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Abstract

The Nash Demand Game (NDG) has been one of the first models (Nash in Economet-
rica 21(1):128-140, 1953. https://doi.org/10.2307/1906951) that has tried to describe
the process of negotiation, competition, and cooperation. This model has had enormous
repercussions and has leveraged basic and applied research on bargaining processes.
Therefore, we wonder whether it is possible to articulate extensive and multiple devel-
opments into a single unifying framework. The Viability Theory has this inclusive
approach. Thus, we investigate the NDG under this point of view, and, carrying out
this work, we find that the answer is not only affirmative but that we also advance in
characterising viable NDGs. In particular, we found foundations describe the distribu-
tive Bargaining Theory: the principle of movement and the principle of chance and
necessity. Finally, this initial work has many interesting perspectives. The probably
most important idea is to integrate developments of the Bargaining Theory and thus
capture the complexity of the real world in an articulated way.

Keywords Bargaining Theory - Viability Theory - Nash Demand Game

1 Introduction

The seminal work of Nash (1953) posed three important questions that remain open
in distributive Bargaining Theory: How to reach an equitable agreement? How to
discriminate between multiple equilibria? How do bargainers come to a break in a
negotiation process? Indeed, in the original game proposed by Nash (the so-called
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Nash Demand Game), there is a multiplicity of equilibria that implies an infinite
continuum of agreements.

1.1 The classic Nash demand game

The Nash Demand Game is a simultaneous static non-cooperative game, in which the
parties have complete knowledge and do not communicate. The Nash Demand Game
is a static bargaining process that can be described as follows. Suppose two negotiators
are trying to distribute a pie of size 1. Both negotiators observe the current state of
the negotiation represented by fractions of the cake demanded by them. If the total
amount requested by the bargainers is less or equal than 1, both negotiators get their
demand. If the total quantity is greater than 1, neither player gets their request, and
the game ends.

We propose in this article to consider a repeated version of this game as follows: at
each step, players replay simultaneously under the same conditions until they reach
an agreement or a breakdown. After observation, both offer to increase or decrease
their demand. This dynamic version can be considered a simplified version of the
bargaining model proposed by Rubinstein (1982) in which players play alternately.
In fact, in the Rubinstein bargaining model, the first player makes an offer, if the
second player rejects, the game continues to the next period in which the second
player makes an offer, if the first rejects, the bargainers move to the third period, and
so on. Additionally, delays are costly in the Rubinstein bargaining model.

More formally, consider two bargainers, Emile and Frances, want to distribute a pie
of size 1. Each player simultaneously chooses a portion of the pie, say x (for Emile)
and y (for Frances), such that x, y € [0, 1]. Let us define H = R? the event space and
the subset of possible agreements by

C={(x,y)eH:x,ye[0,1]andx +y < 1}.

The loss functions of Emile and Frances are given by

JE:H —>]—o00,400]: (x,y) = felx,y) = —x +1c(x,y)
and

friH —]—o00,+00]: (x,y) = fr(x,y) =—y+ic(x,y),
respectively, where (¢ is the indicator function.! Each player’s problem must satisfy
two classes of constraints: a feasibility constraint x, y € R and an agreement con-
straint x + y < 1. The intersection of both subset will be called the set of possible

agreements. Observe that given these constraints, the strategies must belong to the
interval [0, 1], i.e., x, y € [0, 1]. For instance, since Frances’ strategy is y € R4, a

1 tc (x, y) takes the value O if (x, y) € C and 400 otherwise. We have included all mathematical definitions
in the “Appendix” for completeness and consistency.
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Fig.1 The classic Nash Demand
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feasible strategy for Emile satisfying the constraint x + y < 1 necessarily implies that
x <1

According to the classical Nash Demand Game, each player tries to minimise her
own loss function until an equilibrium is reached, if it exists. Let (x,y) € C be a
possible Nash equilibrium bi-strategy, then it must satisfy fg(x,y) < fg(x,y) and
fr(x,y) < fr(x,y) for any (x,y) € C. Additionally, we say that the bi-strategy
(x,y) € C is a Pareto optimum if there not exist another bi-strategy (x, y) € C such
that fr(x,y) < fe(x,y)and fr(x,y) < fr(X,¥). Itis not difficult to demonstrate
the following Proposition.

Proposition 1 Let us define the classical Nash Demand Game by the loss functions
fE, fr and by the subset of possible agreements C as before. Then the set of Nash
equilibrium strategies is given by {(x, y) € C : x +y = 1}, which coincides with the
set of Pareto optimal bi-strategies.

Proof See Laengle and Loyola (2010).

Figure 1 illustrates the main questions poses the classic Nash Demand Game: How
to reach an equitable solution? How to discriminate between multiple equilibria?
How do you get to a negotiation breakthrough? The coloured area represents the set
of possible agreements while the blue point represents the unique equitable solution.

Previous articles also describe the Nash Demand Game with a unique equilib-
rium but achieve this either by introducing uncertainty into the game’s information
structure, extending the game to a multi-stage framework with a schedule of offers
and counteroffers (Rubinstein 1982), or formulating an evolutionary version of the
game (Young 1993). Alternatively, the equilibrium problem presented here can also
be generalised and formulated using variational inequality models (see for instance
Chinchuluun et al. 2008; Giannessi et al. 2004 and Konnov 2007).

To address the three fundamental questions underlying the Nash Demand Game, we
have proposed in previous works a model with externalities. In this model, the parties
select a smaller set of equilibria and, eventually, the equitable solution. It is a model in
which agents suffer from externalities that can represent envy or resentment. Thus, the
agents not only prefer a larger pie part but also feel repulsion of the counterpart pie part.
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The base model can be found in Laengle and Loyola (2010), it has been applied to the
ultimatum game (Laengle and Loyola 2015) and extended to asymmetric information
(Laengle and Loyola 2014). Probably the most interesting interpretation of this model
is that of a highly polarised environment (see the case of negotiations with the FARC
in Colombia under this perspective, Laengle et al. 2020).

In the following subsections, we will present a summary of the axiomatic proposals
underpinning the Nash Demand Game and then describe the Nash Demand Game’s
relationship with the research in distributive Bargaining Theory.

1.2 Explanatory axioms of the Nash demand game

To explain how agents reach a fair settlement, Nash (1953) introduced the now-known
Nash Bargaining Solution. The starting point of this solution assumes that the final
agreement solution should meet some desirable properties such as symmetry and
Pareto optimality. Inspired by this work, other solutions have been proposed based on
slightly different axioms concerning the properties of the final agreement point. Here
are the main ideas.

The Nash Bargaining Solution is a final agreement that assumes a set of desirable
axioms or properties of the solution and the utility functions of the parties. Supposing
such requirements, we get an expression of a unique utility function that the parties
should agree to reach that solution.

The first axiom refers exclusively to utility functions and is called invariance. A
utility function is said to be invariant if maintains, after a transformation, the same
ordering over preferences and so should not alter the outcome of the bargaining process.
In particular, Nash’s original work requires invariance of utility functions for linear
transformations.

The second axiom refers to utility functions and the set of possible agreements. This
property is called Pareto optimality. It consists of that that a solution to a bargaining
game should come up with an agreement which is desirable for both players. Once an
agreement has been reached, an arbitrator, therefore, will not propose an alternative
that improves the loss function of one player and not improve the of other players.

The third axiom is called independence of irrelevant alternatives. It can be expressed
as follows: if A is preferred to B, the introduction a third option C, expanding the
choice set to {A, B, C}, do not make B preferable to A. This property also refers to
utility functions through preferences.

The fourth axiom refers to the need for justice and is called symmetry. A reasonable
arbitrator will require fairness: if the game is symmetric, i.e., both negotiators have the
same bargaining power, then the solution proposed to each player should not favour
a party. This property, like the one above, is also related to the preferences that the
parties have individually.

From the previous axioms and assuming the parties cooperate and communicate,
Nash proved that the utility function satisfying these four axioms is the function
f(x,y) = xy. That is to say, both sides agree to maximise this common function,
which has at most the equitable solution.
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This set of axioms has inspired further work by slightly modifying the original set.
The first proposed axiom is called resource monotonicity, a fair division principle. It
states that, if there are more resources to distribute, then all agents should be weakly
better off, i.e., no player should lose from the increase in resources. This principle has
been studied extensively in various distribution problems (Moulin 2003).

E. Kalai and M. Smorodinsky proposed an alternative axiom to the monotonicity of
resources called the independence of irrelevant alternatives. Such assumptions lead
to the so-called Kalai-Smorodinsky bargaining solution. It can be stated as follows:
if alternatives of a set were not selected when the set was available and if they are not
available anymore, the solution should have the same outcome.

Kalai (1977) also subsequently introduced a third solution, which drops the con-
dition of invariance while including both the axiom of independence of irrelevant
alternatives and the axiom of resource monotonicity. This solution attempts to grant
equal benefit to the parties. In other words, it is the point which maximises the min-
imum payoff among players. Kalai notes that this solution is related to the ideas of
John Rawls expressed in Rawls (2009).

Additionally to the formulation of a set of axioms that explain the desired behaviour
of negotiators, the Nash Demand Game has also stimulated the development of appli-
cations of Bargaining Theory that we summarise below.

1.3 The Nash demand game and research in Bargaining Theory

The Nash Demand Game raises fundamental questions that have prompted a variety
of research agendas, including the axiomatic proposals we summarised in the previous
subsection. The Bargaining Theory has also resulted in a huge number of applications,
expansions, and generalisations. We can find in the literature various ways of grouping
the concepts that define certain archetypes of problems allowing to synthesise and
organise concepts in a unified way. In particular, we can cite the work of Muthoo
(1999) and Vetschera (2013).

Muthoo (1999) proposes in his book a typology based on the forces that drive the
strategic interaction of negotiators. In words of the author:

The chapters are organised around the main forces that determine the bargaining
outcome. I not only analyse the impact on the bargaining outcome of each force
but I also often analyse the relative impacts of two or more forces. And, secondly,
from an applied perspective, I show how the theory can be fruitfully applied to
a variety of economic problems (Muthoo 1999, xiii).

A. Muthoo proposes a typology based on the relative power that negotiators and on
applications in the field of economic theory. This classification is visible after a quick
review of his book, which, according to us, can be summarised as follows:

1. The first group of forces drives the negotiation process to equitable solutions. The
Nash Bargaining Solution (Nash 1953), and the extended model of the Rubinstein
(1982), are particularly important in this group.
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2. A second group has to do with forces leading to the negotiation breakdown. Phe-
nomena as inside and outside opportunities, asymmetric information, commitment
tactics, and repeated bargaining are relevant in this group.

3. Both groups are intertwined and articulated with a significant number of applica-
tions such as the bribery and the control of crime, union-firm negotiations, moral
hazards in teams, sovereign debt negotiations, and the game of wars of attrition,
just to quote a few.

On the other hand, the proposed archetypes of R. Vetschera, published in Vetschera
(2013), is also of great interest and is different from that of A. Muthoo. In words of
the author:

[It] provides a comprehensive survey of process models of negotiations. We
consider models of the substantive process of offer exchange, as well as models
focusing on communication content in negotiations, both at the level of individual
actions and interactions, and at more aggregate levels. These different models
are integrated into a comprehensive framework, and open areas for research are
identified (Vetschera 2013, 135).

R. Vetschera structures negotiations as collective decision processes or as an outcome
of individual decision processes. So it is possible to look the entire negotiation process
as one decision process reflects a macro or global perspective (Koeszegi and Vetschera
2010; Olekalns et al. 2003), while individual decisions or interactions reflect a micro-
or local perspective.

Taking into account both perspectives, we postulate that it is also possible to study
negotiation processes by using the intuitions of the mathematical Viability Theory. This
theory is based on the fact, that many systems and organisations that arise in biology
and social sciences, evolve in a Darwinian way, subject to random fluctuations and
restricted to remain in a viable environment (Aubin and Cellina 1984; Aubin 2009;
Aubin et al. 2011).

In the next section, we introduce mathematical elements of the Viability Theory that
apply to the Bargaining Theory. Then, in Sect. 3, we apply the theory to the problem of
the Nash Demand Game and Nash Bargaining Solution. In this way, we are trying to
discover how the Viability Theory can help us answer fundamental questions regarding
the behaviour of agents in a bargaining process.

2 A unifying perspective of bargaining processes

Inspired by the Viability Theory (Aubin and Cellina 1984; Aubin 2009; Aubin et al.
2011), we postulate in this article two unifying principles of the players behaviour in a
distributive negotiation environment. The main results of the Viability Theory provide
us with a rich analogy with negotiation processes. In particular, it allows us to define
a negotiation as the strategic interaction between the parties that drives bargaining
trajectories.

The first principle is movement. It means that negotiating paths move between
regions, sets of agreements, or eventually drift to disagreement zones. The minimum
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set of desirable states is called the set of possible agreements or set of viable states.
More precisely, this viable set contains initial states of at least one viable trajectory
forever. This set may contain, in particular, trajectories that eventually lead to equilib-
rium or socially optimal states. A non-viable set, on the other hand, is one that contains
disagreement states or contains start points that only lead to a breakdown.

The second principle assumes that agents move guided by chance and necessity.
The necessity requirement says that at each instant, a trajectory of possible agreements
needs to remain viable. On the other hand, negotiation processes require options, forces
or mechanisms that do not violate restrictions on possible agreements. They constitute
the chance for agents to guide the negotiation process to the desired zone.

In the following subsections, we will describe how negotiation processes can be
interpreted in the light of these principles.

2.1 First principle: movement to desirable zones

Thus, negotiation processes are dynamic systems whose trajectories move between
more or less desirable areas and are guided by agents according to chance and necessity.
Such zones or sets of states can be mathematically characterised in the Viability Theory,
in fact, Aubin (2001) proposes a typology of viable sets that we will use in this section.

There are one or more zones that are the most preferred, for example, the Nash or
Pareto bi-strategy equilibrium zone. We call this zone target area (coloured in blue
in Fig. 2). For instance, a Pareto area is very desirable if it is also equilibrium (not
necessarily Nash equilibrium). In addition to the target zone, there is a region of
possible agreements that contains starting points such that have at least a trajectory
that leads to a target zone. It is a viable capture basin of the target zone and is coloured
green in Fig. 2. Thirdly, there is a desirable base or minimum area that we call the
viable zone of all possible agreements. This third region ensures that, if you start in
it, there will be a trajectory that remains in the negotiation even if it does not reach
the final solution (yellow zone in Fig. 2). Finally, there is a red region that we will
call death zone, so-called, because all the trajectories that start in that area lead to a
disagreement.
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Each area of possible agreements will be mathematically defined and characterised
by applying the Viability Theory in Sect. 3. Table 1 introduces definitions and notation
we will use.

There are movements between sets that are more desirable than others. In fact,
among all these sets there are clear preferences. It is clear, for example, that the target
zone B (blue zone) is the set most preferred, and C\V(C, B) (red zone) is the set least
preferred. Indeed, the red zone acts as the repellent of the negotiation process, that is:
a process that begins in that area ends irretrievably in a break. Also, the capture basin
of B that we have denoted C(C, B) (green zone) is preferred to the purely viable area
V(C) (yellow zone). Additionally, the set of trajectories that are viable in C forever
or until they reach the target B in fine time is denoted by V(C, B) and is equal to
V(C)UC(C, B). Let us then assume that we define an order < on the set 2€  then this
order should satisfy at least the following relationships

(C\V(C, B)) =V(C) =C(C, B) = B.

We think that this approach, based on the principles of movement, and chance and
necessity, offers a very suggestive way of unifying and understanding the negotia-
tion processes. In the following subsection, we introduce the principle of chance and
necessity.

2.2 Second principle: chance and necessity

To explain the second principle we will resort to concepts of the Viability Theory
making use of differential inclusions and convex analysis in metric spaces. Thus, we
will model a bargaining trajectory as a sequence of states {x,},en that are guided by
a collective bargaining rule ¢ as follows

Xpt1 — Xp € (Xp11).
The basic problem of viability can be posed as follows: Given a restriction of possible

agreements C find the set of initial states x € C, such that there is at least one
bargaining trajectory {x,},en guided by ¢ to remain viable forever, i.e.,

xo =xand (Vn e N) x,, € C.
With this formulation we can interpret clearly the principles of the Bargaining Theory

and express them as follows: Determine conditions and find negotiating trajectories
{xn}nen that

(VneN) xpp1 —xp € pxpr1) € _C .

trajectory chance necessity

Conditions for viability is one of the most important concepts of the Viability Theory
and Nonlinear Analysis. Given a bargaining state x, the Viability Theory provides a
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condition (1) on the set of possible agreements C and (2) on the possible collective
chances ¢ for satisfying the necessity to remain viable. This condition is called the
tangential condition formulated as follows

Vx e C)pxNTcx #0,

where Tcx represents the set of possible viable states that start from an initial state
x € C. If there is at least one element of Tcx that is possible to obtain from the
collective bargaining rule ¢x, then we say that the chance exists for satisfying the
necessity C.

Below we introduce the mathematical foundations of the Viability Theory that
we will apply to the Bargaining Theory. We present our proposal in the context of
Hilbert spaces. Thus, it is possible to represent in our formulation a wide range of
stochastic processes (e.g., random variables with finite second moment) as well as
cases in continuous or discrete time.

2.3 Adding formal concepts from the Viability Theory

The negotiating study involves describing and investigating how negotiators select
alternatives to reach agreements, solutions, optima, equilibria or, eventually, negoti-
ating breaks. From the simple illustration in the previous section, we will add formal
concepts of the Viability Theory.

Let us consider H the event space, i.e., the universe of all values states of negotia-
tion, agreements, solutions, and, eventually, random variables. The event space H is a
Hilbert space.” The possible agreements set is a subset set C of . We will consider
C a nonempty compact convex subset of H. There are possible agreements that only
arrive at a disagreement, that are therefore not viable. We are interested in finding a
subset of possible agreements C, from where at least one negotiating trajectory that
remains viable begins. This set is called viability kernel. There are also viable points
of agreements, from which it is possible to reach a subset of desired agreements (such
as the fair solution) or farget set. This subset will also be important to us we call it
viable capture basin of some target set. We will mathematically define both sets and
others in this subsection.

Now, let us consider again our negotiators Emil and Frances. Emil’s task is to
select a strategy x in the set E and that of Frances is to select a decision y in the
set F'. We will consider that £ and F are nonempty compact convex subsets of H.
The pair (x, y) € E x F is called the bi-strategy. The selection (x, y) carried out by
Emil and Frances is conducted by decision rules. That is, Emil’s decision rule is a
set-valued map y +— ¢y, which associates each state y € F of Frances with the
state x € ¢y, which may be offered by Emil (by selecting x € E) when he knows
that Frances is demanding y. Similarly, a decision rule of Frances is a set-valued map
x +— @rx, which associates each demand x € E of Emil with possible demands
y € ¢rx, which may be offering by Frances (by selecting y € F) when she knows

2 In order not to lose the fluency of the reading we have left in the “Appendix” definitions of greater
mathematical rigour.
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that Emil is demanding x. Let ¢ = ¢ X ¢F be the set-valued map defined pointwise
by (x,y) — ¢(x,y) = ¢ry X ¢rx. Thus, given the bargaining rules ¢z and ¢ that
describe the behaviour of Emil and Frances respectively, the set-valued ¢ describes
the behaviour of collective bargaining trajectories. By abusing the notation, we will
call the composed decision rule ¢ as a decision rule. Mathematically, ¢ : C — 2H
will be an upper hemicontinuous set-valued operator with nonempty closed convex
values.

Moreover, we will define a bargaining trajectory (o simply trajectory) as a
sequence of states of negotiation {(x,, y,)},en defined in H driven by ¢, i.e., such
that

(Vn € N) (xp, yn) € Xnt1, Yut1) — @(Xnt1, Yn+1)-

In particular, we are interested in trajectories that remain on the bargaining set. We
call this type of trajectories a viable trajectory, while the set of viable trajectories is
called a viable set. That is, we define a bargaining set as viable if for every starting
state (x, y) € C there is at least a sequence driven by ¢ such that the trajectory remains
at C. More formally, let us remember that C is a compact convex subset of H, so we
define V(C) the viability kernel of C as the set of initial states (x, y) € C such that
there exists a trajectory {(x,, yn)}nen driven by ¢ with (xo, yo) = (x, ¥) such that

(Vn e N) (x,,, yp) € C.

Let B C C a target set. Let C(C, B) the viable capture basin of C with target B
is the set of initial states (x, y) € C such that there exists a trajectory {(x, Y»)}neN
driven by ¢ with (xg, yg) = (x, y) and k € N such that

Vn € {0,...,k}) (xn, yn) € C and (x¢, yx) € B.

Finally, the subset of possible agreements that are viable in C forever or until they
reach the target B in finite time is called the viability kernel with target B and is
given by

V(C, B) =V(C)UC(C, B).
Let us observe that if B = {, i.e., players do not have a target set, then C(C, ) = ¢
and V(C, ) = V(C).
In this context, we will describe in the next section the fundamental questions of
mathematical Bargaining Theory.
3 Applying the Viability Theory to the Nash demand game
In this section, we will try to describe trajectories or movements of the distributive

Bargaining Theory. The first problem tries to answer the following question: Given a
bargaining set C of an event space H, what characteristics should a decision rule have
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Fig.3 The set of possible
agreements is represented by the
triangle C. The first question we
try to answer is: What are the
values p such that the set C
remains viable, i.e., for each
start point in C there exists a
bargaining trajectory remains in
C? (colour figure online)

of ¢ such that it is able to drive a trajectory that remains in the bargaining set? The
second problem is describing the Nash Demand Game’s movements or negotiating
trajectories. Finally, we will describe the movements of the trajectories proposed by
the Nash Demand Game in a more general context of polarised negotiation.

3.1 Modelling the viability principles

Let us consider H = R?, the subset C = {(x,y)eH:x,ye[0,1]and x +y < 1}.
Leto, B € R and u € Ry, we will also consider the set-valued operator

@:C— 2" (x,y) > @, y) = ((ax+By+p, Bx+ay+q) : p.q € [—pu, +ul}.

The question we will try in this subsection is related to the Fig. 3. The first question
we try to answer is: What are the values u such that the set C remains viable, i.e., for
each start point in C there exists a bargaining trajectory remains in C? The following
Theorem answers the question and its proof is based on the dual tangential condition.

Theorem 1 Let C be the bargaining subset and ¢ the bargaining rule defined as before.
Define B = (. A sufficient condition for the viability of C under ¢ is that

n = max{lal, |B], (@ + B)/2}.

Furthermore, V(C) = C, C(C,®) =@, and V(C, ?) = C.

Proof First, let us observe that C is a bargaining set of the event space H and ¢ a
legal bargaining rule. We will try to find the value p which assure that the entire C is
the kernel of viability of C. For doing this, we will use the dual tangential condition,
which is equivalent to the tangential condition (see Proposition 5 in “Appendix”). The
dual tangential condition says

(V(x,y) € O)(¥(u, v) € Nc(x, y)) sup(p(x, y)| — (u, v)) = 0. ey
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Since for all (x, y) € int C, we have Nc(x, y) = (0, 0), then the inequality is trivially
satisfied. Thus, we will continue assuming that (x, y) ¢ int C.

Second, let us prove that the dual tangential condition (1) is equivalent to the
following expression

(VO € [0,27)(V(x,y) € S(O)) sup{e(x, y)| — (cosd,sinh)) > 0, )

where S(0) = {(x,y) € H : sup(C|(cos 8, sinf)) = x cosb + ysinf}. Indeed, let
us assume the expression (1) is true and fix 6 € [0, 2x[ and (x,y) € S(@), thus
sup(C|(cos @, sinf)) = xcosf + ysinf. Now, replace u, v for u = rcosf and
v = rsin6 with || (u, v)|| = r? # 0, whence sup(C|(u, v)) = xu + yv, i.e., (u,v) €
Nc(x, y), therefore sup({¢(x, y)| — (cos 6, sin#)) > 0. The inverse implication (from
expression (2) to (1)) follows the same argumentation.

Third, we need to find © € R suchthatforall@ € [0, 27[ and for all (x, y) € S(6)
the following dual tangential condition is satisfied

sup {((ax + By + p, Bx + ay + ¢q)| — (cos 6, sin0)) : p,q € [, +ul} > 0,
or, equivalently, we need to find u € R4 such that for all 8 € [0, 27 ]

sup{(ax + By)cosf + (Bx +ay)sinb : (x,y) € S()}
+inf{pcosf +gsinb : p,q € [—u, +u]} < 0. 3)

We will proceed case by case:
(i) The first case is 6 €]37 /2,27 [, whence (x,y) = (1,0). Let us observe that
cosf > 0 and sinf < 0. The inequality (3) becomes for all 6 €]37 /2, 2|

acosf + Bsinfh — pcosh + psinh <0,
which becomes (¢ — p)cos6 + (B + w)sinf < 0, which is satisfied if © >
max{lel, |Bl}.

(ii) The second case is 8 € [0, w/4[, whence (x, y) = (1,0). Let us observe that
cosf > 0 and sinf > 0, then the inequality (3) becomes for all 6 €]0, 7 /4[

(¢ —p)cosh + (B — w)sinf <0,

which is satisfied if u > max{|«/, |8]}.
(iii) The third case is & = 7 /4, whence S(r/4) = {(x, y) € C : x + y = 1}. Because
cosf =sinf = ‘/Ti, then inequality (3) becomes for all (x, y) € S(w/4)

(ax + ﬁy)%i + (Bx +ay)\/7§ —uv2 <0,

that is

V20 +y) + V2P +y) = 2V2u
5 <

0
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which is satisfied if u > (o + 8)/2.
(iv) The fourth case is 6 €]r /4, /2], whence (x, y) = (0, 1). Let us observe that
cosf > 0 and sin @ > 0, then the inequality (3) becomes for all  €]x /4, 7 /2]

(B—w)cos + (@ — p)sinf <0,
which is satisfied if 4 > max{|«]|, |B]}.
(v) Now for the case 0 €]x/2, [, where cos# < 0 and sin6 > 0, whence (x, y) =
(0, 1), then the inequality (3) becomes for all 6 €] /2, [
(B+pn)cosO + (¢ — p)sinfd <0,
which is again satisfied if © > max{|«|, |8}

(vi) For the case 8 = m, whence S(wr) = {(0,y) € C}. Since cosf = —1 and
sin @ = 0, then inequality (3) becomes for all (x, y) € S(rr)

=By —n =0,
which is satisfied if u > |B].
(vii) Now for the case 6 €]x, 37 /2[, where cosf < 0 and sin6 < 0, whence (x, y) =
(0, 0), then the inequality (3) becomes for all 0 €], 37 /2[
4 cosf + psinf <0,
which is trivially satisfied if i > 0 is selected.

(viii) Finally, the case 8 = 37 /2, whence S(37/2) = {(x,0) € C}. Since cosf =0
and sin 8 = —1, then inequality (3) becomes for all (x, y) € S(37/2)

—Bx —pn <0,
which is satisfied if u > |8].

Therefore, we have demonstrated that if 4 > max{|«|, | 8], (¢« + B)/2}, the entire
set C is viable and the viability kernel of C is naturally V(C) = C. O

3.2 The Nash bargaining solution
Let be H and C as in the previous subsection. The negotiators cooperate and agree to

have the same loss function f : H —] — 0o, +0o0] : (x, ¥) = —xy + tc(x, y), thus
the linear bargaining rule will be

9:C— 2" () e y) = (0,0) = Nelx, y),
where N¢ : H — 2™ is the normal cone to C at x € C defined as in the “Appendix”,

and (¢ is the indicator function of the set C. Let us define the target set is B =
{(1/2,1/2)}, we will try to find the sets V(C, B) and V(C).
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—1/4 f
0
f(C) x f(C)
f
—1/4
0 T 1

(@) Two trajectories are shown with start (b) The set of Pareto optima is represented
points (2/10,4/10) and (7/10,1/10). by the blue point.

Fig. 4 Nash bargaining solution. The triangle C represents the set of possible agreements. The question
is about the trajectories movements between the sets V(C, B) = V(C) = C = C(C, B). All start points
in C conducts to the equitable solution. Two trajectories are shown with start points (2/10, 4/10) and
(7/10, 1/10) (colour figure online)

Proposition 2 Let the bargaining problem be defined as before, then
V(C,B)=V(C)=C =C(C, B).

Proof Firstly, let {y,},en be a sequence in R | such that ), ¥, = 00. Itis easy to
check that the bargaining rule defined before coincides with —a f, thus we can define
the bargaining trajectory for all (x, y) € C by

(x0, yo) = (x,y) and (Vn € N) (x5, yn) — (Xnt1, Ynt1) € Vu0 f (X1, Ynt1)-

Since f € TI'g(H) and Argmin f # {, then the trajectory is Fejér monotone with
respect to Argmin f according to the Theorem 5 in “Appendix”. Additionally, accord-
ing to the Theorem 4, the trajectory converges strongly to a point in Argmin f.

Secondly, regarding that ¢ is a legal bargaining rule and satisfies the tangential
condition on C, there exists a sequence {y, },eN such that the trajectory {(x,, Y»)}neN
driven by —0 f is viable. Since the trajectory is strongly convergent to a point in
(x,y) € Argmin f, then (x, y) € zer ¢ according the Theorem 3.

Finally, since the former result is valid for all start point (x, y) € C for a bargaining
trajectory, we obtain V(C, B) = V(C) = C = C(C, B). O

Figure 4 illustrates the result of Proposition 2 for the case of two start points: Two
trajectories are shown with start points: (2/10, 4/10) and (7/10, 1/10).3

3 The reader can download the file in Notebook of J upyter Lab from the link: https://www.dropbox.com/
s/Orzcjcks6lehwhe/nbs.html?d1=0.
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3.3 A polarised Nash demand game

Let be H and C as in the Sect. 3.1. The Polarised Nash Demand Game is an extension
of the classical Nash Demand Game (Laengle and Loyola 2010). It considers that
negotiators do not cooperate and they have envy modelled by an envy factor A € [0, 1].
They have the following loss functions:

JE(x,y) : H —]—00,+00] : (x,y) = —x + Ay +1c(x, y),
and
fr@x,y) i H—>]—00,400]: (x,y) > —y 4+ ix + tc(x, y).
Define the set
A={,y)eCrxyed+n~ L A+n7"]
Thus the linear bargaining rule will be ¢ : C — 2" given by

(I, 1) = Ne(x, y) if (x, y) € A,

x,y) = .
. y) 0 otherwise,

where N¢ : H — 2™ is the normal cone to C at x € C defined as in the “Appendix”,
and (¢ is the indicator function of the set C. Set the target set

B={(x,y)eC:x,yex1 4+, d+1)Nandx +y=1}.

Proposition 3 Let the bargaining problem be defined as before, then the following
holds

BCA=V(,B)=V(C)=C(C,B)CC.

Proof The proof follows the argument of Proposition 2 above, but we need to define
carefully the bargaining rule ¢ for both negotiators. Firstly, let {y},},cn be a sequence
in Ry 4 such that ),  ¥» = 0o Let us suppose that zer ¢ # @ and (x, y) € zer ¢.
Since fg, fr € I'o(H), it is legal to define the trajectories

xo =xand (Vn € N) x;, — x,41 € ¥20 fE(Xp11,y)
and

yo=yand (Vn € N) y, — yut1 € ¥ fr(x, Yu+1),
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1 —1-) s GR)
1 0
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1
[EDY
fr
Yy
-(1=X
A
[ES
-1
A z 1 1
1+X I+X
(a) Two trajectories are shown with start (b) The set of Pareto optima is represented

points (1/4,1/4) and (1/4,1/2). by the blue line.

Fig.5 A Polarised Nash demand game. The set of possible agreements is represented by the triangle C. The
question is about the trajectories movements between the sets B C A = V(C, B) = V(C) =C(C,B) C C.
All start points in A conducts to equilibria solutions (colour figure online)

where £ and F are two Hilbert spaces such that £ @ F = H and for all n € N
(Xn, yn) € € x F holds. We define the bargaining rule as

0:C o2 s n 3y = {soE(y) X or(x) if (x,7) € A,

? otherwise,
where ¢ : F — 28 . y > ¢p(y) = —9fg(-,y) and ¢ : £ — 27 x>
¢r(x) = —0 fr(x, -), which coincides with that one defined in the Proposition state-

ment (see Laengle and Loyola 2010 for details).

With these definitions, by following the same arguments of Proposition 2,
{(xn, ¥)}nen is Fejér monotone strongly convergent to (x, y) and likewise {(x, y,)}neN
is Fejér monotone strongly convergent to (x, y), therefore {(x,, y)},en is strongly
convergent to (x, y) and (x, y) € zer ¢.

Finally, in the article Laengle and Loyola (2010), it is demonstrated that B is the
set of (Nash) equilibria, i.e., B C zer ¢, and since the above result holds for all start
point (x, y) € A, we obtain that

BCA=YV(,B)=V(C)=C(C,B)CC.
Thus, the Proposition is demonstrated. O
Figure 5 illustrates the result of Proposition 3 for the case of two start points: Two

trajectories are shown with start points: (1/4, 1/4) and (1/4, 1/2).*
In the next section we will conclude our work.

4 The reader can download the file in Notebook of J upyter Lab from the link: https://www.dropbox.com/
s/6eljt3e66eeSulp/polarised %20game.html?d1=0.
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4 Conclusions

The Nash Demand Game (Nash 1953) posed three important questions that remain
open in distributive Bargaining Theory: How to reach an equitable agreement? How to
discriminate between multiple equilibria? How to a negotiation breakdown is reached?
The present work has been motivated to answer these questions. Nash’s seminal model
has stimulated and leveraged extensive and deep fields of research since 1953. On the
one hand, it has motivated the formulation of a set of axioms that provide desired solu-
tions and, on the other hand, has driven the Bargaining Theory and its applications.
The question we ask ourselves here is, whether it is possible to articulate these devel-
opments into a single unifying framework that allows us to understand developments,
theories, applications, and proposals in an integrated way.

To answer this question, we investigate the Viability Theory and apply it to three
fundamental problems arising from the Nash Demand Game. This was done in three
steps. First, we identify basic concepts of The Viability Theory and express them in
terms of the Bargaining Theory. Second, we identify two principles that can explain,
from a different or complementary perspective, the three basic questions of the distribu-
tive Bargaining Theory. Finally, we illustrated the application to three basic problems
of the Bargaining Theory.

As aresult of this work, we would like to highlight the following findings:

1. We think that the mathematical objects that study the Viability Theory fit correctly
with the Bargaining Theory. Moreover, in applying the theory, we find two fun-
damental principles that offer a different or complementary look or perspective of
the Bargaining Theory.

2. The basic principles governing every negotiation process are the principle of move-
ment and the principle of chance and necessity. The principle of movement means
that bargaining trajectories move between regions, sets of agreements, or eventu-
ally drift to break zones. The minimum set of desirable states is called the set of
possible agreements or set of viable states. More precisely, this viable set contains
initial states whose negotiating trajectory is at least viable forever. This set may
contain, in particular, trajectories that eventually lead to equilibrium or socially
optimal states. A non-viable set, on the other hand, is one that contains states of
disagreement or contains starting points that only lead to a break.

3. The second principle assumes that agents move guided by chance and necessity.
Necessity is the requirement that at each instant, a trajectory of possible agreements
to remain at least a possible agreement. We say that the trajectory that satisfies this
principle is a viable trajectory. On the other hand, negotiation processes require
options, forces, or mechanisms, such that restrictions on possible agreements are
not violated. In other words, options, forces, or mechanisms give the chance for
agents to conduct the negotiation process into a desirable area.

Finally, we think that this work has interesting perspectives that stimulate sub-
sequent developments integrating and articulating bargaining theories. This includes
dynamic, eventually stochastic models, with or without strategic, and cooperative or
non-cooperative interaction. More importantly, it allows us to model optimising versus
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satisfying approaches in a unified way by trying to capture real-world complexity in
an integrated form.
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Appendix: Mathematical definitions and main theorems

Throughout the paper N denotes the set of nonnegative integers and H is a real Hilbert
space with scalar product (-|-) and associated norm || - ||. Let £ and F be two Hilbert
spaces such that £ @ F = H. 1d denotes the identity operator. A sequence {x,},eN in
‘H converges strongly to a point x € H if ||x, — x| = Oasn — oo.

Let f : H — [—00, +00] be a function and C be a subset of H. We set dom f =
{x € H: f(x) # @}. The infimum of f over C is denoted by inf f(C), likewise
the supremum of f over C by sup f(C). Argmin f is defined by the set {x € H :
f(x) = inf f(H)}. The function f is proper if —oo ¢ f(H) and dom f # (. The
class of proper lower semicontinuous convex functions to ] — 0o, 4+00] is denoted by
I'o(H). The interior of a subset C is denoted by int C, and by (¢ its indicator function,
which takes the value 0 on C and 400 on its complement.

Let C be a subset of H. Let ¢ : C — 2 be a set-valued operator. The family of
all neighbourhoods of x € H is denoted by V(x). In the following, B will denote the
closed unit ball of H centred at the origin. We shall say that a set-valued operator ¢
is upper hemicontinuous at x € C if for all u € H, the function x — sup(px|u) is
upper semi-continuous at x. It is upper hemicontinuous if it is upper hemicontinuous
at all points x € C. Additionally, we shall say that a set-valued operator ¢ is upper
semicontinuous at x € C if

Ve e Ry4)3AV € V(x))(Vy € V) ¢y C ox + €B.

It is upper semi-continuous if it is upper semi-continuous at all points x € C. Any
upper semicontinuous set-valued operator is upper hemicontinuous.
Let C and D be subsets of H. Then C and D are separated if

(Qu € H\{0}) sup(Clu) < inf(D|u)
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and strong separated if the above inequality is strict. Moreover, a point x € H is
separated from D if the sets {x} and D are separated. Likewise, x is strongly separated
from D if {x} and D are strongly separated.

Proposition 4 (Corollary from the Separation Theorem)® Let C and D be nonempty
closed subsets such that C N D # () and D bounded. Then C and D are strongly
separated.

Let C be a subset of H. The polar cone of C is
C® = {u € H : sup(Clu) < 0}.

C® is always a nonempty closed cone. Let C be a nonempty convex subset of  and
let x € H. The tangent cone to C at x is defined by

Ty cone(C — x) = Uper,  A(C —x), ifx € C;
x = ,
¢ @, otherwise

where C denotes the closure of the subset C with respect to 7, and the normal cone
to C at x is given by
, {(c —X)® ={ue™M:sup(C — x|u)} ifxeC;
ch = .
@ otherwise.

Recalling that C is a nonempty convex subset, then for all x € C the following hold:
Tcx and Ncx are nonempty closed convex cones, TCGx = Nc¢x and NCGx = Tcx.
Additionally, in case that H is finite dimensional, for all x € int C we have Tcx = H
and N¢(x) = {0}.

Let C be a nonempty compact convex subset of H, ¢ upper hemicontinuous with

nonempty closed and convex values. We shall say that the set-valued operator ¢ sat-
isfies the tangential condition on C if

Vx € C) px NTcx # @.

If two set-valued operators ¢, ¢, satisfy the tangential condition on C, so do the
set-valued operator «j @1 + a2¢2, where oy, g are in Ry .

Proposition 5 (Dual Tangential Condition) Let C be a nonempty compact convex sub-
set of 'H, ¢ upper hemicontinuous with nonempty closed and convex values. If ¢
satisfies the tangential condition on C, then ¢ satisfies the dual tangential condition
on C

(Vx € C)(Yu € Ncx) sup{px| —u) > 0.

If, in addition, the values of ¢ are bounded, when ¢ satisfies the dual tangential
condition on C, then it satisfies the tangential condition too.

5 See Bauschke and Combettes (2011), [56].
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Proof Let us suppose that ¢ satisfies the tangential condition on C. Set x € C and
u € Ncx. Since ox N Tcx # (), there exists y € C such that y € ¢x N Tcx and

inf(px|u) < (ylu) <0,

because Ncx = TCGx. Thus inf(px|u) = —sup{—ex|u) = —sup{px| —u) < 0.
Now, let us suppose that the ¢ satisfies the dual tangential condition on C and assume
it does not satisfy the tangential condition. Then forallx € C, wehave O ¢ px — Tcx.
Since Tcx and ¢x are nonempty closed convex subsets of H and ¢x is bounded by
supposition, then ¢gx and T¢x are strongly separated by the Proposition 4, i.e.,

(Au € H\{0}) sup(Tcx|u) < inf{px|u),

which is a contradiction, because sup(7T¢x|u) = 0. Therefore, ¢ satisfies the tangential
condition on C. O

Set a sequence {x,},eN in H and some sequence {y,},en in Ry . We define the
sequence {x,},en driven ¢ as following

(Vn € N) x; € Xpt1 — Vu®Xnt1.

We say that the nonempty subset C is viable with respect to the set-valued operator ¢
if for all x € C there exists a sequence {x,},cN in H driven by ¢ such that

(Vn e N) x, € C and xo = x.

The set of zeros (or stationary points or equilibria) of p iszer ¢ = {x € H : 0 € px}.
Now we pose the more important Theorem that we shall use in this paper.

Theorem 2 (Zeros of set-valued operators) Let C be a nonempty compact convex
subset of 'H, ¢ upper hemicontinuous with nonempty closed and convex values. If ¢
satisfies the tangential condition on C, then zer ¢ # (.

Corollary 1 (Viability Theorem) Let C be a nonempty compact convex subset of H,
@ upper hemicontinuous with nonempty closed and convex values. If ¢ satisfies the
tangential condition on C, then C is viable with respect to ¢.

Proof Assume that ¢ satisfies the tangential condition on C. For demonstrating that
C is viable with respect to g, it is sufficient to show that

Vy e C) zer (¢ —Id+ y) #0.
Indeed, for all y € C, the set-valued operator x +— {y — x} satisfies the tangential
condition on C, therefore the sum of both operators x — ¢ — x + y also satisfies the

tangential condition on C. By applying again the main Theorem 2 to the combined
operator, we get the required expression. O
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Theorem 3 (Convergence to an Equilibrium) Let C be a nonempty compact convex
subset of H and ¢ : C — 2™ an upper semicontinuous set-valued operator with
nonempty closed convex values. Let us suppose a trajectory {x,}nen in C driven by
@. If {xp}nen converges strongly to x € C, then x € zer ¢, i.e., x is an equilibrium.

Proof See Theorem 6.5.2 of Aubin and Cellina (1984, 310). O

Let C be a nonempty subset of H and let {x, },,en be a sequence in H. Then {x, },eN
is Fejér monotone with respect to C if

(Vx € O)(Vn € N) [lxpq1 — x| < llx0 — x|

Theorem 4 Let {x,},en be a sequence in H and let C be a nonempty closed convex
subset of H. Suppose that {x, },eN is Fejér monotone with respect to C, then {x,}neN
converges strongly to a point in C.

Proof See Theorem 5.11 of Bauschke and Combettes (2011, 78). O

Let f : H —] — 00, +o0] be proper. The subdifferential of f is the set-valued
operator

Af H—->2 x> {ueH: ¥y eH) (y—xlu) + fFx) < f()).

If x € dom f,then d f (x) is closed and convex. Let f : H —] — oo, +00] be convex,
and let x € H, and suppose that f is Gateaux differentiable® at x, then

Vy e ) {y =xIVf(x)) + f(x) = f(y).
The normal cone operator of a nonempty closed convex set C C H is N¢ = dic.

Theorem 5 (Proximal-point Algorithm) Let f € ['o(H) be such that Argmin f # (),
let {yn}nen be a sequence in Ry such that )",  yn = +00, and let xo € H. Set

(Vn € N) xy — Xp41 € Y00 f (Xnt1),

then {x,}nenN is Fejér monotone with respect to Argmin f

Proof Let x € Argmin f. We derive from the subdifferential definition that

(Vn € N) (x = Xpt1|Xn = Xn41)/Vn = ) = f(Xnt1)

and
(Vn e N) 0 < (xp — Xpq1lxn — Xng1) /v < f(xn) — f(xng1).

Thus, for every n € N, we obtain

2 2 2
lxne1 — xN1° = llxp — x|I” + 2(xy — X|xp41 — Xn) + 1 Xn1 — Xnll

6 See Definition in Bauschke and Combettes (2011) (p. 37).

@ Springer



Articulating bargaining theories: movement, chance, and... 71

20— X% = 1Xng1 = X lI* + 20041 — X[ X1 — Xn)
< lxn — X1 = 29 (f (xng1) — inf f(H)).

This shows that {x,}, N is Fejér monotone with respect to Argmin f. m]
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