
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2019) 22:1409–1425
https://doi.org/10.1007/s10044-018-0701-8

THEORETICAL ADVANCES

Online updating of active function cross‑entropy clustering

Przemysław Spurek1  · Krzysztof Byrski1 · Jacek Tabor1

Received: 19 July 2017 / Accepted: 23 March 2018 / Published online: 5 April 2018
© The Author(s) 2018

Abstract
Gaussian mixture models have many applications in density estimation and data clustering. However, the model does not
adapt well to curved and strongly nonlinear data, since many Gaussian components are typically needed to appropriately fit
the data that lie around the nonlinear manifold. To solve this problem, the active function cross-entropy clustering (afCEC)
method was constructed. In this article, we present an online afCEC algorithm. Thanks to this modification, we obtain a
method which is able to remove unnecessary clusters very fast and, consequently, we obtain lower computational complex-
ity. Moreover, we obtain a better minimum (with a lower value of the cost function). The modification allows to process
data streams.

Keywords  Clustering · Active function cross-entropy clustering · Gaussian mixture models · Data streams

1  Introduction

Clustering plays a basic role in many parts of data engi-
neering, pattern recognition, and image analysis. Some of
the most important clustering methods are based on GMM,
which in practice accommodates data with distributions that
lie around affine subspaces of lower dimensions obtained by
principal component analysis (PCA) [17], see Fig. 1a. How-
ever, by the manifold hypothesis, real-world data presented
in high-dimensional spaces are likely to be concentrated in
the vicinity of nonlinear sub-manifolds of lower dimension-
ality [4, 30]. The classical approach approximates this mani-
fold by a mixture of Gaussian distributions. Since one non-
Gaussian component can be approximated by a mixture of
several Gaussians [10, 35, 38], these clusters are, in practice,
represented by a combination of Gaussian components. This
can be seen as a form of piecewise linear approximation,
see Fig. 1a. Cross-entropy clustering (CEC) [34, 36, 37, 40]
approach gives similar result.

In [39], authors have constructed the afCEC (active func-
tion cross-entropy clustering) algorithm, which allows the
clustering of data on sub-manifolds of ℝd . The motivation
comes from the observation that it is often profitable to
describe nonlinear data by a smaller number of components
with more complicated curved shapes to obtain a better fit
of the data, see Fig. 1b. The afCEC method automatically
reduces unnecessary clusters and accommodates nonlinear
structures.

In this paper, the online version of the afCEC1 algorithm
using Hartigan’s approach is presented. In a case when a
new point appears, we are able to update parameters of all
clusters without recomputing all variables. Because we have
to approximate complicated structures in each step, we have
to construct a numerically efficient model. Therefore, we
have chosen an approach that allows for the use of an explicit
formula in each step.

The algorithm proceeds point by point and determines its
optimal cluster assignment. The method only iterates if some
cluster has a point closer to some other cluster’s center. Har-
tigan’s method takes into account the motion of the means
resulting from the reassignment—that is, it may reassign a
point to another cluster, even if it is already assigned to the
closest center.

Thanks to such a modification, the unnecessary clusters
are efficiently removed [40], usually in the first three or four

 *	 Przemysław Spurek
	 przemyslaw.spurek@uj.edu.pl

	 Krzysztof Byrski
	 krzysztof.byrski@uj.edu.pl

	 Jacek Tabor
	 jacek.tabor@uj.edu.pl

1	 Faculty of Mathematics and Computer Science, Jagiellonian
University, Łojasiewicza 6, 30‑348 Kraków, Poland

1  The Hartigan’s as well as classical Lloyd’s approaches are included
in R package afCEC https​://cran.r-proje​ct.org/web/packa​ges/afCEC​/
index​.html.

http://orcid.org/0000-0003-0097-5521
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-018-0701-8&domain=pdf
https://cran.r-project.org/web/packages/afCEC/index.html
https://cran.r-project.org/web/packages/afCEC/index.html

1410	 Pattern Analysis and Applications (2019) 22:1409–1425

1 3

iterations. In consequence, one needs smaller number of
steps in each iteration to find the local minimum. Moreo-
ver, Hartigan’s method finds essentially better minima (with
lower cost function value). In Fig. 2, we present the conver-
gence process of Hartigan’s afCEC with the initial number
of clusters at k = 10 , which is reduced to k = 5.

The modification also allows processing data streams [33]
in which the input is presented as a sequence of items and
can be examined in only a few passes (typically just one).

These algorithms have limited memory available for them
(much less than the input size) and also limited processing
time per item. The intrinsic nature of stream data requires
the development of algorithms capable of performing fast
and incremental processing of data objects. Therefore, Har-
tigan’s version of afCEC algorithm can be applied in data
streams clustering.

The paper is organized as follows. In the next section,
related work is presented. In Sect. 3, we introduce afCEC
algorithm. In Sect. 4, we present the Hartigan modifica-
tion of the method. In particular, we discuss how to update
parameters online. In the last section, a comparison between
our approach and classical algorithms is made.

2 � Related works

Clustering is the classical problem of dividing a data X ∈ ℝ
N

into a collection of disjoint groups X1,…Xk . Several of the
most popular clustering methods are based on the k-means
approach [1]. In the context of the algorithm, there were
introduced two basic heuristics for minimizing the cost func-
tion: Lloyd’s and Hartigan’s. The methods became standards
in the general clustering theorem.

The first heuristic for k-means (or general cluster-
ing methods) is the Lloyd’s approach: given some initial

Fig. 1   Fitting a b-type set by using. a GMM. b afCEC

Fig. 2   Convergence process of Hartigan’s version of afCEC on a Chinese character with initial k = 10 , which is reduced to k = 5

1411Pattern Analysis and Applications (2019) 22:1409–1425	

1 3

clustering, we assign points to the closest one [9, 25, 26].
This scheme is intuitive, and empirical support is favora-
ble: the technique generally seems to find a good solution
in a small number of iterations. The alternative heuristic
was presented by Hartigan [14, 15]: repeatedly pick a point
and determine its optimal cluster assignment. The obvious
distinction with Lloyd is that the algorithm proceeds point
by point. The comparison of the method is presented in [41].
Roughly speaking, in the context of k-means, Hartigan’s
approach converges to the minimum faster and generally
find better minima of the cost function. On the other hand,
Lloyd’s approach is more resistant to outliers.

The basic drawback of k-means algorithm was solved by
using density-based techniques, which use expectation maxi-
mization (EM) method [27]. The Gaussian mixture model
(GMM) is probably the most popular [28, 29]. Thanks to this
approach, we can describe clusters by more general shapes
like ellipses.

The cross-entropy clustering (CEC) approach [40] joins
the clustering advantages of k-means and EM. It turns out
that CEC inherits the speed and scalability of k-means, while
overcoming the ability of EM to use mixture models. CEC
allows an automatic reduction in “unnecessary” clusters,
since, contrary to the case of classical k-means and EM,
there is a cost of using each cluster. One of the most impor-
tant properties of CEC, in relation to GMM, is that, similar
to k-means, we can use Hartigan’s approach.

Since typically data lie around curved structures (mani-
fold hypotheses), algorithms which can approximate curves
or manifolds are important. Principal curves and principal
surfaces [16, 18, 22] have been defined as self-consistent
smooth curves (or surfaces in ℝ2 ) which pass through the
middle of a d-dimensional probability distribution or data
cloud. They give a summary of the data and also serve as an
efficient feature extraction tool.

Another method that attempts to solve the problem of
fitting nonlinear manifolds is that of self-organizing maps
(SOM) [20], or self-organizing feature maps (SOFM) [19].
These methods are types of artificial neural networks which
are trained using unsupervised learning to produce a low-
dimensional (typically two-dimensional) discretized repre-
sentation of the input space of the training samples, called
a map.

Kernel methods provide a powerful way of capturing
nonlinear relations. One of the most common, kernel PCA
(KCPA) [32], is a nonlinear version of principal component
analysis (PCA) [17] that gives an explicit low-dimensional
space such that the data variance in the feature space is pre-
served as much as possible.

The above approaches focus on finding only a single
complex manifold. In general, they do not focus on the
clustering method. Furthermore, it is difficult to use them
for dealing with clustering problems. Kernel methods and

self-organizing maps can be used as a preprocessing for clas-
sical clustering methods. In such a way, spectral clustering
methods were constructed [24]. The classical kernel k-means
[24] is equivalent to KPCA prior to the conventional
k-means algorithm. Spectral clustering is a large family of
grouping methods which partition data using eigenvectors
of an affinity matrix derived from the data [7, 43–45, 48].

The active curve axis Gaussian mixture model (Aca-
GMM) [47] is an adaptation of the Gaussian mixture model,
which uses a nonlinear curved Gaussian probability model in
clustering. AcaGMM works well in practice; however, it has
major limitations. First of all, the AcaGMM cost function
does not necessarily decrease with iterations, which causes
problems with the stop condition, see [39]. Since the method
uses orthogonal projections and arc lengths, it is very hard
to use AcaGMM for more complicated curves in higher-
dimensional spaces.

The active function cross-entropy clustering [39] (afCEC)
method (see Fig. 1b), which is based on the cross-entropy
clustering (CEC) model, solves all the above limitations.
The method has a few advantages in relation to AcaGMM: it
enables easy adaptation to clustering of complicated datasets
along with a predefined family of functions and does not
need external methods to determine the number of clusters,
as it automatically reduces the number of groups.

In practice, afCEC gives essentially better results than
linear models like GMM or CEC, since we obtain a similar
level of the Log-likelihood function by using a smaller num-
ber of parameters to describe the model. On the other hand,
the results are similar to that of AcaGMM when we restrict
the data to two dimensions and use the quadratic function
as the baseline. For more detailed comparison between the
methods, see [39].

All the above approaches do not have Hartigan’s versions.
In this article, we present an online afCEC algorithm. In the
case of Lloyd’s approach, authors use the regression method
for each step. In this paper, we present how to apply Harti-
gan’s heuristic for minimizing afCEC cost function. Thanks
to this modification, we obtain a method which is able to
remove unnecessary clusters very fast and, consequently,
we obtain a lower computational complexity. Moreover,
we obtain a better minimum (with lower value of the cost
function).

3 � AfCEC algorithm

In this section, we briefly describe AfCEC method (for more
information we refer to [39]). At the beginning, we introduce
a density distribution which was used in AfCEC method—
f-adapted Gaussian density. Let us recall that the standard
Gaussian density in ℝd is defined by

1412	 Pattern Analysis and Applications (2019) 22:1409–1425

1 3

where m denotes the mean, � is the covariance matrix, and
‖v‖2

�
= vT�−1v is the square of the Mahalanobis norm.

In our work, we use a multidimensional Gaussian density
in a curvilinear coordinate system which is “spread” along
the function f ∶ ℝ

d−1
→ ℝ (f-adapted Gaussian density). We

treat one of the variables separately. In such a case, we con-
sider only those � ∈ d(ℝ) (where d(ℝ) denotes the set
of d-dimensional square, symmetrical, and positive define
matrices) which have the diagonal block matrix form

where 𝛴l̂ ∈ d−1(ℝ) and 𝛴l > 0 . For x = [x1,… , xd]
T ∈ ℝ

d
and l ∈ {1,… , d} , we will use the notation

Now, we will give a mathematically formal definition of the
f-adapted Gaussian function.

Definition 1  Let f ∈ (ℝd−1,ℝ) , 𝛴l̂ ∈ d−1(ℝ) , 𝛴l > 0 ,
m = [ml̂,ml]

T ∈ ℝ
d be given. The f-adapted Gaussian den-

sity for 𝛴l̂ , �l , l ∈ {1,… , d} and m is defined as follows:

In the basic form of the CEC algorithm [40], we are
looking for the optimal Gaussian function in the family of
all d-dimensional Gaussian densities (ℝd) . In the case of
AfCEC, we describe each cluster by the f-adapted Gaussian
function, see Fig. 3. Consequently, we need to find optimal
density in the class of all curved Gaussians. For the given
f ∶ ℝ

d−1
→ ℝ , we denote the family of all f-adapted Gauss-

ian functions by

(1)N(m,�)(x) =
1

(2�)d∕2det(�)1∕2
exp

�
−

1

2
‖x − m‖2

�

�
,

𝛴 =

[
𝛴l̂ 0

0 𝛴l

]
,

xl̂ = [x1,… , xl−1, xl+1,… , xd]
T ∈ ℝ

d−1.

(2)
N
(
m,𝛴l̂,𝛴l, f

)
(x) = N

(
ml̂,𝛴l̂

)(
xl̂
)
⋅ N(ml,𝛴l)

(
xl − f

(
xl̂
))

In the AfCEC algorithm, we describe clusters by general-
ized Gaussian distributions from l[f] where f is in some
class of functions (we can use any class of functions for
which the regression procedure works) and l ∈ {1,… , d} .
Therefore, we will need one more definition. For the family
 ⊂ (ℝd−1,ℝ) , we define

In the previous considerations, we assumed that one vari-
able was chosen to be dependent. Since, in the case of the
-adaptive Gaussian density, all computations are applied
in the canonical basis, we can verify all possible dependent
variable choices. For the family  ⊂ (ℝd−1,ℝ) , we define
the family of -adapted Gaussian distributions with all the
possible choices of dependent variables by

Since our method is based on the CEC approach, we start
with a short introduction to the method (for a more detailed
explanation we refer the reader to [40]). To apply CEC, we
need to introduce the cost function which we want to mini-
mize. In the case of splitting X ⊂ ℝ

d into X1,… ,Xk so that
we code elements of Xi using a function from the family
of all Gaussian densities (ℝd) , the mean code-length of a
randomly chosen element x equals

(3)
l[f] =

{
N
(
m,𝛴l̂,𝛴l, f

)
∶ m ∈ ℝ

d,𝛴l̂∈d−1(ℝ),𝛴l > 0
}
.

l[] =
⋃
f∈

l[f].

[] =

d⋃
l=1

l[].

(4)

E(X1,… ,Xk;(ℝ
d)) =

k∑
i=1

pi ⋅
�
− ln(pi) + H×(Xi‖(ℝd))

�

Fig. 3   Level sets for f-adapted Gaussian distribution. a f (x) = 0 , b f (x) = x , c f (x) = 1

8
x2 , d f (x) = 1

16
x3

1413Pattern Analysis and Applications (2019) 22:1409–1425	

1 3

where pi =
|Xi|
|X|  . The formula uses the cross-entropy of a

dataset with respect to the family (ℝd) . In the case of
AfCEC, our goal is to calculate an explicit formula for the
cost function in the case of f-adapted Gaussian densities.

Optimization Problem 31  Divide the dataset X ⊂ ℝ
d into k

pairwise disjoint groups X1,… ,Xk ( X = X1 ∪… ∪ Xk ) such
that the cost function

where pi =
|Xi|
|X| , is minimal.

If  is a set of functions which are invariant under
the operations f → a + f for any a, we have a following
theorem.

Theorem 1  Let X ⊂ ℝ
d be a dataset, and let a family of

functions  ⊂ (ℝd−1,ℝ) be invariant under the operations
f → a + f for a ∈ ℝ. Let f̄l ∈  for l ∈ {1,… , d} be such
that f̄l = argmin{f ∈  ∶ |xl − f (xl̂)|2}. Then,

where 𝛴l̂ = cov(Xl̂) and l ∈ {1,… , d}.

We can analyze each cluster separately. For one clus-
ter X ⊂ ℝ

d , we estimate the parameters of the model in
two steps. First, we consider all of the possible choices
of dependent variables and calculate functions fl (corre-
sponding to relations xl = fl(xl̂) ), means ml = mean(X

fl
l
) ,

ml̂ = mean(Xl̂) and covariances 𝛴l̂ = cov(Xl̂) , �l = cov(X
fl
l
)

for l ∈ {1,… , d} . More precisely, we find fl-adapted Gauss-
ian distributions N([ml̂, 0]

T ,𝛴l̂,𝛴l, fl), which realize a mini-
mum of cross-entropy H×(X‖l[]), for l ∈ {1,… , d} .
Then we determine the optimal dependent variable
j = argminl∈{1,…,d}{H

×(X‖l[])}. Consequently, our data-
set is represented by the active function, mean, and covari-
ance matrix

where subscript j ∈ {1,… , d} denotes the dependent vari-
able in the cluster. The above parameters minimize the cost
function of one cluster H×(X‖[]).

CEC allows an automatic reduction in “unnecessary”
clusters, since, contrary to the case of classical k-means
and EM, there is a cost of using each cluster. (The step-
by-step view of this process is shown in Fig. 2.) There are

(5)

E(X1,… ,Xk ;[]) =
k∑

i=1

pi
�
− ln(pi) + H×(Xi‖[])

�
,

(6)

min
f∈

H×(X‖l[f]) =
d

2
ln(2𝜋e)+

1

2
ln
�
det

�
𝛴l̂

��
+

1

2
ln

�
1

n

∑
x∈X

���xl − f̄
�
xl̂
����

2
�
,

(7)f = fj, m =
[
mĵ, 0

]
, 𝛴 =

[
𝛴ĵ 0

0 𝛴j

]
,

also several probabilistic approaches which try to estimate
the correct number of clusters. For example, [11] uses the
generalized distance between Gaussian mixture models with
different components number by using the Kullback–Lei-
bler divergence, see [6, 21]. A similar idea is presented by
[46] (Competitive Expectation Maximization) which uses
the minimum message length criterion provided by [8]. In
practice, MDLP can also be directly used in clustering, see
[42]. However, most of the above-mentioned methods typi-
cally proceed through all the consecutive clusters and do not
reduce the number of clusters online during the clustering
process.

Classical AfCEC algorithm presented in [39] uses Lloyd’s
method. The alternative heuristic was presented by Hartigan
[14, 15]: repeatedly pick a point and determine its optimal
(from the cost function’s point of view) cluster assignment.
Observe that in the crucial step in Hartigan’s approach we
compare the cross-entropy after and before the switch, while
the switch removes a given point from one cluster and adds
it to the other. It means that to apply efficiently the Hartigan
approach in clustering it is essential to update parameters (7)
when we add a point to the cluster and downdate parameters
(7) when we delete a point from group. In the next section,
we present how we can update and downdate all parameters
of afCEC online.

4 � Updating the value of the cost function

Recall that for the particular cluster X our goal is to present
how to update and downdate meta-parameters:

Observe that in the crucial step in Hartigan’s approach
we compare the cross-entropy after and before the switch.
Therefore, it is enough to update/downdate only parameters
on which the afCEC cost function

depends. Evaluating the cost function for the dataset X ∈ ℝ
d

involves computing two quantities: the covariance matrix
on Xd̂

and mean squared error (MSE), respectively, on the
d-coordinate

f = fd, m =
[
md̂, 0

]
, 𝛴 =

[
𝛴d̂ 0

0 𝛴d

]
.

(8)

H×
�
X‖f (ℝ

d)
�
=
d

2
ln(2𝜋e) +

1

2
ln
�
det

�
cov

�
Xd̂

���

+
1

2
ln

�
1

�X�
�
x∈X

�
xd − f

�
xd̂
��2

�
,

(9)𝛴d̂ = cov
(
Xd̂

)
,

(10)𝛴d = MSE(X, f , d) =
1

|X|
∑
x∈X

(
xd − f

(
xd̂
))2

,

1414	 Pattern Analysis and Applications (2019) 22:1409–1425

1 3

along the active axis defined as the mean squared error of
the linear least-squares approximation of the data along the
active axis.

It should be highlighted that for updating the above
parameters we additionally require some other information.
In the case of cov(Xd̂) , we need to store the mean(Xd̂) . In
such a case, we have a simple formula. Update and downdate
procedures are given by the following formulas:

(a)	 The update procedure:

where p1 =
|X|

|X|+1 , p2 =
1

|X|+1 , and x ∉ X.

(b)	 The downdate procedure:

where q1 =
|X|

|X|−1 , q2 =
1

|X|−1 , and x ∈ X.

In the case of the second quantity 1

�X�
∑

x∈X(xd − f (xd̂))
2 ,

we have a more complicated situation. Our goal is to update/
downdate the regression function f. There are many types of
regression models. In our work, we consider a general one.
For a data X ⊂ ℝ

d , we use the model

where fj are linearly independent functions. In the case of
fj(xd̂) = xj−1 , we obtain a classical polynomial regression.
Therefore, our goal is to find a vector α =

[
�1 … �m

]T
,

which minimizes

Directly from the regression theory, we can calculate the
vector α as a solution to a system of linear equations.

T h e o r e m 2   L e t X ∈ ℝ
d b e g i v e n . L e t

f (x) = 𝛼1f1(xd̂) +⋯ + 𝛼mfm(xd̂), where fi ∶ ℝ
d−1

→ ℝ are
linearly independent functions for which linear regression
is considered. Then, the vector α which minimizes the mean
squared error

mean
(
Xd̂ ∪

{
xd̂
})

= p1mean
(
Xd̂

)
+ p2xd̂,

cov
(
Xd̂ ∪

{
xd̂
})

= p1cov
(
Xd̂

)
+p1p2

(
mean

(
Xd̂

)
− xd̂

)(
mean

(
Xd̂

)
− xd̂

)T
,

mean
(
Xd̂⧵

{
xd̂
})

= q1mean
(
Xd̂

)
− q2xd̂,

cov
(
Xd̂⧵

{
xd̂
})

= q1cov
(
Xd̂

)
−q1q2

(
mean

(
Xd̂

)
− xd̂

)(
mean

(
Xd̂

)
− xd̂

)T
,

(11)f (xd̂) =

m∑
j=1

𝛼jfj
(
xd̂
)
,

(12)MSE

(
X,

m∑
j=1

𝛼jfj, d

)
=

1

|X|
∑
x∈X

(
xd −

m∑
j=1

𝛼jfj
(
xd̂
))2

.

satisfies the following linear equation system:

Similar to the previous situation, we will store additional
elements to be able to update/downdate our parameters. For
the data X, we denote the matrix from Eq. (14) by AX and
the vector from Eq. (14) bX . Consequently, Eq. (14) can be
rewritten in the following form

The main idea is to update/downdate parameters AX and bX
and solve the linear equation in each iteration to determine
the updated α.

T h e o r e m 3   L e t X ∈ ℝ
d b e g i v e n . L e t

f (xd̂) = 𝛼1f1(xd̂) +⋯ + 𝛼mfm(xd̂), where fi ∶ ℝ
d−1

→ ℝ are
linearly independent functions for which linear regression
is considered. For x, update (x ∉ X) and downdate (x ∈ X)
procedures are given by the following formulas:

(a)	 The update procedure:

(b)	 The downdate procedure:

(13)
1

|X|
∑
x∈X

(
xd −

m∑
j=1

𝛼jfj
(
xd̂
))2

(14)

⎡
⎢⎢⎢⎣

∑
x∈X

f1
�
xd̂
�
f1
�
xd̂
�

…
∑
x∈X

f1
�
xd̂
�
fm
�
xd̂
�

⋮ ⋮∑
x∈X

fm
�
xd̂
�
f1
�
xd̂
�

…
∑
x∈X

fm
�
xd̂
�
fm
�
xd̂
�
⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

𝛼1

⋮

𝛼m

⎤
⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

n∑
x∈X

f1
�
xd̂
�
xd

⋮
n∑

x∈X

fm
�
xd̂
�
xd

⎤
⎥⎥⎥⎥⎥⎦

(15)AX

⎡⎢⎢⎣

�1

⋮

�m

⎤⎥⎥⎦
= bX .

(16)AX∪{x} = AX +

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦

T

,

(17)bX∪{x} = bX +

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦
xd.

(18)AX⧵{x} = AX −

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦

T

,

(19)
bX⧵{x} = bX −

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦
xd.

1415Pattern Analysis and Applications (2019) 22:1409–1425	

1 3

Proof  Let X and x̄ be given. A simple corollary from Theo-
rem 2 is that the vector α which minimizes the mean squared
error satisfies the following linear equation system:

Now we add/remove x̄ from X. Therefore, by Theorem 2 for
X ∪ {x̄} or X ⧵ {x̄} , respectively, we obtain

	� □

Thanks to Theorem 3, we can update parameters AX and
bX . Then we solve the system of linear equations AXα = bX .
Therefore, we obtain α for X ∪ {x} or X ⧵ {x} , respectively.
In the last step, we can update and downdate the mean
squared error (MSE), respectively, on the d-coordinate by
using a new value of A, b, α.

T h e o r e m 4   L e t X ∈ ℝ
d b e g i v e n . L e t

f (xd̂) = 𝛼1f1(xd̂) +⋯ + 𝛼mfm(xd̂) , where fi ∶ ℝ
d−1

→ ℝ are
linearly independent functions for which linear regression
is considered. Then

where

⎛
⎜⎜⎜⎝

�
x∈X

⎡
⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤
⎥⎥⎦

⎡
⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤
⎥⎥⎦

T⎞
⎟⎟⎟⎠

⎡
⎢⎢⎣

𝛼1

⋮

𝛼k

⎤
⎥⎥⎦
=
�
x∈X

⎡
⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤
⎥⎥⎦
xd.

⎛
⎜⎜⎜⎝

�
x∈X

⎡
⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤
⎥⎥⎦

⎡
⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤
⎥⎥⎦

T

±

⎡
⎢⎢⎣

f1(x̄)

⋮

fm(x̄)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

f1(x̄)

⋮

fm(x̄)

⎤
⎥⎥⎦

T⎞
⎟⎟⎟⎠

⎡
⎢⎢⎣

𝛼1

⋮

𝛼k

⎤
⎥⎥⎦

=
�
x∈X

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fk
�
xd̂
�
⎤⎥⎥⎦
xd ±

⎡⎢⎢⎣

f1(x̄)

⋮

fk(x̄)

⎤⎥⎥⎦
x̄d.

(20)

MSE

�
X,

m�
j=1

�jfj, d

�
=

1

�X�
⎛⎜⎜⎜⎝

�
x∈X

x2
d
− 2bX

T

⎡
⎢⎢⎣

�1

⋮

�m

⎤
⎥⎥⎦
+

⎡⎢⎢⎣

�1

⋮

�m

⎤
⎥⎥⎦

T

AX

⎡
⎢⎢⎣

�1

⋮

�m

⎤
⎥⎥⎦

⎞⎟⎟⎟⎠
,

AX =

⎡⎢⎢⎢⎣

∑
x∈X

f1
�
xd̂
�
f1
�
xd̂
�

…
∑
x∈X

f1
�
xd̂
�
fm
�
xd̂
�

⋮ ⋮∑
x∈X

fm
�
xd̂
�
f1
�
xd̂
�

…
∑
x∈X

fm
�
xd̂
�
fm
�
xd̂
�
⎤⎥⎥⎥⎦

and

bX =

⎡⎢⎢⎢⎢⎢⎣

n∑
x∈X

f1
�
xd̂
�
xd

⋮
n∑

x∈X

fm
�
xd̂
�
xd

⎤⎥⎥⎥⎥⎥⎦

.

Proof  We have

	� □

This can be always done, provided that the matrix �X or
�X⧵{x} (depending on whether we add or remove the point
x from the dataset X) is non-singular. Having the values of
{�1,… , �k} , one can immediately obtain the desired value.

5 � Algorithm

In this section, we present our algorithm. The aim of the
Hartigan’s method is to find a partition X1,… ,Xn of X, for
which the cost function (4) is as close as possible to the
minimum, by subsequently reassigning membership of ele-
ments from X.

To explain Hartigan’s approach more precisely,
we need the notion of a group membership function
gr ∶ {1,… , n} → {0,… , k}, which describes the member-
ship of the ith element, where 0 value is a special symbol
which denotes that xi is as yet unassigned. In other words, if
gr(i) = l > 0 , then xi is a part of the lth group, and if gr(i) = 0
then xi is unassigned.

In Algorithm 1, we present a pseudo-code of the method.
The algorithm starts from an initial clustering, which can
be obtained randomly or with the use of the k-means++. In
our case, we assume that we have an initial clustering given
by cl . (The number of clusters is given by k.) At the begin-
ning, the algorithm calculates the initial values of parameters
which describe each cluster.

MSE

�
X,

m∑
j=1

𝛼jfj, d

�
=

1

�X�
∑
x∈X

�
xd −

m∑
j=1

𝛼jfj
�
xd̂
��2

=
1

�X�
∑
x∈X

⎛⎜⎜⎜⎝
x2
d
− 2xd

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦

T ⎡⎢⎢⎣

𝛼1

⋮

𝛼m

⎤⎥⎥⎦
+

⎡⎢⎢⎣

𝛼1

⋮

𝛼m

⎤⎥⎥⎦

T ⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦

T ⎡⎢⎢⎣

𝛼1

⋮

𝛼m

⎤⎥⎥⎦

⎞⎟⎟⎟⎠

=
1

�X�

⎛⎜⎜⎜⎝

∑
x∈X

x2
d
− 2

⎛⎜⎜⎝
∑
x∈X

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fk
�
xd̂
�
⎤⎥⎥⎦
xd

⎞⎟⎟⎠

T ⎡⎢⎢⎣

𝛼1

⋮

𝛼m

⎤⎥⎥⎦

⎞⎟⎟⎟⎠

+
1

�X�

⎡⎢⎢⎣

𝛼1

⋮

𝛼m

⎤⎥⎥⎦

T ⎛⎜⎜⎜⎝

∑
x∈X

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦

T⎞⎟⎟⎟⎠

⎡⎢⎢⎣

𝛼1

⋮

𝛼m

⎤⎥⎥⎦

=
1

�X�

⎛
⎜⎜⎜⎝

∑
x∈X

x2
d
− 2bT

X

⎡
⎢⎢⎣

𝛼1

⋮

𝛼m

⎤
⎥⎥⎦
+

⎡⎢⎢⎣

𝛼1

⋮

𝛼m

⎤
⎥⎥⎦

T

AX

⎡
⎢⎢⎣

𝛼1

⋮

𝛼m

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎠
.

1416	 Pattern Analysis and Applications (2019) 22:1409–1425

1 3

We want to find such gr ∶ {1,… , n} → {1,… , k} (thus
all elements of X are assigned) that E(X1,… ,Xk; []) is
minimal. The basic idea of Hartigan is relatively simple—we
repeatedly go over all elements of the partition X = (xi)

n
i=1

and apply the following steps:

–	 If the chosen set xi is unassigned, assign it to the first
non-empty group;

–	 Reassign xi to that group for which the decrease in cross-
entropy is maximal;

–	 Check if no group needs to be removed/unassigned, if
this is the case unassign its all elements;

until no group membership has been changed.
To implement Hartigan’s approach, we still have to add

a condition regarding when to unassign a given group. For
example, in the case of AfCEC clustering in ℝd , to avoid
overfitting we cannot consider clusters which contain less
then d + 1 points. In practice while applying Hartigan’s
approach on discrete data, we usually remove clusters which
contain less then five percent of all dataset.

Observe that in the crucial step in Hartigan’s approach,
we compare the cross-entropy after and before the switch,
while the switch removes a given point from one cluster
and adds it to the other. It means that to apply the Hartigan
approach efficiently in clustering, it is essential to update/
downdate parameters when we add/delete a point from a
group by using formulas from Sect. 4.

6 � Experiments

In this section, we present a comparison of the Hartigan
version of afCEC with density-based methods: GMM, CEC,
and Lloyd’s afCEC. It is difficult to compare methods, which
use different number of parameters to approximate data. In

general, if we use a more complex model, we can fit the data
better. Therefore, we use indexes which measure level of
fitting and use penalty for using more complicated models.

Hence, there is a trade-off: the better fit, created by mak-
ing a model more complex by requiring more parameters,
must be considered in light of the penalty imposed by adding
more parameters.

To compare the results, we use the standard Akaike infor-
mation criterion (AIC):

and Bayesian information criterion (BIC):

where k is the number of parameters in the model, n is the
number of points, and LL is a maximized value of the log-
likelihood function.

Let’s analyze the two components of the AIC. The first
component, − 2LL, is the value of the likelihood function,
which is the probability of obtaining the data given the can-
didate model. It measures how well the data are fitted by the
model. Since the likelihood function’s value is multiplied
by − 2 , ignoring the second component, the model with the
minimum AIC is the one with the highest value of the likeli-
hood function.

However, to this first component we add an adjustment
based on the number of estimated parameters. The more
parameters, the greater the amount added to the first com-
ponent, increasing the value for the AIC and penalizing the
model. Hence, there is a trade-off: the better fit, created by
making a model more complex by requiring more param-
eters, must be considered in light of the penalty imposed by
adding more parameters. This is why the second component
of the AIC is thought of in terms of a penalty.

The Bayesian information criterion (BIC) is another
model selection criterion based on information theory but set
within a Bayesian context. The difference between the BIC
and the AIC is the greater penalty imposed for the number
of parameters by the former than the latter.

Consequently, we need a number of parameters which
are used in each model. In the case of ℝ2 , afCEC uses two
scalars for the mean, three scalars for the covariance matrix,
and three scalars for the parabola. It should be emphasized
that in afCEC, we need to remember which coordinate is
the dependent one. This parameter is discrete, so we do not
consider it in our investigation.

6.1 � The computational times

We compared the computational times between Hartigan
version of afCEC and alternative methods: CEC imple-
mented in R package CEC [37, 40] and GMM from R
package Rmixmod [23]. We varied the number of dataset

AIC = −2LL + 2k,

BIC = −2LL + k log(n),

Algorithm 1: (HARTIGAN-BASED afCEC):
input

dataset X
number of clusters k > 0
initial clustering X1, . . . ,Xk

family F ⊂ C(Rd−1,R) for regression
F-adapted Gaussian distributions family A[F]
cluster reduction parameter ε > 0

define
cluster membership function

cl : X x → l ∈ {1, . . . , k} such that x ∈ Xl

cluster cost function E(Xi) where
E(Y) = p(− ln(p) +H×(Y [F])) and p = cardY

cardX
repeat

for x ∈ X do
for i = 1, . . . , k : x /∈ Xi do

if E(Xi ∪ {x}) +E(Xcl(x) \ {x}) < E(Xi) +E(Xcl(x)) then
switch x to Xi

update cl
update/downdate parameters of f -adapted Gaussian distributions in Xi

and Xcl(x) respectively
if cardXi < ε · cardX then

delete cluster Xi

update cl by attaching elements of Xi to existing clusters
end if

end if
end for

end for
until no switch for all subsequent elements of X

1417Pattern Analysis and Applications (2019) 22:1409–1425	

1 3

instances and the dimension of the data, see Fig. 4. For this
purpose, a simple ball-like set was considered.

One can observe that in the case of higher dimensions
both afCEC methods give slightly worse results since the
regression function must be fitted with respect to all pos-
sible dependent variables. It should be highlighted that the
application of afCEC method in high-dimensional spaces
is rather limited. CEC and GMM methods give comparable
results for large datasets.

In the case of data with an increasing number of elements,
we can observe that afCEC method gives comparable results
to the GMM approach. The method can be applied even
to reasonably large datasets. We can observe that Lloyd’s
approach gives slightly better results than Hartigan’s algo-
rithm, since we do not have to update parameters in each
step. But the use of an online version of the method allows
to obtain a better minimum of the cost function and conse-
quently, better clustering, see Tables 1 and 2.

6.2 � 2D dataset

Let us start with a synthetic dataset. At first, we report the
results of afCEC, GMM, CEC in the case of simple 2D sets,
see the first two examples in Table 1. As we see, for similar
values of the log-likelihood function, we have to use less
clusters for afCEC than in GMM and CEC. Moreover, Har-
tigan’s approach gives better results than Lloyd’s method.

Chinese characters consist of straight-line strokes (hori-
zontal, vertical) and curved strokes (slash, backslash and
many types of hooks). GMM has already been employed
for analyzing the structure of Chinese characters and has
achieved commendable performance [46]. However, some
lines extracted by GMM may be too short, and it is quite
difficult to join these short lines to form semantic strokes
due to the ambiguity of joining them together. This problem

becomes more serious when analyzing handwritten charac-
ters by GMM, and this was the motivation to use afCEC to
represent Chinese characters, see Fig. 5.

In the case of the characters 猫 (cat) for similar values of
the log-likelihood function, we have to use 25 clusters for
Hartigan afCEC and 35 for GMM and CEC. On the other
hand, for simpler characters 犬 (dog), 火 (father) , we have
to use 6 clusters for Hartigan afCEC and 10 for GMM and
CEC, see Table 1.

In general, afCEC method usually obtained clustering
with the largest value of MLE function. The cost of using
additional parameters is small and, consequently, afCEC
gives a better clustering in respect to AIC and BIC criteria,
see Fig. 6a.

6.3 � 3D scans of objects

In this subsection, we present how our method works in the
case of segmentation of 3D objects. Similarly as before,
we report the results of afCEC, GMM, CEC, see Table 2.
We show how the log-likelihood, BIC, and AIC functions
change when the number of clusters increases. As we can
see, for similar values of the log-likelihood function, we
have to use less clusters for afCEC than for GMM and CEC.
Moreover, we also obtain a better value of BIC and AIC, see
the last three examples in Table 2.

The effect of afCEC on 3D objects [2, 3] is shown in
Fig. 7. Since afCEC is able to cluster data on sub-manifolds
of ℝd , it is able to fit strongly nonlinear structures of 3D
scans of objects. Moreover, afCEC method automatically
reduces unnecessary clusters which allows to reduce too
small components.

Similar to the previous experiments, afCEC method usu-
ally obtained clusterings with the largest value of MLE func-
tion. The cost of using additional parameters is small, and

Fig. 4   Comparison of computational efficiency between afCEC,
CEC, and GMM. a Comparison of computational efficiency between
afCEC, CEC, and GMM in the case of data with different dimen-

sions. b Comparison of computational efficiency between afCEC,
CEC, and GMM in the case of data with different number of elements

1418	 Pattern Analysis and Applications (2019) 22:1409–1425

1 3

consequently, afCEC gives better clusterings with respect to
AIC and BIC criteria, see Fig. 6b.

6.4 � Comparison with non‑density‑based methods

Now we present a comparison between afCEC and classi-
cal approaches dedicated to clustering of nonlinear datasets:
kkmeans [24] and spectral clustering [31] (see Fig. 8). We
also use recent modification of the classical method dedi-
cated to nonlinear data STSC [45], SMMC [43], and SSC

[7, 44, 48]. In this subsection, we compare algorithms with
respect to Rand and Jaccard indexes, see Fig. 9.

Kernel methods can be used as a preprocessing for clas-
sical clustering methods. In such a way, spectral clustering
methods were constructed [5, 24, 31]. The classical kernel
k-means [24] is equivalent to KPCA prior to the conven-
tional k-means algorithm. Most of kernel methods consist of
two steps: an embedding into a feature space and a classical
clustering method used on the data transformed to feature

−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

(a)
−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

(b)
−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

(c)

−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

(d)
−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

(e)
−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

(f)

Fig. 5   Effect of Hartigan’s version of afCEC clustering in the case of Chinese characters. a Original dataset. b Hartigan’s afCEC clustering. c
Hartigan’s afCEC clustering. d Original dataset. e Hartigan’s afCEC clustering. f Hartigan’s afCEC clustering

Fig. 6   Mean values of MLE, BIC, and AIC in the case of 2D and 3D datasets. a Mean values of MLE, BIC, and AIC in the case of 2D datasets.
b Mean values of MLE, BIC, and AIC in the case of 3D datasets

1419Pattern Analysis and Applications (2019) 22:1409–1425	

1 3

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f a
fC

EC
, G

M
M

, C
EC

, a
nd

 L
lo

yd
’s

 a
fC

EC
 in

 th
e

ca
se

 o
f a

 2
D

 d
at

as
et

s

Th
e

be
st

va
lu

es
 o

f M
LE

, B
IC

 a
nd

 A
IC

 fo
r e

ac
h

ex
pe

rim
en

t i
s m

ar
ke

d
w

ith
 b

ol
d

fo
nt

N
um

be
r o

f
cl

us
te

rs
G

M
M

C
EC

af
C

EC
 L

lo
yd

af
C

EC
 H

ar
tig

an

M
LE

B
IC

A
IC

M
LE

B
IC

A
IC

M
LE

B
IC

A
IC

M
LE

B
IC

A
IC

0
10

20
30

51525

4
−

 1
91

1.
63

39
54

.4
5

38
69

.2
6

−
 1

87
5.

23
38

81
.6

6
37

96
.4

7
−

 1
80

8.
89

37
94

.6
0

36
79

.7
8

−
 1
80
0.
30

37
77
.4
2

36
62
.6
0

5
−

 1
90

3.
03

39
71

.4
6

38
64

.0
5

−
 1

84
6.

76
38

58
.9

4
37

51
.5

3
−

 1
75

7.
44

37
37

.3
3

35
92

.8
8

−
 1
75
6.
63

37
35
.7
0

35
91
.2
5

6
−

 1
90

1.
57

40
02

.7
7

38
73

.1
4

−
 1

83
2.

37
38

64
.3

8
37

34
.7

5
−

 1
75

6.
91

37
81

.9
0

36
07

.8
2

−
 1
75
0.
71

37
69
.5
0

35
95
.4
2

7
−

 1
88

7.
10

40
08

.0
5

38
56

.2
0

−
 1

80
2.

71
38

39
.2

8
36

87
.4

3
−

 1
75

4.
28

38
22

.2
6

36
18

.5
5

−
 1
74
4.
65

38
03
.0
0

35
99
.3
0

8
−

 1
87

4.
74

40
17

.5
5

38
43

.4
7

−
 1

78
2.

80
38
33
.6
7

36
59

.5
9

−
 1

75
5.

03
38

69
.4

1
36

36
.0

7
−

 1
74
6.
00

38
51

.3
4

36
18
.0
1

0
10

20
30

51525

6
−

 2
07

8.
75

43
58

.5
1

42
27

.5
1

−
 1

98
3.

19
41

67
.3

9
40

36
.3

9
−

 1
96

6.
84

42
03

.6
0

40
27

.6
8

−
 1
87
4.
89

40
19
.7
1

38
43
.7
9

9
−

 2
06

0.
61

44
25

.6
1

42
27

.2
3

−
 1

93
2.

41
41

69
.2

0
39

70
.8

2
−

 1
80

7.
87

40
23

.5
0

37
57

.7
4

−
 1
74
4.
43

38
96
.6
1

36
30
.8
6

12
−

 2
03

3.
28

44
74

.3
1

42
08

.5
5

−
 1

85
2.

89
41

13
.5

2
38

47
.7

7
−

 1
70

6.
21

39
58

.0
1

36
02

.4
2

−
 1
50
3.
52

35
52
.6
3

31
97
.0
4

15
−

 1
99

6.
56

45
04

.2
4

41
71

.1
1

−
 1

81
7.

99
41

47
.1

1
38

13
.9

8
−

 1
56

6.
34

38
16

.1
0

33
70

.6
8

−
 1
24
7.
54

31
78
.5
1

27
33
.0
9

18
−

 1
98

6.
85

45
88

.2
0

41
87

.7
0

−
 1

74
3.

26
41

01
.0

2
37

00
.5

2
−

 1
38

5.
55

35
92

.3
4

30
57

.0
9

−
 1
11
7.
97

30
57
.1
8

25
21
.9
3

−
0.
2

0.
2

0.
6

1.
0

0.00.40.8

15
54

8.
64

−
 4

53
.5

1
−

 9
19

.2
9

12
15

.4
8

−
 1
78
7.
17

−
 2

25
2.

95
12

19
.4

7
−

 1
57

8.
17

−
 2

20
0.

95
13
21
.2
2

−
 1

78
1.

65
−

 2
40
4.
44

20
61

1.
74

−
 3

62
.6

9
−

 9
85

.4
7

15
74

.8
8

−
 2
28
8.
97

−
 2

91
1.

76
14

87
.0

2
−

 1
82

3.
92

−
 2

65
6.

04
16
29
.3
9

−
 2

10
8.

67
−

 2
94
0.
79

25
71

1.
73

−
 3

45
.6

8
−

 1
12

5.
47

16
05

.0
2

−
 2
13
2.
25

−
 2

91
2.

03
17
09
.8
1

−
 1

98
0.

17
−

 3
02
1.
63

16
92

.2
8

−
 1

94
5.

11
−

 2
98

6.
56

30
84

5.
66

−
 3

96
.5

4
−

 1
33

3.
32

16
73

.0
3

−
 2
05
1.
28

−
 2

98
8.

07
17
39
.3
2

−
 1

74
9.

84
−

 3
00
0.
64

17
31

.9
3

−
 1

73
5.

06
−

 2
98

5.
86

35
93

3.
43

−
 3

55
.0

7
−

 1
44

8.
86

17
03

.0
8

−
 1
89
4.
36

−
 2
98
8.
15

17
09

.5
8

−
 1

40
1.

02
−

 2
86

1.
15

17
55
.7
3

−
 1

49
3.

33
−

 2
95

3.
46

−
0.
2

0.
2

0.
6

1.
0

0.00.40.8

2
10

8.
58

−
 1

46
.3

9
−

 1
95

.1
7

25
5.

27
−

 4
39

.7
7

−
 4

88
.5

5
36
1.
76

−
 6
27
.0
0

−
 6
93
.5
2

36
1.
76

−
 6
27
.0
0

−
 6
93
.5
2

4
26

5.
92

−
 3

83
.8

5
−

 4
85

.8
4

53
3.

22
−

 9
18

.4
5

−
 1

02
0.

45
95

1.
59

−
 1

70
3.

72
−

 1
84

1.
19

10
31
.4
3

−
 1
86
3.
38

−
 2
00
0.
85

6
35

8.
94

−
 4

92
.6

7
−

 6
47

.8
8

95
3.

03
−

 1
68

0.
86

−
18

36
.0

7
11

68
.0

2
−

 2
03

3.
61

−
 2

24
2.

03
11
97
.5
7

−
 2
09
2.
72

−
 2
30
1.
15

8
48

6.
40

−
 6

70
.3

8
−

 8
78

.8
0

11
15

.5
4

−
 1

92
8.

67
−

 2
13

7.
09

12
34

.2
6

−
 2

06
3.

14
−

 2
34

2.
52

12
39
.1
9

−
 2
07
3.
00

−
 2
35
2.
37

10
51

9.
47

−
 6

59
.3

0
−

 9
20

.9
4

11
86

.6
6

−
 1

99
3.

68
−

 2
25

5.
32

12
67
.1
5

−
 2
02

5.
97

−
 2

37
6.

30
12

53
.9

7
−

 1
99

9.
62

−
 2
34
9.
95

−
0.
2

0.
2

0.
6

1.
0

0.00.40.8

2
16

4.
26

−
 2

57
.9

9
−

 3
06

.5
2

32
5.

41
−

 5
80

.3
0

−
 6

28
.8

3
40
6.
28

−
 7
16
.3
7

−
 7
82
.5
5

40
6.
28

−
 7
16
.3
7

−
 7
82
.5
5

4
26

5.
27

−
 3

83
.0

7
−

 4
84

.5
5

83
5.

15
−

 1
52

2.
82

−
 1

62
4.

29
92

8.
93

−
 1

65
9.

10
−

 1
79

5.
87

95
5.
98

−
 1
71
3.
19

−
 1
84
9.
96

6
45

5.
91

−
 6

87
.4

0
−

 8
41

.8
1

10
18

.1
2

−
 1

81
1.

83
−

 1
96

6.
24

11
67

.5
8

−
 2

03
3.

80
−

 2
24

1.
15

11
75
.1
2

−
 2
04
8.
89

−
 2
25
6.
24

8
54

9.
31

−
 7

97
.2

7
−

 1
00

4.
63

11
15

.1
1

−
 1

92
8.

87
−

 2
13

6.
22

11
99

.0
6

−
 1

99
4.

17
−

 2
27

2.
12

12
02
.6
4

−
 2
00
1.
33

−
 2
27
9.
27

10
70

1.
89

−
 1

02
5.

48
−

 1
28

5.
78

11
64

.6
2

−
 1
95
0.
93

−
 2

21
1.

23
12

20
.4

9
−

 1
93

4.
45

−
 2

28
2.

99
12
22
.5
7

−
 1

93
8.

61
−

 2
28
7.
15

1420	 Pattern Analysis and Applications (2019) 22:1409–1425

1 3

Ta
bl

e 
2  

C
om

pa
ris

on
 o

f a
fC

EC
, G

M
M

, C
EC

, a
nd

 L
lo

yd
’s

 a
fC

EC
 in

 th
e

ca
se

 o
f a

 3
D

 d
at

as
et

s

Th
e

be
st

va
lu

es
 o

f M
LE

, B
IC

 a
nd

 A
IC

 fo
r e

ac
h

ex
pe

rim
en

t i
s m

ar
ke

d
w

ith
 b

ol
d

fo
nt

N
um

be
r

of
 c

lu
s-

te
rs

G
M

M
C

EC
af

C
EC

 L
lo

yd
af

C
EC

 H
ar

tig
an

M
LE

B
IC

A
IC

M
LE

B
IC

A
IC

M
LE

B
IC

A
IC

M
LE

B
IC

A
IC

25 20 15 10 5

-2
0

-2
0

020

0
20

40

7
−

 9
66

95
19

40
25

19
35

28
−

 9
12

73
18

31
83

18
26

85
−

 9
03

30
18

14
90

18
08

41
−

 9
03
10

18
14
48

18
08
00

12
−

 9
40

30
18

91
56

18
82

98
−

 8
77

99
17

66
95

17
58

37
−

 8
58

66
17

31
60

17
20

42
−

 8
53
99

17
22
25

17
11
08

17
−

 9
24

06
18

63
68

18
51

50
−

 8
51

72
17

19
00

17
06

82
−

 8
42
34

17
04
94

16
89
08

−
 8

42
93

17
06

12
16

90
26

22
−

 9
14

22
18

48
61

18
32

82
−

 8
29

12
16
78
42

16
62
62

−
 8

31
48

16
89

21
16

68
66

−
 8
28
82

16
83

90
16

63
35

27
−

 9
01

00
18

26
79

18
07

39
−

 8
19

09
16

62
97

16
43

57
−

 8
08

70
16

49
64

16
24

40
−

 8
08
59

16
49
41

16
24
18

-4
0

-6
0

-2
0

-8
0

0
-2
0

-1
5

-1
0

-505

05
101
5

7
−

 1
00

60
4

20
18

44
20

13
46

−
 9

69
19

19
44

74
19

39
76

−
 9

48
46

19
05

22
18

98
73

−
 9
38
27

18
84
83

18
78
34

12
−

 9
85

92
19

82
81

19
74

23
−

 9
46

23
19

03
43

18
94

85
−

 9
01
81

18
17
91

18
06
73

−
 9

12
02

18
38

31
18

27
14

17
−

 9
70

41
19

56
39

19
44

20
−

 9
34

94
18

85
44

18
73

26
−

 8
95

01
18

10
29

17
94

43
−

 8
91
09

18
02
45

17
86
59

22
−

 9
60

87
19

41
91

19
26

12
−

 9
27

05
18

74
28

18
58

49
−

 8
76
48

17
79
21

17
58
66

−
 8

83
83

17
93

91
17

73
36

27
−

 9
55

88
19

36
54

19
17

14
−

 9
17

14
18

59
05

18
39

66
−

 8
69

46
17

71
17

17
45

93
−

 8
60
81

17
53
85

17
28
62

0.
05

-0
.0
5

-0
.0
4

-0
.0
6

0
-0
.0
2

0
0.
020.
040.
06

0.
05

0.
1

0.
15

7
61

71
9

−
 1

22
80

4
−

 1
23

30
1

66
91

1
−

 1
33

18
7

−
 1

33
68

5
71

04
8

−
 1

41
26

8
−

 1
41

91
7

71
27
6

−
 1
41
72
3

−
 1
42
37
2

12
63

78
0

−
 1

26
46

4
−

 1
27

32
3

71
13

0
−

 1
41

16
4

−
 1

42
02

2
75

46
8

−
 1

49
50

9
−

 1
50

62
7

75
54
2

−
 1
49
65
6

−
 1
50
77
4

17
64

64
5

−
 1

27
73

4
−

 1
28

95
3

72
91

3
−

 1
44

27
0

−
 1

45
48

9
78
34
4

−
 1
54
66
2

−
 1
56
24
8

77
79

2
−

 1
53

55
7

−
 1

55
14

4
22

65
84

9
−

 1
29

68
1

−
 1

31
26

0
74

73
2

−
 1

47
44

7
−

 1
49

02
6

80
05

5
−

 1
57

48
5

−
 1

59
54

0
80
55
8

−
 1
58
49
1

−
 1
60
54
6

27
66

63
5

−
 1

30
79

2
−

 1
32

73
2

75
57

5
−

 1
48

67
3

−
 1

50
61

3
81

27
6

−
 1

59
33

0
−

16
18

53
81
56
1

−
 1
59
89
8

−
 1
62
42
2

050
0

10
00

15
00

20
00

25
00
-1
00

0
0

10
00

20
00

0-5
00

-1
00

0

7
−

 2
22

56
4

44
57

65
44

52
67

−
 2

16
65

4
43

39
44

43
34

47
−

 2
16

21
3

43
32

55
43

26
06

−
 2
15
94
3

43
27
15

43
20
66

12
−

 2
21

37
3

44
38

42
44

29
84

−
 2

14
30

5
42

97
07

42
88

49
−

 2
11

93
6

42
53

01
42

41
83

−
 2
10
84
7

42
31
21

42
20
04

17
−

 2
20

53
8

44
26

33
44

14
14

−
 2

12
44

4
42

64
44

42
52

26
−

 2
08

32
9

41
86

85
41

70
99

−
 2
07
09
5

41
62
17

41
46
31

22
−

 2
19

19
1

44
04

00
43

88
20

−
 2

11
01

4
42

40
46

42
24

67
−

 2
06

14
0

41
49

05
41

28
50

−
 2
04
79
8

41
22
22

41
01
67

27
−

 2
18

50
4

43
94

85
43

75
46

−
 2

09
79

0
42

20
58

42
01

18
−

 2
05

80
4

41
48

31
41

23
08

−
 2
02
84
9

40
89
23

40
63
99

1.
5e

+
00

4 1e
+
00

4
50

00
0
-5
00

0
-1
e+

00
4

020
00

40
00

60
00

80
00

1e
+
00

4
1.
2e

+
00

4

1e
+
00

4
50

00
0 -
50

00
-1
e+

00
4

-1
.5
e+

00
4

7
−

 2
84

45
6

56
95

49
56

90
51

−
 2

78
48

4
55

76
03

55
71

06
−

 2
77

28
7

55
54

03
55

47
54

−
 2
76
92
8

55
46
86

55
40
37

12
−

 2
82

30
4

56
57

05
56

48
47

−
 2

72
50

8
54

61
12

54
52

54
−

 2
71

69
4

54
48

15
54

36
98

−
 2
71
11
7

54
36
62

54
25
44

17
−

 2
81

07
4

56
37

05
56

24
86

−
 2

69
24

4
54

00
46

53
88

27
−

 2
68

62
5

53
92

77
53

76
91

−
 2
67
45
7

53
69
40

53
53
54

22
−

 2
80

18
8

56
23

94
56

08
15

−
 2

67
14

7
53

63
12

53
47

33
−

 2
67

34
5

53
73

16
53

52
61

−
 2
65
93
8

53
45
02

53
24
47

27
−

 2
79

77
2

56
20

21
56

00
82

−
 2

66
10

1
53

46
79

53
27

40
−

 2
66

11
1

53
54

45
53

29
22

−
 2
64
73
1

53
26
86

53
01
62

1421Pattern Analysis and Applications (2019) 22:1409–1425	

1 3

space. Therefore, spectral methods are typically time-con-
suming and use large number of parameters.

In the case of datasets of dimension higher than three and
afCEC approach, due to computational profitability, we used
a smaller class of quadratic polynomials of the type

instead of the class of all quadratic polynomials

This allows us to fit less parameters in each step, which
results in a smaller risk of overfitting and helps to effectively
cluster higher-dimensional data.

In the case of non-density-based method, we use classi-
cal Rand and Jaccard indexes. As we see in Fig. 9 afCEC
method gives similar results to other approaches and the
Hartigan modification allows to obtain better score.

(21)f (x1,… , xd−1) =

d−1∑
i=1

aix
2
i
+

d−1∑
i=1

bixi + c,

(22)f (x1,… , xd−1) =

d−1∑
i=1

d−1∑
j=1

aijxixj +

d−1∑
i=1

bixi + c.

6.5 � Data streams

Typical statistical and data mining methods, including clus-
tering, work with “static” datasets, meaning that the com-
plete dataset is available as a whole to perform all neces-
sary computations. However, in recent years more and more
applications need to work with data which is not static but
is the result of a continuous data generating process which
is likely to evolve over time. This type of data is called a
data stream, and dealing with data streams has become an
increasingly important area of research.

The characteristic of continually arriving data points
introduces an important property of data streams, which
also poses the great challenge: the size of a data stream is
potentially unbounded. This leads to the following require-
ments for data stream processing algorithms:

–	 Bounded storage The algorithm can only store a very
limited amount of data to summarize the data stream;

–	 Single pass The incoming data points cannot be perma-
nently stored and need to be processed at once in the
arriving order;

252015105

-20

-20

0

20

0 20

40

(a)

V2

-20

20

40

0
V3

V1

-20

0

20
5
10
15
20
25

(b) (c)

0.05
-0.05 -0.04-0.06

0
-0.0200.020.040.06

0.05

0.1

0.15

(d)

V3
-0.05

0.06

0
0.05

0.040.02
-0.020

-0.04-0.06

V2

V1
0.05

0.1

0.15

(e) (f)

Fig. 7   Segmentation a 3D objects by using Hartigan’s afCEC method. a Original dataset. b Hartigan’s afCEC clustering. c Hartigan’s afCEC
surfaces. d Original dataset. e Hartigan’s afCEC clustering. f Hartigan’s afCEC surfaces

1422	 Pattern Analysis and Applications (2019) 22:1409–1425

1 3

–	 Real-time The algorithm has to process data points on
average at least as fast as the data is arriving;

–	 Concept drift The algorithm has to be able to deal with
a data generating process which evolves over time (e.g.,
distributions change or a new structure in the data
appears).

In this section, we present a possible application of afCEC
method to stream data. We will use the R package stream
[12]. In our experiments, we use DSD_Benchmark(1) (see
Fig. 10a) form stream, which contains two clusters moving
in a two-dimensional space. One moves from the top left to
the bottom right and the other one moves from the bottom
left to the top right. Both clusters overlap when they meet
exactly in the center of the data space. Figure 10a shows
plots where clusters move over time. Arrows are added to
highlight the direction of cluster movement.

Figure 10c shows the Rand index for the four data stream
clustering algorithms and afCEC method over the evolv-
ing data stream. All algorithms show that separating the
two clusters is impossible around position 3000 when the
two clusters overlap. It should be highlighted that afCEC
method has a problem with reconstructing the model after
the merge. The number of clusters was reduced and cannot
be reconstructed. It is possible to add a split merge strategy
[13] which would allow to refit afCEC model. The second
possible strategy is to add an additional dimension with time
components. Since afCEC is an affine invariant it does not
change clustering structures and allows to keep two clusters
without reduction.

In general, afCEC works in the case when a dataset con-
tains curve-type structures. In the second example, we pre-
sent how the methods work on such data. Similar to the
previous examples, we consider two clusters (two curve-
type clusters), where the first moves from top left to bottom
right, and the other one moves from bottom left to top right.
Figure 10b shows plots where the clusters move over time.
Arrows are added to highlight the direction of cluster move-
ment. Figure 10d shows the Rand index. As we see, AfCEC
is able to almost perfectly recover the original clustering .

7 � Conclusions

In this paper, the Hartigan approach to afCEC method for
clustering curved data, which uses generalized Gaussian dis-
tributions in curvilinear coordinate systems, was presented.
The afCEC method has a strong theoretical background.
Moreover, afCEC can be used as a density estimation model.
Since afCEC is an implementation of the cross-entropy clus-
tering approach, the method reduces unnecessary clusters
online.

In practice, the algorithm gives essentially better results
than linear models, like GMM or CEC and the classical
Lloyd’s approach to afCEC, since we obtain a similar level
of the Log-likelihood function by using a smaller number of
parameters to describe the model. Moreover, the online ver-
sion of afCEC method can be use in the case of stream data.

In the future, we want to update our algorithm to allow
the use of closed curves. Thanks to such a modification, we
will able either to find more complicated shapes in data or
to better adapt to the data structure.

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)
0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)
0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Fig. 8   Effect of clustering Chinese character by Hartigan’s afCEC, kkmeans, and spectral clustering. a Hartigan’s afCEC, b kkmeans, c spectral
clustering

1423Pattern Analysis and Applications (2019) 22:1409–1425	

1 3

Fig. 9   Effect of clustering different datasets from UCI repository character by afCEC, kkmeans and spectral clustering. a Iris dataset. b Wine
dataset. c Yeast dataset. d Glass dataset. e Breast dataset. f GvHD dataset. g Seeds dataset. h Pendigits dataset

1424	 Pattern Analysis and Applications (2019) 22:1409–1425

1 3

Acknowledgements  The work of P. Spurek was supported by the
National Centre of Science (Poland) Grant No. 2015/19/D/ST6/01472.
The work of K. Byrski was supported by the National Centre of Sci-
ence (Poland) Grant No. 2015/19/D/ST6/01472. The work of J. Tabor
was supported by the National Centre of Science (Poland) Grant No.
2017/25/B/ST6/01271.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Bock HH (2007) Clustering methods: a history of K-Means algo-
rithms. In: Bock HH (ed) Selected contributions in data analysis
and classification. Springer, Berlin, pp 161–172

	 2.	 Bronstein AM, Bronstein MM, Kimmel R (2006) Efficient com-
putation of isometry-invariant distances between surfaces. SIAM
J Sci Comput 28(5):1812–1836

	 3.	 Bronstein AM, Bronstein MM, Kimmel R (2008) Numerical
geometry of non-rigid shapes. Springer, Berlin

	 4.	 Cayton L (2005) Algorithms for manifold learning. Univ Calif
San Diego Tech Rep 12:1–17

(a) (b)

00040003000200010

0.
0

0.
4

0.
8

Sample
Window
D−Stream
DBSTREAM
afCEC

(c)

00040003000200010

0.
0

0.
4

0.
8

Sample
Window
D−Stream
DBSTREAM
afCEC

(d)

Fig. 10   Comparison between classical data stream clustering algo-
rithms and afCEC over the evolving data stream. a Dataset DSD_
Benchmark(1) from R package stream(reproduced with permission
from [12]). b Curve-type set. c Rand index for the four classical

data stream clustering algorithms and afCEC over the evolving data
stream in the case of image from Fig. 10a. d Rand index for the four
classical data stream clustering algorithms and afCEC over the evolv-
ing data stream in the case of image from Fig. 10b

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1425Pattern Analysis and Applications (2019) 22:1409–1425	

1 3

	 5.	 Chi SC, Yang CC (2006) Integration of ant colony SOM and
k-means for clustering analysis. In: International conference on
knowledge-based and intelligent information and engineering sys-
tems, Springer, Berlin, pp 1–8

	 6.	 Cover TM, Thomas JA (2012) Elements of information theory.
Wiley, Hoboken

	 7.	 Elhamifar E, Vidal R (2013) Sparse subspace clustering: algo-
rithm, theory, and applications. IEEE Trans Pattern Anal Mach
Intell 35(11):2765–2781

	 8.	 Figueiredo MAT, Jain AK (2002) Unsupervised learning of
finite mixture models. IEEE Trans Pattern Anal Mach Intell
24(3):381–396

	 9.	 Forgy EW (1965) Cluster analysis of multivariate data: efficiency
versus interpretability of classifications. Biometrics 21:768–769

	10.	 Fraley C, Raftery AE (1998) How many clusters? Which cluster-
ing method? Answers via model-based cluster analysis. Comput
J 41(8):578–588

	11.	 Goldberger J, Roweis ST (2004) Hierarchical clustering of a mix-
ture model. In: Proceedings of advances in neural information
processing systems, pp 505–512

	12.	 Hahsler M, Bolanos M, Forrest J (2017) Introduction to stream:
an extensible framework for data stream clustering research with
R. J Stat Softw 76(14):1–50

	13.	 Hajto K, Kamieniecki K, Misztal K, Spurek P (2017) Split-and-
merge tweak in cross entropy clustering. In: IFIP international
conference on computer information systems and industrial man-
agement, Springer, Berlin, pp 193–204

	14.	 Hartigan JA (1975) Clustering algorithms. Wiley, New York
	15.	 Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clus-

tering algorithm. Appl Stat 28:100–108
	16.	 Hastie T, Stuetzle W (1989) Principal curves. J Am Stat Assoc

84(406):502–516
	17.	 Jolliffe I (2002) Principal component analysis. Encycl Stat Behav

Sci 30:487
	18.	 Kegl BA (1999) Principal curves: learning, design, and applica-

tions. Ph.D. Thesis, Citeseer
	19.	 Kohonen T (1989) Self-organizing feature maps. Springer, Berlin
	20.	 Kohonen T (2001) Self-organizing maps, vol 30. Springer, Berlin
	21.	 Kullback S (1997) Information theory and statistics. Dover Pubns,

Mineola
	22.	 LeBlanc M, Tibshirani R (1994) Adaptive principal surfaces. J

Am Stat Assoc 89(425):53–64
	23.	 Lebret R, Iovleff S, Langrognet F, Biernacki C, Celeux G, Govaert

G (2015) Rmixmod: the R package of the model-based unsuper-
vised, supervised and semi-supervised classification mixmod
library. J Stat Softw 67:241–270

	24.	 Li J, Li X, Tao D (2008) KPCA for semantic object extraction in
images. Pattern Recognit 41(10):3244–3250

	25.	 Lloyd S (1982) Least squares quantization in PCM. IEEE Trans
Inf Theor 28(2):129–137

	26.	 MacQueen J et al (1967) Some methods for classification and
analysis of multivariate observations. In: Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability,
vol 1. Oakland, pp 281–297

	27.	 McLachlan G, Krishnan T (1997) The EM algorithm and exten-
sions, vol 274. Wiley, Hoboken

	28.	 McLachlan G, Krishnan T (2007) The EM algorithm and exten-
sions, vol 382. Wiley, Hoboken

	29.	 McLachlan G, Peel D (2004) Finite mixture models. Wiley,
Hoboken

	30.	 Narayanan H, Mitter S (2010) Sample complexity of testing the
manifold hypothesis. In: Proceedings of advances in neural infor-
mation processing systems, pp 1786–1794

	31.	 Ng AY, Jordan MI, Weiss Y et al (2002) On spectral clustering:
analysis and an algorithm. Adv Neural Inf Process Syst 2:849–856

	32.	 Schölkopf B, Smola A, Müller KR (1998) Nonlinear compo-
nent analysis as a kernel eigenvalue problem. Neural Comput
10(5):1299–1319

	33.	 Silva JA, Faria ER, Barros RC, Hruschka ER, de Carvalho AC,
Gama J (2013) Data stream clustering: a survey. ACM Comput
Surv (CSUR) 46(1):13

	34.	 Śmieja M, Geiger BC (2017) Semi-supervised cross-entropy clus-
tering with information bottleneck constraint. Inf Sci 421:254–271

	35.	 Śmieja M, Wiercioch M (2016) Constrained clustering with a
complex cluster structure. Adv Data Anal Classif 11:1–26

	36.	 Spurek P (2017) General split gaussian cross-entropy clustering.
Expert Syst Appl 68:58–68

	37.	 Spurek P, Kamieniecki K, Tabor J, Misztal K, Śmieja M (2017)
R package CEC. Neurocomputing 237:410–413

	38.	 Spurek P, Pałk, W (2016) Clustering of gaussian distributions.
In: 2016 IEEE international joint conference on neural networks
(IJCNN), pp 3346–3353

	39.	 Spurek P, Tabor J, Byrski K (2017) Active function cross-entropy
clustering. Expert Syst Appl 72:49–66

	40.	 Tabor J, Spurek P (2014) Cross-entropy clustering. Pattern Rec-
ognit 47(9):3046–3059

	41.	 Telgarsky M, Vattani A (2010) Hartigan’s method: k-means clus-
tering without voronoi. In: International conference on artificial
intelligence and statistics, pp 820–827

	42.	 Wallace RS, Kanade T (1990) Finding natural clusters having
minimum description length. In: 10th IEEE international con-
ference on proceedings of pattern recognition, 1990, vol 1. pp
438–442

	43.	 Wang Y, Jiang Y, Wu Y, Zhou ZH (2011) Spectral clustering on
multiple manifolds. IEEE Trans Neural Netw 22(7):1149–1161

	44.	 Yan Q, Ding Y, Xia Y, Chong Y, Zheng C (2017) Class-probability
propagation of supervised information based on sparse subspace
clustering for hyperspectral images. Remote Sens 9(10):1017

	45.	 Zelnik-Manor L, Perona P (2005) Self-tuning spectral cluster-
ing. In: Advances in neural information processing systems, pp
1601–1608

	46.	 Zhang B, Zhang C, Yi X (2004) Competitive em algorithm for
finite mixture models. Pattern Recognit 37(1):131–144

	47.	 Zhang B, Zhang C, Yi X (2005) Active curve axis gaussian mix-
ture models. Pattern Recognit 38(12):2351–2362

	48.	 Zhang H, Zhai H, Zhang L, Li P (2016) Spectral-spatial sparse
subspace clustering for hyperspectral remote sensing images.
IEEE Trans Geosci Remote Sens 54(6):3672–3684

	Online updating of active function cross-entropy clustering
	Abstract
	1 Introduction
	2 Related works
	3 AfCEC algorithm
	4 Updating the value of the cost function
	5 Algorithm
	6 Experiments
	6.1 The computational times
	6.2 2D dataset
	6.3 3D scans of objects
	6.4 Comparison with non-density-based methods
	6.5 Data streams

	7 Conclusions
	Acknowledgements
	References

