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Abstract
In this paper, based on the continuous collocation polynomial approximations, we 
derive and analyse a class of trigonometric collocation integrators for solving the 
highly oscillatory hyperbolic system. The symmetry, convergence and energy con-
servation of the continuous collocation polynomial approximations are rigorously 
analysed in details. Moreover, we also proved that the continuous collocation poly-
nomial approximations could achieve at superconvergence by choosing suitable col-
location points. Numerical experiments verify our theoretical analysis results, and 
demonstrate the remarkable superiority in comparison with the traditional temporal 
integration methods in the literature.
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1 Introduction

The recent growth in extended Runge-Kutta-Nyström (ERKN) methods (see, e.g. [12, 
16, 33–35, 38–40, 42]) for second-order multi-frequency highly oscillatory systems 
and the collocation methods for stiff differential equations (see, e.g. [16, 18, 32, 36]) 
has let to the development of numerical integrators which systematically incorporate 
qualitative information transmitted from the underlying problem into their structure. In 
this paper, we focus on the design and analysis of temporal approximations through 
continuous trigonometric collocation polynomials for the semi-linear highly oscillatory 
hyperbolic system:

where A ∈ ℝ
d×d is supposed to be a symmetric positive definite or skew-Hermitian 

time-invariant matrix with the decomposition A = Ω2 , f ∶ [t0, T] ×ℝ
d
→ ℝ

d is 
a nonlinear function, � and � are the given initial values of the position u(t) and 
velocity u̇(t) , respectively. This hyperbolic system plays an important role in a wide 
variety of practical application areas in science and engineering, including nonlinear 
optics, solid state physics and quantum field theory (see, e.g. [1, 5, 11, 29]). As is 
known, with suitable spatial discretisation strategies, such as the finite difference 
method, the finite element method and the spectral method (see, e.g. [3, 14, 17, 20, 
21, 26–28, 30, 31]), the semi-linear wave equations can be converted into the highly 
oscillatory system (1.1). Therefore, it will be significant to further develop new 
approaches for efficiently solving the semi-linear highly oscillatory system.

In recent works, based on the operator spectrum theory and the Duhamel’s prin-
ciple, the evolutionary partial differential equations (PDEs) have been formulated as 
abstract ordinary differential equations (ODEs) in suitable Banach spaces (see, e.g. [4, 
19, 22–24]). Therefore, in this paper, we will consider both wave equations in high-
dimensions and second-order highly oscillatory ordinary differential equations as an 
semi-linear hyperbolic system (1.1) in a suitable Banach space (X, ‖ ⋅ ‖) , and present 
a new temporal integration strategy and related theoretical analyses. If the nonlinear 
function f ∶ [t0, T] × X → X  is continuous, then the solution of the semi-linear hyper-
bolic system (1.1) and its derivative satisfy the following variation-of-constants for-
mula (see, e.g. [4, 22–24, 38, 40, 42])

Since A = Ω2 , the operators �0

(
(t − t0)

2A
)
 and �1

(
(t − t0)

2A
)
 are defined as

(1.1)
{

ü(t) + Au(t) = f
(
t, u(t)

)
, t ∈ [t0, T],

u(t0) = 𝜑, u̇(t0) = 𝜓 ,

(1.2)

⎧⎪⎪⎨⎪⎪⎩

u(t) = 𝜙0

�
(t − t0)

2A
�
u(t0) + (t − t0)𝜙1

�
(t − t0)

2A
�
u̇(t0)

+ ∫ t

t0
(t − z)𝜙1

�
(t − z)2A

�
f
�
z, u(z)

�
dz,

u̇(t) = −(t − t0)A𝜙1

�
(t − t0)

2A
�
u(t0) + 𝜙0

�
(t − t0)

2A
�
u̇(t0)

+ ∫ t

t0
𝜙0

�
(t − z)2A

�
f
�
z, u(z)

�
dz.

(1.3)
�0

(
(t − t0)

2A
)
= cos

(
(t − t0)Ω

)
and �1

(
(t − t0)

2A
)
= sinc

(
(t − t0)Ω

)
,
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respectively. Furthermore, for any z ∈ [0, 1] , the solution of the hyperbolic system 
(1.1) and its derivative at time t = tn + zh ∈ [tn, tn + h] ⊆ [t0, T], n = 0, 1, 2,… can 
be expressed in

where V = h2A and g
(
tn + �h

)
= f

(
tn + �h, u(tn + �h)

)
 . A considerable amount of 

attention has been paid to the variation-of-constants formula (1.2) or (1.4) to design 
effective and efficient numerical integrators for solving the highly oscillatory sys-
tem (1.1). Approximating the nonlinear integrals appearing in formula (1.2) or (1.4) 
by suitable numerical quadrature formulas, a variety of numerical integrators have 
been proposed and analysed, including the Gautschi-type method of order two (see, 
e.g. [8–10, 12, 15]), the adapted Runge-Kutta-Nyström (ARKN) method (see, e.g. 
[7, 41]), the extended Runge-Kutta-Nyström (ERKN) method (see, e.g. [6, 25, 34, 
35, 38, 40, 42]), the arbitrarily high-order Birkhoff-Hermite (BH) method [22], 
and the trigonometric Fourier collocation (TFC) method [32, 36]. The integrators 
derived by using the variation-of-constants formula (1.2) or (1.4), such as Gautschi-
type method, ARKN method, ERKN method, BH method and TFC method etc., 
are also termed trigonometric integrators. Therefore, the trigonometric integrators 
can exactly integrate the multi-frequency unperturbed highly oscillatory system 
ü(t) + Au(t) = 0 associated with (1.1). In other words, the trigonometric integrators 
can preserve the oscillatory structure [39] of the hyperbolic system (1.1), since the 
highly oscillatory behaviour of (1.1) is brought by the linear term Au.

Moreover, it is well known that the collocation integrators not only provide a 
discrete set of approximations, but also a continuous approximation to the original 
solution (see [16]). By choosing suitable collocation nodes, the collocation meth-
ods could achieve a highest convergence order. In the recent research work (see 
[32, 36]), Wang et al. took advantage of the shifted Legendre polynomials and the 
Lagrange polynomials to derive two kinds of trigonometric collocation methods 
for solving the system (1.1). However, these two kinds of trigonometric colloca-
tion methods are discrete approximations to original solutions. In addition, the local 
error bounds and the long-term convergence analysis are insufficient. Therefore, in 
this paper, using the continuous polynomial approximation, we will focus on comb-
ing the superior performance of the collocation integrators with the trigonometric 
integrators to design the continuous trigonometric collocation polynomial approxi-
mation for solving the highly oscillatory hyperbolic system (1.1), which could con-
tinuously approximate the original solution and preserve the oscillatory structure of 
the underlying system. Furthermore, the structure-preserving behaviour, single step 
error bounds, the long-term convergence and the superconvergence of the continu-
ous trigonometric collocation polynomial approximations will be rigourously inves-
tigated in this work.

This paper is organised as follows. In Sect. 2, we formulate the trigonometric 
collocation integrators based on the continuous polynomial approximation, and 

(1.4)

⎧
⎪⎨⎪⎩

u(tn + zh) = 𝜙0(z
2V)u(tn) + zh𝜙1(z

2V)u̇(tn)

+ h2 ∫ z

0
(z − 𝜏)𝜙1

�
(z − 𝜏)2V

�
g
�
tn + 𝜏h

�
d𝜏,

u̇(tn + zh) = −zhA𝜙1(z
2V)u(tn) + 𝜙0(z

2V)u̇(tn)

+ h ∫ z

0
𝜙0

�
(z − 𝜏)2V

�
g
�
tn + 𝜏h

�
d𝜏,
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investigate the symmetry of the trigonometric collocation integrator. Section 3 is 
concerned with the rigorous analysis of single step error bounds, the long-term 
convergence, and the superconvergence of the continuous trigonometric collo-
cation polynomial approximations. By choosing suitable collocation nodes, the 
proposed trigonometric collocation integrators can achieve a highest order of 
convergence. Furthermore, the long-term energy conservation is also analysed in 
this section. In Sect. 4, we display preliminary numerical results which demon-
strate the advantages and efficiency of our new algorithms in comparison with the 
existing numerical methods in the literature. The last section is devoted to brief 
conclusions.

2  Formulation of the continuous collocation polynomial 
approximation

An essential feature of the collocation integrator is that we not only obtain a dis-
crete numerical solution, but also a continuous polynomial approximation to the 
solution of the original system (Hairer et. al. [16]). In this section, using con-
tinuous collocation polynomial approximations, we will derive a class of trigono-
metric collocation integrators for solving the highly oscillatory hyperbolic system 
(1.1) and analyse its symmetry. Our analysis for the collocation integrator will be 
based on the abstract formulation of the hyperbolic equation (1.1) as an evolution 
equation in a Banach space (X, ‖ ⋅ ‖).

Definition 2.1 Let 0 ≤ c1 < c2 < ⋯ < cs ≤ 1 be distinct nodes. The continuous col-
location polynomial approximation is to find a polynomial y(t) of degree s + 1 in the 
Banach space (X, ‖ ⋅ ‖) such that,

Then the numerical solution of the hyperbolic system (1.1) is defined by 
un+1 = y(tn + h) and u̇n+1 = ẏ(tn + h).

At first glance, it is difficult to seek such a polynomial in practice. Fortunately, 
following the Lagrange interpolation formula, the continuous collocation polyno-
mial y(t) satisfies

Here and in what follows, we always assume that z is in [0, 1]. Applying the varia-
tion-of-constants formula to (2.2), we obtain

(2.1)

⎧⎪⎨⎪⎩

y(tn) = un, ẏ(tn) = u̇n,

ÿ(tn + cih) = −Ay(tn + cih) + f
�
tn + cih, y(tn + cih)

�
,

i = 1, 2,… , s.

(2.2)ÿ(tn + zh) = −Ay(tn + zh) +

s∑
i=1

li(z)f
(
tn + cih, y(tn + cih)

)
.
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This seems like that the numerical solution of the continuous collocation polynomial 
approximations determined by Definition 2.1 could coincide with a class of ERKN inte-
grators (see, e.g.[38, 40, 42]). The details will be confirmed in the following theorem.

Theorem 2.1 The continuous collocation polynomial approximations determined by 
Definition2.1 are equivalent to the ERKN methods of the form:

with the weights

and

for i, j = 1, 2,… , s , and li(z) is the ith Lagrange basis polynomial.

Proof It straightforwardly follows from the formula (2.3) that

(2.3)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

y(tn + zh) = 𝜙0(z
2V)y(tn) + zh𝜙1(z

2V)ẏ(tn)

+ h2
s∑

i=1

∫ z

0
(z − 𝜏)𝜙1

�
(z − 𝜏)2V

�
li(𝜏)d𝜏f

�
tn + cih, y(tn + cih)

�
,

ẏ(tn + zh) = −zhA𝜙1(z
2V)y(tn) + 𝜙0(z

2V)ẏ(tn)

+ h
s∑

i=1

∫ z

0
𝜙0

�
(z − 𝜏)2V

�
li(𝜏)d𝜏f

�
tn + cih, y(tn + cih)

�
.

(2.4)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

un+1 = 𝜙0

�
V
�
un + h𝜙1

�
V
�
u̇n + h2

s∑
i=1

bi(V)f
�
tn + cih,U

ni
�
,

u̇n+1 = −hA𝜙1

�
V
�
un + 𝜙0

�
V
�
u̇n + h

s∑
i=1

b̄i(V)f
�
tn + cih,U

ni
�
,

Uni = 𝜙0

�
c2
i
V
�
un + cih𝜙1

�
c2
i
V
�
u̇n + h2

s∑
j=1

aij(V)f
�
tn + cjh,U

nj
�
,

i = 1, 2,… , s,

(2.5)
bi(V) = ∫

1

0

(1 − z)𝜙1

(
(1 − z)2V

)
li(z)dz,

b̄i(V) = ∫
1

0

𝜙0

(
(1 − z)2V

)
li(z)dz

(2.6)aij(V) = ∫
ci

0

(ci − z)�1

(
(ci − z)2V

)
lj(z)dz,

(2.7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

y(tn + h) = 𝜙0

�
V
�
y(tn) + h𝜙1

�
V
�
ẏ(tn) + h2

s∑
i=1

bi(V)f
�
tn + cih, y(tn + cih)

�
,

ẏ(tn + h) = −hA𝜙1

�
V
�
y(tn) + 𝜙0

�
V
�
ẏ(tn) + h

s∑
i=1

b̄i(V)f
�
tn + cih, y(tn + cih)

�
,

y(tn + cih) = 𝜙0

�
c2
i
V
�
y(tn) + cih𝜙1

�
c2
i
V
�
ẏ(tn) + h2

s∑
j=1

aij(V)f
�
tn + cjh, y(tn + cjh)

�
,

i = 1, 2,… , s.
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where the weights bi(v) , b̄i(v) and aij(V) are given by (2.5) and (2.6), respectively. 
The statement of the theorem is proved.   ◻

Hairer et  al. [16] have pointed out that all second order differential equation 
ü = f̃ (u) written as u̇ = v and v̇ = f̃ (u) are time reversible. The system (1.1) could be 
expressed as

Therefore, the system (1.1) is clearly time reversible. Moreover, as is known, sym-
metric methods have excellent long-time behavior when solving reversible differ-
ential systems (see Hairer et  al. [16]). The design and analysis of the symmetric 
integrators will be significant in the spirit of geometric integration. Thus, a most 
welcome feature of the continuous collocation polynomial approaches (2.1) is that 
it preserves the temporal symmetry by choosing suitable collocation nodes. We are 
now in a position to prove the symmetry of the trigonometric collocation integrators 
determined by Definition 2.1.

Theorem  2.2 If the collocation nodes c1,… , cs are symmetric nodes, i.e., 
ci + cs−i+1 = 1 for i = 1, 2,… , s , then the numerical solutions of the continuous col-
location polynomial approximations (2.1) or the extended Runge-Kutta-Nyström 
integrators (2.4) are symmetric.

Proof We only need to prove that the ERKN methods determined by (2.4) are sym-
metric. Exchanging un+1 ↔ un, u̇n+1 ↔ u̇n and replacing h by −h yields

It follows from combining �0(V)×(2.8+h�1(V)×(2.9) that

Similarly, the transformation −hA�1(V)×(2.8) +�0(V)×(2.9) yields

u̇(t) = v(t) and v̇(t) = −Au(t) + f
(
u(t)

)
∶= f̃

(
u(t)

)
.

(2.8)un = 𝜙0

(
V
)
un+1 − h𝜙1

(
V
)
u̇n+1 + h2

s∑
i=1

bi(V)f
(
tn+1 − cih,U

ni
∗

)
,

(2.9)u̇n = hA𝜙1

(
V
)
un+1 + 𝜙0

(
V
)
u̇n+1 − h

s∑
i=1

b̄i(V)f
(
tn+1 − cih,U

ni
∗

)
,

(2.10)

Uni
∗
= 𝜙0

(
c2
i
V
)
un+1 − cih𝜙1

(
c2
i
V
)
u̇n+1

+ h2
s∑

j=1

aij(V)f
(
tn+1 − cjh,U

nj
∗

)
, i = 1, 2,… , s.

(2.11)
un+1 = 𝜙0(V)u

n + h𝜙1(V)u̇
n + h2

s∑
i=1

(
b̄i(V)𝜙1(V) − bi(V)𝜙0(V)

)

× f
(
tn + cs−i+1h,U

ni
∗

)
.
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The symmetric nodes c1, c2,… , cs demonstrate an interesting fact that

Therefore, according to the relations (1.3) and the definition of bi(V) and b̄i(V) , it 
can be confirmed that

and

The Eqs. (2.11) and (2.12) can be simplified as

(2.12)

u̇n+1 = −hA𝜙1

(
V
)
un + 𝜙0

(
V
)
u̇n + h

s∑
i=1

(
bi(V)V𝜙1(V) + b̄i(V)𝜙0(V)

)

× f
(
tn + cs−i+1h,U

ni
∗

)
.

li(1 − z) = ls−i+1(z) for i = 1, 2,… , s.

b̄i(V)𝜙1(V) − bi(V)𝜙0(V) =∫
1

0

(
𝜙0

(
(1 − 𝜏)2V

)

× 𝜙1(V) − (1 − 𝜏)𝜙1

(
(1 − 𝜏)2V

)
𝜙0(V)

)
li(𝜏)d𝜏

=∫
1

0

(
cos

(
(1 − 𝜏)hΩ

)
sinc(hΩ) − (1 − 𝜏)sinc

(
(1 − 𝜏)hΩ

)

× cos(hΩ)
)
li(𝜏)d𝜏

=∫
1

0

𝜏sinc(𝜏hΩ)li(𝜏)d𝜏 = ∫
1

0

𝜏𝜙1(𝜏
2V)li(𝜏)d𝜏

=∫
1

0

(1 − 𝜏)𝜙1

(
(1 − 𝜏)2V

)
li(1 − 𝜏)d𝜏

=∫
1

0

(1 − 𝜏)𝜙1

(
(1 − 𝜏)2V

)
ls−i+1(𝜏)d𝜏 = bs−i+1(V),

bi(V)V𝜙1(V) + b̄i(V)𝜙0(V) =∫
1

0

(
(1 − 𝜏)V𝜙1

(
(1 − 𝜏)2V

)
𝜙1(V)

+ 𝜙0

(
(1 − 𝜏)2V

)
𝜙0(V)

)
li(𝜏)d𝜏

=∫
1

0

(
(1 − 𝜏)Vsinc

(
(1 − 𝜏)hΩ

)
sinc(hΩ)

+ cos
(
(1 − 𝜏)hΩ

)
cos(hΩ)

)
li(𝜏)d𝜏

=∫
1

0

cos(𝜏hΩ)li(𝜏)d𝜏 = ∫
1

0

𝜙0(𝜏
2V)li(𝜏)d𝜏

=∫
1

0

𝜙0

(
(1 − 𝜏)2V

)
li(1 − 𝜏)d𝜏

=∫
1

0

𝜙0

(
(1 − 𝜏)2V

)
ls−i+1(𝜏)d𝜏 = b̄s−i+1(V).
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and

Inserting the Eqs. (2.13) and (2.14) into (2.10) with a careful calculation gives

It then can be obtained after a series of complicated calculations that

and

Therefore, (2.15) is identical to the following

(2.13)un+1 = 𝜙0(V)u
n + h𝜙1(V)u̇

n + h2
s∑

i=1

bs−i+1(V)f
(
tn + cs−i+1h,U

ni
∗

)
,

(2.14)u̇n+1 = −hA𝜙1

(
V
)
un + 𝜙0

(
V
)
u̇n + h

s∑
i=1

b̄s−i+1(V)f
(
tn + cs−i+1h,U

ni
∗

)
.

(2.15)

Uni
∗
=
(
𝜙0(c

2
i
V)𝜙0(V) + ciV𝜙1(c

2
i
V)𝜙1(V)

)
un

+ h
(
𝜙0(c

2
i
V)𝜙1(V) − ci𝜙1(c

2
i
V)𝜙0(V)

)
u̇n

+ h2
s∑

j=1

(
𝜙0(c

2
i
V)bs−j+1(V) − ci𝜙1(c

2
i
V)b̄s−j+1(V) + aij(V)

)

× f
(
tn + cs−j+1h,U

ni
∗

)
.

�0(c
2
i
V)�0(V) + ciV�1(c

2
i
V)�1(V) = �0

(
(1 − ci)

2V
)
,

�0(c
2
i
V)�1(V) − ci�1(c

2
i
V)�0(V) = (1 − ci)�1

(
(1 − ci)

2V
)
,

𝜙0(c
2
i
V)bs−j+1(V) − ci𝜙1(c

2
i
V)b̄s−j+1(V) + aij(V)

= ∫
1

0

(1 − ci − z)𝜙1

(
(1 − ci − z)2V

)
ls−j+1(z)dz + ∫

ci

0

(ci − z)𝜙1

(
(ci − z)2V

)
li(z)dz

= ∫
1

0

(𝜏 − ci)𝜙1

(
(𝜏 − ci)

2V
)
lj(𝜏)d𝜏 + ∫

ci

0

(ci − z)𝜙1

(
(ci − z)2V

)
li(z)dz

= ∫
1

1−cs−i+1

(𝜏 − 1 + cs−i+1)𝜙1

(
(𝜏 − 1 + cs−i+1)

2V
)
lj(𝜏)d𝜏

= ∫
cs−i+1

0

(cs−i+1 − z)𝜙1

(
(cs−i+1 − z)2V

)
lj(1 − z)dz

= ∫
cs−i+1

0

(cs−i+1 − z)𝜙1

(
(cs−i+1 − z)2V

)
ls−j+1(z)dz

= as−i+1,s−j+1(V).

(2.16)

Uni
∗
= 𝜙0

(
(1 − ci)

2V
)
un + (1 − ci)h𝜙1

(
(1 − ci)

2V
)
u̇n

+ h2
s∑

j=1

as−i+1,s−j+1(V)f
(
tn + cs−j+1h,U

ni
∗

)
.
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Replacing all indicates i and j in (2.13), (2.14) and (2.16) by s − i + 1 and s − j + 1 , 
respectively, we find that the ERKN method (2.4) with weights (2.5) and (2.6) is 
identical to its adjoint method consisted of (2.13), (2.14) and (2.16). Therefore, the 
ERKN methods determined by (2.4) are symmetric. This completes the proof of the 
theorem.   ◻

3  Main theoretical results

In this section, we state the error bounds of our continuous trigonometric colloca-
tion polynomial approximations for solving the hyperbolic system (1.1). The sin-
gle step error bounds and the long-term convergence of continuous trigonomet-
ric collocation polynomial approximations (2.1) will be rigorously analysed. Our 
analysis will be based on the variation-of-constants formula (1.2) or (1.4) pro-
vided for the hyperbolic system (1.1). Before presenting our theoretical analysis, 
we need the following hypotheses on the regularity of u and the nonlinearity of f.

Assumption 3.1 Suppose that the exact solution u of the hyperbolic system (1.1) 
satisfies u ∈ Cs

(
[t0, T];X

)
 and the nonlinear function f ∶ [t0, T] × X → X  is Fréchet 

differentiable along a strip of the exact solution u. We also assume that all occurring 
derivatives are uniformly bounded.

Assumption 3.2 Let f(t,  u) be Lipschitz-continuous with respect to u, i.e., there 
exists a real number L such that

for all t ∈ [t0, T] and max
�‖v(t) − u(t)‖, ‖w(t) − u(t)‖� ≤ Const.

Remark 3.1 Under Assumptions 3.1, it should be noted that the composition:

is also Fréchet differentiable in a strip along the exact solution u(t). Therefore, when 
u ∈ Cl

(
[t0, T],X

)
 and g(l) ∈ L∞([t0, T];X) for l = s, s + 1,… , 2s , the following 

assumptions are valid

where Km, m = 0, 1, 2,… , s are constants and independent of h and A.

Remark 3.2 Here, we remark that the essence of the continuous collocation polyno-
mial approximation is to find the polynomial y(t) in the Banach space (X, ‖ ⋅ ‖) . The 

(3.1)‖f �t, v(t)� − f
�
t,w(t)

�‖ ≤ L‖v(t) − w(t)‖

g ∶ [t0, T] → X, i.e., t → g(t) = f
(
t, u(t)

)

m∑
l=0

max
t0≤t≤T

‖‖g(s+l)(t)‖‖ ≤ Km, m = 0, 1, 2,… , s,
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polynomial y(t) is always bounded over the interval [t0, T] , and this implies that there 
exists a constant M > 0 such that

Therefore, Assumption 3.2 is reasonable.

3.1  Error estimates

Theorem 3.1  (Single step error bounds I) Suppose that Assumptions 3.1 - 3.2 are 
satisfied and g(l) ∈ L∞([t0, T];X) for l = s, s + 1,… , 2s . Then, when the time step h 
satisfies the limitation 0 < h ≤

√
1

2sL
 , we have the error estimations for a single 

step:

 (i) Under the local assumptions of y(tn) = u(tn), ẏ(tn) = u̇(tn) , the single step error 
bounds of the continuous trigonometric collocation polynomial y(t) defined 
by Definition 2.1 satisfy:

 (ii) Furthermore, if the collocation polynomial y(t) satisfies y(m)(tn) = u(m)(tn) for 
m = 1,… , s , then the derivatives of y(t) satisfy the following estimations:

Here, we point out that the constants C1 and C2 satisfy

and are obviously independent of h and A.

Proof According to the definition of the continuous trigonometric collocation poly-
nomial defined by Definition 2.1, it is clear that the polynomial y(t) satisfies

Moreover, it is evident that the exact solution of (1.1) satisfies

max
t0≤t≤T ‖y(t)‖ ≤ M.

(3.2)
‖u(t) − y(t)‖ ≤ C1h

s+2 and

‖u̇(t) − ẏ(t)‖ ≤ C1h
s+1, ∀t ∈ [tn, tn + h].

(3.3)
‖u(m)(t) − y(m)(t)‖ ≤ C2h

s+2−m and

‖u(m+1)(t) − y(m+1)(t)‖ ≤ C2h
s+1−m, ∀t ∈ [tn, tn + h].

2K0 ≤ C1 and max
1≤m≤s

(
2K0L

s∑
i=1

max
0≤z≤1 |l

(m)

i
(z)| + Km

)
≤ C2

(3.4)ÿ(tn + zh) = −Ay(tn + zh) +

s∑
i=1

li(z)f
(
tn + cih, y(tn + cih)

)
.
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where the interpolation error En(z, h) =
1

s!
ws(z)g

(s)(tn + �nh) for some 
�n ∈

(
min{z, c1,… , cs}, max{z, c1,… , cs}

)
 and ws(z) =

s∏
i=1

(z − ci) . In the light of 

Assumption 3.1, En(z, h) and its derivatives satisfy the estimations

Then, subtracting (3.4) from (3.5) leads to

where e(tn + zh) = u(tn + zh) − y(tn + zh) and 
Δf ni = f

(
tn + cih, u(tn + cih)

)
− f

(
tn + cih, y(tn + cih)

)
 . 

 (i) Applying the variation-of-constants formula to the Eq. (3.6), we obtain 

 Taking norms on both sides of Eqs. (3.7) and using Assumption 3.2 and the 
local assumptions y(tn) = u(tn), ẏ(tn) = u̇(tn) , we obtain 

 and 

 If the time stepsize h satisfies h2sL ≤ 1

2
 , namely, h ≤

√
1

2sL
 , then we have 

 Inserting the result (3.10) into the inequality (3.9) leads to 

(3.5)ü(tn + zh) = −Au(tn + zh) +

s∑
i=1

li(z)f
(
tn + cih, u(tn + cih)

)
+ hsEn(z, h),

‖‖E(m)
n

(z, h)‖‖ ≤
m∑
l=0

max
t0≤t≤T

‖‖g(s+l)(t)‖‖ ≤ Km, m = 0, 1, 2,… , s.

(3.6)ë(tn + zh) = −Ae(tn + zh) +

s∑
i=1

li(z)Δf
ni + hsEn(z, h),

(3.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e(tn + zh) = 𝜙0(z
2V)e(tn) + zh𝜙1(z

2V)ė(tn)

+ h2
s∑

i=1

∫ z

0
(z − 𝜏)𝜙1

�
(z − 𝜏)2V

�
li(𝜏)d𝜏Δf

ni

+ hs+2 ∫ z

0
(z − 𝜏)𝜙1

�
(z − 𝜏)2V

�
En(𝜏, h)d𝜏,

ė(tn + zh) = −zhA𝜙1(z
2V)e(tn) + 𝜙0(z

2V)ė(tn)

+ h
s∑

i=1

∫ z

0
𝜙0

�
(z − 𝜏)2V

�
li(𝜏)d𝜏Δf

ni

+ hs+1 ∫ z

0
𝜙0

�
(z − 𝜏)2V

�
En(𝜏, h)d𝜏.

(3.8)‖e(tn + zh)‖ ≤ h2sL max
0≤z≤1 ‖e(tn + zh)‖ + K0h

s+2

(3.9)‖ė(tn + zh)‖ ≤ hsL max
0≤z≤1 ‖e(tn + zh)‖ + K0h

s+1.

(3.10)max
0≤z≤1 ‖e(tn + zh)‖ ≤ 2K0h

s+2.
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 Thus, let C1 ≥ 2K0 in the above results, and then the proof of the first state-
ment is complete.

 (ii) The proof of the second statement follows from applying the variation-of-
constants formula to 

 i.e., 

 Thus, the local assumptions y(m)(tn) = u(m)(tn) for m = 1, 2,… , s lead to 

 and 

 Inserting the results (3.2) into the left sides of (3.11) and (3.12) and choos-
ing the constant C2 to satisfy 

 we obtain 

 This completes the proof.

‖ė(tn + zh)‖ ≤ hs+1
�
2K0h

2sL + K0

� ≤ 2K0h
s+1.

hme(m+2)(tn + zh) = −Ahme(m)(tn + zh) +

s∑
i=1

l
(m)

i
(z)Δf ni + hsE(m)(z, h),

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hme(m)(tn + zh) = hm�0(z
2V)e(m)(tn)

+ zhm+1�1(z
2V)e(m+1)(tn) + h2

s∑
i=1

∫ z

0
(z − �)�1

�
(z − �)2V

�
l
(m)

i
(�)d�Δf ni

+ hs+2 ∫ z

0
(z − �)�1

�
(z − �)2V

�
E(m)(�, h)d�,

hme(m+1)(tn + zh) = −zhm+1A�1(z
2V)e(m)(tn)

+ hm�0(z
2V)e(m+1)(tn) + h

s∑
i=1

∫ z

0
�0

�
(z − �)2V

�
l
(m)

i
(�)d�Δf ni

+ hs+1 ∫ z

0
�0

�
(z − �)2V

�
E(m)(�, h)d�.

(3.11)
hm‖e(m)(tn + zh)‖ ≤ h2L

s�
i=1

max
0≤z≤1 �l

(m)

i
(z)�

× max
0≤z≤1 ‖e(tn + zh)‖ + Kmh

s+2

(3.12)
hm‖e(m+1)(tn + zh)‖ ≤ hL

s�
i=1

max
0≤z≤1 �l

(m)

i
(z)�

× max
0≤z≤1 ‖e(tn + zh)‖ + Kmh

s+1.

max
1≤m≤s

(
2K0h

2L

s∑
i=1

max
0≤z≤1 |l

(m)

i
(z)| + Km

)
≤ C2,

‖e(m)(tn + zh)‖ ≤ C2h
s+2−m and ‖ė(m+1)(tn + zh)‖ ≤ C2h

s+1−m,

m = 1, 2,… , s.
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  ◻

Actually, Theorem 3.1 demonstrate the local error bounds for the continuous colloca-
tion polynomial approximations (2.1). In what follows, we will investigate the long-
term convergence of the continuous collocation polynomial approximations. For this 
purpose, we rewritten the Eq. (3.7) as the following compact form:

where Ψ(z, �,V) is defined as:

that is, Ψ(z, �,V) is the rotation operator

It is easy to see that the norm of Ψ(z, �,V) satisfies:

This will be repeatedly used in our following theoretical analysis. For simplic-
ity of analysis, we introduce the energy norm |||(u(t), u̇(t))||| for the solutions (
u(t), u̇(t)

)
∈ L∞([t0, T];X) , i.e.,

Moreover, we quote the following Gronwall inequality, which will play an important 
role in the convergence analysis.

Lemma 3.1 (See, e.g. [22, 23]) Let � be positive, ak, bk , k ∈ ℕ , be nonnegative and 
assume further that

Then

Now, we will show that the continuous collocation polynomial approximation 
defined by Definition 2.1 with nodes {ci}si=1 is of order s at least.

(3.13)

[
Ωe(tn + zh)

ė(tn + zh)

]
=Ψ(z, 0,V)

[
Ωe(tn)

ė(tn)

]
+ h

s∑
i=1

∫
z

0

Ψ(z, 𝜏,V)li(𝜏)d𝜏

[
0

Δf ni

]

+ hs+1 ∫
z

0

Ψ(z, 𝜏,V)

[
0

En(𝜏, h)

]
d𝜏,

(3.14)Ψ(z, �,V) =

[
�0((z − �)2V) h(z − �)Ω�1((z − �)2V)

−h(z − �)Ω�1((z − �)2V) �0((z − �)2V)

]
,

Ψ(z, �,V) =

[
cos

(
(z − �)hΩ

)
sin

(
(z − �)hΩ

)
− sin

(
(z − �)hΩ

)
cos

(
(z − �)hΩ

)
]
.

‖Ψ(z, �,V)‖ = 1, ∀z, � ∈ [0, 1].

����u(t), u̇(t)���� = ‖u(t)‖ +√‖u̇(t)‖2 + ‖Ωu(t)‖2.

ak ≤ (1 + �Δt)ak−1 + Δtbk, k ∈ ℕ.

ak ≤ exp(�kΔt)
(
a0 + Δt

k∑
m=1

bm

)
, k ∈ ℕ.
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Theorem 3.2 (Long-term convergence I) Suppose that the Assumptions 3.1–3.2 are 
satisfied and g(s) ∈ L∞([t0, T];X) . Then, under the limitation of the time stepsize 
0 < h ≤

√
1

2sL
 , we obtain the error estimations:

where y(t) is the collocation polynomial of degree s + 1 and the constant C4 inde-
pendent of n, h and A.

Proof For any t ∈ [t0, T] , there exists a nonnegative integer n ∈ ℕ such that 
t = tn + zh,∀z ∈ [0, 1] . It follows from taking norms on both sides of Eq. (3.13) and 
the first equation in (3.7) that:

and

Let the time stepsize h0 be sufficiently small and meet the condition h2
0
sL ≤ 1

2
 , i.e., 

h0 ≤
√

1

2sL
 . Then we have

Inserting the result (3.18) into the inequality obtained by adding (3.16) and (3.17) 
leads to

Letting z = 1 in (3.19) and using the Gronwall’s inequality (see Lemma 3.1) to it, we 
have

Therefore, there exist a constant C3 ≥ 4TK0 exp
(
(1 + 4sL)T

)
 such that

Furthermore, inserting the results (3.20) into (3.19) yields

Obviously, the constant C4 is independent on n, h and A. Therefore, the theorem is 
confirmed.   ◻

(3.15)‖y(t) − u(t)‖ ≤ C4h
s and ‖ẏ(t) − u̇(t)‖ ≤ C4h

s, ∀t ∈ [t0, T],

(3.16)

�
‖ė(tn + zh)‖2 + ‖Ωe(tn + zh)‖2 ≤

�
‖ė(tn)‖2 + ‖Ωe(tn)‖2

+ hsL max
0≤z≤1 ‖e(tn + zh)‖ + K0h

s+1,

(3.17)
‖e(tn + zh)‖ ≤ ‖e(tn)‖ + zh‖ė(tn)‖ + h2sL max

0≤z≤1 ‖e(tn + zh)‖ + K0h
s+2.

(3.18)max
0≤z≤1 ‖e(tn + zh)‖ ≤ 2

�‖e(tn)‖ + zh‖ė(tn)‖ + K0h
s+2

�
.

(3.19)

|||(e(tn + zh), ė(tn + zh)
)||| ≤ (

1 + h(1 + 4sL)
)
⋅ |||(e(tn), ė(tn)

)||| + 4K0h
s+1,

∀z ∈ [0, 1].

|||(e(tn + h), ė(tn + h)||| ≤ exp
(
(1 + 4sL)T

)(|||(e(t0), ė(t0)||| + 4TK0h
s
)
, n = 0, 1, 2,…

(3.20)‖e(tn)‖ ≤ C3h
s, ‖ė(tn)‖ ≤ C3h

s, ‖Ωe(tn)‖ ≤ C3h
s.

‖e(tn + zh)‖ ≤ C4h
s and ‖ė(tn + zh)‖ ≤ C4h

s, ∀z ∈ [0, 1].
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3.2  Superconvergence of continuous trigonometric collocation polynomial 
approximations

In the light of the results shown in Theorem  3.1 and Theorem  3.2, the term 
max
0≤z≤1 �ws(z)� = max

0≤z≤1
s∏

i=1

�z − ci� appears in the error bounds. This observation implies 

that by choosing suitable collocation nodes ci , such as the zeros of the shifted Leg-
endre polynomial, can minimize the error bounds to achieve a higher convergence 
order. In our numerical experiments, we will choose the collocation nodes ci as the 
zeros of the shifted Legendre polynomials

to generate the Gauss-type and Lobatto-type time integrators, respectively. The 
numerical results in Sect. 4 will show that the continuous trigonometric collocation 
polynomial approximation can be of superconvergence. In this subsection, we will 
present the rigorous theoretical analysis of this superconvergence. To this end, we 
consider y(tn + zh) as the solution of the following perturbed differential equation:

where the remainder �(tn + zh) will vanish at the chosen collocation points, i.e., 
�(tn + cih) = 0 for i = 1, 2,… , s. Subtracting the perturbed differential equation 
(3.21) from the Eq. (1.1) and applying the variation-of-constant formula to this 
result, we obtain after the linearisation that

where the remainder r(tn + zh) is of magnitude O(‖u(tn + zh) − y(tn + zh)‖2) . Since 
the defect �(tn + zh) vanishes at the collocation nodes c1,… , cs , the integral related 
to ‖�(tn + zh)‖ is equal to its quadrature error, i.e.,

where p is the algebraic order of the quadrature formula corresponding to the nodes 
c1,… , cs . In what follows, we will show that the precision of the trigonometric col-
location integrators defined by Definition 2.1 could be improved by choosing suit-
able collocation nodes.

ds

dxs

(
xs(1 − x)s

)
and

ds−2

dxs−2

(
xs−1(1 − x)s−1

)

(3.21)ÿ(tn + zh) = −Ay(tn + zh) + f
(
tn + zh, y(tn + zh)

)
+ 𝛿(tn + zh),

(3.22)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e(tn + zh) = 𝜙0(z
2V)e(tn) + zh𝜙1(z

2V)ė(tn)

+ h2 ∫ z

0
(z − 𝜏)𝜙1

�
(z − 𝜏)2V

�
𝜕f

𝜕u

�
tn + 𝜏h, u(tn + 𝜏h)

�
e(tn + 𝜏h)d𝜏

+ h2 ∫ z

0
(z − 𝜏)𝜙1

�
(z − 𝜏)2V

��
− 𝛿(tn + 𝜏h) + r(tn + 𝜏h)

�
d𝜏,

ė(tn + zh) = −zhA𝜙1(z
2V)e(tn) + 𝜙0(z

2V)ė(tn)

+ h ∫ z

0
𝜙0

�
(z − 𝜏)2V

�
𝜕f

𝜕u

�
tn + 𝜏h, u(tn + 𝜏h)

�
e(tn + 𝜏h)d𝜏

+ h ∫ z

0
𝜙0

�
(z − 𝜏)2V

��
− 𝛿(tn + 𝜏h) + r(tn + 𝜏h)

�
d𝜏,

(3.23)∫
1

0

‖�(tn + �h)‖d� = O(hp),
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Theorem 3.3  (Single step error bounds II) Suppose that the exact solution u(t) of 
the system (1.1) satisfies the Assumption 3.1. Then, there exists a sufficiently small 
h0 > 0 , such that when the time step h meets the limitation 0 < h ≤ h0 , the single 
step error bounds of the collocation polynomial y(t) further satisfy

where s ≤ p ≤ 2s is the algebraic order of the quadrature formula corresponding to 
the nodes c1,… , cs.

Proof It follows from taking norms on both sides of (3.22) that

and

Let the stepsize h satisfy h ≤ √
1

2K0

 . The inequality (3.25) leads to

Inserting (3.27) into (3.26) yields

(3.24)
‖u(tn + zh) − y(tn + zh)‖ = O(hp+2) and

‖u̇(tn + zh) − ẏ(tn + zh)‖ = O(hp+1),

(3.25)

‖e(tn + zh)‖ ≤ h2 �
z

0

�z − �� ⋅ ���
�f

�u

�
tn + �h, u(tn + �h)

���� ⋅ ‖e(tn + �h)‖d�

+ h2 �
z

0

�z − �� ⋅
�
‖�(tn + �h)‖ + ‖r(tn + �h)‖

�
d�

≤ K0h
2 max
0≤z≤1 ‖e(tn + zh)‖ + h2 �

1

0

×
�
‖�(tn + �h)‖ + ‖r(tn + �h)‖

�
d�

(3.26)

‖ė(tn + zh)‖ ≤ h�
z

0

���
𝜕f

𝜕u

�
tn + 𝜏h, u(tn + 𝜏h)

���� ⋅ ‖e(tn + 𝜏h)‖d𝜏

+ h�
z

0

�
‖𝛿(tn + 𝜏h)‖ + ‖r(tn + 𝜏h)‖

�
d𝜏

≤ K0h max
0≤z≤1 ‖e(tn + zh)‖ + h�

1

0

×
�
‖𝛿(tn + 𝜏h)‖ + ‖r(tn + 𝜏h)‖

�
d𝜏.

(3.27)

‖e(tn + zh)‖ ≤ 2h2 �
1

0

�
‖�(tn + �h)‖ + ‖r(tn + �h)‖

�
d�, ∀z ∈ [0, 1].

(3.28)

‖ė(tn + zh)‖ ≤ 2h�
1

0

�
‖𝛿(tn + 𝜏h)‖ + ‖r(tn + 𝜏h)‖

�
d𝜏, ∀z ∈ [0, 1].
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Moreover, the statements of Theorem 3.2 yield that the remainder r(tn + zh) is of 
the magnitude O(u(tn + zh) − ‖y(tn + zh)‖2) = O(h2s) . Therefore, if the order of the 
quadrature formula satisfies s ≤ p ≤ 2s , we have

By taking h0 ≤ min
{√

1

2K0

,

√
1

2sL

}
 , the conclusion of the theorem is proved.   ◻

Theorem 3.4  (Long-term convergence II) Suppose that the collocation polynomial 
y(t) of degree s + 1 satisfies (2.1) and the exact solution u(t) of the system (1.1) satis-
fies Assumption 3.1. Then, under the limitation of the time stepsize 
h ≤ min

{√
1

2K0

,

√
1

2sL

}
 , we obtain the following superconvergence results

where s ≤ p ≤ 2s is the algebraic order of the quadrature formula corresponding to 
the nodes c1,… , cs.

Proof It follows from rewriting the Eq. (3.22) as the following compact form that

Taking norms on both sides of Eq. (3.30) gives

Similarly, by taking norms on both sides of the first equation in (3.30), we have

It then follows from choosing the stepsize h satisfies h ≤ √
1

2K0

 that

‖u(tn + zh) − y(tn + zh)‖ = O(hp+2) and ‖u̇(tn + zh) − ẏ(tn + zh)‖ = O(hp+1).

(3.29)‖u(t) − y(t)‖ = O(hp) and ‖u̇(t) − ẏ(t)‖ = O(hp), ∀t ∈ [t0, T],

(3.30)

[
Ωe(tn + zh)

ė(tn + zh)

]
=Ψ(z, 0,V)

[
Ωe(tn)

ė(tn)

]
+ h∫

z

0

Ψ(z, 𝜏,V)

×

[
0

𝜕f

𝜕u

(
tn + 𝜏h, u(tn + 𝜏h)

)
e(tn + 𝜏h)

]
d𝜏

+ h∫
z

0

Ψ(z, 𝜏,V)

×

[
0

−𝛿(tn + 𝜏h) + r(tn + 𝜏h)

]
d𝜏.

(3.31)

�
‖ė(tn + zh)‖2 + ‖Ωe(tn + zh)‖2 ≤

�
‖ė(tn)‖2 + ‖Ωe(tn)‖2 + hK0 max

0≤z≤1 ‖e(tn + zh)‖

+ h�
1

0

�
‖𝛿(tn + zh)‖ + ‖r(tn + zh)‖

�
dz.

(3.32)

‖e(tn + zh)‖ ≤ ‖e(tn)‖ + zh‖ė(tn)‖ + h2K0 max
0≤z≤1 ‖e(tn + zh)‖

+ h2 �
1

0

�
‖𝛿(tn + zh)‖ + ‖r(tn + zh)‖

�
dz.
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Inserting (3.33) into the results obtained by adding up (3.31) and (3.32) yields that

Taking z = 1 in (3.34) and using the Gronwall’s inequality (see Lemma 3.1) to the 
obtained result leads to

According to Theorem  3.2 we have 
‖r(tn + zh)‖ = O

�‖u(tn + zh) − y(tn + zh)‖2� = O(h2s) . Therefore, if the order of the 
quadrature formula satisfies s ≤ p ≤ 2s , we obtain

Inserting (3.35) into (3.34) yields

The statement of the theorem is confirmed.   ◻

Remark 3.3 If the nodes {ci}si=1 are chosen, from the analysis of Theorem 3.3 and 
Theorem 3.4, we have

This implies that the continuous trigonometric collocation polynomial approxima-
tions have the same order as the underlying quadrature formula. For instance, we 
take {ci}si=1 as zeros of the shifted Legendre polynomials

(3.33)
max
0≤z≤1 ‖e(tn + zh)‖ ≤ 2

�
‖e(tn)‖ + h‖ė(tn)‖

�

+ 2h2 �
1

0

�
‖𝛿(tn + zh)‖ + ‖r(tn + zh)‖

�
dz.

(3.34)

����e(tn + zh),ė(tn + zh)
���� ≤ ����e(tn), ė(tn)

���� + zh‖ė(tn)‖
+ h(1 + h)K0 max

0≤z≤1 ‖e(tn + zh)‖

+ h(1 + h)�
1

0

�
‖𝛿(tn + zh)‖ + ‖r(tn + zh)‖

�
dz

≤�1 + h(1 + 4K0)
�
⋅ ����e(tn), ė(tn)

����
+ 4h�

1

0

�
‖𝛿(tn + zh)‖ + ‖r(tn + zh)‖

�
dz.

����e(tn + h), ė(tn + h)
���� ≤ 4h exp

�
(1 + 4K0)T

� n�
k=0

�
1

0

�
‖𝛿(tk + zh)‖ + ‖r(tk + zh)‖

�
dz.

(3.35)‖u(tn) − y(tn)‖ = O(hp) and ‖u̇(tn) − ẏ(tn)‖ = O(hp).

(3.36)
‖u(tn + zh) − y(tn + zh)‖ = O(hp) and

‖u̇(tn + zh) − ẏ(tn + zh)‖ = O(hp), ∀z ∈ [0, 1].

(3.37)∫
1

0

‖�(tn + �h)‖d� = O(hp).

ds

dxs

(
xs(1 − x)s

)
or

ds−2

dxs−2

(
xs−1(1 − x)s−1

)
,
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the accuracy of the continuous trigonometric collocation polynomial approxima-
tions can achieve order 2s or 2s − 2 , respectively. The fact will be demonstrated 
again in our numerical experiments in Sect. 4.

3.3  Long‑term behaviour of energy conservation

In this section, we turn to another essential property of the conservative hyper-
bolic system (1.1). It is easy to see that the hyperbolic system (1.1) has the fol-
lowing important conservative quantity:

where the inner product (⋅, ⋅) is corresponding to ‖ ⋅ ‖ , and F is the primitive function 
of f defined as:

In what follows, we will focus on analysing the long-term energy conservation of 
the continuous trigonometric collocation polynomial approximations for solving the 
hyperbolic system (1.1).

Theorem  3.5 Let 0 ≤ c1 < c2 < ⋯ < cs ≤ 1 be the collocation nodes and y(t) 
defined by Definition 2.1 be the collocation polynomial corresponding to the nodes. 
Then the energy defined in (3.38) satisfies the estimation

where t ∈ [t0, T] and s ≤ p ≤ 2s is the algebraic order of the quadrature formula 
corresponding to the nodes.

Proof For any t0 ≤ t ≤ T  , there exists a number n ∈ ℕ such that 
t = tn + �h, ∀� ∈ [0, 1] . Therefore, the energy error can be expressed as

In order to obtain the estimation for the energy (3.38) over a long time interval [t0, T] , 
we need to estimate |H(

y(tk + 𝜇h), ẏ(tk + 𝜇h)
)
− H

(
y(tk), ẏ(tk)

)| for k = 0, 1,… , n . 
Clearly, the collocation polynomial y(tk + �h) satisfies

(3.38)
H
�
u(t), u̇(t)

�
∶=

1

2
‖u̇(t)‖2 + 1

2
‖Ωu(t)‖2

+
�
F(t, u(t)), 1

� ≡ H
�
u(t0), u̇(t0)

�
,

F(t, s) = −∫
s

0

f (t, �)d�.

(3.39)||H
(
y(t), ẏ(t)

)
− H

(
y(t0), ẏ(t0)

)|| = O(hp),

(3.40)

||H
(
y(t), ẏ(t)

)
− H

(
y(t0), ẏ(t0)

)|| ≤ ||H
(
y(tn + 𝜇h), ẏ(tn + 𝜇h)

)
− H

(
y(tn), ẏ(tn)

)||
+

n∑
k=1

||H
(
y(tk), ẏ(tk)

)
− H

(
y(tk−1), ẏ(tk−1)

)||.
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For any k = 0, 1,… , n , by taking the inner product of both sides of (3.41) with 
y(tk + �h) , we have

Therefore, integrating the Eq. (3.42) for � from 0 to z and using the Hölder’s ine-
quality, we obtain

Here, ‖ ⋅ ‖∗ is the dual norm of ‖ ⋅ ‖ and M is the bound of the collocation polyno-
mial y(t) over the interval [t0, T] . Inserting the above results into (3.41) leads to

Since the defect �(tk + �h) vanishes at the collocation nodes c1,… , cs , the integral 
related to ‖�(tn + �h)‖∗ is also equal to its quadrature error, namely,

Therefore, we obtain the estimate of energy error as follows

The conclusion of the theorem is confirmed.   ◻

4  Numerical experiments

In this section, we will derive four practical continuous trigonometric collocation 
polynomial approximations and illustrate the numerical results for solving the Klein-
Gordon equation, two-dimensional sine-Gordon equation, and Duffing equation. We 
report numerical results to support our error estimates and demonstrate the superior-
ity of the continuous collocation polynomial approximation. The numerical results 
are really promising, which are powerful to verify our theoretical analysis results for 
our continuous trigonometric collocation polynomial approximations.

(3.41)ÿ(tk + 𝜇h) = −Ay(tk + 𝜇h) + f
(
tk + 𝜇h, y(tk + 𝜇h)

)
+ 𝛿(tk + 𝜇h).

(3.42)

d

dt

�
1

2
‖ẏ(tk + 𝜇h)‖2 + 1

2
‖Ωy(tk + 𝜇h)‖2

+
�
F
�
tk + 𝜇h, y(tk + 𝜇h)

�
, 1
��

=
�
𝛿(tk + 𝜇h), y(tk + 𝜇h)

�
.

��H
�
y(tk + zh), ẏ(tk + zh)

�
− H

�
y(tk), ẏ(tk)

��� ≤ h�
z

0

��𝛿(tk + 𝜇h)��∗d𝜇 max
t0≤t≤T ‖y(t)‖

≤ hM �
1

0

��𝛿(tk + 𝜇h)��∗d𝜇.

||H
(
y(t), ẏ(t)

)
− H

(
y(t0), ẏ(t0)

)|| ≤ hM

n∑
k=0

�
1

0

‖‖𝛿(tk + 𝜇h)‖‖∗d𝜇.

(3.43)∫
1

0

‖�(tn + �h)‖∗d� = O(hp).

||H
(
y(t), ẏ(t)

)
− H

(
y(t0), ẏ(t0)

)|| = O(hp).
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• Trigonometric collocation polynomial approximation with Gauss nodes: By 
taking the nodes c1,⋯ , cs as the zeros of the sth shifted Gauss-Legendre polyno-
mial 

 then the Gauss quadrature formulas means that the integral (3.23) has order 
p = 2s . In this work, we choose the two-point Gauss-Legendre nodes 

 and the three-point Gauss-Legendre nodes 

 to construct the fourth-order and sixth-order trigonometric collocation time inte-
grators, which are denoted by GTC2s4 and GTC3s6, respectively.

• Trigonometric collocation polynomial approximation with Lobatto nodes: If 
we take the nodes c1,⋯ , cs as the zeros of the sth Legendre polynomial 

 then the Lobatto quadrature formulas lead the integral (3.23) could achieve the 
highest possible order p = 2s − 2 . Similarly, by taking the three-point Lobatto 
nodes 

 and the four-point Lobatto nodes 

 we can derive the fourth-order and sixth-order trigonometric collocation time 
integrators, and denoted as LTC2s4 and LTC3s6, respectively.

In order to demonstrate the superiority of the proposed integrators, we select the fol-
lowing time integrators for comparison:

• BH1: the symmetric Birkhoff-Hermite time integrator of order four derived in 
[22]

• BH2: the symmetric Birkhoff-Hermite time integrator of order six derived in 
[22]

• GAS2s4: the two-stage Gauss time integration method of order four presented in 
[16];

ds

dxs

(
xs(x − 1)s

)
,

c1 =
3 −

√
3

6
, c2 =

3 +
√
3

6
,

c1 =
5 −

√
15

10
, c2 =

1

2
, c3 =

5 +
√
15

10
,

ds−2

dxs−2

(
xs−1(x − 1)s−1

)
,

c1 = 0, c2 =
1

2
, c3 = 1,

c1 = 0, c2 =
5 −

√
5

10
, c3 =

5 +
√
5

10
, c4 = 1,
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• GAS3s6: the three-stage Gauss time integration method of order six presented in 
[16];

• LIIIA3s4: the Labatto IIIA method of order four presented in [16];
• LIIIA4s6: the Labatto IIIA method of order six presented in [16].
• ERKN3s4: the three-stage explicit ERKN method of order four derived in 

[38];
• ERKN7s6: the seven-stage explicit ERKN method of order six presented in [33];

During the numerical experiments, it should be noted that the fixed-point iteration 
are used for all the implicit integrators. The iteration procedure will be stopped once 
the l∞ norm of the difference between two successive approximations is smaller than 
the fixed error tolerance 10−15 . Here, we also point out that if the error produced by 
a method is too large for some time stepsize h, then the corresponding point will 
not be plotted in the figure. Moreover, we should point out that the ERKN3s4 and 
ERKN7s6 methods are quite different with our proposed methods in this paper. The 
chosen ERKN3s4 and ERKN7s6 methods are derived by solving the order condi-
tions (see [33, 38]). Our derived time integrators are yielded by using the continuous 
collocation polynomial approximation.

All computations in the numerical experiments are carried out by using MAT-
LAB 2016b on the computer Lenovo ThinkCentre M8300t (CPU: Intel (R) Core 
(TM) i7-2400 CPU @ 3.10 GHz, Memory: 8 GB, Os: Microsoft Windows 10 with 
64 bit).

Problem 4.1 Consider the dimensionless relativistic Klein-Gordon equation which 
is highly oscillatory in time (see, e.g. [2, 34, 37]):

over the region (x, t) ∈ [−L, L] × [0, T] with the initial functions

and the cubic nonlinearity, i.e. f (u) = 4u3 . Here, the dimensionless parameter � is 
chosen as � = 0.5 and 0.1, respectively. Moreover, we suppose that the Klein-Gor-
don equation (4.1) is equipped with the periodic boundary conditions. Therefore, the 
Fourier pseudo-spectral method will be used to discretise the spatial derivatives, and 
the Klein-Gordon equation (4.1) can be converted into the following form

where U(t) =
(
U1(t),… ,UM(t)

)⊤ with Ui(t) ≈ u(xi, t) , and A = D2 + I∕�2 is an 
M ×M matrix used to approximate the operator −Δ + 1∕�2 . Here, D2 is the second-
order symmetric semi-definite spectral differential matrix (see [14, 17, 26, 27]), and 
I is the unit matrix. The discrete energy is given by

(4.1)

{
�2utt(x, t) − Δu(x, t) +

1

�2
u(x, t) + f

(
u(x, t)

)
= 0,

u(x, 0) = �1(x), ut(x, 0) =
1

�2
�2(x),

�1(x) =
2

ex
2
+ e−x

2
, �2(x) = 0

(4.2)�2
d2

dt2
U(t) + AU(t) + f

(
U(t)

)
= 0,
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where the discrete lp norms ‖ ⋅ ‖p for p = 2, 4 are defined as

the discrete inner product (u, v) is defined by

Here, Δx = 2L∕M is the spatial stepsize. In order to test the long-term numerical 
behaviour of the proposed time integrators, we set L = 30, T = 100 and fixed the 
spatial mesh size M = 1024 for this problem. In addition, as is known, the exact 
solution of the Eq. (4.1) cannot be represented explicitly. Therefore, we use the pos-
terior error, i.e., RE = ‖U(h;T) − U(h∕2;T)‖2 , to compute the convergence order.

In Tables 1 and 2, we test the numerical precision of the time integrators “GTC2s4”, 
“GTC3s6”, “LTC3s4” and “LTC4s6” with different � . The numerical data indicate 
that the continuous trigonometric collocation polynomial approximations with Gauss 
points and Lobatto points can achieve 2sth order and (2s − 2) th order, respectively. 

H
(
U(t), U̇(t)

)
=

𝜀2

2
‖‖U̇(t)‖‖22 + 1

2

(
AU(t),U(t)

)
+ ‖‖U(t)‖‖44,

‖u‖p
p
= Δx

M�
i=1

�ui�p,

(u, v) = Δx

M∑
i=1

uiv̄i.

Table 1  Temporal precision of “GTC2s4”, “GTC3s6”, “LTC3s4” and “LTC4s6” for solving Problem 4.1 
with h = 0.08 and � = 0.5

*No data

h GTC2s4 GTC3s6 LTC3s4 LTC4s6

Error Rate Error Rate Error Rate Error Rate

h 6.7910E − 05 * 4.5151E − 07 * 7.1473E − 05 * 5.2011E − 07 *
h/2 4.0054E − 06 4.0836 5.9649E − 09 6.2421 4.1139E − 06 4.1188 7.1630E − 09 6.1821
h∕22 2.4725E − 07 4.0179 8.9788E − 11 6.0538 2.5238E − 07 4.0268 1.0944E − 10 6.0324

h∕23 1.5407E − 08 4.0043 1.4045E − 12 5.9984 1.5702E − 08 4.0066 1.7022E − 12 6.0065

Table 2  Temporal precision of “GTC2s4”, “GTC3s6”, “LTC3s4” and “LTC4s6” for solving Problem 4.1 
with h = 0.01 and � = 0.1

*No data

h GTC2s4 GTC3s6 LTC3s4 LTC4s6

Error Rate Error Rate Error Rate Error Rate

h 4.3034E − 04 * 4.4094E − 06 * 2.9664E − 04 * 9.2841E − 06 *
h/2 2.3794E − 05 4.1768 1.0708E − 08 8.6857 2.3478E − 05 3.6593 9.1543E − 08 6.6642
h∕22 1.4706E − 06 4.0161 1.9491E − 10 5.7798 1.5089E − 06 3.9597 1.3729E − 09 6.0592

h∕23 9.1694E − 08 4.0034 3.2456E − 12 5.9082 9.4910E − 08 3.9908 2.1330E − 11 6.0081
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The computational results in Tables 1 and 2 demonstrate that the temporal accuracy is 
completely consistent with our theoretical analysis. The proposed continuous trigono-
metric collocation polynomial approximations can be of superconvergence (see Theo-
rem 3.4). The logarithms of the posterior errors, i.e., log10(RE) , are plotted in Figs. 1 
and 2, in comparison with the classical time integrators “BH1”, “BH2”, “ERKN3s4”, 
“ERKN7s6”, “GAS2s4”, “GAS3s6”, “LIIIA3s4” and “LIIIA4s6”. It can be observed 
from these two figures that the proposed continuous trigonometric collocation integra-
tors are much more accurate than these traditional methods. The data in Tables 3 and 
4 illustrate the precision of the discrete energy conservation, which is consistent with 
our theoretical analyse results in Theorem 3.5. The proposed temporal integrators have 
better long-term behaviour of energy conservation.

Problem 4.2 Consider the following sine-Gordon equations in two dimensions (see, 
e.g. [22, 23]):

(4.3)

�
utt − �2(uxx + uyy) = − sin(u), (x, y) ∈ [−1, 1] × [−1, 1], t ∈ [0, 100],

u(x, y, 0) = 4 arctan
�
exp

�
3 −

√
x2 + y2

�
�2
��

, ut(x, y, 0) = 0,

Fig. 1  Results for Problem 4.1 with � = 0.5 . (Left) the log–log plot of posterior error RE against different 
time stepsizes h. (Middle) the log–log plot of posterior error RE against CPU time. (Right) the logarithm 
of the discrete energy error GH against t 
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where �2 is a dimensionless parameter. We also suppose that the two dimensional 
sine-Gordon equation (4.3) is subjected to periodic boundary conditions. The spa-
tial derivatives are approximated by the two dimensional Fourier pseudo-spectral 
method. Therefore, the Eq. (4.3) can be converted to the following matrix form:

d2

dt2
U(t) + Dx

2
U(t) + U(t)D

y

2
= − sin

(
U(t)

)
,

Fig. 2  Results for Problem 4.1 with � = 0.1 . (Left) the log–log plot of posterior error RE against different 
time stepsizes h. (Middle) the log–log plot of posterior error RE against CPU time. (Right) the logarithm 
of the discrete energy error GH against t 

Table 3  Numerical precision of the preservation of the discrete energy for Problem 4.1 with h = 0.08 and 
� = 0.5

*No data

h GTC2s4 GTC3s6 LTC3s4 LTC4s6

Error Rate Error Rate Error Rate Error Rate

h 9.7402E − 04 * 8.8434E − 06 * 1.3353E − 03 * 9.1889E − 06 *
h/2 6.3235E − 05 3.9452 1.3105E − 07 6.0764 8.1005E − 05 4.0430 1.2996E − 07 6.1437
h∕22 3.8634E − 06 4.0328 1.9952E − 09 6.0375 5.0517E − 06 4.0032 2.0248E − 09 6.0042

h∕23 2.4042E − 07 4.0062 3.1321E − 11 5.9933 3.1464E − 07 4.0050 3.1393E − 11 6.0112
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where Dx
2
= F

−1
Mx

Λx
2
FMx

 and Dy

2
= F

−1
My

Λ
y

2
FMy

 are the second-order Fourier spectral 
matrices (see, e.g. [13]) in the x direction and y direction, respectively. The discrete 
energy is given by

where Δx = 2∕Mx and Δy = 2∕My are the spatial stepsizes. More details can 
be found in [13, 26, 27]. For this problem, we take the dimensionless param-
eter � = 1∕20 and set the mesh sizes Mx = My = 256 . In Fig.  3 and 4, we pre-
sent the simulation results and the corresponding contour plots at the time points 
t = 0, 20, 40, 50, 80 and 100 with h = 0.01 . The phenomena is termed circular ring 
solitons and obviously is periodicity. Figure 3 demonstrates the phenomena of the 
periodic oscillations and radiations of the circular ring solitons as time goes on. The 
CPU time required to reach T = 100 is 439.476393 seconds. The numerical data 
in Table 5 clearly indicate that the convergence order of the derived time integra-
tors, which are consistent with our theoretical analysis results in Theorem 3.4. Fig-
ure 5 demonstrates that the time integrators “GTC2s4”, “GTC3s6”, “LTC3s4” and 
“LTC4s6” have better long-term computational behaviour than the chosen classical 
integrators. Table 6 shows the numerical precision of the long-term preservation of 
the discrete energy (4.4). The numerical results in Table 6 confirm the theoretical 
result in Theorem 3.5.

Problem 4.3 We consider the Duffing equation (see, e.g. [32])

with 0 ≤ k < 𝜔 . This is a Hamiltonian system with the Hamiltonian

The analytic solution is given by

(4.4)H
(
U(t), U̇(t)

)
= ‖‖U̇(t)‖‖22 + ||U(t)||21 + ΔxΔy

Mx∑
l=1

My∑
j=1

(
1 − cos

(
Ulj(t)

))
,

{
q̈ + 𝜔2q = k2(2q3 − q),

q(0) = 0, q̇(0) = 𝜔,

H(p, q) =
1

2
p2 +

1

2
�2q2 +

k2

2
(q2 − q4).

Table 4  Numerical precision of the preservation of the discrete energy for Problem 4.1 with h = 0.01 and 
� = 0.1

*No data

h GTC2s4 GTC3s6 LTC3s4 LTC4s6

Error Rate Error Rate Error Rate Error Rate

h 5.1140E − 02 * 2.2981E − 03 * 6.3274E − 02 * 2.4464E − 03 *
h/2 1.7342E − 03 4.8822 1.6195E − 05 7.1487 2.3705E − 03 4.7384 1.6012E − 05 7.2554
h∕22 9.8471E − 05 4.1384 2.2820E − 07 6.1491 1.3679E − 04 4.1152 2.2322E − 07 6.1645

h∕23 6.0027E − 06 4.0360 3.4719E − 09 6.0385 8.3830E − 06 4.0284 3.3827E − 09 6.0442
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where sn means the Jacobian elliptic function. We choose k = 0.03 and different fre-
quencies � = 10 and 20 which are similar to those in [32]. The problem is investi-
gated over the interval [0, 1000] to verify the convergence order and the precision of 
the energy conservation for the constructed time integrators with different �.

The data in Tables 7 and 8 show the convergence order of the time integrators 
“GTC2s4”, “GTC3s6”, “LTC3s4” and “LTC4s6” with different � . The tabular data 
implies that the continuous trigonometric collocation polynomial approximations 
with Gauss points and Lobatto points could achieve 2sth order and (2s − 2) th order, 
respectively. The logarithm of the global errors GE = ‖qN − q(1000)‖2 against dif-
ferent steps for Problem  4.3 are plotted in Figs.  6 and 7. In comparison with the 
“GAS2s4”, “GAS3s6”, “LIIIA3s4”, “LIIIA4s6”, “BH1” and “BH2” integrators, the 
proposed time integrators in this paper have much better accuracy and cost less CPU 
time. However, the proposed integrators and the chosen ERKN integrators have sim-
ilar precision under the same CPU time. The numerical results in Tables 9 and 10 
indicate the precision of the energy conservation.

In conclusion, the numerical results for Problem 4.1, Problem 4.2 and Problem 4.3 
are consistent with our theoretical analysis results. The continuous collocation poly-
nomial approximations can be superconvergence and have better numerical behaviour 

q(t) = sn(�t, k∕�),

Fig. 3  Mesh graphs of numerical solutions for Problem 4.2 obtained by coupling “GTC3s6” with the two 
dimensional Fourier pseudo-spectral method/ at the time points t = 0, 20, 40, 50, 80 and 100.
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than the chosen classical integrators. Comparing with the classical implicit meth-
ods, i.e., “GAS2s4” method, “GAS3s6” method, “LIIIA3s4” method, “LIIIA4s6” 
method, “BH1” method and “BH2” method, the proposed time integrators “GTC2s4”, 
“GTC3s6”, “LTC3s4” and “LTC4s6” have better precision while cost less CPU time. 
However, comparing with the explicit ERKN3s4 method and ERKN7s6 method, our 
proposed time integrators have similar precision under the same CPU time. Moreover, 
the numerical results in [39] indicated that the ERKN3s4 and ERKN7s6 methods have 

Fig. 4  Contours of numerical solutions for Problem  4.2 obtained by coupling “GTC3s6” with the two 
dimensional Fourier pseudo-spectral method/ at the time points t = 0, 20, 40, 50, 80 and 100.

Table 5  Temporal precision of “GTC2s4”, “GTC3s6”, “LTC3s4” and “LTC4s6” for solving Problem 4.2 
with h = 0.08

*No data

h GTC2s4 GTC3s6 LTC3s4 LTC4s6

Error Rate Error Rate Error Rate Error Rate

h 8.2434E − 05 * 2.6349E − 06 * 1.2226E − 04 * 3.4091E − 06 *
h/2 4.9537E − 06 4.0567 4.9539E − 08 5.7331 7.5801E − 06 4.0116 6.5801E − 08 5.6951
h∕22 3.0966E − 07 3.9997 8.1146E − 10 5.9319 4.7386E − 07 3.9997 1.0826E − 09 5.9255

h∕23 1.9359E − 08 3.9996 1.2790E − 11 5.9875 2.9621E − 08 3.9997 1.7079E − 11 5.9862
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Fig. 5  Results for Problem 4.2. (Left) the log–log plot of posterior error RE against different time step-
sizes h. (Middle) the log–log plot of posterior error RE against CPU time. (Right) the logarithm of the 
discrete energy error GH against t 

Table 6  Numerical precision of the preservation of the discrete energy for Problem 4.2 with h = 0.08

*No data

h GTC2s4 GTC3s6 LTC3s4 LTC4s6

Error Rate Error Rate Error Rate Error Rate

h 1.8869E − 06 * 6.3650E − 09 * 3.1193E − 06 * 9.0491E − 09 *
h/2 1.1854E − 07 3.9926 9.1859E − 11 6.1146 1.9403E − 07 4.0069 1.3681E − 10 6.0475
h∕22 7.5259E − 09 3.9773 1.4297E − 12 6.0056 1.2354E − 08 3.9733 2.1194E − 12 6.0124

h∕23 4.6940E − 10 4.0030 4.2044E − 13 – 7.7083E − 10 4.0024 4.1939E − 13 –

Table 7  Temporal precision of “GTC2s4”, “GTC3s6”, “LTC3s4” and “LTC4s6” for solving Problem 4.3 
with h = 0.2 and � = 10

*No data

h GTC2s4 GTC3s6 LTC3s4 LTC4s6

Error Rate Error Rate Error Rate Error Rate

h 2.2948E − 04 * 6.5535E − 06 * 3.3743E − 04 * 8.7509E − 06 *
h/2 1.5263E − 05 3.9102 1.0957E − 07 5.9024 2.2811E − 05 3.8868 1.4485E − 07 5.9168
h∕22 9.6938E − 07 3.9768 1.7381E − 09 5.9782 1.4532E − 06 3.9724 2.3046E − 09 5.9739

h∕23 6.0899E − 08 3.9926 2.8857E − 11 5.9124 9.1311E − 08 3.9923 3.7772E − 11 5.9311
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better numerical behaviour than the ARKN3s4, TFCr2 and TFCr3 methods. Therefore, 
we could confirm that the proposed time integrators in this paper would be better than 
the ARKN3s4, TFCr2 and TFCr3 methods. The Gautschi-type methods are time inte-
grators with second order precision at most. We will not compare with the Gautschi-
type, ARKN and TFC methods in this paper.

Fig. 6  Results for Problem 4.3 with � = 10 .   (Left) the log–log plot of global error GE against different 
time stepsizes h. (Middle) the log–log plot of global error RE against CPU time. (Right) the logarithm of 
the global energy error GH against t 

Table 8  Temporal precision of “GTC2s4”, “GTC3s6”, “LTC3s4” and “LTC4s6” for solving Problem 4.3 
with h = 0.1 and � = 20

*No data

h GTC2s4 GTC3s6 LTC3s4 LTC4s6

Error Rate Error Rate Error Rate Error Rate

h 1.1468E − 04 * 3.2996E − 06 * 1.6896E − 04 * 4.3554E − 06 *
h/2 7.6411E − 06 3.9077 5.4632E − 08 5.9164 1.1406E − 05 3.8888 7.2744E − 08 5.9038
h∕22 4.8518E − 07 3.9772 8.6855E − 10 5.9750 7.2682E − 07 3.9721 1.1541E − 09 5.9779

h∕23 3.0467E − 08 3.9932 1.5864E − 11 5.7748 4.5693E − 08 3.9916 2.0141E − 11 5.8405
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Fig. 7  Results for problem 4.3 with � = 20 . (Left) the log–log plot of global error GE against different 
time stepsizes h. (Middle) the log–log plot of global error RE against CPU time. (Right) the logarithm of 
the global energy error GH against t 

Table 9  Numerical precision of the preservation of the global energy for Problem 4.3 with h = 0.2 and 
� = 10

*No data

h GTC2s4 GTC3s6 LTC3s4 LTC4s6

Error Rate Error Rate Error Rate Error Rate

h 2.6403E − 04 * 4.5557E − 05 * 3.2219E − 04 * 4.8043E − 05 *
h/2 1.2309E − 05 4.4229 4.2258E − 07 6.7523 1.2481E − 05 4.6901 1.2309E − 05 6.5086
h∕22 4.7861E − 07 4.6847 3.9796E − 09 6.7305 4.5088E − 07 4.7909 4.7861E − 07 6.6884

h∕23 2.7186E − 08 4.1379 2.3868E − 10 4.0595 2.5265E − 08 4.1575 2.7186E − 08 4.7938

Table 10  Numerical precision of the preservation of the global energy for Problem 4.3 with h = 0.1 and 
� = 20

*No data

h GTC2s4 GTC3s6 LTC3s4 LTC4s6

Error Rate Error Rate Error Rate Error Rate

h 2.6403E − 04 * 4.5556E − 05 * 3.2219E − 04 * 4.8043E − 05 *
h/2 1.2309E − 05 4.4229 4.2276E − 07 6.7517 1.2481E − 05 4.6901 5.2763E − 07 6.5087
h∕22 4.7861E − 07 4.6847 4.6871E − 09 6.4950 4.5159E − 07 4.7886 5.1139E − 09 6.6889

h∕23 2.7185E − 08 4.1380 1.5256E − 09 – 2.6544E − 08 4.0886 1.4599E − 09 –
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5  Conclusion

Taking into account the superiority of the continuous collocation methods and 
the trigonometric integrators, we proposed and analysed the continuous trigono-
metric collocation polynomial approximations for the highly oscillatory hyper-
bolic system (1.1) in this paper. The derived trigonometric collocation integra-
tors inherit the superconvergence of the classical continuous collocation methods 
and also can preserve the oscillatory structure of the underlying highly oscilla-
tory systems. The resulting trigonometric collocation integrators were analysed 
in details for the local error bounds, long-term convergence, superconvergence, 
symmetry and long-term energy conservation. Furthermore, the remarkable 
numerical behaviour of the continuous trigonometric collocation polynomial 
approximations was demonstrated by the numerical experiments in comparison 
with the existing numerical methods in the literature.
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