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Abstract
We examine geological crack patterns using the mean field theory of convex
mosaics. We assign the pair

(
n∗, v∗) of average corner degrees (Domokos et al. in A

two-vertex theorem for normal tilings. Aequat Math https://doi.org/10.1007/s00010-
022-00888-0, 2022) to each crack pattern and we define two local, random evolu-
tionary steps R0 and R1, corresponding to secondary fracture and rearrangement of
cracks, respectively. Random sequences of these steps result in trajectories on the(
n∗, v∗) plane. We prove the existence of limit points for several types of trajectories.

Also, we prove that cell density ρ � v∗
n∗ increases monotonically under any admissible

trajectory.

Keywords Fracture network · Evolution model · Discrete dynamical system ·
Evolution model · Tessellation

1 Introduction

Fragmentation is one of themost ubiquitous natural processes and the efforts to decode
its geometry have been at the forefront of geological research (Adler and Thovert
1999; Domokos et al. 2020; Goehring and Morris 2008; Goehring 2013; Steacy and
Sammis 1991; Nagle-McNaughton 2021; Ma et al. 2019; Aydin and DeGraff 1988;
Garcia-Rodriguez 2015; Jagla and Rojo 2002; Turcotte 1986; Peacock et al. 2018).
While many aspects of fragmentation are inherently three dimensional, the 2D aspects
of the phenomenon are interesting in their own right: the most visible fingerprints
of fragmentation are surface fracture patterns (also called 2D fracture networks) on
various scales (Goehring 2013; Turcotte 1986), ranging from mud cracks resulting
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from desiccation (Nagle-McNaughton 2021; Goehring 2013; Ma et al. 2019) (see
Fig. 1 for two examples) through basalt columns (Goehring and Morris 2008; Jagla
and Rojo 2002) to the pattern defined by the tectonic plates (Domokos et al. 2020; Bird
2003). The most common model for planar fracture geometry appear to be polygonal
patterns (Aydin and DeGraff 1988; Garcia-Rodriguez 2015). In (Domokos et al. 2020)
the geometric theory of tilings (Grünbaum and Shepard 1987; Schattschneider and
Senechal 2004), in particular, the mean field theory of convex mosaics (Bird 2003;
Schneider andWeil 2008) was applied to identify fracture networks with a point on the
so-called symbolic plane, spanned by two characteristic geometric features, the nodal
and cell degrees (Domokos and Lángi 2019; Schattschneider and Senechal 2004) (see
Definitions 4 and 5 in Sect. 2).

However, fracture networks are not static objects; they evolve in various manners.
Evolution models are popular mathematical tools, used also in operations research

(Vrankic et al. 2021). This particular evolution may be modeled by regarding an
initial fracture network (to which we will refer as primary network) and then consider
a family of discrete, local events under the random sequence of which the primary
network evolves. While these events have been described in Domokos et al. (2020),
the evolution model has not been developed and this is the goal of the current paper.
Such a model would, for example, admit the following

Question 1 Could the pattern in Fig. 1a have evolved from the pattern in Fig. 1b or
vice versa?

After constructing ourmodel in Sects. 2 and 3, wewill addressQuestion 1 in Sect. 4,
showing that the (a) → (b) evolution is not admissible in the model but the (b) → (a)
is.

In the model we will consider two types of local events which evolve the fracture
network. One such local event is undoubtedly secondary fracture where an existing
fragment particle (produced in primary fracture) is being split into two parts along a
(random) fracture line; this can be observed on rock outcrops. Another local event is
when, in the process of crack healing and rearrangement “T” nodes evolve into “Y”

Fig. 1 Desiccation crack patterns in mud, also discussed in Domokos et al. (2020). Observe different geo-
metric tiling patterns. Photo credit: a Charles E. Jones University of Pittsburgh, Pittsburgh, PA b Hannes
Grobe, Alfred Wegener Institute, Bremerhaven, Germany
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nodes; this can be observed in dryingmud and also in columnar joints (Goehring 2013;
Goehring and Morris 2008).

Our evolution model will only consider these two steps. Needless to say, the model
could be refined by considering other local events. However, even this simple model
suffices to show the principles of how such models operate in general and, as we will
show, the model based on these two steps is already rich in dynamics and promises to
explain several features of the observed natural processes.

Our paper is structured as follows: in Sect. 2 we introduce all necessary mathemat-
ical concepts. Section 3 is dedicated to the development of the model and the main
results and in Sect. 4 we draw conclusions.

2 Mathematical concepts

As models of 2D fracture networks we consider convex, normal tilings which we
define below, following (Domokos and Lángi 2019; Schneider and Weil 2008):

Definition 1 Normal tilings are 2 dimensional tessellations where each cell is a topo-
logical disk, the intersection of each of the two cells is either a connected set, or the
empty set and the cells are uniformly bounded from below and above.

Definition 2 Convex tilings are 2 dimensional tessellations where each cell is convex.

Remark 1 As a direct consequence of Definitions 1 and 2, we see immediately that
all cells of normal, convex tilings of the Euclidean plane are finite, convex polygons
(see also (Domokos and Lángi 2019).) We can also see that normal tilings of infinte
domains (such as the Euclidean plane) have infinitely many cells while normal tilings
of finite (compact) domains have a finite number of cells.

Definition 3 A node of a convex, normal tiling is a point where at least 3 cells overlap.

Remark 2 As a consequence of Remark 1 andDefinition 3, we can see that in a convex,
normal tiling the boundary of each cell contains at least 3 nodes.

Definition 4 In a normal, convex tiling the combinatorial degree v of a cell is equal
the number of nodes on its boundary and the combinatorial degree n of a node is equal
to the number of cells overlapping at that node.

Following (Domokos et al. 2022), we also introduce a concept, which is more
sensitive to the actual shape of the cells:

Definition 5 In a normal, convex tiling the corner degree v* of a cell is equal to the
number of its vertices and the corner degree n* of a node is equal to the number of
vertices overlapping at that node (Fig. 2).

Remark 3 Wecan immediately see that for all cells and nodeswe have v∗ ≤ v, n∗ ≤ n.

Definition 6 We call a node regular if n∗ � n. We call a normal, convex tiling regular
if all nodes are regular. We denote the number of all nodes by V and the number of
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Fig. 2 Illustration of the basic geometrical concepts introduced in Definitions 3, 4 and 5: Combinatorial
nodal and cell degrees n, v and corner degrees n∗, v∗

irregular nodes by VI and the quantity r � V−VI
V is called the regularity of the tiling,

r � 1 corresponding to regular tilings. (We remark that for regular tilings we have
v∗ � v for all cells. We also see that for regular nodes we have n∗ ≥ 3 whereas for
irregular nodes we have n∗ ≥ 2.)

The quantities v, v∗n, n∗ can be easily averaged on finite mosaics:

Definition 7 Let us denote the number of faces (cells), edges and vertices (nodes)
of a finite portion of a convex, balanced tiling by F, E, V , respectively. We call the
quantities

n � NV

V
(1)

v � NF

F
(2)

the combinatorial degrees of the tiling, where NF � ∑F
i�1 vi ; NV � ∑V

i�1 ni and
ni , vi denote the combinatorial degrees of the i th node and cell, respectively. Similarly,
the quantities

n∗ � N∗
V

V
(3)

v∗ � N∗
F

F
(4)

are called the corner degrees of the tiling, where N∗
F � ∑F

i�1 vi
∗; N∗

V � ∑V
i�1 ni

∗.
We remark that NF , NV and N∗

F , N∗
V will only differ due to boundary terms. In our

model (Hypothesis 1(B), Sect. 3) we will assume that the steps driving the evolution
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occur in the interior of the pattern, so the evolution of NF , NV and N∗
F , N∗

V will be
identical. For simplicity of notation we will drop the subscripts and we will refer to
F, V , N , N∗ as the fundamental quantities of the tiling.

The average degrees can also be defined for infinite normal tilings:

Definition 8 Select a sphere B(X, ρ) with center X and radius ρ, and calculate the
averages n(X , ρ), v(X , ρ) and n∗(X , ρ), v∗(X , ρ). The radius ρ is then increased
to infinity. We say that the averages n, v, n∗. and v∗ of the combinatorial and corner
degrees exist if the limits limρ→∞n(X , ρ), limρ→∞v(X , ρ), limρ→∞n∗(X , ρ) and
limρ→∞v∗(X , ρ) exist and they are independent from X. Tilings with property are
called balanced (Grünbaum and Shepard 1987) tilings.

Remark 4 Henceforth we only consider normal, convex tilings and for all infinite
tilings we require that they are balanced.

Definition 9 The [n, v] plane is called the (combinatorial) symbolic plane and the
[n∗, v∗] plane is called the (metric) symbolic plane.

Remark 5 Based on Domokos and Lángi (2019) and Schneider and Weil (2008), for
infinite, balanced, convex (a) regular and (b) irregular tilings of the Euclidean plane
we have:

(a)v � 2n

n − 2
(b)v � 2n

n − r − 1
(5)

and there exist no infinite tilings for v > 2n
n−2 and no convex tilings for v > 2n.

Definition 10 LetM be a finite part of a regular, normal, convex tiling and letM have
F faces (cells) and V vertices (nodes). Then we call ρ(M) � V

F the cell density ofM.
For infinite tilings we use the limit process described in Definition 6.

Remark 6 We can immediately see that ρ(M) � v(M)
n(M) � v∗(M)

n∗(M)
. So, the cell density

can be expressed by the average cell degree and average nodal degree, but its value is
independent of the definition of these degrees.We can also see that ρ(M) � constant
lines correspond to rays passing through the origin of the symbolic plane.

3 An evolutionmodel for fracture networks

Our model is inspired by Domokos et al. (2020), where planar fracture patterns have
been analyzed and classified in the symbolic plane, based on their nodal and cell
averages. The theory presented in Domokos et al. (2020) also gives a clue how primary
crack networks emerge and what their geometrical properties are. Although this is not
the subject of the current paper, we remark that, according to Domokos et al. (2020),
one dominant mechanism for global primary crack networks are deformations under
shear and this produces regular mosaics with averages close to (n∗, v∗) � (4, 4).Here
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we take one further step and build a model to study not only their current state but also
their evolution in the symbolic plane.

We start by defining our main hypothesis. While we believe that this hypothesis
captures several aspects of physical fragmentation, our goal is not just to define this
particular evolution model but also to demonstrate how such a model is constructed
and how it operates.

Hypothesis 1

(A) The fracture network is a finite domain of a convex, balanced tiling of the
Euclidean plane.

(B) Evolution of the crack pattern takes place in a series of discrete events in the
interior of the crack pattern. These events consist of 2 step-types (R0,R1) to be
detailed below. The order of the step-types is important: we assume that the first
k pieces of R1 steps are preceded by at least (k/2) pieces of R0 steps. (This is
explained in detail below when we define step R1.)

(C) 1. During secondary cracking, one cell of the primary crack network is split
into two parts along a straight line segment, connecting two points belonging
to the relative interior of two different edges of the cell. (R0 type step). It is
easy to see that R0 type steps retain the convexity of the initial mosaic. See
Fig. 3.

2. (2) During crack healing-rearrangement, the edges and nodes of the crack
network are rearranged so that “T” nodes evolve into “Y” nodes (Goehring
2013) and each such event corresponds to an R1-type step. Obviously, this
step can only be performed on an irregular “T” node. Since we assumed the
initial mosaic to be regular and one step of type R0 generates two irregular
nodes, the first k pieces of R1 steps must be preceded by at least (k /2) pieces
of R0 steps. See Fig. 3.

For clarity, below we summarize in Table 1 how the steps R0 and R1 operate on
the fundamental quantities F, V , N , N∗ of the tiling. Since we evolve the tiling in
discrete steps and we introduce the serial number k of the step as a subscript to the

Fig. 3 Geometry of evolution steps R0 and R1 used in the model based on Hypothesis 1. In (a), (b), (c) and
(d) we illustrate how step R0 operates and in (e), (f), (g) and (h) we illustrate how R1 operates on the
fundamental quantities F, V , N , N* of the tiling
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Table 1 Evolutionary equations for the steps R0 and R1 used in the model based on Hypothesis 1

Step type Name of the step Nk N∗
k Fk Vk

R0 Secondary cracks Nk−1 + 6 N∗
k−1 + 4 Fk−1 + 1 Vk−1 + 2

R1 Crack healing rearrangement Nk−1 N∗
k−1 + 1 Fk−1 Vk−1

aforementioned variables. Table 1 shows eight recursion formulae of the type xk �
f(xk-1) where the symbol x represents the fundamental quantities F, V , N , N∗. See
also Fig. 3 for illustration.

Definition 11 Let M be a finite, convex, normal mosaic characterized by an initial
state (n∗

I , v
∗
I ) and let us denote by (n∗

p, v
∗
p) the limit point on the symbolic plane,

reached after applying an infinite random sequence of R0 and R1 steps, with respective
probabilities 1 − p, p and we call this a p-trajectory.

Remark 7 We mention two special p-trajectories: 0-trajectories correspond to
sequences consisting entirely of R0-type steps and 1-trajectories correspond to
sequences consisting entirely of R1-type steps. We also mention that the mosaics
corresponding to any finite number of evolution steps R0 and R1 are, like the initial
mosaic M , finite, convex, normal tilings. However, the limit point (n∗

p, v
∗
p) does not

correspond to a normal mosaic, it should be regarded as a point of the symbolic plane.

The following lemma applies to general p-trajectories:

Lemma 1 Let M be a finite, normal, convex mosaic characterized by an initial state

(n∗
I , v

∗
I ). Then, for all p-trajectories we have

(
n∗
p, v

∗
p

)
�

(
4−3p
2−2p ,

4−3p
1−p

)
.

Proof

(a) After the first c(1-p) steps of type R0 we have:

N∗(c, p) � N∗
0 + 4c(1 − p); F(c, p) � F0 + c(1 − p); V (c, p) � V0 + 2c(1 − p).

(b) After cp steps of type R1 we have:

N∗(c, p) � N∗
0 + cp; F(c, p) � F0; V (c, p) � V0.

Now we can compute limit for the mixed trajectory as c approaches infinity. Using
(3) and (4) we can write:

n∗
p � limc→∞n∗(c, p) � limc→∞

N∗
0 + 4c(1 − p) + cp

V0 + 2c(1 − p)
� 4 − 3p

2 − 2p
,

v∗
p � limc→∞v∗(c, p) � limc→∞

N∗
0 + 4c(1 − p) + cp

F0 + c(1 − p)
� 4 − 3p

1 − p
.

�
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Fig. 4 Numerical simulation of p-trajectories on the symbolic plane. With initial mosaic at
(
n∗
I , v

∗
I

) �
(3.11, 4.4) (black circle with grey fill) we show 5 trajectories corresponding to p � 0, 1/2, 2/3, 3/4, 1,
respectively. Limit points marked by colored circles with white interior. As predicted by Lemma 1, all
limit points are on the v∗ � 2n∗ line. Domain occupied by convex mosaics shown with black line, cf
Domokos and Lángi (2019). Terminal points of physical trajectories marked by colored circles with double
line. Dashed black lines correspond to v∗ � 2n∗ and v∗ � n∗v∗

I /n
∗
I , respectively

The result of Lemma 1 is illustrated in Fig. 4 where we computed standard p-
trajectories for p � 0, 1

2 ,
2
3 ,

3
4 , 1.

Remark 8 We can see that all limit points lie on the v∗ � 2n∗ line. However, the
physically relevant portion of the trajectory may terminate earlier. This is easiest
understood if we consider the following argument: when constructing physically rel-
evant p-trajectories we also have to consider Hypothesis 1, C(2) which implies that
the necessary condition for an infinite p-trajectory to be physical is p ≤ 2/3, as at
least half as many R0 steps are needed as we have R1 steps. For p ≥ 2/3, the physical
part of the trajectory will terminate as the mosaic becomes regular at (or, for finite
mosaics, near) the hyperbola defined in (5)(a). Beyond this point, the trajectory exists
only in an algebraic sense (as a sequence of numbers) to which we do not attach any
direct geometric interpretation. We also mention that, as p → 1, the tangent of the
trajectory at (n∗

I , v
∗
I ) will approach the ρ � constant line with constant cell density

passing through (n∗
I , v

∗
I ), characterized by v∗ � n∗v∗

I /n
∗
I .
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Remark 9 So far we described p-trajectories on finite domains and these trajectories
appear on the symbolic plane as discrete point sequences. Based on Lemma 1, these
sequences have limit points and the location of these points is independent of the
initial point (n∗

I , v
∗
I ), it just depends on the value of p. Now we extend this concept

for the case where the initial mosaic is a balanced, infinite tiling M with averages
(n∗

I (M), v∗
I (M)). We regard the limit process described in Definition 8: each finite

value of the radius ρ defines a finite mosaic M(ρ) and we have a p-trajectory on
M(ρ) with initial point (n∗

I (ρ), v
∗
I (ρ)) and final point (n∗

p, v
∗
p), the latter being inde-

pendent of ρ. Let us now regard a sequence of ρ approaching infinity. Then we have
limρ→∞(n∗

I (ρ), v
∗
I (ρ)) � (n∗

I (M), v∗
I (M)). We can run the same limit process after

having executed a finite number of steps of a p-trajectory and after any finite num-
ber of steps we get convergence. So we can see that this process defines a sequence
of trajectories which converge. We call the limiting p-trajectory with initial point
(n∗

I (M), v∗
I (M)) and final point (n∗

p, v
∗
p) the p-trajectory associated with the infinite,

balanced tiling M. We also note that trajectories corresponding to infinite tilings are
represented in the symbolic plane by continuous line.

Needless to say, p-trajectories represent only a rather restriced class of geological
evolution processes for fracture networks. In such a process, the ratio of R0-type and
R1-type evolution steps remains constant. However, our model also admits statements
of more general type.

Relying on Definitions 10 and 11 we make the following observation:

Lemma2 In the discrete-time fracture network evolutionmodel formulated inHypoth-
esis 1, the cell density ρ(M) increases monotonically over time.

Proof Since there are two steps in themodel (R0 andR1), so, if we can show separately
for both step-types that the cell density does not decrease, we have confirmed the
statement of Lemma 2.

In the case of R0-type steps we have N∗
k0

� N∗
k0−1 + 4; Fk1 � Fk1−1 + 1; Vk1 �

Vk1−1 + 2 (see Table 1) Note that from Definition 10 we have ρ(M) � V
F , and we also

note, based on (Domokos and Lángi 2019), that for any convex mosaic we have have
ρ(M) ≤ 2 (see also Remark 5). Based on these observations we see that cell density
is increasing strictly monotonically under R0-type steps.

In the case of R1-type steps we have N∗
k1

� N∗
k1

+ 1; Fk2 � Fk2−1; Vk2 � Vk2−1
(see Table 1), so here the cell density does not change.

As described above, in the crack network evolutionmodel formulated inHypothesis
1, the cell density is either constant or increasing in each step. �

So far, we did not make any additional restrictions on the initial mosaicM beyond
requiring that it should be a convex, normal tiling. However, typical primary fracture
networks have special position on the symbolic plane; in Domokos et al. (2020) it
was argued that if the network is created by long straight fracture lines, then this
corresponds to the point (n∗, v∗) �(4,4) of the symbolic plane. Motivated by this
geological observation we formulate.

Lemma3 In the discrete-time fracture network evolutionmodel formulated inHypoth-
esis 1, if we choose an initial (starting) mosaic with v∗

I (M) < 4 then the cell corner
degree v∗increases strictly monotonically over time.
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Proof Since there are two steps in themodel (R0 andR1), so, if we can show separately
for both that the cell corner degree is increases in the case of an initial condition with
v∗
I (M) < 4, then we have confirmed the statement of Lemma 3.
In the case of R0-type steps we have N∗

k0
� N∗

k0−1 + 4; Fk1 � Fk1−1 + 1; Vk1 �
Vk1−1+2 (seeTable 1).Basedon formula (4)we see that if in the initial statev∗

I (M) < 4,
v∗ will increase in the first step. Also, we have v∗<4 after any finite amount of steps
and, as a consequence, v∗ is increasing strictly monotonically under R0 type steps.

In the case of R1-type steps we have N∗
k1

� N∗
k1
+1; Fk2 � Fk2−1; Vk2 � Vk2−1 (see

Table 1), so, based on formula (4), here the cell corner degree v∗ is always increasing,
regardless of the initial value. �

4 Interpretation of the results and potential applications

Lemma 1 establishes the v∗ � 2n∗ line as the global attractor for p-trajectories, i.e. for
fracture pattern evolution processeswhere the relativeweight of secondary fracture and
crack healing/rearrangement remains constant over time. Our simple model represents
crack pattern evolution in a constant environment. Geological evolution processesmay
be much more complex and so it appears to be feasible to approximate them piecewise
by p-trajectories. All such general processes will ultimately converge onto a point of
the v∗ � 2n∗ line and this suggests that this line may have indeed significance, even
beyond p-trajectories. This observation is underlined by Lemma 2 which states that
cell density is growing monotonically over time. The v∗ � 2n∗ line represents convex
mosaics with maximal cell density ρ(M) � 2.

Since cell density evolves monotonically, it defines a hierarchy among fracture
patterns. This hierarchy may be defined even more sharply by connecting mosaics
with a p-trajectory; however, this may not always be possible. In this respect we
formulate.

Conjecture 1 Let M1 and M2 be two infinite, convex, balanced mosaics. Then, in
this model, they can be related two different ways: Either there exists a unique value
0 ≤ p(M1, M2) ≤ 1such that a unique p-trajectory connects M1 and M2 or there is
no p-trajectory connecting M1and M2.

In the first case we can say that M1 and M2 are p-related, in the second case we
say thatM1 andM2 are unrelated in the model. While these considerations are neither
entirely rigorous nor are they supported by experiments, our model and the results
derived from this model suggest that thematurity of a fracture network may be related
to the cell density ρ(M) of the convex mosaic representing it.

In Fig. 5 we show two mud crack patterns (discussed in detail in Domokos et al.
(2020), shown in Fig. 1a, b of the current article) connected by a p� 0.685 trajectory in
the (b) → (a) direction. While this connection certainly does not indicate that pattern
(a) evolved from pattern (b), it does tell us that the inverse would not be compatible
with the model and this might help a meaningful geological comparison. We also
remark that desiccation would suggest an opposite evolution, however, that would
certainly not produce an exact (a) → (b) trajectory. The existence of a trajectory in
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A discrete time evolution model for fracture networks 93

Fig. 5 Mud crack patterns shown in Fig. 1a, b of this paper [from Fig. 3 in Article (Domokos et al. 2020)],
connected by a p � 0.685 trajectory in the direction (b) → (a)

the opposite direction suggests that in a wet environment this evolution could possibly
take place.
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