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Abstract A nonconvex quadratically constrained quadratic programming (QCQP)
with one constraint is usually solved via a dual SDP problem, or Moré’s algorithm
based on iteratively solving linear systems. In this work we introduce an algorithm for
QCQP that requires finding just one eigenpair of a generalized eigenvalue problem, and
involves no outer iterations other than the (usually black-box) iterations for computing
the eigenpair. Numerical experiments illustrate the efficiency and accuracy of our
algorithm. We also analyze the QCQP solution extensively, including difficult cases,
and show that the canonical form of a matrix pair gives a complete classification of the
QCQP in terms of boundedness and attainability, and explain how to obtain a global
solution whenever it exists.

Keywords QCQP · Generalized eigenvalue problem · Canonical form for symmetric
matrix pair

Mathematics Subject Classification 49M37 · 65K05 · 90C20 · 90C30

This work was supported by JSPS Scientific Research Grants Nos. 26540007 and 26870149. YN is
supported as a JSPS Overseas Research Fellow.

B Yuji Nakatsukasa
nakatsukasa@mist.i.u-tokyo.ac.jp; Yuji.Nakatsukasa@maths.ox.ac.uk

Satoru Adachi
satoru_adachi@mist.i.u-tokyo.ac.jp

1 Department of Mathematical Informatics, Graduate School of Information Science and
Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

2 Present Address: Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

123

Math. Program., Ser. A (2019) 173:79–116
https://doi.org/10.1007/s10107-017-1206-8

/ Published online: 10 November 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-017-1206-8&domain=pdf
http://orcid.org/0000-0001-7911-1501


S. Adachi, Y. Nakatsukasa

1 Introduction

A quadratically constrained quadratic programming (QCQP) is an optimization prob-
lem of the form [4, Sec. 4.4]

minimize
x∈Rn

f (x) := x�Ax + 2a�x,

subject to gi (x) := x�Bi x + 2b�
i x + βi ≤ 0 (i = 1, . . . , k), (1)

where A and Bi are n × n symmetric matrices and a, bi ∈ R
n, βi ∈ R. When A and

Bi are all positive semidefinite, QCQP (1) is a convex problem, for which efficient
algorithms are available such as the interior-point method [4, Ch. 11]. By contrast,
when convexity is not assumed, QCQP is generally a difficult problem, in fact NP-
hard in general [32]. Even when the constraints are all affine, i.e., Bi = 0, the decision
problem formulation is known to be NP-complete [40]. All these are evidence that
nonconvex QCQP is generally computationally intractable.

One exception to this difficulty is when k = 1, that is, when there is just one
constraint:

minimize
x∈Rn

f (x) := x�Ax + 2a�x,

subject to g(x) := x�Bx + 2b�x + β ≤ 0. (2)

This class of problems, namely QCQP with one quadratic constraint, includes the
trust-region subproblem (TRS) as a special case [5], [26, Ch. 4], in which B is positive
definite, b = 0 and β < 0. TRS is commonly employed for nonlinear optimization,
and a number of efficient algorithms for solving TRS are available, e.g. [13,25,29,31].
The QCQP (2) is sometimes called the generalized TRS [24], and has applications
in double well potential problems [9] and compressed sensing for geological data,
in which A is positive semidefinite and B is indefinite [18]. In this paper we refer to
QCQPwith one quadratic constraint (2) simply as QCQP, unless otherwisementioned.

A dual formulation for QCQP (2) can be written as an semidefinite programming
(SDP)

maximize
λ,γ

γ

subject to

[
A + λB a + λb

(a + λb)� λβ − γ

]
� 0, λ ≥ 0, (3)

where X � Y means X − Y is positive semidefinite. Remarkably, assuming Slater’s
condition is satisfied, the SDP (3) is a dual problem with no duality gap, that is, the
solution γ to (3) is equal to the optimal value of the QCQP (2), even when (2) is
nonconvex; see [4, App. B] for details and a proof, which relies on the S-lemma [27].
The solution x can be obtained via the dual variable X = xx� of (3) in the non-hard
case (otherwise rank(X) is higher [29]). Nonconvex QCQP with one constraint (2)
is thus a notable class of nonconvex optimization problems that can be solved in
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polynomial time. However, this SDP approach is not very efficient as solving the
SDP (3) by the standard interior-point method involves an iterative process, each
iteration requiring O(n3) operations [4, § 11.8.3] with a rather large constant, which
limits the practical matrix size to, say, n ≤ 1000.

Alternative strategies have been proposed in the literature. Moré [24] analyzes
QCQP (2) and describes an algorithm that extends the algorithm of [25] for TRS.
This algorithm is of an iterative nature, and is not matrix-free (a property desirable
for dealing with large-sparse problems). Many other iterative algorithms have been
proposed for TRS, but as indicated in the experiments in [1] for TRS, a one-step
algorithm based on eigenvalues can significantly outperform such algorithms. Another
approach [9,16] is to note the Lagrange dual problem can be expressed equivalently as

maximize
σ≥0

d(σ ) := inf
x
x�(A + σ B)x + 2(a + σb)�x + σβ. (4)

This is a concavemaximization problem, hence can be solved by e.g. a gradient descent
method orNewton’smethod.However, computing the gradient already involvesO(n3)
operations, let alone the Hessian, and typically a rather large number of iterations is
needed for convergence.

The main contribution of this paper is the development of an efficient algorithm for
QCQP (2) that is strictly feasible and (A, B) is a definite pair with A + λB � 0 for
some λ ≥ 0 (which we call definite feasible), which we argue is a generic condition for
QCQP to be bounded.1 The running time is O(n3) when the matrices A, B are dense,
and it can be significantly faster if the matrices are sparse. The algorithm requires (i)
finding a λ̂ ≥ 0 such that A + λ̂B is positive definite, and (ii) computing an extremal
eigenpair of an (2n + 1) × (2n + 1) generalized eigenvalue problem. We emphasize
that the algorithm requires just one eigenvalue problem. The algorithm is easy to
implement given a routine for computing an extremal (largest or smallest) eigenpair,
for which high-quality software based on shift-invert Arnoldi is publically available
such as ARPACK [2,22]. We present experiments that illustrate the efficiency and
accuracy of our algorithm compared with the SDP-based approach. Our algorithm is
based on the framework established in [1,11,17] of formulating the KKT conditions
as an eigenvalue problem.

In addition, this paper also contributes to the theoretical understanding of QCQP,
treating those that are not definite feasible. Specifically, it is a nontrivial prob-
lem to decide whether a given QCQP is bounded or not, and if bounded, whether
the infimum is attainable. We present a classification of QCQP in terms of fea-
sibility/boundedness/attainability, based on the canonical form of the symmetric
pair (A, B) under congruence. We shall see that the canonical form provides
rich information on the properties of the associated QCQP. We thus establish a
process that (in exact arithmetic) solves QCQP completely in the sense that feasibil-
ity/boundedness/attainability is checked and the optimal objective value and a global
solution is computed if it exists.

1 Note that solving the SDP (3) would also face difficulty when the QCQP is not definite feasible, because
then the interior-point method involves the inverse of a singular matrix [4, § 11.8.3].
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Broadly speaking, this paper is a contribution in the direction of “global optimiza-
tion via eigenvalues”. To our knowledge the earliest reference is Gander, Golub and
von Matt [11] for TRS. This algorithm was revisited and further developed recently in
[1] to illustrate its high efficiency,whichwas extended in [34] to dealwith an additional
linear constraint. This paper is largely an outgrowth of [1], extending the scope from
TRS to QCQP, relaxing the convexity assumption in the constraint, and fully analyz-
ing the degenerate cases. We also note [33], which solves QCQP with an additional
ball constraint (generalized CDT problem; GCDT) via a two-parameter eigenvalue
problem. It is in principle possible to impose a ball constraint with sufficiently large
radius to convert QCQP (2) to GCDT, then use the algorithm in [33]. However, this
would be very inefficient, requiring O(n6) operations: our algorithm here needs at
most O(n3) operations, and can be faster when sparsity structure is present.

This paper is organized as follows. In Sect. 2 we review (mostly existing) results on
the optimality and boundedness ofQCQP (2). Section. 3 is the heart of this paperwhere
we derive our eigenvalue-based algorithm for definite feasible QCQP. We present
numerical experiments in Sect. 4, and analyze QCQP that are not definite feasible in
Sect. 5.

Notation.We denote byR(X) the range of a matrix X , and byN (X) the null space.
X � (�)0 indicates X is a positive (semi)definite matrix. In is the n × n identity, and
On, Om×n are zero matrices of size n × n and m × n. We simply write I, O if the
dimensions are clear from the context. The Moore-Penrose pseudoinverse of a matrix
A is denoted by A†. x∗ denotes a QCQP solution with associated Lagrange multiplier
λ∗.

2 Preliminaries: optimality and boundedness of QCQP

This section collects results on QCQP that are needed for our analysis and algorithm.

2.1 QCQP with no interior feasible point

QCQP (2) has no strictly feasible point when Slater’s condition is violated. Note that
checking strict feasibility can be done by an unconstrained quadratic minimization
problem minimizex g(x). This subsection focuses on the case minx g(x) = 0.

Since minx g(x) > −∞, the quadratic function g(x)must be convex. Since further
minx g(x) = 0, we can write g(x) for some x ′ ∈ R

n as

g(x) = (x − x ′)�B(x − x ′) (B � 0).

Now let N (B) be spanned by N = [ν1, . . . , ν j ] ∈ R
n× j . We can write g(x) = 0 ⇔

x = x ′ + Ny for some y ∈ R
j . Therefore the original QCQP is equivalent to the

unconstrained problem

minimize
y∈R j

f (x ′ + Ny) = y�(N�AN )y + 2(N�a)�y.
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Thus, dealingwithQCQP that violates Slater’s condition is straightforward. Inwhat
follows we treat strictly feasible QCQP for which there exist x with g(x) < 0 (i.e.,
Slater’s condition is satisfied).

2.2 Boundedness and attainability

We start with a necessary and sufficient condition for boundedness of a strictly feasible
QCQP.

Lemma 1 (Hsia et al. [16], Thm. 5) Suppose that for QCQP (2), there exists an
interior feasible point x ∈ R

n such that g(x) < 0. Then f (x) is bounded below in the
feasible region if and only if there exists λ ≥ 0 such that

A + λB � 0, a + λb ∈ R(A + λB). (5)

Proof This is essentially a corollary of strong duality between QCQP (2) and SDP (3),
which is bounded below if and only if there exist λ ≥ 0 and γ satisfying the first
constraint in (3), which is equivalent to (5). �


Boundedness guarantees the existence of the optimal (infimum) value for f . On
the other hand, it is worth noting that there exist QCQP that are bounded but has no
solution x∗. For example, consider

minimize x2

subject to − xy + 1 ≤ 0. (6)

For any (x, y), we have x2 ≥ 0, and by taking (x, y) = (ε, 1/ε) and ε → 0 the
constraints are satisfied and the objective function approaches the infimum0.However,
no feasible (x, y) has the objective value equal to 0. Such QCQP, that is, QCQP for
which the infimum cannot be attained in the feasible region, are called unattainable.
A necessary and sufficient condition for unattainability is given in the following result
(recall that † denotes the pseudoinverse).

Lemma 2 (Hsia et al. [16], Thm. 7) Suppose that QCQP (2) is bounded and satisfies
Slater’s condition. Then the QCQP is unattainable if and only if the set {λ ≥ 0|A +
λB � 0} is a single point λ∗ ≥ 0, and the following has no solution in y ∈ N (A +
λ∗B):

{
g((A + λ∗B)†(a + λ∗b) + y) = 0 if λ∗ > 0,
g(A†a + y) ≤ 0 if λ∗ = 0.

(7)

A reasonable output of a numerical algorithm for such QCQP is the infimum objec-
tive value 0 with the warning that it is unattainable.
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2.3 Optimality conditions

WhenQCQP (2) satisfies Slater’s condition and has a global solution, a set of necessary
and sufficient conditions is given by Moré [24]:

Theorem 1 (Moré [24]) Suppose that QCQP (2) satisfies Slater’s condition. Then x∗
is its global solution if and only if there exist λ∗ ≥ 0 such that

(A + λ∗B)x∗ = −(a + λ∗b),
g(x∗) ≤ 0,

λ∗g(x∗) = 0,

A + λ∗B � 0. (8)

The first three conditions in (8) represent the KKT conditions, and there can be
many KKT points (λ, x) satisfying these three, reflecting the nonconvexity of the
problem. The final condition A + λ∗B � 0 specifies which of the KKT points is the
solution.

2.4 Definite feasible QCQP: strictly feasible and definite

ByLemma1, for a strictly feasibleQCQP to be boundedwe necessarily need A+λ̂B �
0 for some λ̂ ≥ 0. If we further have A+ λ̂B � 0, then the QCQP is clearly bounded.
Aswe argue in Sect. 5, such cases form a “generic” class of QCQP (2) that are bounded
and has a global solution. We therefore give a name for such QCQP.

Definition 1 AQCQP (2) satisfying the following two conditions is said to be definite
feasible.

1. It is strictly feasible: there exists x ∈ R
n such that g(x) < 0, and

2. (A, B) is definite with nonnegative shift: there exists λ̂ ≥ 0 such that A+ λ̂B � 0.

We shall treat such QCQP in detail and derive an efficient algorithm in Sect. 3. To
begin with, for definite feasible QCQP there always exists a global solution x∗.

Theorem 2 (Moré [24])For a definite feasible QCQP (2), there exist x∗ ∈ R
n, λ∗ ≥ 0

such that the conditions (8) hold.

In the special case of TRS we have B � 0, so by taking λ̂ arbitrarily large we have
A+ λ̂B � 0, and since Slater’s condition is trivially satisifed, it follows that TRS is a
definite feasible QCQP. Similarly, if A � 0, taking λ̂ = 0 shows the pencil is definite,
so such QCQP is definite feasible as long as it is strictly feasible. Indeed a number of
studies focus on such cases [8,9].

2.4.1 Checking definite feasibility

Let us now discuss how to determine whether a given QCQP (2) is definite feasible.
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Generally the values of λ for which A + λB � 0, if nonempty, is an open interval
D̃ = (λ̃1, λ̃2), allowing λ̃1 = −∞ and λ̃2 = ∞, and the set of λ for which A+λB � 0
is its closure [24] if D̃ is nonempty. λ̃1, λ̃2 are eigenvalues of the pencil A+λB unless
they are ±∞.

In general, given a matrix pair (A, B), it is an active research area to devise
algorithms for checking its definiteness (dropping the requirement λ̂ ≥ 0), that is,
checking whether there exist t ∈ R such that A sin t + B cos t � 0. Such algorithms
include [6,15], which also provide a value t0 for which A sin t0 + B cos t0 � 0 if
(A, B) is definite. If the pair (A, B) is determined not to be definite then QCQP is not
definite feasible. If the pair (A, B) is determined to be definite, with t0 available such
that A sin t0 + B cos t0 � 0, then we compute the smallest eigenvalue λ1 and largest
eigenvalue λ2 of the pencil

(A cos t0 − B sin t0) + λ(A sin t0 + B cos t0).

Then the matrix (A cos t0 − B sin t0) + λ(A sin t0 + B cos t0) is positive semidefinite
for λ ≥ λ2, and negative semidefinite for λ ≤ λ1. Hence we can rewrite the condition
A sin t + B cos t � 0 (|t − t0| < π) as

(A cos t0 − B sin t0) sin(t − t0) + (A sin t0 + B cos t0) cos(t − t0) � 0

⇔

⎧⎪⎨
⎪⎩

(A cos t0 − B sin t0) + (A sin t0 + B cos t0) 1
tan(t−t0)

� 0 (sin(t − t0) > 0)

(A cos t0 − B sin t0) + (A sin t0 + B cos t0) 1
tan(t−t0)

≺ 0 (sin(t − t0) < 0)

t = t0

⇔

⎧⎪⎨
⎪⎩

1
tan(t−t0)

> λ2 (sin(t − t0) > 0)
1

tan(t−t0)
< λ1 (sin(t − t0) < 0)

t = t0,

thus we obtain the interval t ∈ (t1, t2) on which A sin t + B cos t � 0. From this we
obtain the interval D̃ = { 1

tan t | t ∈ (t1, t2), sin t > 0, cos t ≥ 0} such that A+λB � 0

if and only ifλ ∈ D̃. If D = D̃∩[0,∞) is empty then theQCQP is not definite feasible;
otherwise it is.

3 Eigenvalue-based algorithm for definite feasible QCQP

We now develop an eigenvalue algorithm for definite feasible QCQP. In this section
we assume that a value of λ̂ ≥ 0 such that A + λ̂B � 0 is known, through a process
such as those described in Sect. 2.4.1.

By Theorems 1 and 2, a definite feasible QCQP can be solved by solving (8) for
λ∗ and x∗. We develop an algorithm that first finds the optimal Lagrange multiplier λ∗
by an eigenvalue problem, then computes x∗.

3.1 Preparations

First, let D be the interval {λ ≥ 0|A + λB � 0}. We denote the left-end of D by λ1,
and the right-end by λ2. Note that λ2 = λ̃2, but due to the requirement λ ≥ 0, the
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left-end of D may not be the same as λ̃1 in Sect. 2.4.1. We have either D = (λ1, λ2)

if λ1 > 0, or D = [λ1, λ2), which happens if A � 0 and hence λ1 = 0.
For λ ∈ D, define

x(λ) = −(A + λB)−1(a + λb),

γ (λ) = g(x(λ)).
(9)

In view of the third condition in (8), the main goal is to find λ∗ such that γ (λ∗) = 0.
This argument apparently dismisses the cases where A+λ∗B is singular (then x(λ) is
not well-defined) or λ∗ = 0 (then γ (λ) = 0 is unnecessary). Nonetheless, the analysis
below will cover such cases.

Since A + λ̂B � 0, A and B are simultaneously diagonalizable, that is, there
exists a nonsingularW ∈ R

n×n such thatW�AW andW�BW are both diagonal [12,
Chap. 8]. Hence without loss of generality we assume that A, B are diagonal in the
analysis below (our algorithm does not assume this or the knowledge of W ). Let A =
diag(d1, . . . , dn), B = diag(e1, . . . , en), a = [a1, . . . , an]�, and b = [b1, . . . , bn]�
(those a and b are indeed W�a and W�b in the original coordinate system). It is now
straightforward to identify the interval D. Since

di + λei > 0 ⇔

⎧⎪⎨
⎪⎩

λ > − di
ei

(ei > 0)

λ < − di
ei

(ei < 0)

λ : no constraint (ei = 0, di > 0),

(10)

when0 < λ1 < λ2 < ∞ there exist i1 and i2 so thatdi1+λ1ei1 = 0 anddi2+λ2ei2 = 0.
γ (λ) can be explicitly expressed using x(λ) = [x1(λ), . . . , xn(λ)]� as

xi (λ) = −ai + λbi
di + λei

, (11)

γ (λ) =
n∑

i=1

{
ei xi (λ)2 + 2bi xi (λ)

}
+ β. (12)

Therefore xi (λ) and γ (λ) are rational functions of λ. Moreover, on λ ∈ D, the function
γ (λ) has the following property [24, Thm. 5.2].

Proposition 1 (Moré [24]) γ (λ) is monotonically nonincreasing on λ ∈ D̃ =
(λ̃1, λ̃2) ⊇ D. Moreover, excluding the case where x(λ) is a constant, γ (λ) is mono-
tonically strictly decreasing on λ ∈ D̃.

3.2 Classification of definite feasible QCQP

In order to investigate the properties of λ∗ that satisfy (8), in particular γ (λ∗) = 0, we
separate definite feasible QCQP (2) into four distinct cases, depending on the sign of
γ (λ) on λ ∈ D.

(a) γ (λ) takes both nonnegative and nonpositive values.
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(b) γ (λ) > 0 everywhere.
(c) γ (λ) < 0 everywhere, and λ1 > 0.
(d) γ (λ) < 0 everywhere, and λ1 = 0.

We now investigate the value of λ∗ for each case.
First for (a), by the mean-value theorem there exists λ ∈ D such that γ (λ) = 0,

and for this λ we have λ∗ = λ.
To deal with cases (b), (c) we use the following result.

Proposition 2 The following results hold for definite feasible QCQP (2) for which
A + λB � 0 on λ ∈ D.

1. Suppose case (b) holds with λ2 < ∞. Then x(λ) converges as λ ↗ λ2 and there
exists x with g(x) = 0, (A + λ2B)x = −(a + λ2b).

2. Suppose case (c) holds with λ1 > 0. Then x(λ) converges as λ ↘ λ1, and there
exists x with g(x) = 0 and (A + λ1B)x = −(a + λ1b).

Proof Suppose case (b) holds with λ2 < ∞. Since λ2 = − di2
ei2

< ∞ we have ei2 �= 0

and further ei2 < 0 from (10), which holds even if i2 contains multiple elements.
Note also that x(λ2)i are bounded constants for all i /∈ i2. Hence by (12), γ (λ)

is a quadratic equation in x(λ)i2 with negative leading coefficient, and so for the
assumption γ (λ2) > 0 to hold, |x(λ2)i2 | cannot blow up to ∞. Hence by (11) we
must have ai2 + λ2bi2 = 0, and thus x(λ2) converges to the vector (11) with the i2th

element x(λ2)i2 = − bi2
ei2

. Now, any vector x equal to x(λ2) with the i2th element

replaced with an arbitrary number satisfies (A + λ2B)x = −(a + λ2b); we shall
choose this i2th element of x—which we denote by y —so that g(xy) = 0, where we
made the y-dependence of x explicit. Then g(xy) = 0 is a quadratic equation in y
with negative leading coefficient ei2 . Together with the assumption g(x−bi2/ei2

) > 0,
there are two real solutions in y to g(xy) = 0. With either root, the vector x := xy
satisfies g(x) = 0, (A + λ2B)x = −(a + λ2b).

The the case (c) with λ1 > 0 is similar: We need ai1 + λ1bi1 = 0, and x(λ1)

converges to the vector (11) with the i1th element x(λ1)i1 = − bi1
ei1

. Define the vector

xy to be equal to x(λ1) except the i1th element y, which is set so that g(xy) = 0. Then
x := xy satisfies the two equations. �


We note that it is possible to prove Proposition 2 as a straightforward corollary of
[9, Lemma 2].

By Proposition 2, in case (b) we have λ∗ = λ2 when λ2 < ∞. Similarly, in case (c)
we have λ∗ = λ1. In Proposition 2 we assumed λ2 < ∞, but indeed Slater’s condition
assures that λ2 = ∞ and γ (λ2) > 0 cannot happen.

Proposition 3 Suppose that λ2 = ∞ for a definite feasible QCQP. Then limλ→∞
γ (λ) < 0.

Proof Suppose to the contrary that limλ→∞ γ (λ) ≥ 0. γ (λ) ≥ 0 as λ → ∞. Then
since γ (λ) is nonincreasing on (λ1,∞), we see that γ (λ) converges, and let γ∞ be
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the limit. Now if we suppose that xi (λ) diverges, then by (11) we have ei = 0, di > 0
and bi �= 0. Hence as λ → ∞ we have

ei xi (λ)2 + 2bi xi (λ) = 2bi xi (λ) = −2(ai + λbi )bi
di

→ −∞,

which, by (12), indicates γ (λ) → −∞, a contradiction. Thus x(λ) converges, and let
x̄ be the limit. Then we have Bx̄ = −b, so

γ∞ = g(x̄) = x̄�Bx̄ + 2b� x̄ + β = −x̄�Bx̄ + β ≥ 0.

By the assumption λ2 = ∞, taking λ → ∞ we have A+ λB � 0, so B � 0. Thus
for any x ∈ R

n we have

g(x) = (x − x̄)�B(x − x̄) + 2(Bx̄ + b)�x + g(x̄)

= (x − x̄)�B(x − x̄) + γ∞ ≥ 0,

must always hold, which contradicts the fact that there exists x such that g(x) < 0. �

An alternative way to understand Proposition 3 is to note that λ2 = ∞, including

B � 0, indicates the QCQP (2) is essentially a TRS (after an affine change-of-
variables), for which a solution for γ (λ∗) = 0 is known to exist [1]. One can actually
show limλ→∞ γ (λ) = minx g(x) (which is< 0 by assumption), based on [28, Lemma
2.3].

Finally, consider case (d). Since γ (λ) ≤ 0 as λ → +0, letting x0 be the limit (which
exists [9]) we have g(x0) ≤ 0 and Ax0 = −a, so taking λ∗ = 0, x∗ = x0 we see that
the conditions (8) are satisfied.

Summarizing, the values of λ∗ in Theorem 2 are

λ∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ ∈ D such that γ (λ) = 0 (Case (a))

λ2 (Case (b), λ2 < ∞)

λ1 (Case (c))

0 (Case (d)).

(13)

Figures 1, 2, 3 and 4 illustrate typical plots of γ (λ) for the four cases.

3.3 Computing the Lagrange multiplier λ∗

We now consider computing λ∗ > 0 that satisfies (8). The material in this subsection
is the key ingredient of the algorithm that we propose. We need to find λ∗, x∗ such
that

(A + λ∗B)x∗ = −(a + λ∗b),
g(x∗) = 0.
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Fig. 1 Typical γ (λ) for case
(a). There exists λ∗ such that
λ1 < λ∗ < λ2, γ (λ∗) = 0

Fig. 2 Typical γ (λ) for case
(b). λ∗ = λ2 is the solution

Fig. 3 Typical γ (λ) for case
(c). λ∗ = λ1 is the solution

Fig. 4 Typical γ (λ) for case
(d). λ∗ = 0 is the solution
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In principle, this can be done by solving γ (λ) = 0 for λ, which is a rational equa-
tion. However, when A, B are not diagonal (as is usually the case), expressing γ (λ)

explicitly in rational function form is a nontrivial task.
Our approach, building upon [1,11] for the TRS, is to express γ (λ) = 0 as a

generalized eigenvalue problem.
Define M0, M1 ∈ R

(2n+1)×(2n+1) as

M0 =
⎡
⎣ β b� −a�

b B −A
−a −A O

⎤
⎦ , M1 =

⎡
⎣ 0 0 −b�

0 O −B
−b −B O

⎤
⎦ . (14)

Then we show that the the optimal Lagrange multiplier λ∗ > 0 in (8) is an eigenvalue
of M0 + λM1, that is, there exists a nonzero vector z ∈ R

2n+1 such that

(M0 + λ∗M1)z =
⎡
⎣ β b� −(a + λ∗b)�

b B −(A + λ∗B)

−(a + λ∗b) −(A + λ∗B) O

⎤
⎦ z = 0. (15)

Theorem 3 det(M0 + λM1) has the expression

det(M0 + λM1) = (−1)nγ (λ) det(A + λB)2, (16)

and for λ∗ > 0 satisfying (8), λ = λ∗ satisfies

det(M0 + λM1) = 0. (17)

Proof For λ for which det(A + λB) �= 0, we have

det(M0 + λM1) = det

⎡
⎣ β b� −(a + λb)�

b B −(A + λB)

−(a + λb) −(A + λB) O

⎤
⎦

= det

⎡
⎣ g(x(λ)) b� + x(λ)�B 0�
b + Bx(λ) B −(A + λB)

0 −(A + λB) O

⎤
⎦

= (−1)nγ (λ) det(A + λB)2. (18)

Hence if A+λ∗B is nonsingular, then (18) holds with γ (λ∗) = 0, and hence we have
det(M0 + λ∗M1) = 0.

When A+λ∗B is singular, we have a+λ∗b = −(A+λ∗B)x∗ ∈ R(A+λ∗B), hence
the bottom n rows ofM0+λ∗M1 have rank (n−1) or less, hence det(M0+λ∗M1) = 0.

�

The above proof also shows that any KKT multiplier λ satisfying the first three

equations in (8) is an eigenvalue ofM0+λM1. Note from (18) and the fact A+λ̂B � 0
that we either have det(M0 + λ̂M1) �= 0, indicating M0 + λM1 is a regular matrix
pencil (thus having exactly 2n+1 eigenvalues), or that det(M0 + λ̂M1) = 0, in which
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case (λ̂, x(λ̂)) satisfies all the conditions in (8), thus is a solution for QCQP (2). It thus
follows that λ∗ can be found (or at least a finite set containing it) via the eigenvalue
problem det(M0 + λM1) = 0. Note from Proposition 1 that M0 + λM1 is regular
unless γ (λ) is identically zero, in which case every value of λ for which A + λB � 0
is an optimal Lagrange multiplier. Since this case is easy, in what follows we assume
M0 + λM1 is regular.

We shall further show that λ∗ is the unique eigenvalue of M0 + λM1 in the interval
D = (λ1, λ2). To simplify the analysis, we apply a Möbius transformation [23] to the
matrix pencil (15). Specifically, recalling that λ̂ ≥ 0 is known such that A + λ̂B � 0,
we define M̂ := M0 + λ̂M1 and consider the eigenvalues of

(M1 + ξ M̂)z = 0. (19)

The eigenvalues ξ of (19) correspond one-to-one to those λ of M0 + λM1 via the
transformation λ = λ̂ + ξ−1. We consider only ξ �= 0, as ξ = 0 corresponds to the
eigenvalue of M0 +λM1 at infinity, which is irrelevant. We shall show that the largest
(or smallest) real eigenvalue ξ∗ of (19) gives the value λ∗ = λ̂ + ξ−1∗ in (8).

We consider separate cases depending on the sign of γ (λ̂), and we next show that
in both cases it suffices to compute one extremal eigenpair of (19).

Lemma 3 1. When γ (λ̂) > 0, the smallest real eigenvalue λ = λ∗ of (15) larger
than λ̂ satisfies λ̂ < λ∗ ≤ λ2.

2. Similarly, when γ (λ̂) < 0, the largest real eigenvalue λ = λ∗ of (15) smaller than
λ̂ satisfies λ1 ≤ λ∗ < λ̂, except in case (d).

3. When γ (λ̂) < 0 and case (d) happens, the largest real eigenvalue λ = λ∗ of (15)
smaller than λ̂ satisfies λ∗ ≤ λ1 = 0, or there is no λ∗ < λ̂ satisfying γ (λ∗) = 0.

Proof Except in case (d), γ (λ) is monotically strictly decreasing on λ ∈ D̃ by Propo-
sition (1). In this case, by (13) and Theorem 3, λ = λ∗ > 0 satisfies (17). Checking
(13) and the sign of γ (λ̂), we complete the proof for all cases but (d).

In case (d), there is no nonnegative λ < λ2 that satisfies γ (λ) = 0. Two possibilities
are (i) λ∗ ≤ 0 exists such that γ (λ∗) = 0, or (ii) no such λ∗ exists. This completes the
proof.

We note that in Lemma 3, eigenvalues λ = ±∞ of (15) are not allowed.

3.3.1 When γ (λ̂) = 0

In this case γ (λ̂) = g(x(λ̂)) = 0, so (λ∗, x∗) = (λ̂, x(λ̂)) satisfies (8). Hence in this
case we are done; there is no need to solve the generalized eigenvalue problem.

3.3.2 When γ (λ̂) > 0

Theorem 4 Suppose γ (λ̂) > 0. Then for the largest finite real eigenvalue ξ ′ of (19)
it holds ξ ′ > 0, and the optimal Lagrange multiplier satisfying (8) is λ∗ = λ̂ + ξ ′−1.
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Proof Using the same λ∗ as in Lemma 3, ξ∗ = (λ∗ − λ̂)−1 is an eigenvalue of (19).
By Lemma 3, ξ ′ ≥ ξ∗ = (λ∗ − λ̂)−1 > 0.

If ξ ′ > ξ∗, λ = λ̂ + ξ ′−1 becomes the smallest real eigenvalue of (15) larger than
λ̂, which contradicts Lemma 3. Therefore ξ ′ = ξ∗, and λ∗ = λ̂ + ξ ′−1. �


Theorem 4 shows that when γ (λ̂) > 0, the optimal Lagrange multiplier λ∗ can
be obtained by computing the largest real eigenvalue of (19). One practical difficulty
here is that by an algorithm such as shift-and-invert Arnoldi, it can be much harder to
compute the largest real eigenvalue than the eigenvalue with largest real part (which
can be complex). We shall now show that in fact these are the same for (19), that is,
its rightmost eigenvalue is real. A similar statement was made in [1] for the special
case of TRS; here we extend the result to definite feasible QCQP.

Theorem 5 Let γ (λ̂) > 0. Then the rightmost finite eigenvalue of the pencil (19) is
real.

Proof It suffices to prove that for every ξ = s + t i with s ≥ ξ ′ and t �= 0, we have
det(M1 + ξ M̂) �= 0, or equivalently (by (18)), that det(A + (λ̂ + ξ−1)B) �= 0 and
γ (λ̂ + ξ−1) �= 0.

First consider values of λ such that det(A + λB) = 0. These are the eigenvalues
λ = − di

ei
of A + λB. In particular, when λ is nonreal we have det(A + λB) �= 0, and

so det(A + (λ̂ + ξ−1)B) �= 0.
We next examine the imaginary part of γ (λ̂ + ξ−1). Defining λ̂ + ξ−1 = p + qi

we have

Im(γ (p + qi)) = −2q
n∑

k=1

(bkdk − akek)2(dk + pek)

((dk + pek)2 + (qek)2)2
.

Now p = λ̂ + s(s2 + t2)−1, and since 0 < ξ ′ ≤ s we obtain

λ̂ < p = λ̂ + s

s2 + t2
< λ̂ + s−1 ≤ λ̂ + ξ ′−1 = λ∗,

hence p ∈ D. In other words, dk + pek > 0 (k = 1, . . . , n). By γ (λ̂) �= 0 and
Proposition 1 we see that for some k we have bkdk − akek �= 0, so by q �= 0

n∑
k=1

(bkdk − akek)2(dk + pek)

((dk + pek)2 + (qek)2)2
≥ (bkdk − akek)2(dk + pek)

((dk + pek)2 + (qek)2)2
> 0.

Hence γ (λ̂ + ξ−1) �= 0, completing the proof. �


The upshot is that to obtain the optimal Lagrange multiplier λ∗ when γ (λ̂) > 0, it
suffices to compute the rightmost eigenpair of (19).
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3.3.3 When γ (λ̂) < 0

This case can be treated in essentially the same way as above, but special treatment is
necessary for the case (d).

Theorem 6 Suppose γ (λ̂) < 0. Let ξ ′ be the leftmost real finite eigenvalue of (19). If
λ̂ = 0 or −λ̂−1 ≤ ξ ′ ≤ 0, the case corresponds to (d), and we have λ∗ = 0. If λ̂ > 0
and ξ ′ < −λ̂−1, then λ∗ = λ̂ + ξ ′−1.

Proof If λ̂ = 0 then 0 ≤ λ1 ≤ λ̂ = 0, which happens only in case (d). If −λ̂−1 ≤
ξ ′ ≤ 0 then λ̂ + ξ ′−1 ≤ 0 or ξ ′ = 0 holds. These conditions imply that the largest
eigenvalue of (15) smaller than λ̂ is nonpositive, or (15) has no nonpositive eigenvalue.
By Lemma 3, these occur only in case (d).

Now suppose λ̂ > 0 and ξ ′ < −λ̂−1. These conditions imply λ̂ + ξ ′−1 > 0 and
det(M0+(λ̂+ξ ′−1)M1) = 0, therefore the case (d) does not occur. By λ̂+ξ ′−1 ≤ λ̂ and
det(M0 + (λ̂+ ξ ′−1)M1) = 0 we have λ̂+ ξ ′−1 ≤ λ∗. If λ̂+ ξ ′−1 < λ∗, λ = λ̂+ ξ ′−1

becomes the largest real eigenvalue of (15) smaller than λ̂, which contradicts Lemma
3. Therefore λ∗ = λ̂ + ξ ′−1. �


The following is an analogue of Theorem 5.

Theorem 7 Suppose that γ (λ̂) < 0, and that for the leftmost real finite eigenvalue ξ ′
of (19), ξ = s + t i satisfies s ≤ ξ ′, t �= 0 and ξ is an eigenvalue of (19). Then this
corresponds to case (d), and Re(λ̂ + ξ−1) ≤ 0.

Proof We first prove that cases (a) and (c) cannot satisfy the assumptions. Indeed by
Theorem 6 we have ξ ′ < −λ̂−1 < 0, so writing λ̂ + ξ−1 = p + qi we have

λ′ = λ̂ + ξ ′−1 ≤ λ̂ + s−1 < λ̂ + s

s2 + t2
= p < λ̂.

Since λ′, λ̂ ∈ D, we have λ̂ + s−1 ∈ D. Then as in the proof of Theorem 5 we see
that ξ is not a solution for (19), a contradiction.

Now suppose we are in case (d). Since D is bounded below by 0, if 0 < λ ≤ λ̂

then λ ∈ D. Also, since p ≤ λ̂ always holds, if p > 0 then by 0 < p ≤ λ̂ we have
p ∈ D, so as in the proof of Theorem 5 we see that ξ is not a solution for (19), again
a contradiction. Thus we conclude that p = Re(λ̂ + ξ−1) ≤ 0.

In case (d) with λ̂ = 0, using the fact that ξ = 0 is always a solution of (19), we
obtain Re(ξ) ≤ ξ ′ ≤ 0 and Re(λ̂ + ξ−1) = Re(ξ−1) ≤ 0. �


In summary, when γ (λ̂) < 0 we can obtain λ∗ in (8) by computing the leftmost
eigenvalue ξ∗ of (19) and choosing λ∗ depending on the value of λ̂ + ξ−1∗ as follows:

– if λ̂ + ξ−1∗ > 0, take λ∗ = λ̂ + ξ−1∗
– if either λ̂ = 0, Re(λ̂ + ξ−1∗ ) ≤ 0, or if ξ∗ = 0, take λ∗ = 0.
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Algorithm 3.1 Computes optimal Lagrange multiplier λ∗ satisfying (8)

Input: QCQP (2), and λ̂ such that A + λB � 0
Output: Optimal Lagrange multiplier λ∗ in (8)
Separate cases based on sign of γ (λ̂)

if γ (λ̂) > 0 then
Find rightmost real eigenvalue ξ of (M1 + ξ M̂)z = 0
λ∗ = λ̂ + ξ−1

else if γ (λ̂) < 0 then
Find leftmost eigenvalue ξ of (M1 + ξ M̂)z = 0
if λ̂ = 0 or Re(λ̂ + ξ−1) ≤ 0 (case (d) in (8)) then

λ∗ = 0
else

λ∗ = λ̂ + ξ−1

end if
else

λ∗ = λ̂

end if

3.3.4 Pseudocode for computing λ∗

We summarize the whole process for finding λ∗ in Algorithm 3.1.
As discussed before, we can compute the rightmost (or leftmost) eigenpair of a

generalized eigenvalue problem using the Arnoldi method, which is much more effi-
cient than computing all the eigenvalues, especially when the matrices have structure
such as symmetry and/or sparsity. InMatlab the eigs command with the flag ’lr’
(’sr’) computes such eigenpair.

3.4 Obtaining the solution x∗

Having computed the optimal Lagrange multiplier λ∗, we now turn to finding the
solution x∗. We shall show that generically the eigenvector z obtained in Algorithm
3.1 contains the desired information on x∗.

First, if the output of Algorithm 3.1 is λ∗ = 0, then the QCQP solution is simply
−A−1a, the solution of a linear system (see Sect. 3.4.2 for the case det(A) = 0).

For nonzero λ∗, we can generically obtain the solution by computing x∗ = −(A+
λ∗B)−1(a + λ∗b), but below we show that solving such linear system is usually
unnecessary.

3.4.1 When A + λ∗B is nonsingular

If λ∗ > 0 and det(A+λ∗B) �= 0, then we can obtain x∗ via the eigenvector associated
with λ∗ (which is obtained by the Arnoldi method). Suppose z = [θ y�

1 y�
2 ]� is the

computed eigenvector where θ ∈ R, y1, y2 ∈ R
n .

Plugging z = [θ y�
1 y�

2 ]� into M0z + λ∗M1z = 0 gives

βθ + b�y1 − (a + λ∗b)�y2 = 0,

θb + By1 − (A + λ∗B)y2 = 0, (20)
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−θ(a + λ∗b) − (A + λ∗B)y1 = 0. (21)

First suppose θ �= 0, which holds generically. Then from the last equation we see that
the solution is x∗ = y1

θ
.

Next suppose that θ = 0. By (21), if y1 �= 0 then y1 ∈ N (A+ λ∗B), and A+ λ∗B
is singular. When y1 = 0, by (20) we have y2 ∈ N (A + λ∗B) so again A + λ∗B is
singular. Thus when A + λ∗B is nonsingular we necessarily have θ �= 0, and thus we
can obtain x∗ directly from the eigenvector z.

3.4.2 When A + λ∗B is singular

When A + λ∗B is singular at the λ∗ obtained by Algorithm 3.1, matters are more
subtle. In this case we need to solve the linear system

(A + λ∗B)x∗ = −(a + λ∗b), (22)

which has a singular coefficient matrix A+λ∗B. A singular linear system generically
does not have a solution, but (8) shows that (22) must be consistent. However, the
error of a computed solution to a linear system is generally proportional to the con-
dition number, and solving a singular linear system numerically is challenging, if not
impossible.

In fact, the case where A + λ∗B is singular corresponds to the well known “hard
case” for the special case of TRS. For TRS, dealing with such hard cases are discussed
in [25,30]. In this work we discuss dealing with the hard case for the general QCQP
by forming and solving a nonsingular linear system that has the same solution as (22).
The development here parallels that in [1], which is in turn based on [10].

The following theorem will be the basis for the construction of x∗.

Theorem 8 For λ∗ satisfying (8), suppose A + λ∗B is singular. Let v1, . . . v j be a
basis for N (A + λ∗B), and let w∗ be the solution of the linear system Ãw∗ = −ã,
where

Ã = A + λ∗B + α

j∑
i=1

Bviv
�
i B, ã = a + λ∗b + αB

j∑
i=1

viv
�
i b, (23)

in which α > 0 is an arbitrary positive number. Then the following hold:

1. Ã � 0, in particular, Ã is nonsingular (hence w∗ above exists uniquely),
2. (A + λ∗B)w∗ = −(a + λ∗b),
3. (Bw∗ + b)�v = 0 for every v ∈ N (A + λ∗B).

To prove the theorem we prepare a lemma, which we will use repeatedly.

Lemma 4 For a definite feasible QCQP (2), if x ∈ N (A+λ∗B) and x�Bx = 0 then
x = 0.
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Proof We have

x�(A + λ̂B)x = x�(A + λ∗B)x + (λ̂ − λ∗)x�Bx = 0

and A + λ̂B � 0, hence x = 0. �

We are now ready to prove Theorem 8.

Proof (for Theorem 8) We give a proof for each claim.

1. By A + λ∗B � 0 and
∑ j

i=1 Bviv
�
i B � 0, we trivially have Ã � 0. For any

x ∈ R
n , there exist a unique x0 ∈ N (A + λ∗B) and x1 ∈ R(A + λ∗B) such that

x = x0 + x1. Let x be a vector such that x� Ãx = 0. We show that x = 0. We
have x� Ãx = x�

1 (A + λ∗B)x1 + α
∑ j

i=1(v
�
i Bx)2 = 0, hence

x�
1 (A + λ∗B)x1 = 0, and v�

i Bx = 0 (i = 1, . . . , j). (24)

Since (A + λ∗B) � 0 we have (A + λ∗B)x1 = 0, and hence x1 ∈ N (A + λ∗B).
Together with the assumption x1 ∈ R(A + λ∗B) we obtain x1 = 0. Therefore,
x = x0 can be written as x = ∑ j

i=1 civi , for some constants c1, . . . , c j , so

together with (24) we obtain x�Bx = ∑ j
i=1 civ

�
i Bx = 0. Combining this with

x�(A + λ∗B)x = 0 and Lemma 4 we obtain x = 0. Therefore Ã � 0.
2. We shall first prove that

ui := Ã−1Bvi ∈ N (A + λ∗B), i = 1, . . . , j. (25)

From Ãui = Bvi , we have

(A + λ∗B)ui = Bvi − α

j∑
k=1

(
v�
k Bui

)
Bvk

= B
(
vi − α

j∑
k=1

(
v�
k Bui

)
vk

)
=: Bv′

i ,

where we defined v′
i := vi − α

∑ j
k=1(v

�
k Bui )vk . Since v′

i ∈ N (A + λ∗B) we
have (v′

i )
�Bv′

i = (v′
i )

�(A+λ∗B)ui = 0. Therefore by Lemma 4 we have v′
i = 0,

so (A + λ∗B)ui = 0, hence ui ∈ N (A + λ∗B), establishing (25). From this it
follows that (A + λ∗B) Ã−1Bvi = 0, and

(A + λ∗B)w∗ + (a + λ∗b) = −(A + λ∗B) Ã−1ã + (a + λ∗b)

= −(A + λ∗B) Ã−1

⎛
⎝a + λ∗b + α

j∑
i=1

Bviv
�
i b

⎞
⎠

+ (a + λ∗b)
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= −(A + λ∗B − Ã) Ã−1(a + λ∗b)

− α

j∑
i=1

((A + λ∗B) Ã−1Bvi )v
�
i b

= α

j∑
i=1

Bvi

(
v�
i B Ã−1(a + λ∗b)

)
,

where for the last equality we used (A+λ∗B) Ã−1Bvi = 0 and (23). Now from (8)
we see that there exists x∗ such that a + λ∗b = −(A + λ∗B)x∗, so v�

i B Ã−1(a +
λ∗b) = −u�

i (A+λ∗B)x∗ = 0 for i = 1, . . . , j , and (A+λ∗B)w∗ = −(a+λ∗b).
3. For any v ∈ N (A + λ∗B), we have

(Bw∗ + b)�v = (−B Ã−1ã + b)�v =
(

− B Ã−1
(
a + λ∗b + α

j∑
i=1

Bviv
�
i b

)
+ b

)�
v

= −b�(
B Ã−1α

j∑
i=1

Bviv
�
i

)�
v + b�v

= −b�(
α

j∑
i=1

viv
�
i B Ã−1B

)
v + b�v =: −b�Lv + b�v, (26)

where we define L := α
∑ j

i=1 viv
�
i B Ã−1B. Next, suppose that Lx = 0 and

x ∈ N (A + λ∗B). We show that x = 0. To this end, note that

Lx = α

j∑
i=1

(
v�
i B Ã−1Bx

)
vi = 0,

so v�
i B Ã−1Bx = 0 for i = 1, . . . , j . Now since x can be written as a linear

combination of v1, . . . , v j , it follows that x�B Ã−1Bx = 0, and by Ã−1 � 0 we
have Bx = 0. Hence x�Bx = 0, and again by Lemma 4 we conclude that x = 0.
Moreover,

L = α

j∑
i=1

viv
�
i B Ã−1B = α

j∑
i=1

viv
�
i B Ã−1 Ã Ã−1B

= α

j∑
i=1

viv
�
i B Ã−1

⎛
⎝A + λ∗B + α

j∑
l=1

Bvlv
�
l B

⎞
⎠ Ã−1B

= α

j∑
i=1

viv
�
i B Ã−1

(
α

j∑
l=1

Bvlv
�
l B

)
Ã−1B (by (25))

= α

j∑
l=1

(
α

j∑
i=1

viv
�
i B Ã−1B

)
vlv

�
l B Ã−1B
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= α

j∑
l=1

Lvlv
�
l B Ã−1B = L2,

that is, L is an idempotent matrix: indeed, it turns out that L does not depend on α.
Therefore, for every v ∈ N (A + λ∗B), Lv is a linear combination of v1, . . . , v j ,
so (v − Lv) ∈ N (A + λ∗B), and from L(v − Lv) = Lv − L2v = 0 it follows
from the above argument, taking x ← v − Lv, that v − Lv = 0. Hence by (26)
we conclude that

(Bw∗ + b)�v = b�(v − Lv) = 0,

as required. �


Let us now explain how to obtain a QCQP solution x∗ using Theorem 8. First when
λ∗ > 0, by Theorem 2 A+λ∗B can be singular only in cases (b) and (c). First examine
case (b). For the obtained λ∗ we have λ∗ > λ̂, so for any nonzero v ∈ N (A + λ∗B)

we have

v�Bv = 1

λ̂ − λ∗

(
v�(A + λ̂B)v − v�(A + λ∗B)v

)
= 1

λ̂ − λ∗
v�(A + λ̂B)v < 0.

Hence

g(w∗ + v) = v�Bv + 2(Bw∗ + b)�v + g(w∗) = v�Bv + g(w∗),

so g(w∗+v) < g(w∗).Moreover, there exists x∗ satisfying (8), so g(w∗) ≥ g(x∗) = 0.
Thus writing x = w∗ + tv for t ∈ R, the quadratic equation in t

g(w∗ + tv) = v�Bvt2 + g(w∗) = 0

has a real solution t = ±√−g(w∗)/(v�Bv). Letting t be one of these solutions,
taking x∗ = w∗ + tv we have g(x∗) = 0, and from λ∗ = λ1 we see that (λ∗, x∗)
satisfies (8).

Similarly, in case (c), we have v�Bv = 1
λ̂−λ∗

v�(A + λ̂B)v > 0 and 0 = g(x∗) >

g(w∗) holds. Thus the quadratic equation g(w∗ + tv) = v�Bvt2 + g(w∗) = 0 in t
has real solutions t = ±√−g(w∗)/(v�Bv). Letting t be one of these solutions and
taking x∗ = w∗ + tv, we see that (λ∗, x∗) satisfies (8).

Next when λ∗ = 0 and A = A + λ∗B is singular, we similarly have g(w∗) ≤ 0.
However, recalling (8), when λ∗ = 0 we do not need g(x∗) = 0, so we can directly
take x∗ = w∗.

Summarizing the above findings, we can compute an optimal solution x∗ by Algo-
rithm 3.2. Note that the above argument clearly shows the solution can be non-unique;
the goal here is to obtain one optimal solution.
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Algorithm 3.2 Find solution x∗ for QCQP (2)

Input: λ̂ ≥ 0 such that A + λ̂B � 0
if γ (λ̂) > 0 then
Compute the rightmost real eigenpair (ξ, z = [θ y�

1 y�
2 ]�) of (M1 + ξ M̂)z = 0

λ∗ = λ̂ + ξ−1

else if γ (λ̂) < 0 then
Compute the leftmost real eigenpair (ξ, z = [θ y�

1 y�
2 ]�) of (M1 + ξ M̂)z = 0

if λ̂ = 0 or ξ ≥ −λ̂−1 then
λ∗ = 0, x∗ = −A−1a

else
λ∗ = λ̂ + ξ−1

end if
else

λ∗ = λ̂, x∗ = x(λ̂)

end if
if λ∗ > 0 and γ (λ̂) �= 0 then
if θ �= 0 then

x∗ = y1
θ

else
Find a basis v1, . . . , v j forN (A + λ∗B).

Ã = A + λ∗B + α
∑ j

i=1 Bviv
�
i B,ã = a + λb∗ + αB

∑ j
i=1 viv

�
i b.

Obtain w∗ from Ãw∗ = −ã.
Take an arbitrary v ∈ N (A + λ∗B) and choose x∗ = w∗ + tv so that g(x∗) = 0.

end if
end if

3.5 Complexity

When no structure is present and A, B are dense, the dominant cost in Algorithm 3.2
lies in finding an eigenpair and the solution of a linear system; these are both O(n3).
ComputingN (A+ λ∗B) can be done by an SVD, and finding γ (λ̂) is mostly solving
a linear system, and the other steps are all O(n2). Hence the overall complexity of
Algorithm 3.2 is O(n3).

In comparison, the SDP-based approaches require at least O(n3) in each iteration
of the interior-point method [3] with a rather large constant, so we see that Algorithm
3.2 can be much more efficient.

Moreover, the dominant step of finding an extremal eigenpair can easily take advan-
tage of the sparsity structure of A, B if present, resulting in running time much faster
than O(n3). This fact is illustrated in our experiments.

4 Numerical experiments

To illustrate the performance (speed and accuracy) of Algorithm 3.2 for solving
QCQP (2), here we present Matlab experiments comparing with the SDP-based
algorithm. Specifically, we compare Algorithm 3.2 with SDP solvers based on the
interior-point method: SeDuMi [36], and SDPT3 [39], which we invoke via CVX [14].
We used the default values for parameters such as the stopping criterion. However,
since the core of that algorithm and ours are both essentially the same as those for the
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TRS (excluding finding λ̂, which they both require), we expect that our code would
outperform [24] in speed and accuracy just as in TRS.

All experiments were carried out in MATLAB version R2013a on a machine with
an Intel Xeon E5-2680 processor with 64GB RAM.

4.1 Setup

We generate a “random” definite feasible QCQP with indefinite A, B as follows. First
form a random positive definite K � 0, formed as X�X+ I where X is a random n×n
matrix, obtained byMATLAB’s function randn(n). Since the problem becomes ill-
conditioned if K is close to singular, we chose K to have eigenvalues at least 1. We
then set λ̂ to be a random positive number.

We then took a random symmetric matrix B obtained by Y = randn(n); B =
Y+Y’, and define A via K = A + λ̂B. We took a and b to be random vectors.

To form a problemwith known exact solution (so that the accuracy of the computed
solution x can be evaluated), we take λopt := λ̂ + ε where |ε| ≈ 10−10 and computed
xopt = −(A+λoptB)−1(a+λoptb), then setβ to satisfy g(xopt) = 0, so that (λopt, xopt)
satisfies (1), hence xopt is the QCQP solution, i.e., (λopt, xopt) = (λ∗, x∗).

Below we report the average speed and accuracy from 50 randomly generated
instances for each matrix size n.

4.1.1 Computing λ̂

In practice λ̂ is usually unknown in advance, and in that case our algorithm starts by
computing λ̂. To this end we used the algorithm in [6,15] to find λ̂, as discussed in
Sect. 2.4.1, to obtain the interval D. Although any value in D is allowed to be λ̂, we
chose λ̂ as the middle point of D to avoid ill-conditioning of A + λ̂B.

In the figures we show the performance of our algorithm in two cases: (i) when λ̂ is
known a priori, shown as “Eig”, and and (ii) when λ̂ needs to be computed, shown as
“Eigcheck”. In other words, the runtime of Eigcheck is the sum of Eig and finding λ̂.

4.1.2 Newton refinement process

We use a refinement process to improve the accuracy of the solution, in particular to
force the computed solution to satisfy the constraint to working precision. Suppose λ∗
is positive in (8). Then at the solution the constraint must hold with equality, but due
to numerical errors this may not be the case with the computed solution x . Writing
x = x∗ + δ where x∗ satisfies the constraint exactly, i.e., g(x∗) = 0, we have

g(x) = 2(Bx∗ + b)�δ + δ�Bδ.

We apply Newton’s method to g(x) = 0 to force x to satisfy the constraint to full
accuracy. Specifically, we update x by

δ̂ = g(x)

2‖Bx + b‖2 (Bx + b), x ← x − δ̂.
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Fig. 5 Average runtime for
dense matrices
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Then

g(x − δ̂) = g(x) − 2(Bx + b)�δ̂ + δ̂�Bδ̂ = g(x) − 2(Bx + b)�δ̂ + O(δ̂2)

= g(x) − 2(Bx + b)� g(x)

2‖Bx + b‖2 (Bx + b) + O(δ̂2) = O(δ̂2).

We have applied this refinement process to all three algorithms. By forcing the
computed x to be numerically feasible, we rule out the misleading cases where an
infeasible x with a small objective function is interpreted as a “good” solution. We
note that the refinement may decrease the quality of x as a numerical solution for the
problem arising in the algorithm: for example, the residual in the eigenvalue equa-
tion (22) may become larger. However, for solving the original QCQP, it is more
important to improve feasibility.

4.2 Results

Figure 5 shows the runtime of the three algorithms. For n ≥ 1000, SDPT3 was unable
to compute a solution on our computer, so we show experiments with n ≤ 700 for
this algorithm. Our algorithm and SeDuMi are able to deal with larger matrices on our
machine, and we report its performance up to n = 5000.

We see that when λ̂ is known (Eig), our algorithm is faster than SeDuMi, SDPT3
by orders of magnitude. Even if we include the time for computing λ̂, our algorithm
(EigCheck) is still faster than SeDuMi and SDPT3.

Figure 6 shows the accuracy of the computed solution. For each QCQP, let fi (i =
1, 2, 3) be the objective value of the solution computed by each of the three algorithms.
We compute

si = | fi − fopt|
| fopt| , ti = ‖xi − xopt‖2

‖xopt‖2 ,

where fopt = f (xopt). We report the average value s̄i , t̄i of si , ti for each fixed matrix
size (recall that we repeated 50 random examples for each n).
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Fig. 6 Average accuracy s̄i (left) and t̄i (right)

Fig. 7 Runtime for tridiagonal
matrices
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Figure 6 illustrates that our algorithm found solutions and objective values nearest
to optimal, hence more accurate.

Sparsematrices Another strength of ourmethod is that it candirectly take advantageof
thematrix sparsity structure. Specifically, for the computation of an extremal eigenpair,
which is the dominant part of our algorithm, efficient eigensolvers for large-sparse
matrices are widely available [2,22], and implemented for example in Matlab’s
eigs command.

To illustrate this we generated QCQP as before, but with A, B sparse. Here we
assume that λ̂ is known, and skip its computation, showing the runtime of only Eig;
otherwise the code spends the majority of the runtime in finding λ̂ (unless the tridi-
agonal structure is fully exploited in the detection process). Similarly, SeDuMi and
SDPT3 are not shown here, as their speed remained about the same as in the dense
case for n ≤ 700, hence impractical for n ≥ 103. Here we examine the runtime and
accuracy of our algorithm Eig for varying matrix size n from 103 to as large as 106.
We test with two types of sparse matrices: tridiagonal and random sparse (generated
usingMATLAB’s sprandsym).

In Figs. 7, 8 and 9 we verify that when the matrices A, B are highly sparse, our
method runs faster than O(n3); here it scaled like O(n2) for the tridiagonal case, and
also for the random sparse case when the number of nonzeros per row is fixed. The
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Fig. 8 Tridiagonal example, accuracy s̄i (left) and t̄i (right)
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Fig. 9 Random sparse matrices generated by sprandsym(n,density). Left: five nonzeros per row
(on average), right: density = 10−3

accuracy of the solution and objective values was also consistently good, as illustrated
in Fig. 8 for the tridiagonal case; the other examples gave similar results.

ill-conditioned case By taking K = X�X + ε I for a very small ε > 0, K is close to
singular. We took ε = 100, 10−1, . . . , 10−12, n = 200 and Fig. 10 shows the results.
Since the runtime did not vary significantly, we do not show the runtime. For the accu-
racy, we also compare with our Matlab implementation of Moré’s algorithm [24].

In Figure 10, we observe that our algorithm computed the optimal value reliably
even in the ill-conditioned case, unlike the SDP-based algorithms. Moré’s algorithm
gave even better accuracy here: recall that this algorithm is an extension of the classical
Moré-Sorensen algorithm for TRS [35], which is iterative in nature (solving a linear
system in each iteration), and not matrix-free.

5 QCQP that are not definite feasible

Thus far we have focused on the definite feasible QCQP and derived an eigenvalue-
based algorithm that is fast and accurate. We now develop an analysis that accounts
for “non-generic” QCQP that are not necessarily definite feasible (since the discussion
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Fig. 10 Ill-conditioned case, accuracy s̄i (left) and t̄i (right)

in Sect. 2.1 still holds, we still focus on the strictly feasible case). The key tool for
our analysis is the canonical form of a symmetric pair under congruence, which we
review next.

5.1 The canonical form of (A, B) under congruence

For a pair of symmetric matrices (A, B) the canonical form under congruence [21,
37,38], shown below, is the simplest form taken by W�(A + λB)W where W is

nonsingular. We define the ⊕ operator as A1 ⊕ A2 :=
[
A1 O
O A2

]
.

Theorem 9 (Lancaster and Rodman [21, Theorem 9.2.]) For symmetric matrices
A, B ∈ Sn, there exist a nonsingular real matrix W such that

W�(A + λB)W = Ou×u ⊕
p⊕

j=1

⎛
⎝λ

⎡
⎣ O O Fε j

O 0 O
Fε j O O

⎤
⎦+ G2ε j+1

⎞
⎠ (27)

⊕
r⊕
j=1

(
δ j (Fk j + λGk j )

)⊕
q⊕
j=1

(
η j ((λ + α j )Fl j + Gl j )

)

(28)

⊕
s⊕

j=1

(
(λ+μ j )F2m j + ν j H2m j +

[
F2m j−2 O

O O2×2

])
.

(29)

Here

Fm =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 1 0
... . .

. ...

0 1 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

∈ R
m×m, Gm =

[
Fm−1 0
0� 0

]
∈ R

m×m,
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H2m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 1 0
0 0 −1
.
.
. 1 0

0 −1

. .
. .

.

.

1 0 0
0 −1 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
2m×2m

when m > 1, and for m = 1,

F0 = [] (empty ′′0 × 0 matri x ′′), F1 = [1], G1 = [0], H2 =
[
1 0
0 −1

]
,

and ν j �= 0, δ j , η j = ±1. The form in (27), (28) (29) is the canonical form of (A, B)

under congruence.

This theorem shows that by congruence transformation, a symmetric matrix pair
(A, B) can be block diagonalized with three types of diagonal blocks (27), (28) and
(29). Each block corresponds to an eigenvalue or singular part of the pencil A + λB
as summarized below.

1. The blocks in the right-hand side of (27) correspond to a singular part; any matrix
pair that possess these blocks is singular, that is, det(A + λB) = 0 for every λ.

2. The blocks (28) correspond to real finite (right term) and infinite (left term) eigen-
values. The right terms are the “natural” extensions of the Jordan block in standard
eigenvalue problems. k j , l j are the size of the Jordan blocks.

3. The blocks (29) correspond to nonreal eigenvalues,whichmust appear in conjugate
pairs. Again, m j is the Jordan block size.

The main message of this section is that the canonical form under congruence
contains full information about QCQP (2). While this work appears to be the first
to use the canonical form in the analysis of QCQP, related results have been pre-
sented in the literature. The paper [9] also shows that if the matrices A, B are
diagonalizable by congruence and this congruence transformation is known, the dual
problem can be solved by linear programming. The preprint [16] also investigates the
matrix pencil and illustrates why QCQP is nontrivial when the pencil is not simul-
taneously diagonalizable under congruence. Here we clarify the situation, treating
extensively the difficult cases that are not definite feasible, and characterizing the fea-
sibility/boundedness/attainability with respect to the canonical form of the pair (A, B)

under congruence. The manuscript [19] shows that if the canonical form is known and
the QCQP is bounded, a SOCP reformulation is possible to obtain the solution.

5.2 Implication of canonical form for QCQP boundedness

Nowwe turn to the implications of Theorem9 forQCQP, first focusing on the condition
for QCQP to be bounded.

In Sect. 2.1we dealtwith the casewhere the feasible region has no interior point, and
the analysismade no assumption on definite feasibility.Hence, herewe assumeSlater’s
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condition, which allows us to invoke Lemma 1 and Theorem 1. The first observation
is that the necessary condition A + λB � 0 in (5) for QCQP to be bounded restricts
the admissible canonical forms of A+ λB from the general form in Theorem 9 to the
following.

Theorem 10 Let A, B ∈ Sn be symmetric matrices. If there exists λ ≥ 0 for which
A + λB � 0, then there exists a nonsingular W ∈ R

n×n such that

W�(A + λB)W = Ou×u ⊕ Ir×r ⊕
q1⊕
j=1

η j [λ + α j ] ⊕
q2⊕
j=1

J (λ; θ). (30)

Here J (λ; θ) = [ 1 λ+θ
λ+θ 0

]
for some real constant θ ≤ 0, and ηi = ±1.

Proof For A+λB � 0 to hold, each block in Theorem 9 needs to be positive semidef-
inite. We examine each of the blocks of the form (27), (28) and (29).

First consider the block (29), corresponding to the nonreal eigenvalues. When
m j > 1, the (2, 2), (2m j , 2), and (2m j , 2m j ) elements are respectively 0, −ν j and
0. Thus the (29) blocks cannot be positive semidefinite, regardless of the value of λ.
Therefore we need m j = 1, but then (29) is

s⊕
j=1

[
ν j λ + μ j

λ + μ j −ν j

]
,

and we look for conditions under which this is semidefinite. For this to happen we
need the (1, 1) and (2, 2) elements to be nonnegative, which means we need ν j = 0,
a contradiction. Thus the blocks (29) cannot exist.

Similarly, the second term in (27) cannot exist since its (1, 1), (1, 2ε j ), (2ε j , 2ε j )

elements are respectively 0,1 and 0.
For the first term in (28), if k j > 1 the (1, k j ) and (k j , k j ) elements are respectively

δ j and 0, so again we need k j = 1. Then δ j (F1 + λG1) = [δ j ] ≥ 0 so δ j = 1, and

r⊕
j=1

(
δ j (Fk j + λGk j )

) =
r⊕
j=1

[1] = Ir×r .

Finally, consider the second term in (28). When l j > 1 the (1, l j ) and (l j , l j )
elements are respectively η j (λ + α j ) and 0, so the only value of λ for which η j ((λ +
α j )Fl j + Gl j ) � 0 is λ = −α j . Hence we need η j Gl j � 0, and the only value of
l j > 1 for which this holds is l j = 2, in which case η j = 1. Moreover, we need
λ = −α j to hold simultaneously for all j = 1, . . . , q, so α j = θ for each j (they
are all the same), and by λ ≥ 0 we have θ ≤ 0. In addition, when l j = 1 we have
η j ((λ + α j )Fl j + Gl j ) = η j (λ + α j ). �


Given A, B satisfying (30), we next examine the values of λ for which A+λB � 0.
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Proposition 4 Let A, B ∈ Sn by symmetric matrices satisfying (30). Then the values
of λ for which A + λB � 0 are the intersection of

{
λ ≥ −α j , if η j = 1
λ ≤ −α j , if η j = −1

for j = 1, . . . , q1,

λ = −θ if q2 ≥ 1.
(31)

A proof is a straightforward examination of each term in (30).
The above results imply that for a bounded QCQP, the pencil A + λB cannot have

nonreal eigenvalues. Furthermore, Jordan blocks must be of size at most two, and
when (30) contains q2 ≥ 1 blocks of size two J (λ; θ) (the QCQP in (6) is one such
example with q2 = 1), the corresponding eigenvalue θ need to be all the same for all
the q2 blocks, and moreover the value of λ with A + λB � 0 is restricted to just one
value, namely λ = −θ , corresponding to the block J (−θ; θ) = [

1 0
0 0

]
, and this value

λ = −θ needs to satisfy
⊕q1

j=1 η j [λ + α j ] � 0 for A + λB � 0 to hold.

5.2.1 Characterizing bounded QCQP via the canonical form

Recall from Lemma 1 that the QCQP is bounded if and only if there exists λ ≥ 0 such
that

A + λB � 0 and a + λb ∈ R(A + λB). (32)

If (A, B) is definite so that A + λB � 0 for some λ, then both conditions in (32) are
satisfied trivially. However, these conditions are not straightforward to verify when
the pair (A, B) is semidefinite but not definite.

Here we show that the conditions (32) can be written explicitly using the canonical
form of symmetric pencils by congruence. Essentially this specifies the types of A, B
for which the QCQP is solvable.

We start by examining the first condition in (32), the semidefiniteness of the pair
(A, B). Aswe saw inTheorem10, this requirement restricts the canonical form to (30);
herewithout loss of generalitywe assume the−α j are arranged in nondecreasing order.
Recall that J (λ; θ) is a Jordan block corresponding to a real eigenvalue, whose size is
here restricted to 2 × 2. The so-called sign characteristics η j ∈ {1,−1} must satisfy
certain conditions. We separate into two cases depending on the presence of Jordan
blocks.

– if no block J (λ; θ) is present, then by Proposition 4 there exists an interval
[−α j ,−α j+1] on which A + λB � 0, and the requirement on ηi is ηi = 1
for i ≤ j and ηi = −1 for i ≥ j + 1. (Note that α j = α j+1 is allowed, in which
case the interval [−α j ,−α j+1] becomes a point. We also allow “α j+1 = ∞”,
which is when ηi = 1 for all i ; this includes TRS).

– if a block J (λ; θ) is present then the θ values must be all the same, and λ = −θ is
the only value for which A+ λB � 0. The requirement on ηi is ηi = 1 if α j > θ ,
and η j = −1 if α j < θ . For the real and semisimple eigenvalues α j = θ , the
corresponding sign characteristic η j is allowed to be either 1 or −1.
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We repeat that in the second case the set of λ for which A + λB � 0 is a point. In
the first case, it is the interval [−α j ,−α j+1]. In the special case where the pair (A, B)

is definite, the canonical form consists only of the second and third terms in (30)
Ir×r ⊕⊕q1

j=1 η j [λ + α j ], with η j satisfying the first of the above conditions.
Next consider the second condition a + λb ∈ R(A + λB). This can be written as

(A+λB)x = a+λb for some vector x , which, using the canonical form, is equivalent
to

W−�
⎛
⎝Ou×u ⊕ Ir×r ⊕

q1⊕
j=1

η j [λ + α j ] ⊕
q2⊕
j=1

J (λ; θ)

⎞
⎠W−1x = a + λb.

Left-multiplying W� yields

⎛
⎝Ou×u ⊕ Ir×r ⊕

q1⊕
j=1

η j [λ + α j ] ⊕
q2⊕
j=1

J (λ; θ)

⎞
⎠W−1x = W�(a + λb). (33)

Our task is to identify the condition under which the linear system (33) has a solution
x with A + λB � 0. We consider two cases separately:

– A + λB � 0 on an interval [λ j , λ j+1] with λ j < λ j+1. In this case

⎛
⎝Ou×u ⊕ Ir×r ⊕

q1⊕
j=1

η j [λ + α j ]
⎞
⎠W−1x = W�(a + λb).

This has a solution for any value of λ ∈ (λ j , λ j+1) if and only if W�(a + λb) is
of the form

W�(a + λb) =
[
01×u

∗
]

, (34)

where ∗ ∈ R
n−u can take any value. Crucial here is the zero pattern of the vector

W�(a+λb); whether such vector exists with λ ∈ (λ j , λ j+1) can be verified easily
once W�a,W�b are available.

– A + λB � 0 only at a point λ̂. In this case (33) reduces to

⎛
⎝Ou×u ⊕ Ir×r ⊕

⎡
⎣

η1(λ̂ + α1)

. . .

ηq1 (λ̂ + αq1 )

⎤
⎦⊕

q2⊕
j=1

[
1 0
0 0

]⎞
⎠W−1x

= W�(a + λ̂b).

Note that q2 = 0 is allowed, and otherwise λ̂ = −θ . Clearly, this has a solution if
and only if

W�(a + λ̂b) =
⎡
⎣Ou×1

∗
∗J

⎤
⎦ (35)
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where ∗ ∈ R
n−u−2q2 can take any value (except for elements corresponding to

(λ̂+αi ) = 0 if such elements are present), and ∗J ∈ R
2q2 has zeros in coordinates

of even indices: ∗J = [�, 0, �, 0, . . . , 0, �, 0] where each � denotes an arbitrary
scalar.

We summarize the above findings in the next theorem.

Theorem 11 A QCQP with strict interior feasible point is bounded below if and only
if its canonical form under congruence is of the form (30), and W�(a + λb) has
nonzero structure

{
(35), when a block J (λ; θ) is present or λ j = λ j+1, and
(34), otherwise.

Note that the conditions in the theorem are straightforward to verify provided that
the congruence transformation W for the canonical form is available. We note that
in [19, Thm. 6] a necessary condition is given for QCQP to be bounded; Theorem 11
gives the necessary and sufficient conditions.

To computeW , in [19] an algorithm is presented assuming B is nonsingular and all
the eigenvalues are real and the Jordan blocks are of size at most two with the same
eigenvalue. For the general case, one can proceed by upper triangularizing the matrix
pencil using the QZ algorithm (or the GUPTRI algorithm [7,20] to deal with singu-
lar pencils), and then solving generalized Sylvester equations [12, Sec. 7.7] to block
diagonalize the matrices, detect the Jordan block sizes and find the corresponding
transformations for each block. Unfortunately, currently no numerically stable algo-
rithm appears to be available for computing the canoincal form of a general symmetric
pair.

5.3 Complete solution for QCQP

We now discuss how to solve a QCQP that is not necessarily definite feasible. We
describe the process in a way that avoids computing the canonical form whenever
possible.

5.3.1 Removing common null space

For QCQP that are not definite feasible, attempting to compute λ∗ as in Sect. 3, we
face the difficulty that the Ou×u block (if it exists) forces det(M0 + λM1) = 0 for
every value of λ, so the pencil is singular and hence we cannot compute λ∗ via the
generalized eigenvalue problem. Here we discuss how to remove such Ou×u blocks.

Since such block corresponds to the common null space, we first compute the null
space Q such that

[
A
B

]
Q = 0.
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We take Q to have orthonormal columns Q�Q = I and let Q⊥ be its orthogonal
complement in R

n . Write x = Q⊥y + Qz and define A′ = (Q⊥)�AQ⊥, B ′ =
(Q⊥)�BQ⊥, a′ = (Q⊥)�a, c = Q�a, b′ = (Q⊥)�b, and d = Q�b. The original
QCQP is equivalent to

minimize
y,z

y�A′y + 2a′�y + 2c�z

subject to y�B ′y + 2b′�y + 2d�z + β ≤ 0. (36)

When c = d = 0, this is a QCQP of smaller size with the Ou×u blocks removed:
the canonical form of (A′, B ′) has no zero block. Since this is simply an orthogonal
transformation, it preserves the essential properties of the original QCQP, including
strict feasibility.

First suppose that c �= 0 but d = 0. Then (36) is clearly unbounded, as we can take
z = −αc with α → ∞.

Now suppose that d �= 0. We shall show how to obtain (λ∗, x∗) satisfying (8) in
Theorem 1. Since we assume that QCQP is bounded, A + λ∗B � 0 and (a + λ∗b) ∈
R(A + λ∗B) both hold and we see that

c + λ∗d ∈ R
(
Q�(A + λ∗B)Q

)
= {0},

a′ + λ∗b′ ∈ R
(
(Q⊥)�(A + λ∗B)Q⊥) = R(A′ + λ∗B ′)

need to hold; otherwise itwould not be a boundedQCQP.Thefirst equation c+λ∗d = 0
clearly determines the value of λ∗ (if it exists; otherwise the QCQP is unbounded),
and if A + λ∗B � 0 does not hold for this λ∗, the QCQP is unbounded. Then, taking
y∗ to be an arbitrary vector satisfying (A′ + λ∗B ′)y∗ = −(a′ + λ∗b′), and defining

z∗ = − y�∗ B ′y∗ + 2b′�y∗ + β

2‖d‖22
d, (37)

we have y�∗ B ′y∗ + 2b′�y∗ + 2d�z∗ + β = 0, and x∗ = Q⊥y∗ + Qz∗ satisfies (8), so
x∗ is a global QCQP solution. Note that even when A′ + λ∗B ′ is singular, by defining
Ã and ã as in Theorem 8 we can compute y∗ via a nonsingular linear system.

We thus focus on QCQP without a Ou×u block in what follows.

5.3.2 Solution process for nongeneric QCQP

Suppose that we have removed the common null space of A and B as in Sect. 5.3.1,
and λ̂ ≥ 0 is known such that A + λ̂B � 0. The canonical form of (A, B) must be in
the form

Ir×r ⊕
q1⊕
j=1

η j [λ + α j ] ⊕
q2⊕
j=1

J (λ; θ). (38)
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Let the columns of V form a basis forN (A+λ̂B), andwe separate the cases depending
on the eigenvalues of V�BV . Note that the blocks in the canonical form that contribute
to the null space are the blocks λ̂ + α j = 0 with eigenvalue −α j = λ̂, and J (λ̂; θ) =[
1 0
0 0

]
, for which the vector

[
0
1

]
is a null vector. We denote J1 = {r + j | λ̂ + α j = 0}

and J2 = {r + q1 + 2 j | j = 1, · · · , q2} if J (λ̂; θ) = [
1 0
0 0

]
, and J2 = ∅ otherwise.

Let J = J1 ∪ J2 =: { j1, j2, . . . , j|J1|+|J2|}. Denoting EJ1,J2 = (e jl) j,l (1 ≤
j ≤ r + q1 + 2q2, 1 ≤ l ≤ |J1| + |J2|) by

e jl =
{
1 ( j = jl)

0 (otherwise),

V can be as V = WEJ1,J2U where U is a nonsingular matrix. Under this condition
and (38),

V�BV = U�

⎛
⎜⎝ ⊕

j :λ̂+α j=0

[η j ] ⊕ O|J2|×|J2|

⎞
⎟⎠U (39)

holds. Thuswe see that the zero eigenvalues ofV�BV correspond to the terms J (λ; θ),
and the nonzero eigenvalues to the terms η j [λ + α j ], and their signs are η j .

First we treat the case λ̂ > 0.

1. When N (A + λ̂B) = 0.
This means A+ λ̂B is nonsingular and so A+ λ̂B � 0, so it belongs to the definite
feasible case, for which Algorithm 3.2 suffices.

2. When V�BV � 0 or V�BV ≺ 0.
By (39), V�BV � 0 is equivalent to J2 = ∅, and η j = 1 for all j ∈ J1.
Similarly, V�BV ≺ 0 is equivalent to J2 = ∅ and η j = −1 for j ∈ J1. Thus
slightly perturbing λ̂ in the positive direction λ̂ ← λ̂ + ε (when V�BV � 0) or
the negative direction λ̂ ← λ̂ − ε (when V�BV ≺ 0) for a positive ε, we obtain
W�(A + λ̂B)W = Ir×r ⊕⊕q1

j=1, j /∈J1
η j [λ + α j ± ε] ⊕⊕q1

j=1, j∈J1
[ε] � 0, as

long as ε > 0 is taken sufficiently small. Thus by updating λ̂ to the perturbed λ̂,
we have N (A + λ̂B) = 0.

3. When V�BV is indefinite with both positive and negative eigenvalues.
For all j such that λ̂ + α j = 0, the signs of η j take both +1 and −1. This
implies λ̂ = λ∗, which is the only value λ for which A + λB � 0. Moreover, we
can take v1, v2 ∈ N (A + λ̂B) such that v�

1 Bv1 > 0, v�
2 Bv2 < 0, so we solve

(A+λ̂B)x̂ = −(a+λ̂b) for x̂ (by (34) the QCQP is unbounded if no such x̂ exists)
and then find t ∈ R such that g(x̂ + tvi ) = 0; we choose i ∈ {1, 2} depending on
the sign of g(x̂): i = 1 if g(x∗) < 0, and i = 2 otherwise. Then x∗ = x̂ + tvi is
the solution.

4. WhenV�BV �= O has a zero eigenvalue, andwehaveV�BV � 0 orV�BV � 0.
For definiteness suppose that V�BV � 0; the other case is analogous.
Since a zero eigenvalue is present, this is a case where the J (λ; θ) block exists.
The goal is to find x such that g(x) = 0 and (A + λ̂B)x = −(a + λ̂b). We first
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find a vector w∗ such that

(A + λ̂B)w∗ = −(a + λ̂b), (40)

while if no such w∗ exists then the QCQP is unbounded by Theorem 11. Other-
wise the QCQP is bounded, and we proceed to solve the unconstrained quadratic
optimization problem

minimize
u

g(w∗ + Vu). (41)

If the optimal objective value is 0 or below (including −∞), there must exist u0
such that g(w∗ + Vu0) ≤ 0. We then use a vector v such that v�Bv > 0, v ∈
N (A + λ̂B) and adjust a scalar t so that g(w∗ + Vu0 + tv) = 0. Then we obtain
a global solution w∗ + Vu0 + tv.
Next consider the case where the optimal value of (41) is larger than 0. In this case
there is no x such that g(x) = 0 and (A+λ̂B)x = −(a+λ̂b). Since we are dealing
with the bounded case, this means we are in the unattainable case; there exists a
scalarμ such that for any ε > 0, there exists a feasible point x with f (x) = μ+ε.
A similar statement is made in [16, Thm. 7]. Since there is no solution in this case
(ii), a reasonable goal would be to provide just μ, which is the optimal objective
value for

maximize
μ,λ∈R μ

subjectto λ ≥ 0, M(λ, μ) =
[

λβ − μ (a + λb)�
a + λb A + λB

]
� 0

Since λ is fixed to λ = λ̂, by the definition of w∗ we see that it suffices to find the
largest μ for which

[
λ̂β − μ −((A + λ̂B)w∗)�

−(A + λ̂B)w∗ A + λ̂B

]
� 0.

We can rewrite this as

[
1 w�∗
0 A + λ̂B

] [
λ̂β − μ −((A + λ̂B)w∗)�

−(A + λ̂B)w∗ A + λ̂B

] [
1 0

w∗ A + λ̂B

]

=
[

λ̂β − μ − w�∗ (A + λ̂B)w∗ 0
0 (A + λ̂B)3

]
� 0,

so it follows that the desired value of μ is

μ = λ̂β − w�∗ (A + λ̂B)w∗. (42)
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QCQP

strictly feasible
feasible but

no interior point

unconstraint
optimization

infeasible

find λ̂ s.t. A + λ̂B � 0

remove common null space, get (36)

d �= 0

find y∗ and z∗ in (37)

d = 0

check eigenval-
ues of V �BV

V = φ,V �BV � 0
or V �BV ≺ 0

generic case; Alg. 3.2

V �BV has pos-
itive and nega-
tive eigenvalues

V �BV � 0
or V �BV � 0

(V �BV :singular)

find w∗ s.t. (40);
unbounded if
nonexistent

λ̂ �= 0

find w∗ s.t. (40);
unbounded if
nonexistent

find v such that
g(w∗ + v) = 0

λ̂ �= 0

find x∗ = w∗ + V u
s.t. g(x∗) ≤ 0,
unattainable
if nonexistent

λ̂ = 0 λ̂ = 0

solve (41)

(41)≤ 0(41)> 0

find v such that
g(x∗ + v) = 0

If (35) holds,
unattainable, out-
put value (42)

Fig. 11 Diagram for solving QCQP. The red boxes indicate properties of the problem, blue the processes
in the algorithm
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5. When V�BV = O.

By (39), this is the case where q1 = 0 and q2 > 0.We proceed as above until (40).
The goal is to find u such that g(w∗ + Vu) = 0. In this case,

g(w∗ + Vu) = g(w∗) + 2(Bw∗ + b)�Vu + u�(V�BV )u

= g(w∗) + 2(Bw∗ + b)�Vu,

so g(w∗ + Vu) is constant if and only if (Bw∗ + b)�V = 0.
If (Bw∗ + b)�V �= 0, there exists u0 such that g(w∗ + Vu0) = 0, which means
that the global solution is x∗ = w∗ + Vu0.
Otherwise, when (Bw∗ + b)�V = 0, we are unable to find u such that g(w∗ +
Vu) = 0 unless g(w∗) = 0. This means we are in the unattainable case, and the
optimal value is as in (42).

If λ̂ = 0, we either have λ∗ = λ̂ = 0 or λ∗ > 0; the latter case (in which QCQP
is definite feasible) occurs if and only if V�BV � 0, because if V�BV � 0 has
a zero eigenvalue, then by (38) a zero eigenvalue of V�BV implies the existence
of J (λ; θ), which means D is a point. If V�BV is not positive definite, we must
have λ∗ = λ̂ = 0. We then compute w∗ such that (40) holds, and solve (41), or
more precisely a feasibility problem of finding u such that g(w∗ + Vu) ≤ 0. In
fact, any w∗ + Vu such that g(w∗ + Vu) ≤ 0 satisfies (8) and is therefore a global
solution; recall from the complementarity condition in (8) that when λ∗ = 0 it is
not necessary to satisfy g(x∗) = 0. Such u trivially exists if V�BV has a negative
eigenvalue. If V�BV � 0 and det(V�BV ) = 0 (i.e., J (λ; 0) exists) then it could be
that minu g(w∗ + Vu) > 0; then by Lemma 2 this corresponds to the unattainable
case, with infimum value μ = −w�∗ Aw∗ as in (42).

The steps described in this section, as shown in Fig. 11, completely solves QCQP
with one constraint in the following sense:

1. For any bounded QCQP, it returns the optimal (or infimum) objective value, along
with its corresponding solution x if it is attainable.

2. If the QCQP is unbounded, it reports unboundedness.
3. If the QCQP is infeasible, it reports infeasibility.

The worst-case complexity corresponds to the case where a canonical form of (A, B)

is required. Using the GUPTRI algorithm [7,20] for the canonical form, the worst-
case complexity is O(n4). We repeat that most QCQP that are solvable in practice are
solved by Algorithm 3.2, which is O(n3) or faster.

6 Conclusion and discussion

We introduced an algorithm for QCQP with one constraint, which for generic (i.e.,
definite feasible QCQP for which λ̂ is known) QCQP requires computing just one
eigenpair of a generalized eigenvalue problem. The algorithm is both faster and more
accurate than the SDP-based approach, and can directly take advantage of the matrix
sparsity structure if present.
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For QCQP that are not definite feasible, for which SDP-based methods also face
difficulty, we have classified the possible canonical forms under congruence of the
pair (A, B), and described an algorithm (though more expensive than Algorithm 3.2)
that completely solves the QCQP.

We close with remarks on future directions. First, a recent paper [34] describes an
eigenvalue-based algorithm for TRS with an additional linear constraint, and a natural
direction is to examine such an extension for QCQP. Second, since our algorithm
essentially also solves the SDP (3), it is worth examining the class of SDP problems
that can be solved similarly by an eigenvalue problem. Also of interest would be to
deal with Riemannian optimization, such as minimization of trace(X�AX + C�X)

over X ∈ R
n×k subject to the orthogonality constraint X�X = Ik .
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