European Journal of Clinical Microbiology & Infectious Diseases (2018) 37:1009-1019
https://doi.org/10.1007/s10096-018-3223-9

REVIEW

@ CrossMark

Chromosomally encoded and plasmid-mediated polymyxins resistance
in Acinetobacter baumannii: a huge public health threat

William Gustavo Lima' @ - Mara Cristina Alves? - Waleska Stephanie Cruz® - Magna Cristina Paiva?

Received: 8 February 2018 / Accepted: 28 February 2018 /Published online: 9 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Acinetobacter baumannii is an opportunistic pathogen associated with nosocomial and community infections of great clinical
relevance. Its ability to rapidly develop resistance to antimicrobials, especially carbapenems, has re-boosted the prescription and
use of polymyxins. However, the emergence of strains resistant to these antimicrobials is becoming a critical issue in several
regions of the world because very few of currently available antibiotics are effective in these cases. This review summarizes the
most up-to-date knowledge about chromosomally encoded and plasmid-mediated polymyxins resistance in A. baumannii.
Different mechanisms are employed by A. baumannii to overcome the antibacterial effects of polymyxins. Modification of the
outer membrane through phosphoethanolamine addition, loss of lipopolysaccharide, symmetric rupture, metabolic changes
affecting osmoprotective amino acids, and overexpression of efflux pumps are involved in this process. Several genetic elements
modulate these mechanisms, but only three of them have been described so far in A. baumannii clinical isolates such as mutations
in pmrCAB, IpxACD, and IpsB. Elucidation of genotypic profiles and resistance mechanisms are necessary for control and fight
against resistance to polymyxins in A. baumannii, thereby protecting this class for future treatment.

Keywords Outer membrane - Lipid A - Phosphoethanolamine transferase - Efflux pumps - Osmoprotective amino acids - mcr

Introduction

Acinetobacter baumannii is a Gram-negative, non-glucose-
fermenting, oxidase-negative coccobacillus, most commonly
related to healthcare-associated infections [1-3]. It is an op-
portunistic microorganism that causes several clinical compli-
cations in immunocompromised individuals such as pneumo-
nia, bacteremia, meningitis, endocarditis, cellulitis, and uri-
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nary tract and soft-tissue infections [4—6]. In hospital settings,
A. baumannii mainly affects patients in mechanical ventilation
of intensive care units (ICUs). It is noteworthy that this mi-
croorganism has been responsible for one in five cases of
ventilator-associated pneumonia in Europe [7] and 20% of
ICUs infections in the USA [8].

The rapid capacity to develop antimicrobial resistance
through various intrinsic and acquired mechanisms is notable
in A. baumannii [2, 9, 10]. In British and American ICUs,
more than 25 and 30% of A. baumannii isolates, respectively,
are resistant to at least three classes of antimicrobials, being
considered multidrug resistant (MDR) [11, 12]. Furthermore,
in Asia and Eastern Europe countries, higher rates of resis-
tance are observed, with 48 to 85% being MDR [13, 14]. In
fact, A. baumannii is commonly associated with resistance to
ureidopenicillins, cephalosporins (including extended-
spectrum drugs), fluoroquinolones, aminoglycosides, and car-
bapenems [15, 16]. Carbapenems antibiotics are used as the
primary option to treat severe MDR Gram-negative bacterial
infections [15, 17]. However, carbapenemase-producing
A. baumannii has increased rapidly on a global scale and are
considered to be significant health threats. Thus, confronting
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the problem associated with carbapenem-resistant
A. baumannii, the biomedical community has revived the
use of polymyxins [9, 18, 19].

Isolated in 1947 as secondary metabolites of Paenibacillus
polymyxa (anteriorly Bacillus polymyxa), the polymyxins
showed a potent bactericidal effect against several Gram-
negative species [20, 21]. They are a cyclic decapeptide
consisting of a heptapeptide ring and a tripeptide side chain
that attaches to a fatty acid. At physiological pH (7.2), five
amino acid residues of the decapeptide portion are positively
charged. Thus, the polymyxins can bind to the negative sur-
face of lipopolysaccharide (LPS) that form the outer mem-
brane (OM) of Gram-negative bacteria [21, 22]. After the
ionic interaction, the fatty acid chain is inserted inside the
OM, disrupting the bacterial membranes and resulting in cel-
lular death [23]. In clinical settings, polymyxin B and colistin
(polymyxin E) are frequently used; they have similar biolog-
ical activities but differ structurally, with D-phenylalanine in
polymyxin B replaced by D-leucine in colistin [24]. Until the
1960s, polymyxins had been the most popular therapeutic
option for severe infections with Gram-negative bacteria, but
their use has been restricted since 1970 because of the signif-
icant nephrotoxicity and neurotoxicity associated with
prolonged treatment [25].

The re-boosted of polymyxin use increases the selective
pressure that favors the resistant strains. Currently has already
been reported low sensitivity to colistin and polymyxin B
between Acinetobacter spp. [19], Pseudomonas spp., and
Enterobacteriaceae species [26, 27] from several regions of
the world. Also, has increased the frequency of infections
caused by microorganisms intrinsically resistant to this class,
such as Proteus spp. and Serratia spp. [28]. Moreover, the
emergence of a plasmid-carried gene (mcr), associated with
moderate colistin resistance, makes this scenario even more
adverse [29]. Accordingly, the present review summarizes the
most up-to-date knowledge about chromosomally encoded
and plasmid-mediated polymyxins resistance in
A. baumannii as well as characterizes the biochemical mech-
anisms that underlie this phenomenon.

Chromosomally encoded resistance
to polymyxins in A. baumannii

Outer membrane changes

Gram-negative outer membrane (OM) is the molecular target
of polymyxins action. Thus, alterations in this component can
compromise the bactericidal effect and reduce the microor-
ganism susceptibility to the drug in question [29-34]. The
mechanisms underlying polymyxin resistance are complex,
but in A. baumannii, the mutations that affect the OM stand
out [35, 36]. Four different polymyxins resistance
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mechanisms have been previously reported to this species,
being (i) modification of lipid A structure by the addition of
phosphoethanolamine, (ii) complete loss of LPS via mutations
in the genes that synthesize lipid A, (iii) reduction in the ex-
pression of cofactors involved in LPS synthesis, and (iv)
downregulation of proteins that participate in the export and/
or stabilization of OM precursors (Fig. 1).

The first mechanism is associated with mutations in pmrA
and pmrB genes [31, 37-40]. They encode a two-component
regulatory system that controls the expression of the pmrC
gene, which encodes lipid A phosphoethanolamine transfer-
ase [38, 41], and of the pmrF operon, responsible for the
expression of the enzymes involved in 4-deoxy-
aminoarabinose biosynthesis (Ara4N) [15]. Modification of
lipid A, a component of LPS, by the addition of Ara4N or/
and phosphoethanolamine, protects the OM from binding and
action of polymyxins [42]. The lipid A phosphates are ester-
ified by these metabolites decreasing so the repulsion between
adjacent LPS molecules into Gram-negatives OM. Hence, a
more compact and lower negatively charged LPS layer is
formed, which shows reduced sensitivity to the positively
charged polymyxins [43]. However, it should be highlighted
that Ara4N biosynthesis is not present in A. baumannii [24]
and N. meningitidis [15] since the operon pmrF is absent in
these species. Of note, N. meningitidis is intrinsically resistant
to colistin, suggesting that pm»C modulation may be associated
with polymyxin B and colistin resistance in A. baumannii [44].

Function gain mutations in pmrA and/or pmrB are associ-
ated with high rates of colistin resistance in P. aeruginosa [45]
and Salmonella spp. [46]. Adams et al. (2009) showed the first
evidence that the PmrAB two-component system is involved
in polymyxins resistance in A. baumannii. Initially, they found
that the partial deletion of pmrB in a colistin-resistant (CoR)
A. baumannii results in reversion to a colistin-sensitive (CoS)
phenotype [31]. Arroyo et al. (2011) [38] demonstrated that
partial removal of pmrC results in an increase in the sensitivity
in CoR A. baumannii, with a decrease in polymyxin B mini-
mum inhibitory concentration (MIC) from 4 to 0.25 ug mL .
The positive regulation of pmrC induced by mutations in
pmrAB is so efficient that specific genetic alterations affecting
one or both genes generate a 26- to 292-fold increase in the
level of pmrC expression.

Mass spectrometric analyses have confirmed that isolates
with mutations in pmrAB showed the phosphoethanolamine
addition in a hepta-acylated lipid A. However, according to
Beceiro et al. (2011) [37] even with increased expression of
pmrA (12.4-fold increase) and pmrB (6.8-fold increase) in
CoR A. baumannii, the amount of the pmrC transcription
may remains unchanged, suggesting that PmrAB-
independent systems are associated with regulation of pmrC
in A. baumannii. Also, little is known about the regulation of
PmrAB two-component system in this species. In other Gram-
negative bacilli, such as Salmonella enterica, Pseudomonas
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Origin Classification
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Fig. 1 Representation summarizing the mechanisms underlying the resistance of Acinetobacter baumannii to polymyxin B and colistin.*The plasmidial

mechanism (mcr gene) is still not identified in A. baumannii

aeruginosa, and Klebsiella pneumoniae, the PmrAB two-
component system is directly or indirectly modulated by the
PhoPQ system [47]. However, the absence of the PhoPQ com-
ponent in A. baumannii points to another regulatory factor
[15]. Thus, more studies in the direction of elucidating the
mechanism(s)/factor(s) that modulate the expression of the
pmrA and pmrB genes, as well as those targeted to describing
the regulation pmrAB-independent of pmrC gene, are impor-
tant for understanding the dynamics of resistance to poly-
myxins in A. baumannii.

Resistance due to lipid A modifications by a mutation in
PmrAB two-component system has a relatively low biologic
cost, especially concerning A. baumannii virulence [48-50].
Additionally, the sensitivity patterns of amikacin, piperacillin-
tazobactam, ciprofloxacin, azithromycin, cefepime, gentami-
cin, minocycline, tigecycline, ampicillin, and teicoplanin is
similar between CoR-pmrB mutant and wild-type
A. baumannii [48, 49]. CoR-pmrB mutant strains also develop
cross-resistance to antimicrobial that constitutes the innate im-
mune response of host cells, such as LL-37 and lysozyme
[50]. These studies suggest that there is a low fitness burden
associated with the development of polymyxins resistance via
pmrAB mutation (Table 1) [19, 58].

The clinical importance of mutations in the pmrCAB oper-
on has been demonstrated in several studies (Table 2) [18, 19,
37, 38, 40, 55, 56, 59—62]. Most clinical isolates have shown
mutations in the pmrB, but mutations in pmrA and pmrC have
also been observed. Substitutions represent the most frequent
mutation type for all three proteins, with only two deletions
(A32-35 and A160) [38] and one insertion (A163) [19] iden-
tified, both involving PmrB. The most frequent substitutions

in PmrB were found to be P233S, P360Q, A226V, L208F, and
A138T. However, one study revealed that CoS A. baumannii
also carries substitutions in PmrB, such as A138T and A226V,
suggesting that only these mutations may be unrelated to co-
listin resistance in this species [18]. In PmrA, a highly con-
served mutation, with the substitution of proline by histidine at
position 102, was observed in 14 isolates of CoR
A. baumannii [55] and in one bacterium with resistance in-
duced in vitro [31].

Moffatt et al. (2010) confirmed the resistance to poly-
myxins in A. baumannii attributed to the interference with
OM synthesis [32]. They have found that a full inactivation
of the lipid A biosynthetic genes—I/pxA, IpxC, or I[pxD—re-
sults in a complete loss of surface LPS in A. baumannii. Thus,
the loss of LPS prevents the essential interaction between it
and polymyxins, giving rise to very high colistin MICs. For
example, a loss of LPS after the deletion at position 90 of
LpxA protein showed a 130-fold increase in colistin MIC. In
this context, the transformation of the A. baumannii mutant
with a wild-type IpxA restored the CoS phenotype, reducing
the MIC to 1 pg mL™" [32]. Insertion sequences (IS) affecting
the Lpx system have also been identified [51, 52]. The inser-
tion of IS element Aball into /pxC and /pxA genes is associ-
ated with high resistance to colistin (MIC > 128 ugmL™") [51]
and polymyxin B (MIC >32 pg mL™") [53]. In addition, the
presence of the ISAbal25 element within /pxA in a strain with
resistance induced by contact with polymyxin B in vitro was
demonstrated in a recent study [52].

Contrasting with the mutations that affected the PmrAB
two-component regulatory system, the LPS loss showed a
high biologic cost, which limited its spread in clinical
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Table 2 Mutations identified in clinical isolates of polymyxin-resistant Acinetobacter baumannii in different countries of the world
Country Period Clinical specimen Polymyxins MIC ~ Mutations References
(ug mL™")
Spain 2001-2008, SENTRY  Bronchoalveolar lavage 64" PmrB: D64V, L208F [38]
2001-2008, SENTRY  Ventricular catheter 64* PmrC: FOOL [38]
PmrA: S119T
PmrB: P233S; P360Q
USA 2009 NINS 327 PmrB: F387Y,S403F [37]
2001-2008, SENTRY  Blood 1*. 32% 1*, PmrB:A226V [38]
2%, 32° 2%, PmrB: L208F
3% 16% 3*, PmrB: N2561
2001-2008, SENTRY  Pleural fluid 16 PmrB: R263C, P377L [38]
20012008, SENTRY  Bronchoalveolar lavage 16° PmrB: P170Q [38]
Israel 20012008, SENTRY  Bronchoalveolar lavage 8* PmrC: H499R [38]
PmrB: A32-35, P360Q
Brazil 2001-2008, SENTRY  Wound 32° PmrC: T71 [38]
PmrB: A211V, A160
2007 Bronchoalveolar lavage 16° LpxC: N8S, D45N, K130R, [59]
S147R, D287N.
LpxD: Y6F, E47D, H49Y, D51H, V55A,
Y61F, A66T, I98L, S99T, T101K, T118A,
V1381, N148D, R170G, 1175V, and S178N.
France 2001-2008, SENTRY  Blood 128* PmrB: A80V, P170L [38]
2010 Tracheal lavage NI/NS PmrB: E8D [40, 60]
UK 2008 Wound 47 PmrB: M145K [37]
2009 Bronchoalveolar lavage 322 PmrB: L87F [37]
2006 Blood 128 PmrB: S14L [37]
Saudi Arabia 2009 Blood 16° PmrB: P233S [37]
Greece 20112013 Several NI/NS 1*. PmrB: P360Q [61]
2%, PmrB: A138T; A226V
3% PmrB: Q129L; A138T; A226V
2012-2014 Several 16-64*¢ PmrA:G54E [18]
PmrC: R109H
2008 Wound 128° PmrB: P233S [55, 61]
IpsB: Stop codon to 241K [55, 61]
2009 Bronchoalveolar lavage 327 PmrB: P170L
Algeria 2014 Bronchoalveolar lavage 16* pmrB: Insertion of A163 [19]
Malaysia 2011 NI/NS 4-128>4 PmrA: P102H", [55]
LpxC: K141R and S158R.
LpxD: S102T; V141I; R173G; T104K,
1178V; T121A; N151D; G169S; ESOD;
T15A; G186S; SI8IN.
LpsB: HI81Y.
South Korea 20112012 1* Bronchoalveolar lavage ~ 1-3. 32—> 64" 1-3. IpxA: AT76 [9]
2% Sputum
3* Cerebrospinal fluid
4* Wound 4.>64° 4. IpxA: A776 and insertion 732
Italy 2010 Bronchoalveolar lavage 128 (two isolates) PmrB: P233S (two isolates) [56]

NI/NS not identified or not showed, M/C minimum inhibitory concentration

*Each number represented one A. baumannnii clinical isolate differ

*MIC for colistin
®MIC for polymyxin B

¢ The study evaluates 86 clinical isolates of colistin-resistant A. baumannii

9The study evaluates four clinical isolates of colistin-resistant A. baumannii

¢ All 14 isolates evaluated showed the mutation

environments. The growth rate (1) during the exponential
phase, for example, was found to be significantly lower in
AlpxA (1 =0.85£0.09), AlpxD (;+=1.03+£0.09), and
AlpxC (1=0.49+0.03) A. baumannii in relation to the
wild-type (u=1.56+0.27) [54]. Similarly, strains with in-
duced resistance to colistin yield less biomass at the end of

16 h of growth in Mueller-Hinton broth [49] and the capacity
for adhesion and formation of biofilms is also compromised
under static and dynamic conditions [56]. The virulence of
A. baumannii IpxACD mutant is widely affected such shown
by the viability of human lung alveolus cells (A546), which is
significantly lower after exposure to strain wild-type. Similar
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results were obtained in in vivo infection models [48, 54].
Survival rates of mice [54] and invertebrates Caenorhabditis
elegans [54] and Galleria mellonella [48] were found to be
considerably lower after infection with wild-type or pmrAB
mutants when compared with strains without LPS.
Additionally, the loss of LPS alters the host’s immune re-
sponse [63]. Exposure of RAW264.7 macrophages to LPS-
deficient A. baumannii causes smaller activation of NF-kB
and TNF-« [63], as well as increases the sensibility to organic
antibacterial components, such as LL-37 [63] and lysozyme
[64]. Indeed, it has been observed that MICs for teicoplanin,
cefepime, azithromycin, amikacin, gentamicin, piperacillin/
tazobactam, meropenem, ciprofloxacin, rifampicin, and van-
comycin are considerably lowered after LPS loss in
A. baumannii (Table 1) [32, 48, 64].

In this direction, few resistant isolates to polymyxins
with genetic alterations involving /px have been recovered
(Table 2). In clinical strains, different molecular events,
such as deletions, point mutations, or insertions, can inac-
tivate any of the first three genes (IpxA, I[pxC, and IpxD) in
the lipid A biosynthetic pathway of A. baumannii.
Substitutions are the most frequent genetic events in
LpxC and LpxD [47, 55]. However, concerning /pxA, in-
sertions (position 732) and deletions (position 776) related
to low sensitivity to colistin and polymyxin B stand out.
These mutations alter the size of primary sequences of
proteins involved in LPS pathway, making them enzymat-
ically inactive and unable to synthesize lipid A [9].

Recently, four more genes (IpsB, IptD, vacJ, and Locus
of biotin synthesis) were shown to have a role to poly-
myxins resistance in A. baumannii (Table 1). These novel
resistance mechanisms are poorly known, but some studies
are trying to elicit their role in colistin and polymyxin B
resistance in this Gram-negative bacillus. The IpsB gene
contributes to the protection of A. baumannii from cationic
antimicrobial peptides because it encodes the glycosyl-
transferase responsible for LPS structural ring synthesis
[65, 66], which is directly associated with lower fluidity
and higher osmotic resistance of the OM [67]. Time-kill
curve study indicates that AlpsB -A. baumannii have
higher sensitivity to LL-37 and colistin than the wild-type
strain [30]. Also, the survival rate is lower after the pulmo-
nary infection of animals with AlpsB strains [30]. These
data suggest that mutations associated with overexpression
of this gene may contribute to the resistance and virulence
of A. baumannii. In clinical isolates, polymyxin resistance
induced by mutations in LpsB has been described (Table 2)
[55, 56]. Substitution of a histidine for a tyrosine at posi-
tion 181 of LpsB was found in eight clinical isolates from
Malaysia [55]. Another study revealed that the premature
add of a stop codon in /psB is also associated with high
resistance to colistin (MIC 128 pg mL ') but with a re-
duced ability to form biofilms [56].
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The Lpt system component LptD, which is responsible for
the insertion of LPS into the OM [57, 68], is also involved
with polymyxins resistance in A. baumannii. Experimental
removal of LptD results in moderate polymyxin B resistance,
low virulence, and an increase of sensitivity to antibiotics non-
polymyxins [57, 67]. The growth kinetics of AlptD -A.
baumannii is characterized by an extensive log phase, a
slower proliferation rate, a decrease in the exponential phase,
and low cell density in the stationary phase [57]. Additionally,
the sensitivity to fusidic acid, novobiocin, azithromycin, ri-
fampicin, and ciprofloxacin were found to be higher in
AlptD strains than in AlpxC [67]. The accumulation of LPS
components into a bacterial cell in AlptD strains impairs the
membrane stability and consequently reduces the fitness of
A. baumannii. Consequently, the pharmacological inhibition
of [pxC with the compound CHIR-090 as well as antagonism
of enzymes [-ketoacyl-ACP synthases I and II by cerulenin,
which is essential for the LPS biosynthesis, partially or
completely recovered the fitness in [ptD-mutant
A. baumannii [57, 69].

A recent study has revealed that the loss of OM asymmetry
is also involved in reducing the colistin susceptibility of
A. baumannii. In several Gram-negatives species, the Vps/
Vacl] ATP-binding cassette (ABC) transporter system is pro-
posed to function in maintaining the lipid asymmetry of OM,
which ensures that the LPS remains on the outer face and
phospholipids on the inner face [70]. Nhu et al. (2016) have
shown that A. baumannii with a single mutation in Vacl
(R166N) shows a highly colistin-resistant phenotype (MIC
>256 ug mL™") [33]. However, several studies have shown
that Vac] is essential for the virulence of Gram-negative path-
ogens such as Shigella flexneri [71, 72], Campylobacter lari
[73], P. aeruginosa [74], Actinobacillus pleuropneumoniae
[75], and Haemophilus parasuis [76]. Additionally, resistance
to phenol in Pseudomonas putida [77], to paraquat in
Campylobacter jejuni [78], to ceftriaxone in S. enterica
serovar Typhimurium [79], and to tetracycline, chloramphen-
icol, and ciprofloxacin in P. aeruginosa [74] are mediated by
vacJ. Nonetheless, due to the importance of virulence and
resistance factor in several Gram-negative bacteria, VaclJ
may be necessary for the fitness of A. baumannii, but this
remains to be elucidated.

The levels of biotin are also an essential factor related to the
susceptibility to polymyxins in A. baumannii. It is an impor-
tant co-factor of lipid metabolism, being that the acetyl-CoA
carboxylase complex, which catalyzes the conversion of
acetyl-CoA into malonyl-CoA, a rate-limiting step in fatty
acid synthesis, only is active when binding to biotin [66].
Higher biotin levels cause increased production of lipid A
and increase sensitivity to colistin. Thus, the removal of genes
that synthesize this co-factor is related to a reduction in the
sensitivity of A. baumannii to colistin [30]. Herein, it has been
shown that the removal of the A1S 0807 locus, which
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contains genes responsible for the synthesis of biotin, signif-
icantly reduces the sensitivity of A. baumannii to colistin [30].

Changes in osmoprotective amino acid metabolism

Some amino acids such as proline, glycine, and aspartate are
essential for the balance of solutes in prokaryotic cells. They
participate as organic osmolytes and are biosynthesized to a
higher degree after exposure of the bacterial cell to conditions
of osmotic stress [80, 81]. Therefore, it is expected that quan-
titative modifications of these amino acids influence microbial
sensitivity to compounds that induce osmotic fragility, such as
polymyxins (Fig. 1).

According to Hood et al. (2013) [30], after colistin resis-
tance induced in medium supplemented with NaCl (150 mM),
A. baumannii shows a considerable reduction in the biosyn-
thesis of osmoprotective amino acids. Possibly, this result is
due to the negative regulation of genes involved in the pro-
duction of proline from glutamate and in the metabolism of
aspartate. On the other hand, mutations that compromise ex-
pression of the enzymes associated with aspartate catabolism,
e.g., diaminobutyrate-2-oxoglutarate transaminase, may raise
rates of resistance to colistin [30]. Additionally, it has been
reported that alterations in genes that are related to biosynthet-
ic feeder pathways of these amino acids, such as those in-
volved in the maintenance of the tricarboxylic acid cycle, also
contribute to colistin resistance [30]. Thus, an increase in the
synthesis or a reduction in the catabolism of osmoprotective
amino acids makes bacterial cells less susceptible to
polymyxin-induced lysis (Table 1).

Efflux pumps

In A. baumannii, four categories of efflux pumps are related to
antimicrobial resistance, including resistance-nodulation-
division (RND), major facilitator (MF), multidrug-toxic com-
pound extrusion (MATE), and small multidrug resistance
(SMR) families [82—84]. The ErmAB protein, an efflux pump
belonging to the MF family, has been attributed to MDR in
several Enterobacteriaceae [85—87]. Some strains of E. coli
that harbor plasmids containing genes emrA and emrB show
high resistance to antimicrobial detergents [86, 87]. Since
polymyxins have amphipathic characteristics and behave sim-
ilarly to other biological detergents, there is a possibility that
this system may be implicated in resistance to the antimicro-
bials in question (Fig. 1).

To clarify the relationship between the efflux system and
the polymyxin resistance in A. baumannii, a study has con-
ducted a genomic analysis and revealed the presence of four
pairs of genes named emrA-like/emrB-like in this species. It is
noteworthy that the removal of sequence emrB-like results in
increased sensitivity to colistin in A. baumannii, with a reduc-
tion in the MIC in a dilution. Time-kill curve studies have also

revealed that the loss of emrAB is associated with worse sur-
vival of A. baumannii after 4 h in plates containing 1 pug mL™
of polymyxin B [34]. In support to the evidence for the role of
the EmrAB efflux system in resistance to polymyxins in
A. baumannii, a strain with laboratory-induced resistance
showed a 1.6-fold increase in the expression level of emrB-
like [34]. These data validate the involvement of EmrAB-like
efflux pumps in the decrease of sensitivity to polymyxins in
A. baumannii; however, the clinical importance of this mech-
anism remains to be elucidated.

In some microorganisms such as Pseudomonas putida, the
11g2C gene encodes an efflux pump involved in tolerance to
toluene [88]. A recent work showed that in A. baumannii with
colistin resistance induced in vitro, the substitution of aspara-
gine by methionine at position 104 in Ttg2C is associated with
high resistance (MIC >256 pg mL™") [33]. This result sug-
gests that #g2C may encode other transporters and promotes
efflux of polymyxins, but further research is needed to test
whether these antibiotics are in fact substrates of this efflux
system.

Plasmid-mediated resistance to polymyxins
in A. baumannii

Resistance to colistin in A. baumannii was originally chromo-
somal, which limits its rapid distribution and dissemination
[30-32]. However, a plasmid-borne gene, called mcr-1, was
identified in Escherichia coli of animal, human, and environ-
mental origin from China in 2015 [29]. Subsequently mcr-1.2,
mcr-2, mer-3, mer-4, and mer-5 variants were also identified
[89-93].

The mcr genes encode a phosphoethanolamine transferase
that leads low to moderate polymyxin resistance (MIC from 4
to 16 pg mL ") [15]. Structurally, the N-terminal region of the
enzyme encoded by mcr is inserted into the inner membrane,
while its C-terminal domain continues into the periplasmic
space. The latter process allows the addition of
phosphoethanolamine resulting from the cleavage of phospha-
tidylethanolamine in the 3-deoxy-d-manno-octulosonic acid
residue of LPS [94, 95].

The diversity of plasmids harboring mcr described in
Enterobacteriaceae on different continents shows high potential
for dissemination of this gene [30]. By the time of this review,
mcr has been identified in E. coli, K. pneumoniae, Salmonella
spp., Shigella sonnei, Klebsiella (anteriorly Enterobacter)
aerogenes, Enterobacter cloacae, Cronobacter sakazakii,
Kluyvera ascorbata, Citrobacter freundii, and Moraxella spp.
[96-99], but in vitro studies also revealed the possibility of gene
acquisition from K. preumoniae to P. aeruginosa by transforma-
tion [100]. In A. baumannii, there is still no report of mcr-positive
isolates but, the rapid dissemination of this gene as well as the
real possibility of non-glucose-fermenting Gram-negative bacilli
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(e.g., P aeruginosa) to acquire mcr from Enterobacteriaceae sug-
gest that this is only a matter of time [33]. Thus, the intensifica-
tion of surveillance studies is imperative for control of the dis-
semination of mcr and for protection of the class of polymyxins,
which are still an important therapeutic option for the treatment
of A. baumannii extremely-drug-resistant (XDR) infections [15].

Conclusion remarks

Currently, polymyxin-resistant A. baumannii represents less
than 1% of clinical isolates, but they pose a significant chal-
lenge to public health authorities [101]. Polymyxins are the
last pharmacological resource available to treat infections
caused by XDR A. baumannii. Unfortunately, lineages with
low sensitivity to polymyxins have increased in many parts of
the world, especially in Europe, Asia, and South America [2,
19]. This fact suggests that the loss of polymyxins to drug
resistance seems to be inevitable in the future. Although chro-
mosomal mutations mediate the polymyxin resistance in
A. baumannii, the emergence of plasmid-mediated mcr, which
may be transferable between bacterial species and increasing
rates of polymyxin resistance in carbapenem-resistant bacte-
ria, is of great concern. Although our understanding of the
mechanisms and occurrence of polymyxin resistance has in-
creased in recent years, we know very little about the impact
of the different mechanism in the clinic. Thus, reinforcing the
detection of polymyxin-resistant isolates must be encouraged
so that we can better understand the impacts of each mecha-
nism and outline more effective control measures in each case.
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