
Math. Program., Ser. B (2018) 169:95–118
https://doi.org/10.1007/s10107-017-1180-1

FULL LENGTH PAPER

Accelerating the DC algorithm for smooth functions

Francisco J. Aragón Artacho1 · Ronan M. T. Fleming2 ·
Phan T. Vuong2

Received: 27 July 2015 / Accepted: 8 July 2017 / Published online: 17 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract We introduce two new algorithms to minimise smooth difference of convex
(DC) functions that accelerate the convergence of the classical DC algorithm (DCA).
We prove that the point computed by DCA can be used to define a descent direc-
tion for the objective function evaluated at this point. Our algorithms are based on
a combination of DCA together with a line search step that uses this descent direc-
tion. Convergence of the algorithms is proved and the rate of convergence is analysed
under the Łojasiewicz property of the objective function. We apply our algorithms to
a class of smooth DC programs arising in the study of biochemical reaction networks,
where the objective function is real analytic and thus satisfies the Łojasiewicz prop-
erty. Numerical tests on various biochemical models clearly show that our algorithms
outperform DCA, being on average more than four times faster in both computational
time and the number of iterations. Numerical experiments show that the algorithms are

F. J. Aragón Artacho was supported by MINECO of Spain and ERDF of EU, as part of the Ramón y Cajal
program (RYC-2013-13327) and the Grant MTM2014-59179-C2-1-P. R. M. Fleming and P. T. Vuong
were supported by the U.S. Department of Energy, Offices of Advanced Scientific Computing Research
and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced
Computing program, Grant #DE-SC0010429.

B Francisco J. Aragón Artacho
francisco.aragon@ua.es

Ronan M. T. Fleming
ronan.mt.fleming@gmail.com

Phan T. Vuong
vuongphantu@gmail.com

1 Department of Mathematics, University of Alicante, Alicante, Spain

2 Systems Biochemistry Group, Luxembourg Centre for Systems Biomedicine,
University of Luxembourg, Campus Belval, 4362 Esch-sur-Alzette, Luxembourg

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-017-1180-1&domain=pdf

96 F. J. Aragón Artacho et al.

globally convergent to a non-equilibrium steady state of various biochemical networks,
with only chemically consistent restrictions on the network topology.

Keywords DC function · DC programming · DC algorithm · Łojasiewicz property ·
Biochemical reaction networks

Mathematics Subject Classification 65K05 · 65K10 · 90C26 · 92C42

1 Introduction

Many problems arising in science and engineering applications require the develop-
ment of algorithms to minimise a nonconvex function. If a nonconvex function admits
a decomposition, this may be exploited to tailor specialised optimisation algorithms.
Our main focus is the following optimisation problem

minimise
x∈Rm

φ(x) := f1(x) − f2(x), (1)

where f1, f2 : R
m → R are continuously differentiable convex functions and

inf
x∈Rm

φ(x) > −∞. (2)

In our case, as we shall see in Sect. 4, this problem arises in the study of biochemical
reaction networks. In general, φ is a nonconvex function. The function in problem (1)
belongs to two important classes of functions: the class of functions that can be decom-
posed as a sumof a convex function and a differentiable function (composite functions)
and the class of functions that are representable as difference of convex functions (DC
functions).

In 1981, Fukushima and Mine [7,17] introduced two algorithms to minimise a
composite function. In both algorithms, the main idea is to linearly approximate the
differentiable part of the composite function at the current point and then minimise
the resulting convex function to find a new point. The difference between the new
and current points provides a descent direction with respect to the composite function,
when it is evaluated at the current point. The next iteration is then obtained through
a line search procedure along this descent direction. Algorithms for minimising com-
posite functions have been extensively investigated and found applications to many
problems such as: inverse covariance estimate, logistic regression, sparse least squares
and feasibility problems, see e.g. [9,14,15,19] and the references quoted therein.

In 1986, PhamDinh and El Bernoussi [23] introduced an algorithm tominimiseDC
functions. In its simplified form, the Difference of Convex functions Algorithm (DCA)
linearly approximates the concave part of the objective function (− f2 in (1)) at the cur-
rent point and then minimises the resulting convex approximation to the DC function
to find the next iteration, without recourse to a line search. The main idea is similar
to Fukushima–Mine approach but was extended to the non-differentiable case. This
algorithm has been extensively studied by Le Thi, Pham Dinh and their collaborators,
see e.g. [10,12,13,22]. DCA has been successfully applied in many fields, such as

123

Accelerating the DC algorithm for smooth functions 97

machine learning, financial optimisation, supply chain management and telecommu-
nication [6,10,24]. Nowadays, DC programming plays an important role in nonconvex
programming and DCA is commonly used because of its key advantages: simplicity,
inexpensiveness and efficiency [10]. Some results related to the convergence rate for
special classes of DC programs have been also established [11,13].

In this paper we introduce two new algorithms to find stationary points of DC
programs, called Boosted Difference of Convex function Algorithms (BDCA), which
accelerate DCA with a line search using an Armijo type rule. The first algorithm
directly uses a backtracking technique, while the second uses a quadratic interpolation
of the objective function together with backtracking. Our algorithms are based on
both DCA and the proximal point algorithm approach of Fukushima–Mine. First, we
compute the point generated by DCA. Then, we use this point to define the search
direction. This search direction coincides with the one employed by Fukushima–Mine
in [7]. The key difference between their method and ours is the starting point used for
the line search: in our algorithms we use the point generated by DCA, instead of using
the previous iteration. This scheme works thanks to the fact that the defined search
direction is not only a descent direction for the objective function at the previous
iteration, as observed by Fukushima–Mine, but is also a descent direction at the point
generated by DCA. Unfortunately, as shown in Remark 1, this scheme cannot be
extended in general for nonsmooth functions, as the defined search direction might be
an ascent direction at the point generated by DCA.

Moreover, it is important to notice that the iterations of Fukushima–Mine andBDCA
never coincide, as the largest step size taken in their algorithm is equal to one (which
gives the DCA iteration). In fact, for smooth functions, the iterations of Fukushima–
Mine usually coincide with the ones generated by DCA, as the step size equal to one
is normally accepted by their Armijo rule.

We should point out that DCA is a descent method without line search. This is
something that is usually claimed to be advantageous in the large-scale setting. Our
purpose here is the opposite: we show that a line search can increase the performance
even for high-dimensional problems.

Further, we analyse the rate of convergence under the Łojasiewicz property [16] of
the objective function. It should bementioned that the Łojasiewicz property is recently
playing an important role for proving the convergence of optimisation algorithms for
analytic cost functions, see e.g. [1,3,4,13].

We have performed numerical experiments in functions arising in the study of
biochemical reaction networks. We show that the problem of finding a steady state of
these networks, which plays a crucial role in the modelling of biochemical reaction
systems, can be reformulated as a minimisation problem involving DC functions. In
fact, this is the main motivation and starting point of our work: when one applies DCA
to find a steady state of these systems, the rate of convergence is usually quite slow.
As these problems commonly involve hundreds of variables (even thousands in the
most complex systems, as Recon 21), the speed of convergence becomes crucial. In

1 Recon 2 is the most comprehensive representation of human metabolism that is applicable to computa-
tional modelling [25]. This biochemical networkmodel involves more than four thousandmolecular species
and seven thousand reversible elementary reactions.

123

98 F. J. Aragón Artacho et al.

our numerical tests we have compared BDCA and DCA for finding a steady state in
various biochemical network models of different size. On average, DCA needed five
times more iterations than BDCA to achieve the same accuracy, and what is more
relevant, our implementation of BDCA was more than four times faster than DCA
to achieve the same accuracy. Thus, we prove both theoretically and numerically that
BDCA results more advantageous than DCA. Luckily, the objective function arising
in these biochemical reaction networks is real analytic, a class of functions which
is known to satisfy the Łojasiewicz property [16]. Therefore, the above mentioned
convergence analysis results can be applied in this setting.

The rest of this paper is organised as follows. In Sect. 2, we recall some prelimi-
nary facts used throughout the paper and we present the main optimisation problem.
Sect. 3 describes our main results, where the new algorithms (BDCA) and their con-
vergence analysis for solving DC programs are established. A DC program arising
in biochemical reaction network problems is introduced in Sect. 4. Numerical results
comparing BDCA and DCA on various biochemical network models are reported in
Sect. 5. Finally, conclusions are stated in the last section.

2 Preliminaries

Throughout this paper, the inner product of two vectors x, y ∈ R
m is denoted by 〈x, y〉,

while ‖ · ‖ denotes the induced norm, defined by ‖x‖ = √〈x, x〉. The nonnegative
orthant in R

m is denoted by R
m+ = [0,∞)m and B(x, r) denotes the closed ball of

center x and radius r > 0. The gradient of a differentiable function f : R
m → R

n at
some point x ∈ R

m is denoted by ∇ f (x) ∈ R
m×n .

Recall that a function f : R
m → R is said to be convex if

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) for all x, y ∈ R
m and λ ∈ (0, 1).

Further, f is called strongly convex with modulus σ > 0 if

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)

−1

2
σλ(1 − λ)‖x − y‖2 for all x, y ∈ R

m and λ ∈ (0, 1),

or, equivalently, when f − σ
2 ‖ · ‖2 is convex. The function f is said to be coercive if

f (x) → +∞ whenever ‖x‖ → +∞.

On the other hand, a function F : R
m → R

m is said to be monotone when

〈F(x) − F(y), x − y〉 ≥ 0 for all x, y ∈ R
m .

Further, F is called strongly monotone with modulus σ > 0 when

〈F(x) − F(y), x − y〉 ≥ σ‖x − y‖2 for all x, y ∈ R
m .

The function F is called Lipschitz continuous if there is some constant L ≥ 0 such
that

‖F(x) − F(y)‖ ≤ L‖x − y‖, for all x, y ∈ R
m .

123

Accelerating the DC algorithm for smooth functions 99

F is called locally Lipschitz continuous if for every x in R
m , there exists a neighbour-

hood U of x such that F restricted to U is Lipschitz continuous.
We have the following well-known result.

Proposition 1 Let f : R
m → R be a differentiable function. Then f is (strongly)

convex if and only if ∇ f is (strongly) monotone.

To establish our convergence results, we will make use of the Łojasiewicz property,
defined next.

Definition 1 Let f : R
n → R be a differentiable function.

(i) The function f is said to have the Łojasiewicz property if for any critical point x̄ ,
there exist constants M > 0, ε > 0 and θ ∈ [0, 1) such that

| f (x) − f (x̄)|θ≤M ‖∇ f (x)‖ , for all x ∈ B(x̄, ε), (3)

where we adopt the convention 00 = 0. The constant θ is called Łojasiewicz
exponent of f at x̄ .

(ii) The function f is said to be real analytic if for every x ∈ R
n , f may be represented

by a convergent power series in some neighbourhood of x .

Proposition 2 [16]Every real analytic function f : R
n → R satisfies the Łojasiewicz

property with exponent θ ∈ [0, 1).

Problem (1) can be easily transformed into an equivalent problem involving strongly
convex functions. Indeed, choose any ρ > 0 and consider the functions g(x) :=
f1(x) + ρ

2 ‖x‖2 and h(x) := f2(x) + ρ
2 ‖x‖2. Then g and h are strongly convex

functions with modulus ρ and g(x) − h(x) = φ(x), for all x ∈ R
m . In this way, we

obtain the equivalent problem

(P) minimise
x∈Rm

φ(x) = g(x) − h(x). (4)

The key step to solve (P) with DCA is to approximate the concave part −h of the
objective function φ by its affine majorisation and then minimise the resulting convex
function. The algorithm proceeds as follows.

ALGORITHM 1: (DCA, [12])

1. Let x0 be any initial point and set k := 0.
2. Solve the strongly convex optimisation problem

(Pk) minimise
x∈Rm

g(x) − 〈∇h(xk), x〉.

to obtain the unique solution yk .
3. If yk = xk then STOP and RETURN xk , otherwise set xk+1 := yk , set k := k + 1, and go to

Step 2.

123

100 F. J. Aragón Artacho et al.

In [7] Fukushima and Mine adapted their original algorithm reported in [17] by
adding a proximal term ρ

2 ‖x − xk‖2 to the objective of the convex optimisation sub-
problem. As a result they obtain an optimisation subproblem that is identical to the
one in Step 2 of DCA, when one transforms (1) into (4) by adding ρ

2 ‖x‖2 to each
convex function. In contrast to DCA, Fukushima–Mine algorithm [7] also includes a
line search along the direction dk := yk − xk to find the smallest nonnegative integer
lk such that the Armijo type rule

φ
(

xk + βlk dk

)
≤ φ(xk) − αβlk ‖dk‖2 (5)

is satisfied, where α > 0 and 0 < β < 1. Thus, when lk = 0 satisfies (5), i.e. when

φ(yk) ≤ φ(xk) − α ‖dk‖2 ,

one has xk+1 = yk and the iterations of both algorithms coincide. As we shall see in
Proposition 3, this is guaranteed to happen if α ≤ ρ.

3 Boosted DC Algorithms

Let us introduce our first algorithm to solve (P), which we call a Boosted DC Algo-
rithm with Backtracking. The algorithm is a combination of Algorithm 1 and the
algorithm of Fukushima–Mine [7].

ALGORITHM 2: (BDCA-Backtracking)

1. Fix α > 0, λ̄ > 0 and 0 < β < 1. Let x0 be any initial point and set k := 0.
2. Solve the strongly convex minimisation problem

(Pk) minimise
x∈Rm

g(x) − 〈∇h(xk), x〉

to obtain the unique solution yk .
3. Set dk := yk − xk . If dk = 0, STOP and RETURN xk . Otherwise, go to Step 4.
4. Set λk := λ̄. WHILE φ(yk + λkdk) > φ(yk) − αλk‖dk‖2 DO λk := βλk .
5. Set xk+1 := yk + λkdk . If xk+1 = xk then STOP and RETURN xk , otherwise set k := k + 1,

and go to Step 2.

The next proposition shows that the solution of (Pk), which coincides with the
DCA subproblem in Algorithm 1, provides a decrease in the value of the objective
function. For the sake of completeness, we include its short proof.

Proposition 3 For all k ∈ N, it holds that

φ(yk) ≤ φ(xk) − ρ‖dk‖2. (6)

Proof Since yk is the unique solution of the strongly convex problem (Pk), we have

∇g(yk) = ∇h(xk), (7)

123

Accelerating the DC algorithm for smooth functions 101

which implies

g(xk) − g(yk) ≥ 〈∇h(xk), xk − yk〉 + ρ

2
‖xk − yk‖2.

On the other hand, the strong convexity of h implies

h(yk) − h(xk) ≥ 〈∇h(xk), yk − xk〉 + ρ

2
‖yk − xk‖2.

Adding the two previous inequalities, we have

g(xk) − g(yk) + h(yk) − h(xk) ≥ ρ‖xk − yk‖2,

which implies (6). �
If λk = 0, the iterations of BDCA-Backtracking coincide with those of DCA, since

the latter sets xk+1 := yk . Next we show that dk = yk − xk is a descent direction for
φ at yk . Thus, one can achieve a larger decrease in the value of φ by moving along
this direction. This simple fact, which permits an improvement in the performance of
DCA, constitutes the key idea of our algorithms.

Proposition 4 For all k ∈ N, we have

〈∇φ(yk), dk〉 ≤ −ρ||dk ||2; (8)

that is, dk is a descent direction for φ at yk .

Proof The function h is strongly convex with constant ρ. This implies that ∇h is
strongly monotone with constant ρ; whence,

〈∇h(xk) − ∇h(yk), xk − yk〉 ≥ ρ‖xk − yk‖2.

Further, since yk is the unique solution of the strongly convex problem (Pk), we have

∇h(xk) = ∇g(yk),

which implies,

〈∇φ(yk), dk〉 = 〈∇g(yk) − ∇h(yk), dk〉 ≤ −ρ‖dk‖2,

and completes the proof. �
Remark 1 In general, Proposition 4 does not remain valid when g is not differentiable.
In fact, the directiondk might be an ascent direction, inwhich caseStep4 inAlgorithm2
could become an infinite loop. For instance, consider g(x) = |x | + 1

2 x2 + 1
2 x and

h(x) = 1
2 x2 for x ∈ R. If x0 = 1

2 , one has

(P0)minimise
x∈R |x | + 1

2
x2 + 1

2
x − 1

2
x,

123

102 F. J. Aragón Artacho et al.

whose unique solution is y0 = 0. Then, the one-sided directional derivative of φ at y0
in the direction d0 = y0 − x0 = − 1

2 is given by

φ′(y0; d0) = lim
t↓0

φ (0 + t (−1/2)) − φ(0)

t
= 1

4
.

Thus, d0 is an ascent direction for φ at y0 (actually, y0 is the global minimum of φ).

As a corollary, we deduce that the backtracking Step 4 of Algorithm 2 terminates
finitely when ρ > α.

Corollary 1 Suppose that ρ > α. Then, for all k ∈ N, there is some δk > 0 such that

φ (yk + λdk) ≤ φ(yk) − αλ‖dk‖2, for all λ ∈ [0, δk]. (9)

Proof If dk = 0 there is nothing to prove. Otherwise, by the mean value theorem,
there is some tλ ∈ (0, 1) such that

φ (yk + λdk) − φ(yk) = 〈∇φ (yk + tλλdk) , λdk〉
= λ 〈∇φ(yk), dk〉 + λ 〈∇φ(yk + tλλdk) − ∇φ(yk), dk〉
≤ −ρλ‖dk‖2 + λ‖∇φ (yk + tλλdk) − ∇φ(yk)‖‖dk‖.

As ∇φ is continuous at yk , there is some δ > 0 such that

‖∇φ(z) − ∇φ(yk)‖ ≤ (ρ − α)‖dk‖ whenever ‖z − yk‖ ≤ δ.

Since ‖yk + tλλdk − yk‖ = tλλ‖dk‖ ≤ λ‖dk‖, then for all λ ∈
(
0, δ

‖dk‖
)
, we deduce

φ(yk + λdk) − φ(yk) ≤ −ρλ‖dk‖2 + (ρ − α)λ‖dk‖2 = −αλ‖dk‖2,

and the proof is complete. �
Remark 2 Notice that yk + λdk = xk + (1 + λ)dk . Therefore, Algorithm 2 uses the
same direction as the Fukushima–Mine algorithm [7], where xk+1 = xk + βldk =
βl yk +(

1 − βl
)

xk for some 0 < β < 1 and some nonnegative integer l. The iterations
would be the same if βl = λ+1. Nevertheless, as 0 < β < 1, the step size λ = βl −1
chosen in the Fukushima–Mine algorithm [7] is always less than or equal to zero, while
in Algorithm 2, only step sizes λ ∈]0, λ̄] are explored. Moreover, observe that the
Armijo type rule (5), as used in [7], searches for an lk such that φ(xk +βlk dk) < φ(xk),
whereas Algorithm 2 searches for a λk such that φ(yk + λkdk) < φ(yk). We know
from (6) and (9) that

φ (yk + λdk) ≤ φ(yk) − αλ‖dk‖2 ≤ φ(xk) − (ρ + αλ)‖dk‖2;

thus, Algorithm 2 results in a larger decrease in the value of φ at each iteration than
DCA,which sets λ := 0 and xk+1 := yk . Therefore, a faster convergence of Algorithm
2 compared with DCA is expected, see Figs. 1 and 3.

123

Accelerating the DC algorithm for smooth functions 103

Remark 3 In a personal communication, Christian Kanzow pointed out that the
assumption ρ > α can be removed if one replaces the step size rule (9) by
φ (yk + λdk) ≤ φ(yk) − αλ2‖dk‖2. It can be easily checked that the convergence
theory in the rest of the paper remains valid with some small adjustments.

The following convergence results were inspired by Attouch and Bolte [3], which in
turn were adapted from the original ideas of Łojasiewicz; see also [5, Section 3.2].

Proposition 5 For any x0 ∈ R
m, either Algorithm 2 returns a stationary point of (P)

or it generates an infinite sequence such that the following holds.

(i) φ(xk) is monotonically decreasing and convergent to some φ∗.
(ii) Any limit point of {xk} is a stationary point of (P). If in addition, φ is coercive

then there exits a subsequence of {xk} which converges to a stationary point
of (P).

(iii)
∑∞

k=0 ‖dk‖2 < ∞ and
∑∞

k=0 ‖xk+1 − xk‖2 < ∞.

Proof Because of (7), if Algorithm 2 stops at Step 3 and returns xk , then xk must be
a stationary point of (P). Otherwise, by Proposition 3 and Step 4 of Algorithm 2, we
have

φ(xk+1) ≤ φ(yk) − αλk‖dk‖2 ≤ φ(xk) − (αλk + ρ)‖dk‖2. (10)

Hence, as the sequence {φ(xk)} is monotonically decreasing and bounded from below
by (2), it converges to some φ∗, which proves (i). Consequently, we have

φ(xk+1) − φ(xk) → 0.

Thus, by (10), one has ‖dk‖2 = ‖yk − xk‖2 → 0.
Let x̄ be any limit point of {xk}, and let {xki } be a subsequence of {xk} converging

to x̄ . Since ‖yki − xki ‖ → 0, one has

yki → x̄ .

Taking the limit as i → ∞ in (7), as ∇h and ∇g are continuous, we have ∇h(x̄) =
∇g(x̄).

If φ is coercive, since the sequence {φ(xk)} is convergent, then the sequence {xk}
is bounded. This implies that there exits a subsequence of {xk} converging to x̄ , a
stationary point of (P), which proves (ii).

To prove (iii), observe that (10) implies that

(αλk + ρ)‖dk‖2 ≤ φ(xk) − φ(xk+1). (11)

Summing this inequality from 0 to N , we obtain

N∑
k=0

(αλk + ρ)‖dk‖2 ≤ φ(x0) − φ(xN+1) ≤ φ(x0) − inf
x∈Rm

φ(x), (12)

123

104 F. J. Aragón Artacho et al.

whence, taking the limit when N → ∞,

∞∑
k=0

ρ‖dk‖2 ≤
∞∑

k=0

(αλk + ρ)‖dk‖2 ≤ φ(x0) − inf
x∈Rm

φ(x) < ∞,

so we have
∑∞

k=0 ‖dk‖2 < ∞. Since

xk+1 − xk = yk − xk + λkdk = (1 + λk)dk,

we obtain

∞∑
k=0

‖xk+1 − xk‖2 =
∞∑

k=0

(1 + λk)
2‖dk‖2 ≤ (1 + λ̄)2

∞∑
k=0

‖dk‖2 < ∞,

and the proof is complete. �
Wewill employ the followinguseful lemma to obtain bounds on the rate of convergence
of the sequences generated by Algorithm 2. This result appears within the proof of [3,
Theorem 2] for specific values of α and β. See also [13, Theorem 3.3], or very recently,
[15, Theorem 3].

Lemma 1 Let {sk} be a sequence in R+ and let α, β be some positive constants.
Suppose that sk → 0 and that the sequence satisfies

sα
k ≤ β(sk − sk+1), for all k sufficiently large. (13)

Then

(i) if α = 0, the sequence {sk} converges to 0 in a finite number of steps;
(ii) if α ∈ (0, 1], the sequence {sk} converges linearly to 0 with rate 1 − 1

β
;

(iii) if α > 1, there exists η > 0 such that

sk ≤ ηk− 1
α−1 , for all k sufficiently large.

Proof If α = 0, then (13) implies

0 ≤ sk+1 ≤ sk − 1

β
,

and (i) follows.
Assume that α ∈ (0, 1]. Since sk → 0, we have that sk < 1 for all k large enough.

Thus, by (13), we have

sk ≤ sα
k ≤ β(sk − sk+1).

Therefore, sk+1 ≤
(
1 − 1

β

)
sk ; i.e., {sk} converges linearly to 0 with rate 1 − 1

β
.

123

Accelerating the DC algorithm for smooth functions 105

Suppose now that α > 1. If sk = 0 for some k, then (13) implies sk+1 = 0.
Then the sequence converges to zero in a finite number of steps, and thus (iii) trivially
holds. Hence, we will assume that sk > 0 and that (13) holds for all k ≥ N , for some
positive integer N . Consider the decreasing function ϕ : (0,+∞) → R defined by
ϕ(s) := s−α . By (13), for k ≥ N , we have

1

β
≤ (sk − sk+1) ϕ(sk) ≤

∫ sk

sk+1

ϕ(t)dt = s1−α
k+1 − s1−α

k

α − 1
.

As α − 1 > 0, this implies that

s1−α
k+1 − s1−α

k ≥ α − 1

β
,

for all k ≥ N . Thus, summing for k from N to j − 1 ≥ N , we have

s1−α
j − s1−α

N ≥ α − 1

β
(j − N),

which gives, for all j ≥ N + 1,

s j ≤
(

s1−α
N + α − 1

β
(j − N)

) 1
1−α

.

Therefore, there is some η > 0 such that

s j ≤ η j−
1

α−1 , for all k sufficiently large,

which completes the proof. �
Theorem 1 Suppose that ∇g is locally Lipschitz continuous and φ satisfies the
Łojasiewicz property with exponent θ ∈ [0, 1). For any x0 ∈ R

m, consider the
sequence {xk} generated by Algorithm 2. If the sequence {xk} has a cluster point x∗,
then the whole sequence converges to x∗, which is a stationary point of (P). Moreover,
denoting φ∗ := φ(x∗), the following estimations hold:

(i) if θ = 0 then the sequences {xk} and {φ(xk)} converge in a finite number of steps
to x∗ and φ∗, respectively;

(ii) if θ ∈ (
0, 1

2

]
then the sequences {xk} and {φ(xk)} converge linearly to x∗ and

φ∗, respectively;
(iii) if θ ∈ (1

2 , 1
)

then there exist some positive constants η1 and η2 such that

‖xk − x∗‖ ≤ η1k− 1−θ
2θ−1 ,

φ(xk) − φ∗ ≤ η2k− 1
2θ−1 ,

for all large k.

123

106 F. J. Aragón Artacho et al.

Proof By Proposition 5, we have limk→∞ φ(xk) = φ∗ . If x∗ is a cluster point of {xk},
then there exists a subsequence {xki } of {xk} that converges to x∗. By continuity of φ,
we have that

φ(x∗) = lim
i→∞ φ(xki) = lim

k→∞ φ(xk) = φ∗.

Hence,φ is finite and has the same valueφ∗ at every cluster point of {xk}. Ifφ(xk) = φ∗
for some k > 1, then φ(xk) = φ(xk+p) for any p ≥ 0, since the sequence φ(xk) is
decreasing. Therefore, xk = xk+p for all p ≥ 0 and Algorithm 2 terminates after a
finite number of steps. From now on, we assume that φ(xk) > φ∗ for all k.

As φ satisfies the Łojasiewicz property, there exist M > 0, ε1 > 0 and θ ∈ [0, 1)
such that

|φ(x) − φ(x∗)|θ≤M ‖∇φ(x)‖ , ∀x ∈ B(x∗, ε1). (14)

Further, as ∇g is locally Lipschitz around x∗, there are some constants L ≥ 0 and
ε2 > 0 such that

‖∇g(x) − ∇g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ B(x∗, ε2). (15)

Let ε := 1
2 min {ε1, ε2} > 0. Since limi→∞ xki = x∗ and limi→∞ φ(xki) = φ∗, we

can find an index N large enough such that

‖xN − x∗‖ + M L
(
1 + λ̄

)

(1 − θ)ρ

(
φ(xN) − φ∗)1−θ

< ε. (16)

By Proposition 5(iii), we know that dk = yk − xk → 0. Then, taking a larger N if
needed, we can assure that

‖yk − xk‖ ≤ ε, ∀k ≥ N .

We now prove that, for all k ≥ N , whenever xk ∈ B(x∗, ε) it holds

‖xk+1 − xk‖ ≤ M L (1 + λk)

(1 − θ)(αλk + ρ)

[(
φ(xk) − φ∗)1−θ − (

φ(xk+1) − φ∗)1−θ
]

(17)

Indeed, consider the concave function γ : (0,+∞) → (0,+∞) defined as γ (t) :=
t1−θ . Then, we have

γ (t1) − γ (t2) ≥ ∇γ (t1)
T (t1 − t2), ∀t1, t2>0.

Substituting in this inequality t1 by (φ(xk) − φ∗) and t2 by (φ(xk+1) − φ∗) and
using (14) and then (11), one has

123

Accelerating the DC algorithm for smooth functions 107

(
φ(xk) − φ∗)1−θ − (

φ(xk+1) − φ∗)1−θ ≥ 1 − θ

(φ(xk) − φ∗)θ
(φ(xk) − φ(xk+1))

≥ 1 − θ

M ‖∇φ(xk)‖ (αλk + ρ) ‖yk − xk‖2

= (1 − θ) (αλk + ρ)

M (1 + λk)
2 ‖∇φ(xk)‖

‖xk+1 − xk‖2.
(18)

On the other hand, since ∇g(yk) = ∇h(xk) and

‖yk − x∗‖ ≤ ‖yk − xk‖ + ‖xk − x∗‖ ≤ 2ε ≤ ε2,

using (15), we obtain

‖∇φ(xk)‖ = ‖∇g(xk) − ∇h(xk)‖ = ‖∇g(xk) − ∇g(yk)‖
≤ L ‖xk − yk‖ = L

(1 + λk)
‖xk+1 − xk‖ . (19)

Combining (18) and (19), we obtain (17).
From (17), as λk ∈ (0, λ̄], we deduce

‖xk+1 − xk‖ ≤ M L
(
1 + λ̄

)

(1 − θ)ρ

[(
φ(xk) − φ∗)1−θ − (

φ(xk+1) − φ∗)1−θ
]
, (20)

for all k ≥ N such that xk ∈ B(x∗, ε).
Weprove by induction that xk ∈ B(x∗, ε) for all k ≥ N . Indeed, from (16) the claim

holds for k = N . We suppose that it also holds for k = N , N + 1, . . . , N + p − 1,
with p ≥ 1. Then (20) is valid for k = N , N + 1, . . . , N + p − 1. Therefore

∥∥xN+p − x∗∥∥ ≤ ∥∥xN − x∗∥∥ +
p∑

i=1

‖xN+i − xN+i−1‖

≤ ∥∥xN − x∗∥∥

+ M L
(
1 + λ̄

)

(1 − θ)ρ

p∑
i=1

[(
φ(xN+i−1) − φ∗)1−θ − (

φ(xN+i) − φ∗)1−θ
]

≤ ∥∥xN − x∗∥∥ + M L
(
1 + λ̄

)

(1 − θ)ρ

(
φ(xN) − φ∗)1−θ

< ε,

where the last inequality follows from (16).
Adding (20) from k = N to P one has

P∑
k=N

‖xk+1 − xk‖ ≤ M L
(
1 + λ̄

)

(1 − θ)ρ

(
φ(xN) − φ∗)1−θ

. (21)

123

108 F. J. Aragón Artacho et al.

Taking the limit as P → ∞, we can conclude that

∞∑
k=1

‖xk+1 − xk‖ < ∞. (22)

This means that {xk} is a Cauchy sequence. Therefore, since x∗ is a cluster point
of {xk}, the whole sequence {xk} converges to x∗. By Proposition 5, x∗ must be a
stationary point of (P).

For k ≥ N , it follows from (14), (15) and (11) that

(φ(xk) − φ∗)2θ ≤ M2 ‖∇φ(xk)‖2
≤ M2 ‖∇g(xk) − ∇h(xk)‖2 = M2 ‖∇g(xk) − ∇g(yk)‖2

≤ M2L2 ‖xk − yk‖2 ≤ M2L2

αλk + ρ

[
φ(xk) − φ(xk+1)

]

≤ δ
[(

φ(xk) − φ∗) − (
φ(xk+1) − φ∗)] , (23)

where δ := M2L2

ρ
> 0. By applying Lemma 1 with sk := φ(xk) − φ∗, α := 2θ

andβ := δ, statements (i)–(iii) regarding the sequence {φ(xk)} easily follow from (23).
We know that si := ∑∞

k=i ‖xk+1 − xk‖ is finite by (22). Notice that ‖xi − x∗‖ ≤ si

by the triangle inequality. Therefore, the rate of convergence of xi to x∗ can be deduced
from the convergence rate of si to 0. Adding (20) from i to P with N ≤ i ≤ P , we
have

si = lim
P→∞

P∑
k=i

‖xk+1 − xk‖ ≤ K1
(
φ(xi) − φ∗)1−θ

,

where K1 := M L(1+λ̄)
(1−θ)ρ

> 0. Then by (14) and (15), we get

s
θ

1−θ

i ≤ M K
θ

1−θ

1 ‖∇φ(xi)‖ ≤ M L K
θ

1−θ

1 ‖xi − yi‖

≤ M L K
θ

1−θ

1

1 + λi
‖xi+1 − xi‖ ≤ M L K

θ
1−θ

1 ‖xi+1 − xi‖

= M L K
θ

1−θ

1 (si − si+1)

Hence, taking K2 := M L K
θ

1−θ

1 > 0, for all i ≥ N we have

s
θ

1−θ

i ≤ K2 (si − si+1) .

By applying Lemma 1 with α := θ
1−θ

and β := K2, we see that the statements
in (i)–(iii) regarding the sequence {xk} hold. �

123

Accelerating the DC algorithm for smooth functions 109

-1 -0.5 0 0.5 1 1.5 2

-0.25

-0.2

-0.15

-0.1

-0.05

0

Fig. 1 Plot of φ
(
3
5 (1 + λ) − 27

125λ
)
for φ(x) = 1

4 x4 − 1
2 x2. As shown in Proposition 4, the function

is decreasing at 0. The value λ = 0 corresponds to the next iteration chosen by DCA, while the next
iteration chosen by algorithm [7] sets λ ∈]−1, 0]. Algorithm 2 chooses the next iteration taking λ ∈]0, λ̄],
which permits to achieve an additional decrease in the value of φ. Here, the optimal value is attained
at λopt = 25

24 ≈ 1.04.

Example 1 Consider the function φ(x) = 1
4 x4 − 1

2 x2. The iteration given by DCA
(Algorithm 1) satisfies

x3k+1 − xk = 0;

that is, xk+1 = 3
√

xk . On the other hand, the iteration defined by Algorithm 2 is

x̃k+1 = (1 + λk)
3
√

x̃k − λk x̃k .

If x0 = x̃0 = 27
125 , we have x1 = 3

5 , while x̃1 = 3
5 (1 + λ0) − 27

125λ0. For any

λ0 ∈
(
0, 25

√
41−75
48

]
, we have φ(x̃1) < φ(x1). The optimal step size is attained at

λopt = 25
24 with x1 = 1, which is the global minimiser of φ.

Observe in Fig. 1 that the function

φk(λ) := φ (yk + λdk)

behaves as a quadratic function nearby 0. Then, a quadratic interpolation of this func-
tion should give us a good candidate for choosing a step size close to the optimal
one. Whenever ∇φ is not too expensive to compute, it makes sense to construct a
quadratic approximation of φ with an interpolation using three pieces of information:
φk(0) = φ(yk), φ′

k(0) = ∇φ(yk)
T dk and φk(λ̄). This gives us the quadratic function

123

110 F. J. Aragón Artacho et al.

ϕk(λ) :=
(

φk(λ̄) − φk(0) − λ̄φ′
k(0)

λ̄2

)
λ2 + φ′

k(0)λ + φk(0), (24)

see e.g. [20, Section 3.5]. When φk(λ̄) > φk(0)+ λ̄φ′
k(0), the function ϕk has a global

minimiser at

λ̂k := − φ′
k(0)λ̄

2

2
(
φk(λ̄) − φk(0) − φ′

k(0)λ̄
) . (25)

This suggests the following modification of Algorithm 2.

Corollary 2 The statements in Theorem 1 also apply to Algorithm 3.

ALGORITHM 3: (BDCA-Quadratic Interpolation with Backtracking)

1. Fix α > 0, λmax > λ̄ > 0 and 0 < β < 1. Let x0 be any initial point and set k := 0.
2. Solve the strongly convex minimisation problem

(Pk) minimise
x∈Rm

g(x) − 〈∇h(xk), x〉

to obtain the unique solution yk .
3. Set dk := yk − xk . If dk = 0 STOP and RETURN xk . Otherwise, go to Step 4.
4. Compute λ̂k as in (25). If λ̂k > 0 and φ(yk + λ̂kdk) < φ(yk + λ̄dk) set λk := min

{
λ̂k , λmax

}
;

otherwise, set λk := λ̄.
WHILE φ(yk + λkdk) > φ(yk) − αλk‖dk‖2 DO λk := βλk .

5. Set xk+1 := yk + λkdk . If xk+1 = xk then STOP and RETURN xk , otherwise set k := k + 1,
and go to Step 2.

Proof Just observe that the proof of Theorem 1 remains valid as long as the step sizes
are bounded above by some constant and below by zero. Algorithm 3 uses the same
directions than Algorithm 2, and the step sizes chosen by Algorithm 3 are bounded
above by λmax and below by zero. �
Another option here would be to construct a quadratic approximation ψk using
φk(−1) = φ(xk) instead of φk(λ̄). This interpolation is computationally less expen-
sive, as it does not require the computation of φk(λ̄). Nevertheless, our numerical tests
for the functions in Sect. 4 show that this approximation usually fits the function φk

more poorly. In particular, this situation occurs in Example 1, as shown in Fig. 2.
One could also construct a cubic function that interpolatesφk(−1),φk(0),φ′

k(0) and
φk(λ̄), see [20, Section 3.5]. However, for the functions in Sect. 4, we have observed
that this cubic function usually fits the function φk worse than the quadratic function
ϕk in (24).

Remark 4 Observe that Algorithm 2 and Algorithm 3 still work well if we replace
Step 2 by the following proximal step as in [18]

123

Accelerating the DC algorithm for smooth functions 111

Fig. 2 Plots of the quadratic interpolations ϕ0 and ψ0 for the function φ0(λ) = φ(y0 + λd0) from
Example 1, with λ̄ = 2. Note that ψ0(λ) fits poorly φ0(λ) for λ > 0

(Pk) minimise
x∈Rm

g(x) − 〈∇h(xk), x〉 + 1

2ck
‖x − xk‖2,

for some positive constants ck .

Example 2 (Finding zeroes of systems of DC functions)
Suppose that one wants for find a zero of a system of equations

p(x) = c(x), x ∈ R
m (26)

where p : R
m → R

m+ and c : R
m → R

m+ are twice continuously differentiable
functions such that pi : R

m → R+ and ci : R
m → R+ are convex functions for all

i = 1, . . . , m. Then,

‖p(x) − c(x)‖2 = 2
(
‖p(x)‖2 + ‖c(x)‖2

)
− ‖p(x) + c(x)‖2.

Observe that all the components of p(x) and c(x) are nonnegative convex functions.
Hence, both f1(x) := 2

(‖p(x)‖2 + ‖c(x)‖2) and f2(x) := ‖p(x) + c(x)‖2 are
continuously differentiable convex functions, because they can be expressed as a finite
combination of sums and products of nonnegative convex functions. Thus, we can
either apply DCA or BDCA in order to find a solution to (26) by setting φ(x) :=
f1(x) − f2(x).

Let f (x) := p(x) − c(x) for x ∈ R
m . Suppose that x̄ is an accumulation point

of the sequence {xk} generated by either Algorithm 2 or Algorithm 3, and assume
that ∇ f (x̄) is nonsingular. Then, by Proposition 5, we must have ∇ f (x̄) f (x̄) = 0m ,
which implies that f (x̄) = 0m , as ∇ f (x̄) is nonsingular. Moreover, for all x close
to x̄ , we have

123

112 F. J. Aragón Artacho et al.

|φ(x) − φ(x̄)| 12 = φ(x)
1
2 = ‖ f (x)‖ =

∥∥∥(∇ f (x))−1 ∇ f (x) f (x)

∥∥∥

≤
∥∥∥(∇ f (x))−1

∥∥∥ ‖∇ f (x) f (x)‖ = 1

2

∥∥∥(∇ f (x))−1
∥∥∥ ‖∇φ(x)‖

≤ M‖∇φ(x)‖,

where ‖ · ‖ also denote the induced matrix norm and M is an upper bound of
1
2‖ (∇ f (x))−1 ‖ around x̄ . Thus, φ has the Łojasiewicz property at x̄ with expo-
nent θ = 1

2 . Finally, for all ρ > 0, the function g(x) := f1(x) + ρ
2 ‖x‖2 is twice

continuously differentiable, which in particular implies that ∇g is locally Lipschitz
continuous. Therefore, either Theorem 1 or Corollary 2 guarantee the linear conver-
gence of {xk} to x̄ .

4 A DC problem in biochemistry

Consider a biochemical network with m molecular species and n reversible elemen-
tary reactions.2 Define forward and reverse stoichiometric matrices, F, R ∈ Z

m×n
≥0 ,

respectively, where Fi j denotes the stoichiometry3 of the i th molecular species in the
j th forward reaction and Ri j denotes the stoichiometry of the i th molecular species in
the j th reverse reaction. We use the standard inner product in R

m , i.e., 〈x, y〉 = xT y
for all x, y ∈ R

m . We assume that every reaction conserves mass, that is, there exists
at least one positive vector l ∈ R

m
>0 satisfying (R − F)T l = 0n [8] where R − F repre-

sents net reaction stoichiometry. We assume the cardinality4 of each row of F and R is
at least one, and the cardinality of each column of R − F is at least two, usually three.
Therefore, R − F may be viewed as the incidence matrix of a directed hypergraph.
The matrices F and R are sparse and the particular sparsity pattern depends on the
particular biochemical network being modelled.

Let u ∈ R
m
>0 denote a variable vector of molecular species concentrations. Assum-

ing constant nonnegative elementary kinetic parameters k f , kr ∈ R
n≥0, we presume

elementary reaction kinetics for forward and reverse elementary reaction rates as
s(k f , u) := exp(ln(k f) + FT ln(u)) and r(kr , u) := exp(ln(kr) + RT ln(u)), respec-
tively, where exp(·) and ln(·) denote the respective componentwise functions. Then,
the deterministic dynamical equation for time evolution of molecular species concen-
tration is given by

du

dt
≡ (R − F)

(
s
(
k f , u

) − r (kr , u)
)

(27)

= (R − F)
(
exp

(
ln

(
k f

) + FT ln(u)
)

− exp
(
ln (kr) + RT ln(u)

))
. (28)

2 An elementary reaction is a chemical reaction for which no intermediate molecular species need to be
postulated in order to describe the chemical reaction on a molecular scale.
3 Reaction stoichiometry is a quantitative relationship between the relative quantities of molecular species
involved in a single chemical reaction.
4 By cardinality we mean the number of nonzero components.

123

Accelerating the DC algorithm for smooth functions 113

Investigation of steady states plays a crucial role in the modelling of biochemical
reaction systems. If one transforms (28) to logarithmic scale, by letting x ≡ ln(u) ∈
R

m , w ≡ [ln(k f)
T , ln(kr)

T]T ∈ R
2n , then, up to a sign, the right-hand side of (28)

is equal to the function

f (x) := ([F, R] − [R, F]) exp
(
w + [F, R]T x

)
, (29)

where [· , ·] stands for the horizontal concatenation operator. Thus, we shall focus on
finding the points x ∈ R

m such that f (x) = 0m , which correspond to the steady states
of the dynamical equation (27).

A point x̄ will be a zero of the function f if and only if ‖ f (x̄)‖2 = 0. Denoting

p(x) := [F, R] exp
(
w + [F, R]T x

)
,

c(x) := [R, F] exp
(
w + [F, R]T x

)
,

one obtains, as in Example 2,

‖ f (x)‖2 = ‖p(x) − c(x)‖2 = 2
(
‖p(x)‖2 + ‖c(x)‖2

)
− ‖p(x) + c(x)‖2.

Again, as all the components of p(x) and c(x) are positive and convex functions,5

both
f1(x) := 2

(
‖p(x)‖2 + ‖c(x)‖2

)
and f2(x) := ‖p(x) + c(x)‖2 (30)

are convex functions. In addition to this, both f1 and f2 are smooth, having

∇ f1(x) = 4∇ p(x)p(x) + 4∇c(x)c(x),

∇ f2(x) = 2 (∇ p(x) + ∇c(x)) (p(x) + c(x)) ,

see e.g. [20, pp. 245–246], with

∇ p(x) = [F, R]EXP
(
w + [F, R]T x

)
[F, R]T ,

∇c(x) = [F, R]EXP
(
w + [F, R]T x

)
[R, F]T ,

where EXP (·) denotes the diagonal matrix whose entries are the elements in the vector
exp (·).

Setting φ(x) := f1(x) − f2(x), the problem of finding a zero of f is equivalent to
the following optimisation problem:

minimise
x∈Rm

φ(x) := f1(x) − f2(x). (31)

5 Note that p(x) is the rate of production of each molecule and c(x) is the rate of consumption of each
molecule.

123

114 F. J. Aragón Artacho et al.

We now prove that φ satisfies the Łojasiewicz property. Denoting A := [F, R] −
[R, F] and B := [F, R]T we can write

φ(x) = f (x)T f (x) = exp (w + Bx)T AT A exp (w + Bx)T

= exp (w + Bx)T Q exp (w + Bx)T

=
2n∑

j,k=1

q j,k exp

(
w j + wk +

m∑
i=1

(b ji + bki)xi

)
,

where Q = AT A. Since bi j are nonnegative integers for all i and j , we conclude that
the function φ is real analytic (see Proposition 2.2.2 and Proposition 2.2.8 in [21]). It
follows from Proposition 2 that the function φ satisfies the Łojasiewicz property with
some exponent θ ∈ [0, 1).

Finally, as in Example 2, for all ρ > 0, the function g(x) := f1(x)+ ρ
2 ‖x‖2 is twice

continuously differentiable, which implies that ∇g is locally Lipschitz continuous.
Therefore, either Theorem 1 or Corollary 2 guarantee the convergence of the sequence
generated by BDCA, as long as the sequence is bounded.

Remark 5 In principle, one cannot guarantee the linear convergence of BDCA applied
to biochemical problems for finding steady states. Due to the mass conservation
assumption, ∃l ∈ R

m
>0 such that (R − F)T l = 0n . This implies that ∇ f (x) is singular

for every x ∈ R
m , because

∇ f (x)l = [F, R]EXP
(
w + [F, R]T x

)
[F − R, R − F]T l = 0m .

Therefore, the reasoning in Example 2 cannot be applied. However, one can still
guarantee that any stationary point of ‖ f (x)‖2 is actually a steady state of the consid-
ered biochemical reaction network if the function f is strictly duplomonotone [2]. A
function f : R

m → R
m is called duplomonotone with constant τ̄ > 0 if

〈 f (x) − f (x − τ f (x)), f (x)〉 ≥ 0 whenever x ∈ R
m, 0 ≤ τ ≤ τ̄ ,

and strictly duplomonotone if this inequality is strict whenever f (x) �= 0m . If f is
differentiable and strictly duplomonotone then ∇ f (x) f (x) = 0m implies f (x) =
0m [2]. We previously established that some stoichiometric matrices do give rise
to strictly duplomonotone functions [2], and our numerical experiments, described
next, do support the hypothesis that this is a pervasive property of many biochemical
networks.

5 Numerical experiments

The codes are written in MATLAB and the experiments were performed in MAT-
LAB version R2014b on a desktop Intel Core i7-4770 CPU @3.40GHz with

123

Accelerating the DC algorithm for smooth functions 115

Ta
bl

e
1

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

B
D
C
A
an
d
D
C
A
fo
r
fin

di
ng

a
st
ea
dy

st
at
e
of

va
ri
ou

s
bi
oc
he
m
ic
al
re
ac
tio

n
ne
tw
or
k
m
od

el
s

D
at
a

In
st
an
ce
s

B
D
C
A

D
C
A

R
at
io

(a
vg
.)

M
od
el
na
m
e

m
n

av
g.

av
g.

tim
e
(s
)

ite
ra
tio

ns
tim

e
(s
)

D
C
A
/B
D
C
A

φ
(x

0
)

φ
(x

en
d
)

m
in
.

m
ax
.

av
g.

m
in
.

m
ax
.

av
g.

m
in
.

m
ax
.

av
g.

ite
r.

tim
e

E
co
li
co
re

72
94

5.
28

e6
5.
80

16
.6

25
.6

19
.7

41
01

61
76

48
61

68
.0

10
4.
7

86
.8

4.
9

4.
4

L
la
ct
is
M
G
13

63
48

6
61

5
2.
00

e7
62

.7
3

29
26

.1
40

29
.1

34
24

.4
41

64
63

62
52

41
14

52
2.
4

18
21

2.
5

16
67

0.
1

5.
2

4.
9

Sc
th
er
m
op

hi
lis

34
9

44
4

1.
95

e7
84

.9
9

29
0.
8

55
2.
7

35
8.
4

40
21

63
03

48
73

13
02

.1
20

03
.8

16
11

.1
4.
9

4.
5

T
M
ar
iti
m
a

43
4

55
4

3.
54

e7
11

4.
26

13
33

.0
26

23
.3

19
19

.7
35

36
58

39
47

00
54

76
.2

12
55

9.
2

85
17

.1
4.
7

4.
4

iA
F6

92
46

6
54

6
2.
32

e7
57

.4
2

16
76

.8
22

75
.3

19
67

.4
42

15
70

69
53

03
83

37
.0

11
18

7.
5

94
66

.3
5.
3

4.
8

iA
I5
49

30
7

35
5

1.
10

e7
35

.9
0

17
7.
2

25
4.
4

20
9.
2

36
70

54
98

48
59

66
5.
1

10
78

.2
91

3.
4

4.
9

4.
4

iA
N
84

0m
54

9
84

0
2.
58

e7
10

5.
18

32
29

.1
69

39
.3

47
20

.6
42

54
59

57
49

71
16

47
3.
3

28
95

6 .
7

21
41

3.
2

5.
0

4.
5

iC
B
92

5
41

6
58

4
1.
52

e7
67

.5
4

18
30

.7
24

50
.5

21
33

.4
38

47
62

04
50

30
73

58
.2

11
46

4.
6

98
86

.8
5.
0

4.
6

iI
T
34

1
42

5
50

4
7.
23

e6
13

9.
71

19
25

.2
28

83
.1

23
01

.8
39

64
97

94
57

12
94

33
.8

20
31

0.
3

12
26

2.
0

5.
7

5.
3

iJ
R
90

4
59

7
91

5
1.
47

e7
13

9.
63

63
63

.1
98

36
.2

76
23

.0
41

73
53

41
47

76
24

98
8.
5

43
63

9.
8

33
62

0.
6

4.
4

4.
8

iM
B
74

5
52

8
65

2
2.
77

e7
30

5.
80

26
29

.1
50

90
.7

42
52

.3
39

86
73

40
50

20
16

43
7.
8

25
17

1.
6

20
26

9.
3

5.
0

4.
8

iS
B
61

9
46

2
59

8
1.
64

e7
40

.6
4

24
06

.7
59

72
.2

33
23

.5
24

76
60

64
42

60
83

46
.1

25
46

8.
1

13
96

6.
9

4.
3

4.
2

iT
H
36

6
58

7
71

3
3.
42

e7
63

.3
7

33
10

.2
57

07
.3

44
64

.2
40

89
63

63
49

65
13

61
2.
7

30
04

4.
1

20
71

5.
5

5.
0

4.
6

iT
Z
47

9
v2

43
5

56
0

1.
97

e7
78

.1
2

12
11

.4
26

55
.8

22
16

.4
37

63
61

81
48

57
73

68
.1

12
59

1.
6

10
11

9.
8

4.
9

4.
6

Fo
r
ea
ch

m
od
el
,w

e
se
le
ct
ed

a
ra
nd
om

ki
ne
tic

pa
ra
m
et
er

w
∈[

−1
,
1]2

n
an
d
w
e
ra
nd

om
ly

ch
os
e
10

in
iti
al
po

in
ts

x 0
∈[

−2
,
2]m

.F
or

ea
ch

x 0
,B

D
C
A
w
as

ru
n
10

00
ite

ra
tio

ns
,

w
hi
le
D
C
A
w
as

ru
n
un
til

it
re
ac
he
d
th
e
sa
m
e
va
lu
e
of

φ
(x

)
as

ob
ta
in
ed

w
ith

B
D
C
A

123

116 F. J. Aragón Artacho et al.

Fig. 3 Comparison of the rate of convergence of DCA (Algorithm 1) with ρ ∈ {0, 100} and BDCA
(Algorithms 2 and 3) with ρ = 100 for finding a steady state of the “Ecoli_core” model (m = 72, n = 94)

Fig. 4 Comparison of the rate of convergence of DCA and BDCA (Algorithm 3) for finding a steady state
for different values of the parameter ρ. On the left we show the “iJO1366” model (m = 1655, n = 2416).
On the right we show the human metabolism model “Recon205_20150128” (m = 4085, n = 7400) [25]

16GB RAM, under Windows 8.1 64-bit. The subproblems (Pk) were approxi-
mately solved using the function fminunc withoptimoptions(’fminunc’,
’Algorithm’, ’trust-region’, ’GradObj’, ’on’, ’Hessian’,
’on’, ’Display’, ’off’, ’TolFun’, 1e-8, ’TolX’, 1e-8).

In Table 1 we report the numerical results comparing DCA and BDCA with
quadratic interpolation (Algorithm 3) for 14 models arising from the study of sys-
tems of biochemical reactions. The parameters used were α = 0.4, β = 0.5, λ̄ = 50
and ρ = 100. We only provide the numerical results for Algorithm 3 because it nor-
mally gives better results than Algorithm 2 for biochemical models, as it is shown in
Fig. 3. In Fig. 4 we show a comparison of the rate of convergence of DCA and BDCA
with quadratic interpolation for two big models. In principle, a relatively large value
of the parameter ρ could slow down the convergence of DCA. This is not the case
here: the behaviour of DCA is usually the same for values of ρ between 0 and 100, see

123

Accelerating the DC algorithm for smooth functions 117

Figs. 3 and 4 (left). In fact, for big models, we observed that a value of ρ between 50
and 100 normally accelerates the convergence of both DCA and BDCA, as shown in
Fig. 4 (right). For these reasons, for the numerical results in Table 1, we applied both
DCA and BDCA to the regularized version g(x)−h(x)with g(x) = f1(x)+ 100

2 ‖x‖2
and h(x) = f2(x) + 100

2 ‖x‖2, where f1 and f2 are given by (30).

6 Concluding remarks

In this paper, we introduce two new algorithms for minimising smooth DC func-
tions, which we term Boosted Difference of Convex function Algorithms (BDCA).
Our algorithms combine DCA together with a line search, which utilises the point
generated by DCA to define a search direction. This direction is also employed by
Fukushima–Mine in [7], with the difference that our algorithms start searching for the
new candidate from the point generated by DCA, instead of starting from the previous
iteration. Thus, our main contribution comes from the observation that this direction
is not only a descent direction for the objective function at the previous iteration, as
observed by Fukushima–Mine, but is also a descent direction at the point defined by
DCA. Therefore, with the slight additional computational effort of a line search one
can achieve a significant decrease in the value of the function. This result cannot be
directly generalized for nonsmooth functions, as shown in Remark 1. We prove that
every cluster point of the algorithms are stationary points of the optimisation problem.
Moreover, when the objective function satisfies the Łojasiewicz property, we prove
global convergence of the algorithms and establish convergence rates.

Wedemonstrate that the important problemoffinding a steady state in the dynamical
modelling of systems of biochemical reactions can be formulated as an optimisation
problem involving a difference of convex functions. We have performed numerical
experiments, using models of systems of biochemical reactions from various species,
in order to find steady states. The tests clearly show that our algorithm outperforms
DCA, being able to achieve the same decrease in the value of the DC function while
employing substantially less iterations and time. On average, DCA needed five times
more iterations to achieve the same accuracy as BDCA. Furthermore, our implemen-
tation of BDCA was also more than four times faster than DCA. In fact, the slowest
instance of BDCA was always at least three times faster than DCA. This substantial
increase in the performance of the algorithms is especially relevant when the typical
size of the problems is big, as is the case with all realistic biochemical networkmodels.

Acknowledgements The authors wish to thank Christian Kanzow for pointing out Remark 3, and Aris
Daniilidis for his helpful information on the Łojasiewicz exponent. The authors are also grateful to an
anonymous referee for their pertinent and constructive comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

118 F. J. Aragón Artacho et al.

References

1. Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost
functions. SIAM J. Optim. 16(2), 531–547 (2005)

2. Artacho Aragón, F.J., Fleming, R.M.T.: Globally convergent algorithms for finding zeros of
duplomonotone mappings. Optim. Lett. 9(3), 569–584 (2015)

3. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving
analytic features. Math. Program. 116(1–2), 5–16 (2009)

4. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions
with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)

5. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Math. Program. 146(1–2), 459–494 (2013)

6. Collobert, R., Sinz, F., Weston, J., Bottou, L.: Trading convexity for scalability. In: Proceedings of the
23rd International Conference on Machine Learning, pp. 201–208. ACM (2006)

7. Fukushima,M.,Mine, H.: A generalized proximal point algorithm for certain non-convexminimization
problems. Int. J. Syst. Sci. 12(8), 989–1000 (1981)

8. Gevorgyan, A., Poolman,M.G., Fell, D.A.: Detection of stoichiometric inconsistencies in biomolecular
models. Bioinformatics 24(19), 2245–2251 (2008)

9. Huang, Y., Liu, H., Zhou, S.: A Barzilai–Borwein type method for stochastic linear complementarity
problems. Numer. Algorithms 67(3), 477–489 (2014)

10. Le Thi, H.A., PhamDinh, T.: TheDC (difference of convex functions) programming andDCA revisited
with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133(1–4), 23–46
(2005)

11. Le Thi, H.A., Pham Dinh, T.: On solving linear complementarity problems by DC programming and
DCA. Comput. Optim. Appl. 50(3), 507–524 (2011)

12. Le Thi, H.A., Pham Dinh, T., Muu, L.D.: Numerical solution for optimization over the efficient set by
D.C. optimization algorithms. Oper. Res. Lett. 19(3), 117–128 (1996)

13. LeThi,H.A.,Huynh,V.N., PhamDinh, T.: Convergence analysis ofDCalgorithm forDCprogramming
with subanalytic data. Ann. Oper. Res. Technical Report, LMI, INSA-Rouen (2009)

14. Lee, J.D., Sun, Y., Saunders, M.A.: Proximal Newton type methods for minimizing composite func-
tions. SIAM J. Optim. 24(3), 1420–1443 (2014)

15. Li, G., Pong, T.K.: Douglas–Rachford splitting for nonconvex optimization with application to non-
convex feasibility problems. Math. Progr. 159(1), 371–401 (2016)

16. Łojasiewicz, S.: Ensembles semi-analytiques. Institut des Hautes Etudes Scientifiques, Bures-sur-
Yvette (Seine-et-Oise), France (1965)

17. Mine, H., Fukushima, M.: Aminimization method for the sum of a convex function and a continuously
differentiable function. J. Optim. Theory Appl. 33(1), 9–23 (1981)

18. Moudafi, A., Mainge, P.: On the convergence of an approximate proximal method for DC functions.
J. Comput. Math. 24(4), 475–480 (2006)

19. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161
(2013)

20. Nocedal, J., Wright, S.J.: Numerical optimization. In: Mikosch, T.V., Resnick, S.I., Robinson, S.M.
(eds.) Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, NewYork
(2006)

21. Parks, H.R., Krantz, S.G.: A Primer of Real Analytic Functions. Birkhäuser, Basel (1992)
22. Pham Dinh, T., Le Thi, H.A.: A DC optimization algorithm for solving the trust-region subproblem.

SIAM J. Optim. 8(2), 476–505 (1998)
23. PhamDinh, T., Souad, E.B.: Algorithms for solving a class of nonconvex optimization problems.Meth-

ods of subgradients. In: Hiriart-Urruty, J.-B. (ed.) FERMAT Days 85: Mathematics for Optimization,
Volume 129 of North-Holland Mathematics Studies, pp. 249–271. Elsevier, Amsterdam (1986)

24. Schnörr, C., Schüle, T.,Weber, S.: Variational reconstructionwith DC-programming. In: Herman, G.T.,
Kuba, A. (eds.) Advances in Discrete Tomography and its Applications, pp. 227–243. Springer, Berlin
(2007)

25. Thiele, I., et al.: A community-driven global reconstruction of human metabolism. Nat. Biotechnol.
31(5), 419–425 (2013)

123

	Accelerating the DC algorithm for smooth functions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Boosted DC Algorithms
	4 A DC problem in biochemistry
	5 Numerical experiments
	6 Concluding remarks
	Acknowledgements
	References

