
Vol.:(0123456789)

Central European Journal of Operations Research (2024) 32:11–27
https://doi.org/10.1007/s10100-023-00881-1

1 3

Mixed integer linear programming formulation for K‑means 
clustering problem

Kolos Cs. Ágoston1   · Marianna E.‑Nagy2

Accepted: 31 August 2023 / Published online: 27 October 2023 
© The Author(s) 2023

Abstract
The minimum sum-of-squares clusering is the most widely used clustering 
method. The minimum sum-of-squares clustering is usually solved by the heuris-
tic KMEANS algorithm, which converges to a local optimum. A lot of effort has 
been made to solve such kind of problems, but a mixed integer linear programming 
formulation (MILP) is still missing. In this paper, we formulate MILP models. The 
advantage of MILP formulation is that users can extend the original problem with 
arbitrary linear constraints. We also present numerical results, we solve these mod-
els up to sample size of 150.

Keywords  Mathematical programming · Linear programming formulation · 
Clustering · K-means

1  Introduction

Clustering is one of the most widely used methods in data science. Within this area, 
K-means clustering is the most widely used approach that aims to minimize the within-
cluster sum of squared distances. It is known to be an NP-hard problem (Aloise et al. 
2009) even if the cluster sizes are equal (Kondor 2022). The well-known KMEANS 
clustering algorithm is a very fast method, but it is a heuristic algorithm without any 
guarantee of global optimum. In data science, it is said that the KMEANS algorithm 
is sensitive to the initial cluster centers, in optimization terminology the KMEANS 
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algorithm converges to a local optimum. As Hansen and Jaumard (1997) reported in 
their paper, "experiments show that the best clustering found with KMEANS may be 
more than 50% worse than the best known one". This phenomenon is well known, and 
even so, this method has been implemented in most commonly used statistical and data 
science softwares until today, contrary to the fact that exact algorithms are known (see, 
for instance, du Merle et al. 1999).

Solving the clustering problem using Linear Programming (LP) appeared early in 
the literature (see Vinod 1969; Rao 1971). Later, different types of clustering prob-
lems were solved using LP, (see, for instance, Cornuejols et  al. 1980; Kulkarni and 
Fathi 2007; Dorndorf and Pesch 1994; Gilpin et al. 2012), but the most frequently used 
minimum sum-of-squares clustering was less investigated. du Merle et al. (1999) pro-
posed an exact algorithm to solve the minimum sum-of-squares clustering problem, but 
this approach did not appear in statistical packages, probably due to the fact that it is a 
rather complicated algorithm.

We can also form the minimum sum-of-squares clustering problem based on Sem-
idefinite Programming (SDP) (see Peng and Wei 2007; Piccialli et al. 2021). The draw-
back of this approach is that it is not a pure SDP problem, since it has an additional 
nonlinear constraint, and moreover, only moderate size SDP problems can be solved. A 
more detailed overview of the mathematical background of clustering problems can be 
found in Hansen and Jaumard (1997) and Peng and Wei (2007).

In this paper, we present Mixed Integer Linear Programming (MILP) formulations 
for the minimum sum-of-squares clustering problem. Rujeerapaiboon et  al. (2019) 
described a MILP formulation for minimum sum-of-squares problems, but their for-
mulation works only with a priori fixed cluster sizes. However (as we will see), the 
main source of the nonlinearity in the model is that the cardinality of the clusters is 
unknown. The suggested formulation can be extended to problems with many types 
of constraint (for instance, lower bound on the cardinality of clusters or must-link con-
straints Bradley et al. 2000; Davidson and Ravi 2007). The suggested MILP models are 
based on the nonlinear formulation appeared in Awasthi et al. (2015), which is recalled 
in Sect. 2. In the rest of Sect. 2, we investigate our two MILP models and propose addi-
tional cuts which can result in tighter LP relaxations. Finally, the computational results 
are presented in Sect. 3.

The following notations are used throughout the paper: Let H be a set, then |H| is the 
cardinality of the set H . If K is a positive integer, then [K] ∶= {1,… ,K} . The Euclid-
ean distance between the points a and b is denoted by d(a, b).

2 � MILP formulation for minimum sum‑of‑squares clustering problem

We have N points in the n-dimensional space: A = {a1,… , aN} ⊂ ℝ
n . Our aim is to 

group these points into K clusters in a way that minimizes the sum of the squared dis-
tances. Clusters of points are denoted by Ak , k ∈ [K] . These sets form a partition of A 
and none of them is empty, that is,

∪K
k=1

Ak = A, Ak ∩A
�
= �, Ak ≠ � ∀ k ≠ � ∈ [K].
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Let PA denote the set of partitions of A into exactly K nonempty subsets. The center 
of the cluster Ak is denoted by ck , which is defined as the multidimensional mean, 
i.e., ck =

1

�Ak�
∑

ai∈Ak
ai ∈ ℝ

n . The sum of squared distances within the cluster Ak is 

given by the formula: 
∑

ai∈Ak
d(ai, ck)

2 . We can reformulate this sum of squares for-

mula as 1

�Ak�
∑

ai,aj∈Ak
d(ai, aj)

2 (see du Merle et al. 1999; Awasthi et al. 2015). Con-
sequently, minimum sum-of-squares clustering problem is the following:

2.1 � An almost linear modell

In Awasthi et al. (2015), we can find a promising reformulation:

where t(j) is the index of the cluster, which contains aj , namely aj ∈ At(j) . This is a 
nonlinear problem, however, except for the last constraint, this is a linear model with 
nonnegative decision variables zij which indicates whether elements i and j belong 
to the same cluster or not. There are two problems with the last constraint: we do 
not know a priori the value of t(j) and the cardinality of the cluster At(j) . However, it 
can be reformulated as zij(zij − zii) = 0 , but it is still not a linear constraint. We note 
here that the 0–1 SDP model of Peng and Wei (2007) is very similar to this one. 
Their variable is a symmetric matrix Z, but its elements correspond exactly to the 
variables zij here. Their objective function and constraints (3)–(6) are the same only 
in matrix form. Finally, instead of the last, problematic constraint in the model of 
Awasthi et al. (2015), they have Z2 = Z , that is, the matrix Z has to be a projection 

(1)min
(A1,A2,…,Ak)∈PA

K∑

k=1

∑

ai,aj∈Ak

d(ai, aj)
2

|Ak|
.

(2)
∑

i,j

d(ai, aj)
2 zij → min

(3)

s.t.

N∑

j=1

zij = 1 ∀ i ∈ [N]

(4)zij ≤ zii ∀ i, j ∈ [N]

(5)
N∑

i=1

zii = K

(6)
zij ≥ 0 ∀ i, j ∈ [N]

zij ∈ {0, 1∕|At(j)|} ∀ i, j ∈ [N]
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matrix. This is a nonlinear constraint, therefore we cannot use directly an SDP algo-
rithm to solve it.

2.2 � Minimum sum of squares linear relaxation

The optimal solution of the problem minimizing (2) subject to (3)–(6) does not give 
a ‘legal’ clustering. To ensure this, we need further constraints.

It is worth prescribing the symmetry of the variables zij , that is,

We suggest another type of possible linear constraint that makes the linear relaxa-
tion significantly tighter, this is the ’triangle inequality’:

Indeed, if both variables zij and zi� take positive values (which means that elements i 
and j are in the same cluster and also elements i and � are in the same cluster), then 
variable zj� has to take a positive value, and in this case, the values of all three vari-
ables must be equal to variable zii . If both variables zij and zi� are 0, then the value of 
the variable zj� is not constrained.

We refer to the model that minimizes (2) subject to (3)–(8) as MSSR: Minimum 
Sum of Squares Relaxation. It still does not surely result in a ‘legal’ clustering struc-
ture, but as the numerical tests show, we already get an optimal clustering with this 
model in most cases. To obtain an exact model, we use binary variables. It can be 
done in different ways, we will discuss two of them.

2.3 � Binary minimum sum of squares formulation

First, we introduce the binary variable �ij , which takes the value 1, if elements i and j 
are in the same cluster, otherwise, it takes the value 0:

The values of variables zij and �ij are not independent, hence we need constraints to 
ensure the relationship between them:

Theorem 1  The problem of minimizing (2) subject to (3)–(11) gives an exact MILP 
model for the K-means problem.

Proof  First of all, consider a partition of points with exactly K nonempty subsets, 
and let zij = 1∕|At(j)| for all i, j ∈ [N] , and �ij = 1 if i and j are in the same clusters 

(7)zij = zji ∀ i, j ∈ [N].

(8)zij + zi� − zj� ≤ zii ∀ i, j,� ∈ [N].

(9)�ij ∈ {0, 1} ∀ i, j ∈ [N].

(10)zij ≤ �ij ∀ i, j ∈ [N].

(11)zii − zij ≤ 1 − �ij ∀ i, j ∈ [N].
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and zero otherwise for all i, j ∈ [N] . Then, this is a feasible solution to the problem 
(as we have discussed above), and its objective function value is exactly the sum-of-
squared distances according to the given clustering.

On the other hand, based on constraints (3) and (4), zii > 0 for all i. Furthermore, 
by (7), (10) and (11),

therefore

To prove the triangle inequality on variables �ij , add the constraint (11) for indices 
i, j and i, l and then use (8), the positivity of zii , and finally (10),

Combining it with the binary nature of the variable � , we get the desired inequality

Summarizing the above, we have shown that for each feasible solution of the pro-
posed MILP, � gives a proper clustering since (9), (12) and (13). Moreover, the num-
ber of clusters is exactly K as a consequence of the constraint (5). So, we only need 
to prove that the objective value is appropriate. Multiplying constraints (10) and (11) 
and using that � ’s are binary variables, we get that

In other words, zij is either zero or equal to zii . Comparing it with Eq.  (3), 
zii = 1∕|At(j)| , namely, zij ∈ {0, 1∕|At(j)|} for all i, j ∈ [N] . This completes the proof. 	
� ◻

Adding additional constraints (cuts) can help the MILP solver find an opti-
mal solution faster. We considered two possibilities which are the following 
constraints

We reach BMSS (Binary Minimum Sum of Squares) formulation: minimize (2) sub-
ject to (3)–(11) and (14)–(15). By Theorem 1, this is an exact formulation for the 
K-means problem, but with redundant additional constraints to improve the quality 
of the solution of its LP relaxation. It is easy to see that the constraints (14)–(15) 
ensure: if an optimal solution of MSSR is a ‘legal’ clustering, then all binary vari-
ables �ij take integer values, i.e., the branch and bound tree will only contain the root 
node.

0 < zii = zii − zij + zji ≤ 1 − 𝜁ij + 𝜁ji ∀ i, j ∈ [N]

(12)�ij = �ji ∀ i, j ∈ [N].

𝜁ij + 𝜁il ≤ 2 − zii + zij + zil − zii < 2 + zjl ≤ 2 + 𝜁jl.

(13)�ij + �i� ≤ 1 + �j� ∀ i, j,� ∈ [N].

0 ≤ (zii − zij)zij ≤ (1 − �ij)�ij = 0 ∀ i, j ∈ [N].

(14)(N − K + 1)zij ≥ �ij ∀ i, j ∈ [N].

(15)(N − K + 1)(zii − zij) ≥ 1 − �ij ∀ i, j ∈ [N].
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2.4 � Assignment‑type minimum sum of squares formulation

In the BMSS formulation, the number of binary variables can be quite large, and its 
number increases quadratically as the number of elements increases. Therefore, we 
tried another approach where the number of binary variables is significantly less. 
Let �ik denote the binary variable that indicates whether the element i is assigned to 
the cluster k:

Since every element belongs to exactly one cluster,

furthermore, every cluster contains at least one element:

In this way, namely by constraints (16)–(18), we define a ’legal’ clustering, where 
the number of clusters is exactly K.

We need to connect the variables �ik to the variables zij . If elements i and j are in 
different clusters, then zij has to be zero, therefore

Theorem 2  The problem of minimizing (2) subject to (3)–(6) and (16)–(19) gives an 
exact MILP model for the K-means problem.

Proof  We have already noted that � which fulfills constraints (16)–(18) gives a 
‘legal’ clustering with exactly K clusters.

Furthermore, the constraint (19) with k = t(j) ensures that zij is zero if i and j 
are in different clusters. So, by (3) and (4), we get zii ≥ 1∕|At(j)| . But there is no 
empty cluster due to (18), namely zii = 1∕|At(j)| by (5). This again means that 
zij ∈ {0, 1∕|At(j)|} for all i, j ∈ [N] based on the Eq. (3). Hence, any feasible solution 
of the problem gives a K-clustering and its objective function value is exactly the 
sum of squared distances within clusters.

On the other hand, we consider all possible partitions into exactly K nonempty 
subsets {A1,… ,AK} . Indeed, if zij = 1∕|At(j)| for all i, j ∈ [N] , and �ik = 1 if i ∈ Ak 
and zero otherwise for all i ∈ [N] and k ∈ [K] , then it satisfies constraints (3)–(6) 
and (16)–(19), and its objective function value is the sum of squared distances 
within clusters. Therefore, we proved the statement. 	�  ◻

Let us again show some further constraints that can help a MILP solver. One pos-
sibility is to enforce i and j in different clusters if zij = 0:

(16)�ik ∈ {0, 1} ∀ i ∈ [N], k ∈ [K].

(17)
K∑

k=1

�ik = 1 ∀ i ∈ [N]

(18)
N∑

i=1

�ik ≥ 1 ∀ k ∈ [K].

(19)zij ≤ 1 + �ik − �jk ∀ i ≠ j ∈ [N].
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Furthermore, in a clustering problem, the essential result is a grouping, meaning 
which elements are in the same cluster and which are in different ones. The ‘label’ 
of the cluster is irrelevant. If we have K clusters, the labels can be assigned in K! 
way. We can break this symmetry by prescribing that the first element belongs to the 
first cluster:

We could go further. If the second element belongs to the same cluster as the first 
element, it will also be assigned to cluster 1. Otherwise, let it be in the second clus-
ter, so we have �2,k = 0 , for k ≥ 3 . Similarly, for the third element, �3,k = 0 for k ≥ 4 . 
Surprisingly, these constraints also slow down the process, and it is not worth using 
all of them.

We call the problem of minimizing (2) subject to (3)–(11) and (16)–(21) as 
AMSS (Assignment-type Minimum Sum of Squares) formulation. It is again an 
exact model (by Theorem 2) with some redundant constraints. AMSS has signifi-
cantly fewer binary variables than BMSS ( N × K vs. (N − 1) × (N − 1) ). Another 
advantage of AMSS formulation is that more constraints can be formulated with 
the help of variables �ik than with the help of �ij . On the other hand, it is not true 
that if the optimal solution of the MSSR formulation gives a legal clustering, then 
all binary variables in the relaxation of AMSS take integer values. Therefore, it 
is not enough for AMSS to check the integrality of the solution to the continuous 
relaxation.

We close this section by generalizing the idea of the triangular inequality (8). 
Instead of three points, let us take four nodes, then

constraints should hold. These are valid inequalities for a ‘legal clustering’. It can 
be shown that these constraints cut down feasible basic solutions of BMSS which 
do not give a ‘legal clustering’, but, in the meantime, they can generate new feasi-
ble basic solutions which are not legal clustering. Furthermore, we can formulate 
similar constraints on more than four points as well, but already for four points, its 
number is quite huge.

3 � Numerical results

We tested the above described two MILP formulations (BMSS and AMSS) and 
their common LP core (MSSR) on randomly generated data points and on real-
world data points as well. We used a desktop computer with 3.60 GHz Intel 
Pentium processor and 8 GB RAM. The operating system is Windows 10 Enter-
prise. We used Gurobi 9.1.1 solver with default parameter settings to solve MILP 
problems.

(20)�ik + �jk ≤ 1 + (N − K + 1)zij ∀ i, j ∈ [N], k ∈ [K].

(21)�1,1 = 1.

(22)zij + zik + zi� ≤ zii + zjk + zj� + zk� ∀ i, j, k,� ∈ [N]
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3.1 � Randomly generated data points

In order to test the MSSR, BMSS, and AMSS formulations, we generated uniformly 
distributed random points in the unit square. From a clustering perspective, it is dif-
ficult to make a grouping of uniformly distributed data points since such a set of 
points is quite homogeneous. Considering real-world instances, the larger problems 
can be solved in less time since the clustering structure can be more obvious. In this 
sense, these running times can be considered as an upper bound.

The important statistics on the size of the problem (number of variables (binary 
variables), number of constraints and number of nonzero coefficients), the number 
of iterations, the running time (in seconds), and the optimal objective function value 
can be found in Tables 1, 2 and 3.   

As we can see in Tables  1,  2 and  3, except for the instance (100,5), the opti-
mum solution of MSSR will result in a legal clustering structure, actually, we do not 
need the integer variables. For all the instances presented, the running times are less 
than 2.5 min for the MSSR formulation. Not surprisingly, the running times for the 
BMSS and AMSS formulations are higher but still tolerable (except for the instance 
(100,5)). There is no strict dominance between BMSS and AMSS formulations, 
BMSS seems to have slightly better performance (mainly for case (100,5)).

3.2 � Real‑world instances

We chose three well-known data sets to test our models. The first one is the so-
called Ruspini data set, which contains 75 data points in the plane (see Fig. 1). The 
Ruspini data set appeared first in Ruspini (1970), but was also analyzed in Kaufman 
and Rousseeuw (1990). The second data set is the Iris data set (see Fisher 1936), 
which is a well-known benchmark data set for classification problems. This data set 
contains information on 150 flowers. We used this data set for clustering purposes, 

Table 1   Essential information about the MSSR formulation (LP problem)

We get an integer optimal solution except for the last instance (the objective value is in bold)

(N,K) #var. (bin.) #const #nonzero #iter Time (s) o.f. value

(25,2) 625 (0) 7826 30,050 379 0.16 4.2121
(50,2) 2500 (0) 62,526 245,100 44,891 5.41 8.7706
(75,2) 5625 (0) 210,976 832,650 47,323 29.55 14.4857
(100,2) 10,000 (0) 500,051 1,980,200 113,292 146.49 18.8850
(25,3) 625 (0) 7826 30,050 274 0.15 2.3742
(50,3) 2500 (0) 62,526 245,100 32,493 2.30 4.8643
(75,3) 5625 (0) 210,976 832,650 112,711 17.09 8.6184
(100,3) 10,000 (0) 500,051 1,980,200 271,365 110.24 11.8003
(25,5) 625 (0) 7826 30,050 132 0.10 1.0266
(50,5) 2500 (0) 62,526 245,100 21,525 1.40 2.7192
(75,5) 5625 (0) 210,976 832,650 74,264 9.46 4.3356
(100,5) 10,000 (0) 500,051 1,980,200 134,661 68.26 6.0120
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so we neglected the iris type (class), and we used only the parameters sepal length, 
sepal width, petal length, and petal width during clustering. The third data set is the 
Breast Tissue data set.1 In this dataset, 106 different instances were analyzed with 
the help of 9 features. Since the measurements are not uniform, we used standard-
ized variables in this case.

We calculated the optimal clustering for cases where the number of clusters is 
2–6 (2–7 in the case of Iris). The MSSR relaxation gave an optimal solution for 
clustering problems (except Iris with 7 clusters and Breast Tissue with 6 clusters). 

Table 2   Essential information about the BMSS formulation (MILP problem)

(N,K) #var. (bin.) #const #nonzero #iter Time (s) o.f. value

(25,2) 925   (300) 9026 33,050 767 0.41 4.2121
(50,2) 3725 (1225) 67,426 257,350 13,057 4.86 8.7706
(75,2) 8400 (2775) 222,076 860,400 85,215 69.00 14.4857
(100,2) 14,950 (4950) 519,851 2029,700 199,582 547.48 18.8850
(25,3) 925   (300) 9026 33,050 566 0.32 2.3742
(50,3) 3725 (1225) 67,426 257,350 7231 3.53 4.8643
(75,3) 8400 (2775) 222,076 860,400 51,086 45.91 8.6184
(100,3) 14,950 (4950) 519,851 2,029,700 122,879 345.28 11.8003
(25,5) 925   (300) 9026 33,050 290 0.28 1.0266
(50,5) 3725 (1225) 67,426 257,350 8950 3.58 2.7192
(75,5) 8400 (2775) 222,076 860,400 42,963 38.07 4.3356
(100,5) 14,950 (4950) 519,851 2,029,700 199,143 1064.93 6.0156

Table 3   Essential information about the AMSS formulation (MILP problem)

(N,K) #var. (bin.) #const #nonzero #iter Time (s) o.f. value

(25,2) 675   (50) 9702 35,601 662 0.45 4.2121
(50,2) 2600 (100) 70,029 267,451 559,853 306.13 8.7706
(75,2) 5775 (150) 227,854 883,201 64,316 45.55 14.4857
(100,2) 10,200 (200) 530,054 2,070,101 155,495 270.05 18.8850
(25,3) 700   (75) 10,627 38,376 678 0.51 2.3742
(50,3) 2650 (150) 73,755 278,776 211,463 88.09 4.8643
(75,3) 5850 (225) 236,255 908,476 81,300 56.23 8.6184
(100,3) 10,300 (300) 545,005 2,115,051 205,222 312.18 11.8003
(25,5) 750 (125) 12,477 43,926 432 0.46 1.0266
(50,5) 2750 (250) 81,207 301,226 182,144 72.10 2.7192
(75,5) 6000 (375) 253,057 959,026 73,654 56.49 4.3356
(100,5) 10,500 (500) 574,907 2,204,951 766,669 16,128.02 6.0156

1  Available in the UCI Machine Learning Repository (see Dua and Graff 2019, http://​archi​ve.​ics.​uci.​edu/​
ml/​datas​ets/​breast+​tissue).

http://archive.ics.uci.edu/ml/datasets/breast+tissue
http://archive.ics.uci.edu/ml/datasets/breast+tissue
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The running times and the optimal value of the objective function can be found in 
Table 4.

As we see from Table 4, we can apply our formulations for real-world instances 
and it is worth emphasizing that the running times for real-world instances are 
less than for the same size randomly generated data sets. For example, let us con-
sider the case of three clusters. The running time is 17.09 for the MSSR formula-
tion for the randomly generated problem, while the running time is 9.79 for the 
Ruspini data set. Although in the majority of cases, the MSSR formulation gave 
legal clusters, in two cases a MILP formulation was needed.

It is worth to say a few words about the optimal clustering structure for the 
Ruspini data set. The Ruspini data set is a two-dimensional problem, optimal 
clusters can be represented in a scatter plot, see Fig. 1.

This data set was an example of the silhouette method (see Rousseeuw 1987). 
In this paper, the clustering structure for the Ruspini data is also published. We 
get almost the same clusters, except for cluster numbers 5 and 6. For the case 
of five clusters, Rousseeuw writes (Rousseeuw 1987, pg.  62): “When k = 5 is 
imposed, the algorithm splits C into two parts. The second part contains the three 
‘lowest’ points of C..., that is, the three points of C with smallest y-coordinates. 
This trio has a rather prominent silhouette, and indeed some people consider it as 
a genuine cluster”. As we see in Fig. 1 in light green color, the above mentioned 
3 points do not form alone a cluster, there is a forth point as well in this cluster.

Table 4   Running times (in seconds) and optimal objective function values for real-world instances

The optimal objective value for the MSSR model is in parentheses if it differs from the other models’ 
optimal value

Data set Cluster MSSR BMSS AMSS o.f. value

Ruspini 2 8.94 28.02 26.67 178,675.66
Ruspini 3 9.79 24.36 30.53 102,126.95
Ruspini 4 5.17 17.16 15.81 25,762.10
Ruspini 5 4.92 17.05 39.14 20,253.44
Ruspini 6 5.39 17.62 46.3 17,150.81
Iris 2 431.82 2239.58 1258.98 304.70
Iris 3 407.73 1160.21 1168.48 157.70
Iris 4 371.25 1286.70 1458.97 114.46
Iris 5 323.21 1002.96 2135.83 92.89
Iris 6 262.72 964.06 1813.30 78.08
Iris 7 362.47 12,886.20 86,121.75 68,60 (68.56)
Breast tissue 2 150.88 514.04 240.84 1070.41
Breast tissue 3 129.84 414.71 290.88 791.85
Breast tissue 4 131.29 404.48 310.15 590.58
Breast tissue 5 66.09 298.95 260.42 441.95
Breast tissue 6 89.56 3252.46 133,100.11 373.77(373.62)
Breast tissue 20 71.01 514.58 6520.16 95.15(95.09)
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To draw attention to the importance of the exact clustering method, we per-
formed a test on the data sets mentioned above with the given number of clusters. 
We run the KMEANS algorithm (we used kmeans() function in R program-
ming language) for randomly chosen initial cluster centers 10,000 times. The 
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Fig. 1   Optimal minimum sum of clusters for the Ruspini data set
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computational results are summarized in Table 5. In the first column (Data set) 
are the names of the data sets (GenPoints n are the randomly generated data sets 
with n points described in Sect. 3.1). The second column (Clusters) contains the 
number of clusters. The third column (o.f. value) is the optimal objective value 
of the exact model, while the fourth column (ObjVal) gives the average optimal 
objective value found by the KMEANS algorithm. ARI is the Adjusted Rand 
Index, which is a widely used measure of similarity between two clusters (Rand 
1971). Here, we take the average value of ARI for clusters given by the KMEANS 
algorithm and the exact K-means clustering. The last column (Exact) contains the 
percentage in which KMEANS finds an exact clustering.

Table 5   Computational results of KMEANS algorithm

Data set Cluster o.f. value ObjVal  ARI Exact (%)

GenPoints25 2 4.21 4.21 1 100.00
GenPoints50 2 8.77 8.77 1 100.00
GenPoints75 2 14.48 14.98 0.7176 35.38
GenPoints100 2 18.88 19.56 0.7571 70.69
GenPoints25 3 2.37 2.51 0.8599 80.07
GenPoints50 3 4.86 5.18 0.8873 83.11
GenPoints75 3 8.62 8.97 0.8265 74.48
GenPoints100 3 11.80 12.12 0.7352 43.35
GenPoints25 5 1.03 1.12 0.8052 27.35
GenPoints50 5 2.72 2.84 0.7801 21.34
GenPoints75 5 4.33 4.47 0.7249 26.15
GenPoints100 5 6.01 6.17 0.7257 27.52
Ruspini 2 178,675.66 178,675.70 1 100.00
Ruspini 3 102,126.95 102,215.90 0.7422 51.63
Ruspini 4 25,762.10 56,704.84 0.8471 57.75
Ruspini 5 20,253.44 37,038.84 0.8217 19.93
Ruspini 6 17,150.81 26,660.35 0.7676 10.72
Iris 2 304.70 304.70 1 100
Iris 3 157.70 182.98 0.8897 80.22
Iris 4 114.46 125.72 0.8016 26.49
Iris 5 92.89 104.34 0.7327 10.04
Iris 6 78.08 89.45 0.7169 7.20
Iris 7 68.60 78.73 0.7284 9.28
Breast tissue 2 1070.41 1079.04 0.9808 98.02
Breast tissue 3 791.85 850.45 0.6604 3.49
Breast tissue 4 590.58 676.87 0.7171 3.75
Breast tissue 5 441.95 573.26 0.6396 2.20
Breast tissue 6 373.77 502.15 0.5286 1.84
Breast tissue 20 95.15 150.40 0.6045 0.03
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It can be clearly seen that the success rate rapidly decreases with the number of 
clusters, and the clusterings provided by KMEANS are significantly different from 
the exact clusterings (ARI values and the differences between the objective values). 
Therefore, already for these medium-sized problems, there is a relevance of an exact 
algorithm.

We mention here that although it is well known that the KMEANS algorithm 
gives maybe only a locally optimal clustering, the possible low chance to get a global 
optimum is less known. The default method for the R function kmeans() is the 
Hartigan-Wong algorithm (see Hartigan and Wong 1979); Slonim et al. (2013) gave 
an upper bound on the number of local minima of the Hartigan-Wong algorithm.

Another important issue is the solution time for different approaches. Since the 
problem is NP-hard, it is unrealistic to expect that the running time of a MILP solver 
on the exact reformulation BMSS or AMSS should be competitive with heuristic 
approaches (for instance, with the KMEANS algorithm). The running times for the 
MILP reformulations are higher than that for the heuristic approaches, this is the 
price of the exact solution. There are other exact algorithms, but somehow all of 
them depend on external solvers, and in this sense, the running times are somehow 
the competition of solvers. We do not know any other MILP formulation with which 
the comparison would be reliable. The advantage of the MILP model is the usage of 
widely available LP solvers. On the other hand, a MILP formulation is more flexible 
to extend the original model with special considerations.

Although the running times in our case are higher than for the KMEANS algo-
rithm, they still can be tolerated for small and medium size samples. On the other 
hand, the running time itself may provide additional information. Consider the gen-
erated sample in Fig. 2. The cluster centers are chosen to be the three vertices of an 

Fig. 2   Generated sample
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Table 6   Running times (in s) for generated sample of Fig 2

Cluster size 2 3 4 5 6

Running time (AMSS) 3662.03 578.35 1366.24 1126.76 1947.17
Running time (BMSS) 1587.44 680.31 1174.91 1030.96 994.8
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equilateral triangle, and we generated 50 points around each vertex (sampled from 
a multivariate normal distribution). We solved the BMSS and AMSS formalization 
for cluster number 2–6. The running times can be seen in Table 6. The running times 
are the smallest if the cluster number is 3, which is somehow the only acceptable 
choice in this example. The running times are the highest when the cluster number 
is 2, which is really counterintuitive for this problem. Therefore, the high running 
time may be a sign of an unclear cluster structure, but a more detailed experiment is 
needed for a direct statement.

3.3 � Special constraints

As we mentioned previously, the advantage of the MILP formulation is its flexibil-
ity, that is, we can add further constraints to the model. In the literature, different 
types of such kind of considerations appear. In the following example, we concen-
trate on the cluster sizes. For the minimum sum-of-squares clustering problem, it is 
a quite frequent phenomenon that the cluster sizes are unbalanced (see Bradley et al. 
2000). However, users may want to avoid the possibility of a very small cluster size. 
For instance, in the case of the Ruspini data set with 5 and 6 clusters, we want to 
add a constraint on the minimum number of cluster elements. We seek the minimum 
sum-of-squares clustering such that each cluster has at least 10 elements. We can 
incorporate this requirement into the model in multiple ways. The easiest and most 
efficient way is to impose constraints on zii variables. The zii variables are the recip-
rocal of the number of elements in the corresponding cluster. The constraint that 
there is no cluster with less than 10 elements means that

The advantage of the constraint (23) is that we can insert it into any of the afore-
mentioned formulations. The running times for the formulations are 5.43 s (MSSR), 
69.04 s (BMSS), and 2182.29 s (AMMS) in the case of 5 clusters and 5.78 s 
(MSSR), 224.64 s (BMSS) and 5682.87 s (AMSS) in the case of 6 clusters. The 
optimal value of the objective function is 22,659.48 in the case of 5 clusters and 
19,834.48 in the case of 6 clusters; the optimal solution of the MSSR formulation is 
not a ‘legal clustering in neither case. The optimal clustering can be seen in Fig. 3.

Another possible example to add further constraints could be the following: we 
know some sort of categorization on the data set and we assume that at most 2 dif-
ferent categories (or 3 or 4) can appear in each cluster. For instance, we would like 
to assign abstracts to sections in a conference. We have some general categorization 
of topics. Homogeneous sections are not achievable, but at most two different cat-
egories can appear in a section.

Finally, it is also an important advantage of the proposed models that we do 
not need to calculate the cluster centers, a distance matrix is a sufficient input to 
solve the clustering problem. However, in Euclidean spaces, it is easy to calculate 
the cluster centers (take the mean in every dimension), but in certain applications 
(see, for instance, Majstorović et al. 2018) it is the drawback of using the KMEANS 
algorithm.

(23)zii ≤ 0.1 ∀ i ∈ [N].
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4 � Conclusion

In this paper, we investigated MILP formulations for the minimum sum-of-
squares clustering problem. However, these formulations have longer running 
times than the well-known KMEANS algorithm, however, for sample size at most 
100 it is still tolerable. If in some application it is crucial to work with global 
optimum, these formulations give a possibility for it. The advantage of MILP for-
mulation compared to the other methods is that we can take into consideration 
further aspects by posing them as a linear constraint. We presented this possibil-
ity with further requirements on cluster sizes.
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