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Abstract
In this paper we present an evolutionary heuristic for the offline two-dimensional 
variable-sized bin packing problem. In this problem we have to pack a set of rectan-
gles into two-dimensional variable-sized rectangular bins. The bins are divided into 
types, and the bins in different types have different sizes and possibly different weights 
(costs). There are (sufficiently) many bins from each type, and any rectangle fits into 
at least one bin-type. The goal is to pack the rectangles into the bins without overlap, 
parallel to the sides, so that the total area of the used bins (or total cost) is minimized. 
Our algorithm is a hybrid heuristic. It uses two different techniques to generate the 
descendants: either estimation of distribution algorithm and sampling the resulting 
probability model, or applying the usual operators of evolutionary algorithms (selec-
tion, mutation). To pack the rectangles into the bins the algorithm uses the strategy of 
randomly choosing one of two placement heuristics, that pack always only one group 
(one to three) of rectangles. It improves the quality of the solutions with three local 
search procedures. The algorithm has been tested on benchmark instances from the 
literature and has been compared with other heuristics and metaheuristics. Our algo-
rithm outperformed the previously published results.

Keywords  Local search · Variable-sized bin packing · Evolutionary algorithm · 
EDA · Placement heuristic

1  Introduction

The offline two-dimensional variable-sized bin packing problem (2DVSBPP) can be 
defined as follows: given a set of n rectangles (items or elements) R =

{
r1, r2,… , rn

}
 . 

The widths and the heights of the rectangles are denoted by wi, and hi(i = 1, 2,… , n) , 
respectively. There are also given m different types of rectangular bins with sizes Wj, 
and Hj, resp., and Cj cost belongs to the bin type j (j = 1, 2,… ,m) . The items must 
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be packed without overlapping into bins with sides parallel to the appropriate sides of 
the bins. No rotation is allowed. The aim is to pack the items into bins with minimum 
total cost. Usually, costs are the areas of the bins, but generally, it can happen that the 
costs are independent of the areas of the bins. We will consider the case of minimal 
areas of bins.

Since the variable-sized bin packing problem is a generalization of the NP-hard 
classical bin packing problem, it is also NP-hard (see Garey and Johnson 1979; 
Friesen and Langston 1986). Therefore different algorithms have been developed 
to give approximation solutions. These algorithms can be classified into heuristics 
and metaheuristics. Metaheuristics usually based on evolutionary algorithm 
(EA) (Haouari and Serairi 2009), variable neighbourhood search (VNS) (Blum 
et al. 2010), and GRASP methods (Alvarez-Valdes et al. 2012). In the last decade 
successful genetic algorithms (GA) have been applied for the three-dimensional case 
(Cai et al. 2013).

1.1 � Related works

In contrast to the bin-packing problem there are fewer research papers in the field of 
the variable-sized bin packing problem (VSBPP) and most studied problems are one-
dimensional. In the majority of papers we can read about lower bounds and solution 
methods. VSBPP is an NP-hard problem and there are exact and approximation 
algorithms, and the latter can be divided into heuristics and metaheuristics.

(a)	 Exact methods

There exist exact methods for the 1DVSBPP and the 2DVSBPP, too. For 
the 1DVSBPP Correia et  al. (2008) and Haouari and Serairi (2011) developed 
branch-and-bound algorithms, Baldi et  al. (2014) published branch-and-price 
and beam search algorithms. For the 2DVSBPP Pisinger and Sigurd (2005) 
developed a branch-and-bound algorithm and Liu et al. (2011) published a dynamic 
programming solution.

(b)	 Heuristics

For the 1DVSBPP Chu and La (2001) developed 4 approximation algorithms 
and analysed their worst-case performances; Epstein and Levin (2012) published an 
approximation scheme.

There are a lot of heuristic methods. For the 1DVSBPP, published examples 
are the IBFD and IFFD (Kang and Park 2003), the FFDLR and FFDLS (Friesen 
and Langston 1986), the SSP1, SSP2, SSP3 and SSP4 (Haouari and Serairi 2009). 
Further heuristics were published among others by Belov and Scheithauser (2002), 
Alves and De Carvalho (2007), Crainic et  al. (2011), Maiza et  al. (2012), Bang-
Jansen and Larsen (2012) and Hemmelmayr et al. (2012).
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For the 2DVSBPP there is only one heuristic published, the 2SVSBP heuristic of 
Ortmann et al. (2010). It is a two-stage heuristic, in the first stage 2SVSBP packs the 
rectangles on strips with a level-packing heuristic of the strip-packing problem and 
then the levels are packed into large bins from the strips. In the second, repacking 
stage the rectangles are repacked from these large bins into smaller ones to reduce 
the wasted space. In the repacking 2SVSBP uses the level-packing heuristic again.

Some of the algorithms for the one- and two-dimensional variable-sized bin pack-
ing problems have two phases. In the first one they pack the items into bins and in 
the second phase they try to minimize the wasted space by repacking the items from 
larger bin into a smaller one (See Friesen and Langston 1986; Kang and Park 2003; 
Ortmann et al. 2010). There are also repacking strategies that solve the problem in 
one step like the goal-driven approach of Wei et al. (2013), that runs an improving 
procedure to reduce the total costs of bins after a feasible solution has been found.

	(c).	 Metaheuristics

The metaheuristics are able to find the global optimum with a high degree 
of probability. For the 1DVSBPP Blum et  al. (2010) proposed a variable 
neighbourhood search, Haouari and Serairi (2009) developed a genetic algorithm, 
and Monaci (2001) published heuristics that use elements of exact methods, too. 
For the 2DVSBPP Wei et al. (2013) published a goal-driven method and Alvarez-
Valdes et al. (2012) developed an algorithm based on GRASP and Path Relinking. 
The method of Alvarez-Valdes et  al. (2012) solves the 3D version of the problem 
too. The genetic algorithm of Cai et al. (2013) works with an EDA and solves the 
3D version of VSBPP with rotation.

To the best of our knowledge nobody published a successful evolutionary 
method (EDA) for 2DVSBPP that we can compare with other methods based on the 
benchmark test problems of 2DVSBPP.

1.2 � Our contribution 

Our contribution, therefore, is a new hybrid EDA for 2DVSBPP (named variable-
sized bin packing estimation of distribution algorithm, VBEA) and its key features 
are the following:

•	 To generate descendants VBEA uses it either a probability model or selection 
and mutation operators.

•	 We use three new local searches to increase the number of fully filled, or almost 
full bins of the descendant.

•	 A threshold value is used to label a bin “almost full”, this influences the quality 
of the result.

•	 For packing the rectangles into the bins we use a special strategy with two 
placement heuristics that pack always only one group (one to three) of rectangles.
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The remaining part of the paper is organized as follows: Sect. 2 describes some 
important elements of the algorithm; Sect. 3 describes the main steps of the VBEA. 
The computational results are reported in Sect. 4, and the conclusions form Sect. 5.

2 � Preliminaries 

Let us first examine some important elements of our algorithm. They are the 
schematic structure of VBEA, the evaluation values and functions, the fitness 
function, the probability model, the bin-packing procedure and the Unified 
Computational Time.

2.1 � Schematic structure of VBEA

The schematic structure of our algorithm shows the main steps of the algorithm 
without the details of the steps, operations, and procedures.
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2.2 � Evaluation values and functions

First we give some basic definitions. Let P be the actual population. Then 
P =

{
I1,… , Ik

}
 where each Ii is an individual (i.e. a feasible solution to our 

problem). Each Ii, i = 1,… , k contains bins filled with items from the input, and 
the items placed in the same bin satisfy the packing conditions (no overlapping, and 
sides are parallel to the appropriate sides of the bin).

and

where Bi,l ∩ Bi,j = ∅ and ∪ Bi,j = R

The fullness proportion limit—denoted by λ—represents a load-limit of the bins, 
0 < λ ≤ 1. The value of λ is a given parameter of the procedure, usually its value has 
been chosen from the set {0.85, 0.90, 0.95, 0.99}. Let

be the fullness proportion of the bin Bi,j. It is clear that Fi,j ≤ 1. If

then we declare the bin full, and it belongs to the set of full bins (FB). Otherwise the 
bin belongs to the set of non-full bins (NFB).

If Ij is an individual then the utilization rate for Ij is

2.3 � Fitness function 

The fitness function (f) computes the value that measures the quality of the packing in 
the individual, lower values correspond to better packing. Our fitness function uses a 
positional notation of a hierarchy of two or three separate fitness parts, corresponding 
to three functions measuring different aspects of the quality of packing: f = f2 + f1 or 
f = f3 + f2 + f1.

The least significant part (f1) measures the improvement of the fullness proportions 
after attempting to reallocate rectangles among the bins. It is an important part of the 
fitness function because the operators and local searches of the algorithm can mod-
ify the fullness proportions and based on the modifications we can delete bins or can 

Ii = {Bi,1,… ,Bi,ki}

Bi,j =
{
ri,j,1,… , ri,j,t

}
,

Fi,j =

⎛⎜⎜⎝
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search for other bins to use. These modifications can improve the utilization rate or the 
cost value too.

In the f1 part of the fitness function we use the idea of the cost function of Falkenauer 
(1996): maximize

where nb is the number of non-empty bins, Fk is the fullness proportion of bin k 
(k = 1, 2,… , nb) and q > 1. The constant q expresses the concentration on the 
extremist bins in comparison to the less filled ones. The author found that q = 2 gave 
good results. Because 1 ≥ fBPP and nb −

∑nb

k=1
(Fk)

q ≥ 0 we define for the f1 part of 
the fitness function as the following function:

The second part of the fitness (f2) watches the utilization rate of the solution (we 
use it as an integer number). If I is the individual then the utilization rate for I is

and

where a is a constant. Because we want to minimize the utilization rate, f2 needs 
to have a bigger weight in the fitness function than f1, so the value of f2 has to be 
always larger than the value of f1 in the fitness function. The constant a ensures this 
dominance. The value of a depends on the problem, e.g. at our benchmark test sets 
the value of a can be 7.

If the costs are independent of the areas of the bins, then the goal is to find the 
solution with minimal cost, so there is a third part in the fitness function:

where Ck is the cost of the bin k (k = 1,2,…,nb) and b is a constant. Including f3 in 
the fitness function is not accompanied by any other changes to the algorithm. In 
this case we want to minimize the cost, so the value of f3 has to be always the largest 
in the fitness function. The constant b ensures this dominance. The value of b also 
depends on the problem, e.g. at our benchmark test sets the value of b can be 10.

fBPP =

(
nb∑
k=1

(Fk)
q

)
∕nb
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f3 = 10b
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Ck
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2.4 � The probability model

With the relative pair frequency matrix we can estimate the probability that the ith 
and the jth rectangles used to be in the same bin. For this we have to know the 
frequency of every pair of rectangles—how often they are in the same bin in the best 
individuals. As “best individuals” we take the best 20% of the population based on 
fitness values (Borgulya 2019, 2021).

Let G be an n × n matrix that stores the relative frequencies of the pairs. Every 
rectangle has a row and a column in the matrix. G is a symmetric matrix, and the 
values of the main diagonal in the matrix are nulls. It suffices to use the upper 
triangular matrix of G in the algorithm. G is updated throughout the evolution 
process using the”best individuals”. We update G after every kgenth generation 
(e.g., kgen = 10). The updating process is as follows:

Let ΔG be of the same size triangular matrix to G. Let Gij be the collected relative 
frequency of the ith and the jth rectangle (a pair) in common bins until a given 
kgenth generation. We update the elements of the matrix G with the element of ΔG

where ΔGi,j is the relative frequency of the ith and the jth rectangles in common 
bins based on the”best individuals” of the kgenth generation and α denotes some 
relaxation factor (e.g., α = 0.2). Algorithm 1 outlines this process.

Algorithm 1. Update-G procedure 

1. Every value of ΔG is 0.

G�
i,j
= (1 − �)Gi,j + �ΔGi,j
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We use the matrix G to estimate the probability of pairs of rectangles. The 
formula

gives the estimated probability that the ith and the jth rectangles are in the 
same bin. Let maxpr be the maximum of the pri,j estimated probabilities 
(i = 1, 2,… , n j = 1, 2,… , n).

2.4.1 � Sampling‑G procedure

Sampling-G can repack the non-full bins of an individual or generates a 
new individual by packing all the rectangles. Let Q be a set of rectangles 
Q =

{
r1, r2,… , rk

}
, k ≤ n . The rectangles from Q are available for packing with 

Sampling-G.
The procedure repeats the following steps for every new bin:

1.	 It “pre-filters” the rectangles. During the pre-filtering the chosen rectangles are 
placed into a set (we call it S). It selects rectangles based on the probability model 
from the not yet selected rectangles of Q considering both the sizes and the areas 
of the rectangles. The selected rectangles will be eligible to be placed into the 
new bin, but likely not all will be place able as during the pre-filtering we do not 
check place ability.

	   First we choose a rectangle together with a bin of corresponding type. Let’s call 
the chosen bin BOX and let’s use a capacity variable to ensure the area restriction. 
Let the value of capacity be the area of BOX, during the pre-filtering we pay 
attention to the areas of the rectangles so as the total area of the chosen rectangles 
doesn’t exceed capacity. The pre-filtering ends when no further rectangle can be 
chosen from Q or the total area of the rectangles reaches capacity.

2.	 It tries to pack the rectangles from S into the BOX. To pack the rectangles into the 
bin the algorithm uses the strategy of randomly choosing one of two placement 
heuristics, that pack always only one group of rectangles (one to three rectangles).

Algorithm 2 outlines this process.

pri,j = Gi,j

/
n∑
t=1

Gi,j
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2.4.2 � Bin‑packing procedure for a 2‑dimensional bin

In the literature the state of a bin is usually represented by a list of points, or horizon-
tal line segments where the points or segments are candidate positions to load a new 
rectangle. The most important representations are the Corner Points (Martello et al. 
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2000), the Extreme Points (Crainic et al. 2008) and the skyline (Wei et al. 2013). 
We apply the skyline representation (contour of a set of consecutive vertical bars) in 
our algorithm that gives horizontal line segments ( s1, s2,… , sk ). The skyline si is a 
triplet ( xi,s, xi,e, yi ) where xi,s and xi,e are the two first coordinates and yi is the second 
coordinate of the skyline si. Then for any subsequent skyline yi−1 ≠ yi ≠ yi+1 , and 
xi,e = xi+1,s (Fig. 1). Initially a single line segment corresponds to the bottom of the 
empty bin.

We can place a rectangle on a single horizontal segment of the skyline; or 
we can place a larger rectangle over multiple neighbouring segments of the 
skyline. Neighbouring segments with m + 1 segments are sj, sj+1,… , sj+m , where 
j = 1,… , k − m + 1; 1 ≤ m < k.

The Bin-packing procedure tries to pack the rectangles into the bin. It uses two 
placement heuristics HP1 and HP2 that always pack only one group (one to three) 
of rectangles. It applies HP1 with a probability of 0.34 and with a probability of 
0.66 applies HP2. The placement heuristics search an appropriate segment (or 
neighbouring segments) of the skyline for the next rectangle. When all rectangles 
have been considered for packing, the procedure ends. At the end non-packed 
rectangles may remain in S.

HP1 is a modified version of the BL heuristic; HP2 is a modified version of the 
BF heuristic.

A fixed ordered sequence is used for the best-known placement heuristic: the 
“bottom up, left justified” (BL) heuristic (Baker et  al. 1980). BL first sorts the 
rectangles according to their areas and then starts with each rectangle from the top-
right corner. Then, it slides the rectangle as far as possible to the lowest location 
and then, as far as possible to the left of the locations. HP1 places only a single 
rectangle; it uses the BL packing principle. Without sorting the rectangles, it places 
the next not-yet-placed rectangle from S to the lowest segment (or neighbouring 
segments) possible. If the height of the packed area in the bin would exceed the 
height of the bin, HP1 returns without packing this rectangle.

The “best fit” (BF) heuristic (Burke et  al. 2004) dynamically chooses the 
rectangles. BF repeats two operations until all rectangles are placed; it searches 
for an available space as low as possible and then places the rectangle that fits 
the space best. HP2 applies the BF placement approach only to a single rectangle 
and then attempts to improve the result with the ibox local search. HP2 searches 
an available segment (or neighbouring segments) as low as possible and then 

Fig. 1   Skyline with 3 segments 
(Represented by the bold lines)
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dynamically selects a not-yet-placed rectangle that fits on this lowest available 
segment (or neighbouring segments) without exceeding the height of the bin. If 
the search was successful then HP2 packs the rectangle to the position found. If 
the search was not successful, then HP2 returns without packing.

If the width of the packed rectangle is smaller than the width of the segment 
(or neighbouring segments), HP2 also applies the ibox local search to fill in the 
space. ibox works in two steps. First, in order to form blocks it selects all those 
rectangles from S that are not packed yet and that are packable into the empty part 
of the segment (or neighbouring segments). It considers the rectangles in random 
order and chooses no more than 10 rectangles to form the block. In the second 
step, ibox builds blocks combining one, two or three rectangles from the selected 
rectangles and chooses the block that fits in the empty part of the segment (or 
neighbouring segments) and has the largest width.

After the application of HP1 or HP2 the algorithm updates the skyline. Fig-
ure 2 gives examples for the HP1 and HP2 heuristics. 

2.5 � Unified computational time 

The methods of the comparative results section were executed on different 
computers, and so ″we calculated appropriate scaling factors to compare their 
running times. For this purpose, we used the CPU speed estimations provided 
in the SPEC standard benchmark″ (https://​www.​spec.​org/​cpu20​06/​resul​ts/​cint2​
006.​html) (Buljubašić and Vasques 2016). Based on the SPEC standard, we 
obtained CPU speeds for the different processors. With the CPU speeds we can 
calculate appropriate scaling factors to compare the running times of the different 
computers. We chose the CPU speed of the computer of a method as a reference, 
and the scaling factors are calculated as CPU speed/ reference CPU speed. 
Multiplying the CPU time of a processor by its scaling factor, we obtain a Unified 
Computational Time (UCT) for comparing their running times. (see Buljubašić 
and Vasques 2016; Quiroz-Castellanos et al. 2015).

Fig. 2   Placement heuristics. a Successful packing with HP1. b Block packing with HP2 

https://www.spec.org/cpu2006/results/cint2006.html
https://www.spec.org/cpu2006/results/cint2006.html
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3 � The VBEA algorithm

Our VBEA generates only one descendant in every generation. First comes the 
initial population and next, in every generation it generates a descendant sampling 
the probability model, or applying the selection and mutation operators generates a 
descendant and improves the result with local searches (LS).

In case of certain instances, the algorithm might be ’’stuck’’ at one of the local 
optima. To enable escape towards a potential global optimum, the algorithm 
generates new, additional individuals. A new individual is also a descendant and can 
help to improve the optimising capability and the speed of the algorithm. Thus, new 
descendants are periodically inserted in the population until the maximum size of the 
population is reached.

Algorithm 3 shows the main steps of VBEA. The parameters of the algorithm are as 
follows:

tmax—the maximal size of the population.
tin—the first size of the population.
kgen—the algorithm is controlled in every kgenth generation.
timeend—the limit of the running time.
The next parameters will be explained later in this section:
LSn, LSm—parameters of the local searches.
tp—parameter of the truncation selection.
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The operation of VBEA is as follows:
Input The algorithm reads the instance and the values of the parameters 

(described in Sects. 4.1 and 4.2). Every rectangle has a unique identification number.
Initial population The number of the individuals in the initial population is given 

in the tin parameter (e.g. 5). We generate the individuals of the initial population by 
repeating the Sampling-G procedure. In the first steps of the algorithm the elements 
of the G matrix are 0.5, so the resulted bins give a random, feasible individual.

Selection The algorithm selects an individual based on truncation selection. In 
this, only the best tp percentage of the population is considered as a potential parent.

Mutation The algorithm applies the mutation operator if FB is not empty. The 
operator uses the Sampling-G procedure to generate new bins in the descendant. 
First it deletes the NFB bins and stores their rectangles in the Q set. Next, it con-
structs bins from the rectangles of Q by Sampling-G.

Local searches. The algorithm applies three local searches: LS1, LS2 and LS3. 
The algorithm applies the LS1 or LS2 local searches LSn times on the descendant, 
and LSm times on the best individual. It applies LS1 with probability 0.5 and also 
with probability 0.5 applies LS2. These local searches can increase the fullness of 
some bins in the individual. At the end it applies the LS3 repacking local search to 
the descendant and to the best individual too (see Sect. 3.1).

Reinsertion This is a crowding technique that compares the descendant with the 
parent. The descendant may replace the parent if the descendant is better. If the 
descendant is an additional individual, the new descendant is inserted without any 
further analysis into the population.

Stopping criterion The algorithm is terminated if the running time limit is 
reached.

3.1 � Local searches

There are three local search procedures: LS1, LS2 and LS3.
LS1 This chooses a random bin from NFB and tries to improve its fullness 

proportion. LS1 performs swaps a pair of rectangles between the chosen random bin 
and an other bin from NFB. For this, LS1 searches a bin with smaller fullness than 
the random bin, and tries a 1–1 rectangle swap between the bins. It accepts a swap 
if after the application of the bin–packing procedure the fullness of the random bin 
will be larger and the rectangles are packed into the bins. It tries the swap with all 
elements of the random bin.

LS2 This also chooses a random bin from NFB and tries to insert its rectangles 
into other bins from NFB. To increase the fullness of the bins it tries to insert 1 
rectangle from the random bin to an other non-full bin where the fullness proportion 
is larger than the fullness of the random bin. It accepts an insert if after the 
application of the bin–packing procedure the fullness of the other bin will be larger 
and the rectangle is packed into the other bin.

LS3 This local search tries to reduce the wasted space in the bins of the individual 
by repacking the rectangles. For every bin it searches an empty random bin with 
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smaller cost and tries to repack the rectangles into the random bin with the bin-
packing procedure. If the repacking is successful it accepts the new bin.

4 � Experimental results

The VBEA algorithm was implemented in C++. It was executed on iMAC with an 
Intel Core i5 2.5 GHz processor with 16 GB of RAM, running the MacOS Sierra 
10.12.2 operating system.

We tested our algorithm on the benchmark instances of 2DVSBPP. The instances 
are available at http://​www.​vuuren.​co.​za/​main.​php. These benchmark instances are 
in use since 2010 and they are available in the papers dealing with 2DVSBPP.

The benchmark sets are the following:

•	 P1, P2: Wang (1983). In P1 there are 2900 rectangles and 3 bin types; in P2 900 
rectangles and 2 bin types.

•	 M1, M2, M3: Hopper (2000) and Hopper and Turton (2002). These are test sets 
with 5–5 instances. In all instances there are 6 bin types. In the instances of 
M1 and M2 there are 100–100 rectangles, in the instances of M3 there are 150 
rectangles.

•	 PS: Pisinger and Sigurd (2005). In the test set there are 500 instances with 
variable bin costs. In all instances there are 6 bin types. In PS there are 10 
subsets, every subset is composed of 50 instances, in each subset there are 10 
instances for each value of n ∈ [20,40,60,80,100].

•	 Nice, Path: Ortmann et al. (2010). Each test set consists of 170 instances with 
2–6 bin types and with 25, 50, 100, 200, 300, 400 or 500 rectangles.

The optimal solutions of the benchmark instances are known only for the Nice 
and Path sets. These instances were generated by cutting bins into rectangles, so they 
have optimal solutions with µ = 1. The other benchmark sets recently do not have a 
list of “best known” results because only a few papers are available with results of 
the benchmark sets. Lower bounds were not available either. Wei et  al. (2013) in 
their algorithm use a procedure to determine the lower bounds of the benchmark test 
sets, but their lower bound results are not available. So the best we can compare to 
be the results from past publications.

4.1 � Parameter selection 

We analysed the process of VBEA to determine how the parameter values affect 
convergence. From the 857 test instances we chose 42 for parameter selection. For 
the parameter selection we want to work with few instances, but it was important 
that in the selected instances include a variety of large, typical and difficult instances 
too. So we choose the P1, P2 instances, the M1, M2 and M3 instance groups and the 
Path400 subset.

http://www.vuuren.co.za/main.php


59

1 3

A hybrid estimation of distribution algorithm for the offline…

Because our algorithm has a similar structure and parameters to our earlier 
algorithm in (Borgulya 2021), we could accept the earlier parameter values. These 
parameters are the population size (tin and tmax parameters), the frequency of 
checks (kgen parameter), the number of generation in the first stage (itt parameter) 
and of the truncation selection parameter (tp). The accepted parameter values are 
tin = 5, tmax = 30, itt = 5, kgen = 5 and tp = 0.1.

We analysed the values of the LSn, LSm parameters of the local searches together. 
We tried different combinations of the parameter values. We can conclude the 
following: for LSn, LSm we found several suitable values and the values of the 
parameters depended on n. We achieved our the best results using the following 
values (among similarly suitable values):

if n ≤ 100 LSn = 500, LSm = 500
if 100<n ≤ 200 LSn = 300, LSm = 300
if 200<n LSn = 2, LSm = 50 or LSn = 50, LSm=2.

The fullness proportion limit (λ) of a bin is also very important. If λ is smaller-
and-smaller then the number of almost full bins can increase in the FB set. The 
mutation operators and local searches work only on NFB so the speed of the algo-
rithm can increase with smaller λ. But the algorithm cannot improve the qual-
ity of the solutions at every value of λ. Table 1 shows a comparison of the best 
results with different λ values on three test sets. The table gives the average utili-
zation rates based on the best solutions for each sets. We got the best results (bold 
values) between 0.85 and 0.95.

For the time limit we found that a duration of 120 CPU seconds is sufficient in 
most of the test problems. Hence the time limit is 120 s (timeend = 120). In the 
case of the P1 instance we had to use larger time limit: timeend = 400 s (the sec-
onds are in UCT time).

4.2 � Computation experience

VBEA was run 10 times on each test instance of the test sets, and we provide 
the average and best results for every instance. For every test set we compute 
the average results of the instance averages and the average of the best instance 
results too. Table 2 gives a summary of the average results for every test set.

Table 2 shows the names of the test sets (set), the number of rectangles in the 
instances (n), the number of instances in the set (inst). At the average results we 
see the average utilization rate of the instances in the set (μ), the average of the 
standard deviation of μ (SD) and the average number of used bins in the solutions 
of the instances (bin_n). At the best results we see the average best utilization rate 
of the instances in the set (µb) and the average number of used bins in the best 
solutions of the instances (bbin_n). First we realised in Table 2 that the algorithm 
could reach the same μ result of an instance with different numbers of bins. So 
the average number of the used bins is very rarely an integer number.
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We got the best results on the M1, M2 and M3 test sets. The SD values of M1, 
M2 and M3 are 0.00, so the utilization rates of ten runs of the same instance are the 
same. The μ and μb results of a set are the same, the results are over 0.99. But the 
bin_n and bbin_n values can be different. The algorithm could reach the same μ 
result of an instance with different numbers of used bins and with different types of 
bins. E.g. in case of set M2 after the 10 runs we got 10*5 results. In the results every 
μ value is the same, but the numbers and types of used bins can be different. The 
average number of used bins (bin_n) is 11.1, and among the 5 best results the aver-
age bbin_n is 10.2.

The results of the other test sets are similar: the μb of the best results are 
0.96–0.98 and the μ of the average results are lower by 0.04–0.05. The standard 
deviations of μ are the largest for the P1, P2 and Path sets, they are difficult problems 
for our algorithm.

4.2.1 � Comparative results

For the comparison of the results we chose four methods: the 2SVSBP heuristic with 
the stack ceiling (SC) and with the stack ceiling with re-sorting (SCR) algorithms 
(Ortmann et  al. 2010), the goal-driven (GDA) method (Wei et  al. 2013) and the 
GRASP/ Path Relinking (GRASP/PR) method (Alvarez-Valdes et al. 2012). The SC 
and SCR run on an XP with Intel Core 2 duo CPU with 3.0 GHz and 4 GB RAM; it 
was coded in Visual Basic. GDA run on an IntelXeon E5430 with 2.66 GHz Quad 
Core CPU and 8 GB RAM; it was coded in C++. GRASP/PR run on a Pentium 
Mobile at 1500 MHz with 512 Mbytes of RAM; it was coded in C++.

Table 1   Average utilization 
rates of the best solutions at 
different λ values

Set Inst N λ = 0.85 λ = 0.9 λ = 0.95 λ = 0.99

P1 1 2900 0.977 0.950 0.890 0.846
P2 1 900 0.948 0.936 0.968 0.881
Path400 25 20–100 0.957 0.960 0.941 0.904

Table 2   The average results on 
the test sets

Set n Inst Average results Best results

μ SD bin_n μb bbin_n

P1 2900 1 0.915 0.04 643.7 0.979 597
P2 800 1 0.948 0.03 86.2 0.961 83
M1 100 5 0.997 0.00 9.6 0.997 9.6
M2 100 5 0.995 0.00 11.1 0.995 10.2
M3 150 5 0.995 0.00 15.4 0.995 13.2
PS 20–100 500 0.942 0.02 20.8 0.978 18.6
Nice 25–500 170 0.937 0.03 4.7 0.974 3.8
Path 25–500 170 0.918 0.04 4.9 0.969 4.2
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The methods of the comparative results section were executed on different com-
puters, so we calculated appropriate scaling factors to compare their UCT running 
times. The speed of the computer of GDA, SC, GRASP/PR and VBEA where: 21.2, 
16.2, 9.2 and 30.5. We chose the CPU speed of the computer of GDA as a reference, 
and the scaling factors used were: 1, 0.76, 0.43 and 1.43.

In Table  3 we see the results of the two heuristics SC, SCR and of the three 
metaheuristics GDA, VBEA and GRASP/PR. SC and SCR give the average utiliza-
tion rate of each test sets. We can compare the average results in the case of VBEA 
on all test sets and in the case of GRASP/PR on the PS test set. The average results 
of VBEA are better on all test sets by an average 0.07 compared to the other heuris-
tics. Only at the P2 and M1 sets are there smaller differences: our VBEA is only bet-
ter by 0.03–0.04. On the PS set GRASP/PR is also better by 0.08 than the heuristics. 

Table 3   Comparison of the results on the test sets

Set Average results Best results

SC SCR GRASP/PR VBEA VBEA GDA

μ μ μ μ bin_n μb bbin_n μb bbin_n

P1 0.844 0.844 – 0.915 643.7 0.979 597 0.897 390.0
P2 0.900 0.900 – 0.948 86.2 0.961 83 0.933 64.0
M1 0.955 0.955 – 0.997 9.6 0.997 9.6 0.984 6.2
M2 0.908 0.908 – 0.995 11.1 0.995 10.2 0.936 7.8
M3 0.939 0.939 – 0.995 15.4 0.995 13.2 0.960 9.8
PS 0.821 0.819 0.900 0.942 20.8 0.978 18.6 0.898 16.0
Nice 0.831 0.829 – 0.937 4.7 0.974 3.8 0.955 4.8
Path 0.853 0.852 – 0.918 4.9 0.969 4.2 0.957 5.2
Avg 0.883 0.883 0.956 0.981 0.944

Table 4   Running times of the 
methods on the test sets

Set Average time
 seconds (UCT time)

Best time
 seconds (UCT 
time)

VBEA SC SCR GRASP/PR GDA VBEA

P1 295.9 3.9 4.4 – 225.9 275.1
P2 68.6 0.2 0.2 – 8.97 37.8
M1 3.8 0.0 0.0 – 0.10 0.4
M2 69.2 0.0 0.0 – 0.57 1.0
M3 11.7 0.0 0.0 – 0.20 1.0
PS 8.8 0.0 0.0 6.4 25.4 0.7
Nice 23.6 0.0 0.0 – 28.4 1.9
Path 24.5 0.0 0.0 – 29.4 2.0
Avg.: 55.8 0.5 0.6 93 40.1
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We can compare the two metaheuristics too: the average result of VBEA on PS is 
also better than the result of GRASP/PR.

Only the best results of GDA are published, so we compare the best results of 
VBEA and GDA. VBEA has better results on all test sets and the average μb is 
higher by 0.04 than the average μb of GDA. In the case of P1 and PS VBEA is 
higher by 0.08; in the case of Nice, Path the differences are smaller. In case of 
GDA, the bbin_n values have been published, too. It is not a goal in the problem 
to minimize the number of bins, however, comparing the bbin_n values we can 
infer an aspect of the operation of the methods. With the exception of Nice and 
Path sets the GDA uses less bins for all other sets than VBEA, so the GDA must 
use larger bins to store the rectangles and in total less of them than VBEA uses. 
Conversely, the VBEA needs to use a larger number of smaller bins with the 
larger count of bins. The better results of VBEA demonstrate that in case of the 
benchmark test sets it’s a better strategy to use smaller bins.

We can compare the running times too. In case of VBEA we defined the 
run time as the time required until reaching the best result within the time 

Fig. 3   Convergence behaviour of VBEA a on P1, b on P2
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limit (timeend). Table  4 gives the average and the best running times. The 
metaheuristics require significantly longer CPU times than the simpler heuristics 
that run extremely fast. We can compare the average times on the set PS between 
the VBEA and GRASP/PR. GRASP/PR is a little bit faster than VBEA. As the 
utilization rate result of GRASP/PR is weaker then VBEA′s one, it is a question 
how GRASP/PR can improve the utilization rate allowing a longer running time.

In the comparison of the best times of VBEA and GDA we can see that VBEA 
is faster on the sets PS, Nice, Path, whereas GDA is faster on the sets P1, P2, 
M1, M2, M3. GDA is significantly faster at P2 than VBEA, and it is significantly 
slower at PS, Nice and Path than VBEA. But based on the average of the used 
running times over the test instances VBEA is twice faster than GDA.

In case of the set P1 there is a bigger difference. If we compare the results as 
the function of the running times, we find that about at 45 s (UCT time) the μ of 
VBEA is 0.90 and GDA reaches similar result only at 225.9 s. So VBEA is sig-
nificantly faster on the set P1 and it finds a better solution in the longer running 
times. We can see these details in Fig. 3, where the convergence behaviors of the 
two largest problems P1 and P2 are available.

As conclusion we can say that VBEA outperforms the heuristics, GDA and 
GRASP/PR.

5 � Conclusion

In this paper we described a hybrid EDA for 2DVSBPP; to our knowledge this is 
the first EDA with good results for this problem. Our algorithm uses a probability 
model or selection and mutation operators to generate descendants. The mutation 
operator is based on the probability model. The algorithm improves the quality of 
the solutions with local search procedures.

In the algorithm we use some new elements and techniques: composite fitness 
function, a strategy recognising almost full bins, local searches to increase 
the fullnesses of some bins and a special packing strategy with two placement 
heuristics. Using these elements the results are good, the algorithm outperforms 
the earlier published methods.

In the future we plan to apply the ideas of the algorithm on other types of the 
bin packing problems.
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