (7) is trivially
satisfied with L = 1 and G = {ĝ}. In this interpretation, the regularity condition (7)
essentially provides a means of keeping the nonlinear part of F under control.

Remark 4 Consider the finite-dimensional Euclidean spaceR
n , a bounded subset S ⊂

R
n , and a continuously-differentiable function F : R

n → R whose first derivative is
bounded in the subset G ⊂ R

n . By the mean-value theorem, F satisfies

∀e ∈ R
n, sup

x∈S
|F(x + e) − F(x)| = sup

x∈S

∣∣∣∣

∫ 1

0

〈
∂F

∂x
(x + ηe), e

〉
dη

∣∣∣∣

≤ sup
g∈G

| 〈g, e〉 | .

Thus, any continuously differentiable function with a bounded first derivative is
strongly Lipschitz-continuous on any bounded subset of R

n . This result can be gen-
eralized to certain classes of functionals in infinite-dimensional Hilbert space. For
instance, let F : H → R be Fréchet differentiable, such that

∀(x, e) ∈ C × H, F(x + e) − F(x) =
∫ 1

0
〈DF(x + ηe), e〉 dη ,

and let the set of Fréchet derivatives G := {DF(x) | x ∈ H} ⊆ H be both bounded
and regular on C . Then, F is strongly Lipschitz-continuous on C .

The following two examples investigate strong Lipschitz continuity for certain
classes of functionals in the practical space of square-integrable functions with the
Legendre polynomials as orthogonal basis functions. The first one (Example 3) illus-
trates the case of a functional that is not strongly Lipschitz-continuous; the second
one (Example 4) identifies a broad class of strongly Lipschitz-continuous functionals
defined via the solution of an embedded ODE system. The intention here is to help
the reader develop an intuition that strongly Lipschitz-continuous functionals occur
naturally in many, although not all, problems of practical relevance.
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Global optimization in Hilbert space 231

Example 3 We consider the Hilbert space H = L2[0, 1] of square-integrable func-
tions on the interval [0, 1] with the standard inner product, and select the orthogonal
basis functions (Φk)k∈N as theLegendre polynomials on the interval [0, 1]withweight-
ing factors σk = 1

2k+1 .We investigatewhether the functional F given below is strongly
Lipschitz-continuous on the set C := {x ∈ L2[0, 1] | ∀s ∈ [0, 1], |x(s)| ≤ 1},

∀x ∈ L2[0, 1], F(x) := ‖x‖22 =
∫ 1

0
x(s)2 ds .

Consider the family of sets defined by

∀M ∈ N, EM := {PM (x) − x | x ∈ C } ⊆ L2[0, 1] .

If the condition (7) were to hold for some bounded and regular set G, we would have
by Theorem 1 that

sup
e∈EM ,
x∈C

|F(x + e) − F(x)| ≤ L sup
e∈EM ,
g∈G

| 〈g, e〉| = L sup
x∈C,
g∈G

| 〈g, x − PM (x)〉| ,

and it would follow from Corollary 1 that

lim
M→∞ sup

e∈EM ,
x∈C

|F(x + e) − F(x)| = 0 .

However, this leads to a contradiction since we also have

∀M ∈ N, sup
e∈EM ,
x∈C

|F(x + e) − F(x)| ≥ sup
e∈EM

F(e) = sup
x∈C

‖x − PM (x)‖22 = 1 .

Therefore, the regularity condition (7)may not be satisfied for any bounded and regular
set G, and F is not strongly Lipschitz-continuous on C . ��
Remark 5 The result that the functional F in Example 3 is not strongly Lipschitz-
continuous on C is not in contradiction with Remark 4. Although F is Fréchet
differentiable in L2[0, 1], the corresponding set G of the Fréchet derivatives of F
is indeed unbounded.

Example 4 We again consider the Hilbert space H = L2[0, 1] of square-integrable
functions on the interval [0, 1] equipped with the standard inner product, and select the
orthogonal basis functions (Φk)k∈N as the Legendre polynomials on the interval [0, 1]
with weighting factors σk = 1

2k+1 . Our focus is on the ordinary differential equation
(ODE)

∀t ∈ [0, 1], ∂x

∂t
(t, u) = f (x(t, u)) + Bu(t) with x(0, u) = 0 , (8)
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232 B. Houska, B. Chachuat

where B ∈ R
n×n is a constantmatrix; and f : R

n → R
n , a continuously-differentiable

and globally Lipschitz-continuous function, so that the solution trajectory x(·, u) :
[0, 1] → R

n is well-defined for all u ∈ L2[0, 1]. For simplicity, we consider the
functional F given by

F(u) := cTx(1, u) ,

for some real vector c ∈ R
n .Moreover, the constraint setC ⊆ H maybe any uniformly

bounded function subset, such as simple uniform bounds of the form

C := {u ∈ L2[0, 1] | ∀τ ∈ [0, 1], |u(τ )| ≤ 1} .

The following developments aim to establish that F is strongly Lipschitz-continuous
on C .

By Taylor’s theorem, the defect δ(t, u, e) := x(t, u + e) − x(t, u) satisfies the
differential equation

∀t ∈ [0, 1], ∂δ

∂t
(t, u, e) = Λ(t, u, e)δ(t, u, e) + Be(t)

with δ(0, u, e) = 0 andΛ(t, u, e) := ∫ 1
0

∂ f
∂x (x(t, u)+ηδ(t, u, e)) dη. The right-hand-

side function f being globally Lipschitz-continuous, we have for any given smooth
matrix-valued function A : [0, 1] → R

n×n ,

∀(t, u, e) ∈ [0, 1] × C × H, ‖Λ(t, u, e) − A(t)‖ ≤ �1 ,

for some constant �1 < ∞. For a particular choice of A, we can decompose δ(t, u, e)
into the sum δl(t, e)+ δn(t, u, e, δl) corresponding to the solution of the ODE system

∀t ∈ [0, 1], δl(t, e) = A(t)δl(t, e) + Be(t) (9)

δn(t, u, e, δl) = Λ(t, u, e)δn(t, u, e, δl) + [Λ(t, u, e) − A(t)]δl(t, e)
(10)

with δl(0, e) = δn(0, u, e, δl) = 0. In this decomposition, the left-hand side of (7)
satisfies

∀e ∈ H, sup
u∈C

|F(u + e) − F(u)| ≤
∣∣∣cTδl(1, e)

∣∣∣+ sup
u∈C

∣∣∣cTδn(1, u, e)
∣∣∣ .

Regarding the linear term δl first, we have

∀s ∈ [0, 1], cTδl(s, e) = 〈gs, e〉 (11)
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with

∀t ∈ [0, 1], gs(t) :=
⎧
⎨

⎩

∫ t

0
cTΓ (t, τ )B dτ if t ≤ s,

0 otherwise,

where Γ (t, τ ) denotes the fundamental solution of the linear ODE (9) such that

∀(τ, t) ∈ [0, 1]2, ∂

∂t
Γ (t, τ ) = A(t)Γ (t, τ ) with G(τ, τ ) = I .

Since A is smooth, it follows from Example 2 that the set G := {gs | s ∈ [0, 1]} is
both regular on C and bounded, and satisfies

RC (M,G) ≤ O
(
M1/2

)
.

Regarding the nonlinear term δn, since the function Λ is uniformly bounded, applying
Gronwall’s lemma to the ODE (10) gives

∀(t, u, e) ∈ [0, 1] × C × H, cTδn(t, u, e, δl) ≤ � exp(�) sup
s∈[0,1]

|cTδl(s, e)|

≤ � exp(�) sup
g∈G

|〈g, e〉| , (12)

for some constant � < ∞. Finally, combining (11) and (12) shows that F satisfies the
condition (7) with L := 1 + � exp(�), thus F is strongly Lipschitz-continuous on C .

��
Remark 6 The functional F in the previous example is defined implicitly via the
solution of an ODE. The result that such functionals are strongly Lipschitz-continuous
is particularly significant insofar as the proposed optimization framework will indeed
encompass a broad class of optimal control problems aswell as problems in the calculus
of variations. In fact, it turns out that strong Lipschitzness still holds in replacing
the constant matrix B in (8) with any matrix-valued continuously differentiable and
globally Lipschitz-continuous function of x(t, u), thus encompassing quite a general
class of nonlinear affine-control systems. In the case of general nonlinear ODEs,
however, strong Lipschitzness may be lost. Strong Lipschitzness could nevertheless
be recovered by restricting condition (7) in Definition 5 as

∀e ∈ EC , sup
x∈C

|F(x + e) − F(x)| ≤ L sup
g∈G

| 〈g, e〉| ,

with the projection error set EC := {PM (x) − x | x ∈ C, M ∈ N } ⊂ H , and also
restricting the constraint set C to only contain uniformly bounded and Lipschitz-
continuous functions in L2[0, 1] with uniformly bounded Lipschitz constants.

We close this section with a brief analysis of the relationship between strong and
classical Lipschitzness in infinite-dimensional Hilbert space.
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Lemma 2 Every strongly Lipschitz-continuous functional F : H → R on C is also
Lipschitz-continuous on C.

Proof Let G be a bounded and regular subset of H on C such that the condition (7)
is satisfied. Since G is bounded, there exists a constant constant α < ∞ such that
supg∈G ‖g‖H ≤ α. Applying the Cauchy–Schwarz inequality to the right-hand side
of (7) gives

∀e ∈ H, sup
x∈C

|F(x + e) − F(x)| ≤ L α ‖e‖H ,

and so F is Lipschitz-continuous on C . ��
Remark 7 With regularity of the set G alone, i.e. without boundedness, the condition
(7)may not imply Lipschitz-continuity, or even continuity of F . As a counter-example,
letG := span (Φ0, Φ1, . . . , ΦN )be the subspace spannedby thefirst N basis functions
in the infinite-dimensional Hilbert space H . It is clear thatG is regular on any bounded
set C ⊂ H since RC (M,G) = 0 for all M ≥ N . Now, let the functional F : H → R

given by

F(x) :=
{
0 if 〈ĝ, x〉 ≤ 0
1 otherwise

for some ĝ ∈ G. For every (x, e) ∈ C × H , we have

|F(x + e) − F(x)| ≤
{
0 if 〈ĝ, e〉 = 0
1 otherwise

}
≤
{
0 if PN (e) = 0
∞ otherwise

}
= sup

g∈G
| 〈g, e〉| .

Therefore, despite being discontinuous, the condition (7) is indeed satisfied.

Remark 8 In general, Lipschitz-continuity does not imply strong Lipschitz-continuity
in an infinite-dimensional Hilbert space. A counter-example is easily contrived for the
functional F : L2[0, 1] → R given by

∀x ∈ L2[0, 1], F(x) := max{1, ‖x‖22} .

Although this functional is Lipschitz-continuous, it can be shownby a similar argument
as in Example 3 that it is not strongly Lipschitz-continuous.

3 Global optimization in Hilbert space using complete search

The application of complete-search strategies to infinite-dimensional optimization
problems such as (1) calls for an extension of the (spatial) branch-and-bound princi-
ple [23] to general Hilbert space. The approach presented in this section differs from
branch-and-bound in that the dimensionM of the search space is adjusted, as necessary,
during the iterations of the algorithm, by using a so-called lifting operation—hence
the name branch-and-lift algorithm. The basic idea is to bracket the optimal solution
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value of Problem (1) and progressively refine these bounds via this lifting mechanism,
combined with traditional branching and fathoming.

Based on the developments in Sect. 2, the following subsections describe methods
for exhaustive partitioning in infinite-dimensional Hilbert space (Sect. 3.1) and for
computing rigorous upper and lower bounds on given subsets of the variable domain
(Sect. 3.2), before presenting the proposed branch-and-lift algorithm (Sect. 3.3).

3.1 Partitioning in infinite-dimensional Hilbert space

Similar to branch-and-bound search, the proposed branch-and-lift algorithmmaintains
a partition A := {A1, . . . , Ak} of finite-dimensional sets A1, . . . , Ak . This partition
is updated through the repeated application of certain operations, including branching
and lifting, in order to close the gap between an upper and a lower bound on the global
solution value of the optimization problem (1). The following definition is useful in
order to formalize these operations:

Definition 6 With each pair (M, A) ∈ N × P(RM+1), we associate a subregion
XM (A) of H given by

XM (A) :=
{

x ∈ C

∣∣∣∣∣

( 〈x, Φ0〉
σ0

, . . . ,
〈x, ΦM 〉

σM

)T

∈ A

}

.

Moreover, we say that the set A is infeasible if XM (A) = ∅.

Notice that each subregion XM (A) is a convex set if the setsC and A are themselves
convex. For practical reasons, we restrict ourselves to compact subsets A ∈ S

M+1 ⊆
P(RM+1) herein, where the class of sets S

M+1 is easily stored and manipulated by a
computer. For example, S

M+1 could be a set of interval boxes, polytopes, ellipsoids,
etc.

The ability to detect infeasibility of a set A ∈ S
M+1 is pivotal for complete search.

Under the assumption that the constraint set C is convex (Assumption 1), a certificate
of infeasibility can be obtained by considering the convex optimization problem

dC (A) := min
x,y∈H ‖x − y‖H s.t.

( 〈y, Φ0〉
σ0

, . . . ,
〈y, ΦM 〉

σM

)T

∈ A , x ∈ C.

(13)

It readily follows from the Cauchy–Schwarz inequality that

−‖x − y‖H ≤ 〈x, Φk〉 − 〈y, Φk〉 ≤ ‖x − y‖H ,

for any (normalized) basis function Φk , and so ‖x − y‖H = 0 implies 〈x, Φk〉 =
〈y, Φk〉. Consequently, a set A is infeasible if and only if dC (A) > 0. Because Slater’s
constraint qualification holds for Problem (13) under Assumption 1, one approach to
checking infeasibility to within high numerical accuracy relies on duality for com-
puting lower bounds on the optimal solution value dC (A)—similar in essence to the
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infinite-dimensional convex optimization techniques in [4,14]. For the purpose of this
paper, our focus is on a general class of non-convex objective functionals F , whereas
the constraint set C is assumed to be convex and to have a simple geometry in order
to avoid numerical issues in solving feasibility problems of the form (13). We shall
therefore assume, from this point onwards, that infeasibility can be verified with high
numerical accuracy for any set A ∈ S

M+1.
A branching operation subdivides any set A ∈ S

M+1 in the partition A into two
compact subsets Al, Ar ∈ S

M+1 such that Al∪ Ar ⊇ A, thereby updating the partition
as

A ← A \ {A} ∪ {Al, Ar} .

On the other hand, a lifting operation essentially lifts any set A ∈ S
M+1 into a

higher-dimensional space under the function ΓM : S
M+1 → S

M+2, defined such that

∀A ∈ S
M+1, XM (A) ⊆ XM+1(ΓM (A)) .

The question as to defining the higher-order coefficient 〈x, ΦM+1〉 in such a lifting is
related to the so calledmoment problem that asks the question under which conditions
on a sequence (ak)k∈{1,...,N }, named moment sequence, can we find an associated
element x ∈ H with ak = 〈x,Φk 〉

σk
for each k ∈ {1, . . . , N }. Classical examples of

such moment problems are Stieltjes’, Hamburger’s, and Legendre’s moment prob-
lems [1]. Here, we adopt the modern standpoint on moment problems using convex
optimization [30,42], by considering the following optimization subproblems:

aM+1(A) ≤ min
x∈XM (A)

〈x, ΦM+1〉
σM+1

and aM+1(A) ≥ max
x∈XM (A)

〈x, ΦM+1〉
σM+1

.

(14)

Although both optimization problems in (14) are convex when A and C are convex,
they remain infinite-dimensional, and thus intractable in general. Obtaining lower and
upper bounds aM+1(A), aM+1(A) is nonetheless straightforward under Assumption 1.
In case no better approach is available, one can always use

aM+1(A) := − γ

σM+1
and aM+1(A) := γ

σM+1
,

which follows readily from the Cauchy–Schwarz inequality and the property that
‖ΦM+1‖H = 1. As already mentioned in the introduction of the paper, a variety
of algorithms are now available for tackling convex infinite dimensional problems
both efficiently and reliably [4,14], which could provide tighter bounds in practical
applications.

A number of remarks are in order:

Remark 9 The idea to introduce a lifting operation to enable partition in infinite-
dimensional function space was originally introduced by the authors in a recently
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publication [25], focusing on global optimization of optimal control problems. One
principal contribution in the present paper is a generalization of these ideas to global
optimization in anyHilbert space, by identifying a set of sufficient regularity conditions
on the cost functional and constraint set for the resulting branch-and-lift algorithms
to converge to an ε-global solution in finite run-time.

Remark 10 Many recent optimization techniques for global optimization are based
on the theory of positive polynomials and their associated linear matrix inequality
(LMI) approximations [30,45], which are also originally inspired by moment prob-
lems. Although these LMI techniques may be applied in the practical implementation
of the aforementioned lifting operation, they are not directly related to the branch-and-
lift algorithm that is developed in the following sections. An important motivation for
moving away from the generic LMI framework is that the available implementations
scale quite poorly with the number of optimization variables, due to the combinato-
rial increase of the number of monomials in the associated multivariate polynomial.
Therefore, a direct approximation of the cost function F withmultivariate polynomials
would conflict with our primary objective to develop a global optimization algorithm
whose worst-case run-time does not depend on the number of optimization variables.

3.2 Strategies for upper and lower bounding of functionals

Besides partitioning, the efficient construction of tight upper and lower bounds on the
global solution value of (1) for given subregions of H is key in a practical implemen-
tation of branch-and-lift. Thereafter, functions LM ,UM : S

M+1 → R such that

∀A ∈ S
M+1, LM (A) ≤ inf

x∈XM (A)
F(x) ≤ UM (A) , (15)

shall be call lower- and upper-bounding functions of the functional F , respectively. A
simple approach to constructing these lower and upper bounds relies on the following
two-step decomposition:

1. Compute bounds L0
M (A) and U 0

M (A) on the finite-dimensional approximation of
F as

∀A ∈ S
M+1, L0

M (A) ≤ inf
a∈A

F

(
M∑

i=0

aiΦi

)

≤ U 0
M (A) . (16)

Clearly, it depends on the particular expression of F how to determine such bounds
in practice. In the case that F is factorable, various arithmetics can be used to prop-
agate bounds through a DAG of the function, including interval arithmetic [36],
McCormick relaxations [9,33], and Taylor/Chebyshev model arithmetic [10,43,
47].Moreover, if the expression of F is embedding a dynamic system described by
differential equations, validated bounds can be obtained by using a variety of set-
propagation techniques as described, e.g., in [26,31,38,50,53]; or via hierarchies
of LMI relaxations as in [21,29].
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2. Compute a bound ΔM (A) on the approximation errors such that

∀A ∈ S
M+1,

∣∣∣∣∣
inf

x∈XM (A)
F(x) − inf

a∈A
F

(
M∑

i=0

aiΦi

)∣∣∣∣∣
≤ ΔM (A) . (17)

In the case that F is strongly Lipschitz-continuous on C , we can always take
ΔM (A) := L RC (M,G), where the constant L < ∞ and the bounded regular set
G satisfy the condition (7). Naturally, better bounds may be derived by exploiting
a particular structure or expression of F .

By construction, the lower-bounding function LM (A) := L0
M (A) − ΔM (A) and the

upper-bounding functionUM (A) := U 0
M (A)+ΔM (A) trivially satisfy (15).Moreover,

when the set A ∈ S
M+1 is infeasible—see related discussion in Sect. 3.1—we may

set ΔM (A) = LM (A) = UM (A) = ∞.
We state the following assumptions in anticipation of the convergence analysis in

Sect. 4.

Assumption 3 The cost functional F in Problem (1) is strongly Lipschitz-continuous
on C , with the condition (7) holding for the constant L < ∞ and the bounded regular
subset G ⊂ H .

Remark 11 Under Assumption 3, Lemma 2 implies that

∀a, a′ ∈ A,

∣∣∣∣∣
F

(
M∑

k=0

akΦk

)

− F

(
M∑

k=0

a′
kΦk

)∣∣∣∣∣
≤ L ′

∥∥∥∥∥

M∑

k=0

(ak − a′
k)Φk

∥∥∥∥∥
H

for a Lipschitz constant L ′ ≥ L supg∈G ‖g‖H . Thus, if Assumption 2 is also satisfied,
any pair (M, A) ∈ N × S

M+1 is such that

∀a, a′ ∈ A,

∣∣∣∣∣
F

(
M∑

k=0

akΦk

)

− F

(
M∑

k=0

a′
kΦk

)∣∣∣∣∣

≤ L ′
M∑

k=0

|ak − a′
k | ‖Φk‖ ≤ K d1(A)

with K := L supk∈N ‖Φk‖H and d1(A) := ∑M
i=0 supa,a′∈A |ai − a′

i |. It follows that

∀(M, A) ∈ N × S
M+1, UM (A) − LM (A) ≤ K d1(A) + 2 L RC (M,G) ,

and therefore the gapUM (A) − LM (A) can be made arbitrarily small under Assump-
tion 3 by choosing a sufficiently large order M and a sufficiently small diameter for
the set A. This result will be exploited systematically in the convergence analysis in
Sect. 4.
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Remark 12 Analternative upper boundUM (A) in (15)maybe computedmore directly
by solving the following nonconvex optimization problem to local optimality,

min
a∈A

F

(
M∑

k=0

akΦk

)

s.t.
M∑

k=0

akΦk ∈ C . (18)

Without further assumptions on the orthogonal basis functions Φ0, Φ1, . . . and on the
constraint set C , however, it is not hard to contrive examples where PM (x) /∈ C for
all x ∈ C and all M ∈ N; that is, contrive examples where the upper bound (18)
does not converge as M → ∞. This upper-bounding approach could nonetheless be
combined with another bounding approach based on set arithmetics in order to prevent
convergence issues; e.g., use the solution value of (18) as long as it provides a bound
that is smaller than U 0

M (A) + ΔM (A).

3.3 Branch-and-lift algorithm

The foregoing considerations on partitioning and bounding in Hilbert space can be
combined in Algorithm 1 for solving infinite-dimensional optimization problems to
ε-global optimality.

Algorithm 1: Branch-and-lift algorithm for global optimization in Hilbert space

Input: Termination tolerance ε > 0; Lifting parameter ρ > 0
Initialization:

1. Set M = 0 and A = {A0} with A0 ∈ S
1, A0 ⊇ {〈x, Φ0〉 | x ∈ C }

Repeat:

2. Select a set A ∈ A

3. Compute upper and lower bounds, LM (A) ≤ inf
x∈XM (A)

F(x) ≤ UM (A)

4. Apply a fathoming operation

5. If the condition min
A∈A

UM (A) − min
A∈A

LM (A) ≤ ε is satisfied, stop

6. If the conditionUM (A) − LM (A) ≤ 2(1+ ρ)ΔM (A) holds for all A ∈ A , apply a lifting operation
and set M ← M + 1

7. Apply a branching operation, and return to step 2

Output: An ε-suboptimal solution of Problem (1)

A number of remarks are in order:

– Regarding initialization, the branch-and-lift iterations starts with M = 0. A pos-
sible way of initializing the partition A = {A0} is by noting that

{〈x, Φ0〉 | x ∈ C } ⊆
[
− γ

σ0
,

γ

σ0

]

under Assumption 1.
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– Besides the branching and lifting operations introduced earlier in Sect. 3.1, fath-
oming in Step 4 of Algorithm 1 refers to the process of discarding a given set
A ∈ A from the partition if

LM (A) = ∞ or ∃ A′ ∈ A : LM (A) > UM (A′) .

– Themain idea behind the lifting condition defined in Step 6 ofAlgorithm1, namely

∀A ∈ A , UM (A) − LM (A) ≤ 2(1 + ρ)ΔM (A) , (19)

is that a subset A should be lifted to a higher-dimensional space whenever the
approximation errorΔM (A) due to the finite parameterization becomes of the same
order of magnitude as the current optimality gap UM (A) − LM (A). The aim here
is to apply as few lifts as possible, since it is preferable to branch in a lower dimen-
sional space. The convergence of the branch-and-lift algorithm under this lifting
condition is examined in Sect. 4 below.Notice also that a lifting operation is applied
globally—that is, to all parameter subsets in the partition A –in Algorithm 1, so
all the subsets in A share the same parameterization order at any iteration. In a
variant of Algorithm 1, one could also imagine a family of subsets that would have
different parameterization orders by applying the lifting condition locally instead.

– Finally, it will be established in the following section that, upon termination and
under certain assumptions, Algorithm 1 returns an ε-suboptimal solution of Prob-
lem (1). In particular, Assumption 1 rules out the possibility of an infeasible
solution.

4 Convergence analysis of branch-and-lift

This section investigates the convergence properties of the branch-and-lift algorithm
(Algorithm1)developedpreviously. It is convenient to introduce the followingnotation
in order to conduct the analysis:

Definition 7 Let G ⊆ H be a regular set for C , and define the inverse function

R
−1
C (·,G) : R

++ → N by

∀ε > 0, R
−1
C (ε,G) := min

M∈N M s.t. RC (M,G) ≤ ε .

The following result is a direct consequence of the lifting condition (19) in the branch-
and-lift algorithm:

Lemma 3 Let Assumption 3 hold, and suppose that finite bounds L0
M (A), U 0

M (A)

and ΔM (A) satisfying (16)–(17) can be computed for any feasible pair (M, A) ∈
N × S

M+1. Then, the number of lifting operations in a run of Algorithm 1 as applied
to Problem (1) is at most

M := R
−1
C

(
ε

2(ρ + 1)L
, G

)
,

regardless of whether or not the algorithm terminates finitely.
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Proof Assume that M = M in Algorithm 1, and that the termination condition is not
yet satisfied; that is,

UM (A) − LM (A) > ε

for a certain feasible set A ∈ A . If the lifting condition (19) were to hold for A, then
it would follow from (16)–(17) that

ε − 2ΔM (A) < U 0
M

(A) − L0
M

(A) ≤ 2ρΔM (A) .

Moreover, F being strongly Lipschitz-continuous on C by Assumption 3, we would
have

RC (M,G) >
ε

2(ρ + 1)L
.

This is a contradiction, since RC (M,G) ≤ ε
2(ρ+1)L by Definition 7. ��

Besides having a finite number of lifting operations, the convergence ofAlgorithm1
can be established if the elements of a partition can be made arbitrarily small after
applying a finite number of subdivisions.

Definition 8 A partitioning scheme is said to be exhaustive if, given any dimension
M ∈ N, any tolerance η > 0, and any bounded initial partition A = {A0}, we have

diam (A ) := max
A∈A

diam (A) < η ,

after finitely many subdivisions, where diam (A) := supa,a′∈A ‖a − a′‖. Moreover,
we denoted byΣ(η, M) an upper bound on the corresponding number of subdivisions
in an exhaustive scheme.

The following theorem provides the main convergence result for the proposed
branch-and-lift algorithm.

Theorem 2 Let Assumptions 1, 2 and 3 hold, and suppose that finite bounds L0
M (A),

U 0
M (A) and ΔM (A) satisfying (16)–(17) can be computed for any feasible pair

(M, A) ∈ N × S
M+1. If the partitioning scheme is exhaustive, then Algorithm 1

terminates after at most Σ iterations, where

Σ ≤ max
0≤M≤M

Σ

(
ερ

K (ρ + 1)
, M

)
, with K := L sup

k∈N
‖Φk‖H . (20)

Proof By Lemma 3, the maximal number M of lifting operations during a run of
Algorithm 1 is finite, such that M ≤ M . Therefore, the lifting condition (19) may not
be satisfied for any feasible subset A ∈ A , and we have
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ΔM (A) ≤ U 0
M (A) − L0

M (A)

2 ρ
.

Since LM (A) = L0
M (A) − ΔM (A) and UM (A) = U 0

M (A) + ΔM (A), it follows that
the termination condition UM (A) − LM (A) ≤ ε is satisfied if

U 0
M (A) − L0

M (A) ≤ ρε

ρ + 1
.

By Assumptions 2 and 3 and Remark 11, we have

U 0
M (A) − LM (A) ≤ K diam (A ) ,

and the termination condition is thus satisfied if

diam (A ) ≤ ερ

K (ρ + 1)
.

This latter condition is met after at most Σ
(

ερ
K (ρ+1) , M

)
iterations under the assump-

tion that the partitioning scheme is exhaustive. ��
Remark 13 In the case that the sets A ∈ A are simple interval boxes and the lifting
process is implemented per (14), we have

∀k ∈ {0, . . . , M}, [
ak(A), ak(A)

] ⊆
[
− γ

σk
,

γ

σk

]
.

Therefore, one can always subdivide these boxes in such a way that the condition
diam (A ) ≤ η is satisfied after at most Σ(η, M) subdivisions, with

Σ(η, M) :=
M∏

k=0

⌈
γ

η σk

⌉
∈ N ,

for any given dimension M . In particular, Σ(η, M) is monotonically increasing in M ,
and (20) simplifies to

Σ ≤ Σ

(
ερ

K (ρ + 1)
, M

)
.

It should be clear, at this point, that the worst-case estimate Σ given in Theorem 2
may be extremely conservative, and the performance of Algorithm 1 could be much
better in practice.Nonetheless, a key property of this estimateΣ is that it is independent
of the actual nature or the number of optimization variables in Problem (1), be it a
finite-dimensional or even an infinite-dimensional optimization problem. As already
pointed in the introduction of the paper, this result is quite remarkable since available
run-time estimates for standard convex and non-convex optimization algorithms do
not enjoy this property. On the other hand, Σ is dependent on:
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– the bound γ on the constraint set C ;
– the Lipschitz constants K and L of the cost functional F ;
– the uniform bound supk ‖Φk‖H and the scaling factors σk of the chosen orthogonal
functions Φk ; and

– the lifting parameter ρ and the termination tolerance ε in Algorithm 1.

All these dependencies are illustrated in the following example.

Example 5 Consider the space of square-integrable functions H := L2[− π, π ], for
which it has been established in Remark 2 that any subsetGp of p-times differentiable
functions with uniformly Lipschitz-continuous p-th derivatives on [− π, π ] is regular,
with convergence rate RC (M,Gp) ≤ αM−p for some constant α < ∞. On choosing
the standard trigonometric Fourier basis, such that σk = π are constant scaling factors
and K ′ := K supk ‖Φk‖2 = K , and doing the partitioning using simple interval boxes
as in Remark 13, a worst-case iteration count can be obtained as

Σ =
(⌈

γ K (ρ + 1)

π ρ ε

⌉)
⌈
(2α(ρ+1)L/ε)

1
p

⌉

≤ exp
(

O
(
(1/ε)

1
p log(1/ε)

))
.

Furthermore, if the global minimizer of Problem (1) happens to be a smooth (C∞)
function, the convergence rate can be expected to be of the form R(M,G∞) =
α exp(− βM), and Theorem 2 then predicts a worst-case iteration count as

Σ ≤ exp
(

O
(
(log(1/ε))2

))
,

which is much more favorable. ��

5 Numerical case study

We consider the Hilbert space H := L2[0, T ] of square-integrable functions on the
interval [0, T ], here with T = 10. Our focus is on the following nonconvex, infinite-
dimensional optimization problem

inf
x∈L2[0,T ] F(x) :=

∫ T

0

[(∫ T

0
f1(t − t ′)x(t ′) dt ′

)2

−
(∫ T

0
f2(t − t ′)x(t ′) dt ′

)2]

dt

s.t. x ∈ C := { x ∈ H | ∀t ∈ [0, T ], |x(t)| ≤ 1} , (21)

with the functions f1 and f2 given by

∀t ∈ R, f1(t) = t

2

(
sin

(
π t

2T

)
+ 1

)
and f2 = ∂ f1

∂t
.

Notice the symmetry in the optimization problem (21), as F(x) = F(− x) and x ∈ C
if and only if −x ∈ C . Thus, if x∗ is a global solution point of (21), then − x∗ is also
a global solution point.
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Although it might be possible to apply techniques from the field of variational
analysis to determine the set of optimal solutions, our main objective here is to apply
Algorithm 1 without exploiting any particular knowledge about the solution set. For
this, we use the Legendre polynomials as basis functions in L2[0, T ],

∀i ∈ N Φi (t) = (−1)i
i∑

j=0

(
i
j

)(
i + j
j

)(
− t

T

) j

,

which are orthogonal by construction.
We start by showing that the functional F is strongly Lipschitz-continuous, with

the bounded regular subset G in condition (7) taken as

G := {
f t1
∣∣ t ∈ [0, T ] } ∪ { f t2

∣∣ t ∈ [0, T ] } ⊆ H ,

where we use the shorthand notation f t1 (τ ) := f1(t − τ) and f t2 (τ ) := f2(t − τ). For
all x ∈ L2[0, T ] and all e ∈ H , we have

|F(x + e) − F(x)| =
∣∣∣∣

∫ T

0
〈 f t1 , x + e〉2 − 〈 f t1 , x〉2 − 〈 f t2 , x + e〉2 + 〈 f t2 , x〉2 dt

∣∣∣∣

=
∣∣∣∣

∫ T

0
〈 f t1 , 2x + e〉〈 f t1 , e〉 − 〈 f t2 , 2x + e〉〈 f t2 , e〉 dt

∣∣∣∣

≤ L max

{

sup
t∈[0,T ]

∣∣〈 f t1 , e〉
∣∣ , sup

t∈[0,T ]
∣∣〈 f t2 , e〉

∣∣
}

= sup
g∈G

|〈g, e〉| ,

where L is any upper bound on the term

∫ T

0

∣∣〈 f t1 , 2x + e〉∣∣+ ∣∣〈 f t2 , 2x + e〉∣∣ dt

≤ 2
∫ T

0
max

τ∈[0,T ]
(∣∣ f t1 (τ )

∣∣+ ∣∣ f t2 (τ )
∣∣) dt + 2T sup

g∈G
|〈g, e〉|

≤ T

(

22 + π

2
+ 2 sup

g∈G
|〈g, e〉|

)

. (22)

Inorder to obtain an explicit bound,weneed to further analyze the termsupg∈G |〈g, e〉|.
First of all, we have

DC (M) ≤ γ = sup
x∈C

‖x‖2 = √
T .

Next, recalling that the Legendre approximation error for any smooth function g ∈
L2[0, T ] is bounded as
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D(M, g) := ‖g − PM (g)‖2 ≤ μM+1
√
T

(M + 1)!
(
T

M

)M

with μi := sup
ξ∈[0,T ]

∣∣∣∣
∂ i g

∂t i
(ξ)

∣∣∣∣

for all M ≥ 1, and working out explicit bounds on the derivatives of the functions f t1
and f t2 , we obtain

∀M ∈ N
+, sup

g∈G
D(M, g) ≤ T

3
2

(M + 1)!
(
T

M

)M (1

2
+ M

π

)( π

2T

)M

≤ 3

4

T
3
2

(M + 1)!
( π

2M

)M−1
.

It follows by Theorem 1 that

sup
g∈G

|〈g, e〉| ≤ RC (M,G) = sup
g∈G

DC (M)D(M, g) ≤ 3

4

T 2

(M + 1)!
( π

2M

)M−1
.

Combining all the bounds and substituting T = 10 shows that the constant L = 611
satisfies the condition (22).

Based on the foregoing developments and the considerations in Sect. 3.2, a simple
bound ΔM (A) on the approximation error satisfying (17) can be obtained as

∀(M, A) ∈ N
+ × S

M+1, ΔM (A) = 45825

(M + 1)!
( π

2M

)M−1
.

Although rather loose for very small M , this estimate converges quickly to 0 for larger
M ; for instance, Δ7(A) ≤ 2 · 10−4. Note also that, in a practical implementation,
the computation of ΔM (A)—and also to validate the generalized Lipschitz constant
L—could be automated using computer algebra programs, such as Chebfun (http://
www.chebfun.org/) [16] or MC++ (https://github.com/omegaicl/mcpp) [35].

With regards to the computation of bounds L0
M (A) andU 0

M (A) satisfying (16), we
note that F(x) can be interpreted as a quadratic form in x ,

F

(
M∑

i=0

aiΦi

)

= aTQa ,

with the elements of the matrix Q given by

∀ j, k ∈ {0, . . . , M}, Q j,k =
∫ T

0

(〈 f t1 , Φ j 〉〈 f t1 , Φk〉 − 〈 f t2 , Φ j 〉〈 f t2 , Φk〉
)
dt .

Of the available approaches [18,39,41] to compute bounds L0
M (A) and U 0

M (A) such
that

L0
M (A) ≤ min

a∈A
aT Q a ≤ U 0

M (A)
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Fig. 1 Results of Algorithm 1 applied to Problem (21) for ε = 10−5 and ρ = 1. Left gap between upper
and lower bounds as a function of the lifted subspace dimension M . Right a globally ε-suboptimal solution
x

for interval boxes A ⊆ R
M+1, we use standard LMI relaxation techniques [20] here.

At this point, we have all the elements needed for implementing Algorithm 1
for Problem (21). On selecting the termination tolerance ε = 10−5 and the lifting
parameter ρ = 1, Algorithm 1 terminates after less than 100 iterations and applies
8 lifting operations (starting with M = 1). The corresponding decrease in the gap
between upper and lower bounds as a function of the lifted subspace dimension M—
immediately after each lifting operation–is shown on the left plot of Fig. 1. Upon
convergence, the infimum of (21) is bracketed as

− 0.16812 ≤ inf
x∈C F(x) ≤ −0.16811 ,

and a corresponding ε-global solution x is reported on the right plot of Fig. 1; the
symmetric function (− x)provides another ε-global solution for this problem.Overall,
this case studydemonstrates that the proposedbranch-and-lift algorithm is thus capable
of solving such non-convex and infinite-dimensional optimization problem to global
optimality within reasonable computational effort.

6 Conclusions

This paper has presented a complete-search algorithm, called branch-and-lift, for
global optimization of problems with a non-convex cost functional and a bounded
and convex constraint sets defined on a Hilbert space. A key contribution is the deter-
mination of run-time complexity bounds for branch-and-lift that are independent of
the number of variables in the optimization problem, provided that the cost functional
is strongly Lipschitz-continuous with respect to a regular and bounded subset of that
Hilbert space. The corresponding convergence conditions are satisfied for a large class
of practically relevant problems in calculus of variations and optimal control. In partic-
ular, the complexity analysis in this paper implies that branch-and-lift can be applied
to solve potentially non-convex and infinite-dimensional optimization problems with-

123



Global optimization in Hilbert space 247

out needing a-priori knowledge about the existence or regularity of minimizers, as the
run-time bounds solely depend on the structural and regularity properties of the cost
functional as well as the underlying Hilbert space and the geometry of the constraint
set. This could pave the way for a new complexity analysis of optimization problems,
whereby the “complexity” or “hardness” of a problem does not necessarily depend on
their number of optimization variables. In order to demonstrate that these algorithmic
ideas and complexity analysis are not of pure theoretical interest only, the practical
applicability of branch-and-lift has been illustrated with a numerical case study for a
problem of calculus of variations. The case study of an optimal control problem in
[25] provides another illustration.
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