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Abstract
Gaussian mixture models have many applications in density estimation and data clustering. However, the model does not 
adapt well to curved and strongly nonlinear data, since many Gaussian components are typically needed to appropriately fit 
the data that lie around the nonlinear manifold. To solve this problem, the active function cross-entropy clustering (afCEC) 
method was constructed. In this article, we present an online afCEC algorithm. Thanks to this modification, we obtain a 
method which is able to remove unnecessary clusters very fast and, consequently, we obtain lower computational complex-
ity. Moreover, we obtain a better minimum (with a lower value of the cost function). The modification allows to process 
data streams.

Keywords  Clustering · Active function cross-entropy clustering · Gaussian mixture models · Data streams

1  Introduction

Clustering plays a basic role in many parts of data engi-
neering, pattern recognition, and image analysis. Some of 
the most important clustering methods are based on GMM, 
which in practice accommodates data with distributions that 
lie around affine subspaces of lower dimensions obtained by 
principal component analysis (PCA) [17], see Fig. 1a. How-
ever, by the manifold hypothesis, real-world data presented 
in high-dimensional spaces are likely to be concentrated in 
the vicinity of nonlinear sub-manifolds of lower dimension-
ality [4, 30]. The classical approach approximates this mani-
fold by a mixture of Gaussian distributions. Since one non-
Gaussian component can be approximated by a mixture of 
several Gaussians [10, 35, 38], these clusters are, in practice, 
represented by a combination of Gaussian components. This 
can be seen as a form of piecewise linear approximation, 
see Fig. 1a. Cross-entropy clustering (CEC) [34, 36, 37, 40] 
approach gives similar result.

In [39], authors have constructed the afCEC (active func-
tion cross-entropy clustering) algorithm, which allows the 
clustering of data on sub-manifolds of ℝd . The motivation 
comes from the observation that it is often profitable to 
describe nonlinear data by a smaller number of components 
with more complicated curved shapes to obtain a better fit 
of the data, see Fig. 1b. The afCEC method automatically 
reduces unnecessary clusters and accommodates nonlinear 
structures.

In this paper, the online version of the afCEC1 algorithm 
using Hartigan’s approach is presented. In a case when a 
new point appears, we are able to update parameters of all 
clusters without recomputing all variables. Because we have 
to approximate complicated structures in each step, we have 
to construct a numerically efficient model. Therefore, we 
have chosen an approach that allows for the use of an explicit 
formula in each step.

The algorithm proceeds point by point and determines its 
optimal cluster assignment. The method only iterates if some 
cluster has a point closer to some other cluster’s center. Har-
tigan’s method takes into account the motion of the means 
resulting from the reassignment—that is, it may reassign a 
point to another cluster, even if it is already assigned to the 
closest center.

Thanks to such a modification, the unnecessary clusters 
are efficiently removed [40], usually in the first three or four 
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iterations. In consequence, one needs smaller number of 
steps in each iteration to find the local minimum. Moreo-
ver, Hartigan’s method finds essentially better minima (with 
lower cost function value). In Fig. 2, we present the conver-
gence process of Hartigan’s afCEC with the initial number 
of clusters at k = 10 , which is reduced to k = 5.

The modification also allows processing data streams [33] 
in which the input is presented as a sequence of items and 
can be examined in only a few passes (typically just one). 

These algorithms have limited memory available for them 
(much less than the input size) and also limited processing 
time per item. The intrinsic nature of stream data requires 
the development of algorithms capable of performing fast 
and incremental processing of data objects. Therefore, Har-
tigan’s version of afCEC algorithm can be applied in data 
streams clustering.

The paper is organized as follows. In the next section, 
related work is presented. In Sect. 3, we introduce afCEC 
algorithm. In Sect. 4, we present the Hartigan modifica-
tion of the method. In particular, we discuss how to update 
parameters online. In the last section, a comparison between 
our approach and classical algorithms is made.

2 � Related works

Clustering is the classical problem of dividing a data X ∈ ℝ
N 

into a collection of disjoint groups X1,…Xk . Several of the 
most popular clustering methods are based on the k-means 
approach [1]. In the context of the algorithm, there were 
introduced two basic heuristics for minimizing the cost func-
tion: Lloyd’s and Hartigan’s. The methods became standards 
in the general clustering theorem.

The first heuristic for k-means (or general cluster-
ing methods) is the Lloyd’s approach: given some initial 

Fig. 1   Fitting a b-type set by using. a GMM. b afCEC

Fig. 2   Convergence process of Hartigan’s version of afCEC on a Chinese character with initial k = 10 , which is reduced to k = 5
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clustering, we assign points to the closest one [9, 25, 26]. 
This scheme is intuitive, and empirical support is favora-
ble: the technique generally seems to find a good solution 
in a small number of iterations. The alternative heuristic 
was presented by Hartigan [14, 15]: repeatedly pick a point 
and determine its optimal cluster assignment. The obvious 
distinction with Lloyd is that the algorithm proceeds point 
by point. The comparison of the method is presented in [41]. 
Roughly speaking, in the context of k-means, Hartigan’s 
approach converges to the minimum faster and generally 
find better minima of the cost function. On the other hand, 
Lloyd’s approach is more resistant to outliers.

The basic drawback of k-means algorithm was solved by 
using density-based techniques, which use expectation maxi-
mization (EM) method [27]. The Gaussian mixture model 
(GMM) is probably the most popular [28, 29]. Thanks to this 
approach, we can describe clusters by more general shapes 
like ellipses.

The cross-entropy clustering (CEC) approach [40] joins 
the clustering advantages of k-means and EM. It turns out 
that CEC inherits the speed and scalability of k-means, while 
overcoming the ability of EM to use mixture models. CEC 
allows an automatic reduction in “unnecessary” clusters, 
since, contrary to the case of classical k-means and EM, 
there is a cost of using each cluster. One of the most impor-
tant properties of CEC, in relation to GMM, is that, similar 
to k-means, we can use Hartigan’s approach.

Since typically data lie around curved structures (mani-
fold hypotheses), algorithms which can approximate curves 
or manifolds are important. Principal curves and principal 
surfaces [16, 18, 22] have been defined as self-consistent 
smooth curves (or surfaces in ℝ2 ) which pass through the 
middle of a d-dimensional probability distribution or data 
cloud. They give a summary of the data and also serve as an 
efficient feature extraction tool.

Another method that attempts to solve the problem of 
fitting nonlinear manifolds is that of self-organizing maps 
(SOM) [20], or self-organizing feature maps (SOFM) [19]. 
These methods are types of artificial neural networks which 
are trained using unsupervised learning to produce a low-
dimensional (typically two-dimensional) discretized repre-
sentation of the input space of the training samples, called 
a map.

Kernel methods provide a powerful way of capturing 
nonlinear relations. One of the most common, kernel PCA 
(KCPA) [32], is a nonlinear version of principal component 
analysis (PCA) [17] that gives an explicit low-dimensional 
space such that the data variance in the feature space is pre-
served as much as possible.

The above approaches focus on finding only a single 
complex manifold. In general, they do not focus on the 
clustering method. Furthermore, it is difficult to use them 
for dealing with clustering problems. Kernel methods and 

self-organizing maps can be used as a preprocessing for clas-
sical clustering methods. In such a way, spectral clustering 
methods were constructed [24]. The classical kernel k-means 
[24] is equivalent to KPCA prior to the conventional 
k-means algorithm. Spectral clustering is a large family of 
grouping methods which partition data using eigenvectors 
of an affinity matrix derived from the data [7, 43–45, 48].

The active curve axis Gaussian mixture model (Aca-
GMM) [47] is an adaptation of the Gaussian mixture model, 
which uses a nonlinear curved Gaussian probability model in 
clustering. AcaGMM works well in practice; however, it has 
major limitations. First of all, the AcaGMM cost function 
does not necessarily decrease with iterations, which causes 
problems with the stop condition, see [39]. Since the method 
uses orthogonal projections and arc lengths, it is very hard 
to use AcaGMM for more complicated curves in higher-
dimensional spaces.

The active function cross-entropy clustering [39] (afCEC) 
method (see Fig. 1b), which is based on the cross-entropy 
clustering (CEC) model, solves all the above limitations. 
The method has a few advantages in relation to AcaGMM: it 
enables easy adaptation to clustering of complicated datasets 
along with a predefined family of functions and does not 
need external methods to determine the number of clusters, 
as it automatically reduces the number of groups.

In practice, afCEC gives essentially better results than 
linear models like GMM or CEC, since we obtain a similar 
level of the Log-likelihood function by using a smaller num-
ber of parameters to describe the model. On the other hand, 
the results are similar to that of AcaGMM when we restrict 
the data to two dimensions and use the quadratic function 
as the baseline. For more detailed comparison between the 
methods, see [39].

All the above approaches do not have Hartigan’s versions. 
In this article, we present an online afCEC algorithm. In the 
case of Lloyd’s approach, authors use the regression method 
for each step. In this paper, we present how to apply Harti-
gan’s heuristic for minimizing afCEC cost function. Thanks 
to this modification, we obtain a method which is able to 
remove unnecessary clusters very fast and, consequently, 
we obtain a lower computational complexity. Moreover, 
we obtain a better minimum (with lower value of the cost 
function).

3 � AfCEC algorithm

In this section, we briefly describe AfCEC method (for more 
information we refer to [39]). At the beginning, we introduce 
a density distribution which was used in AfCEC method—
f-adapted Gaussian density. Let us recall that the standard 
Gaussian density in ℝd is defined by
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where m denotes the mean, � is the covariance matrix, and 
‖v‖2

�
= vT�−1v is the square of the Mahalanobis norm.

In our work, we use a multidimensional Gaussian density 
in a curvilinear coordinate system which is “spread” along 
the function f ∶ ℝ

d−1
→ ℝ (f-adapted Gaussian density). We 

treat one of the variables separately. In such a case, we con-
sider only those � ∈ d(ℝ) (where d(ℝ) denotes the set 
of d-dimensional square, symmetrical, and positive define 
matrices) which have the diagonal block matrix form

where 𝛴l̂ ∈ d−1(ℝ) and 𝛴l > 0 . For x = [x1,… , xd]
T ∈ ℝ

d 
and l ∈ {1,… , d} , we will use the notation

Now, we will give a mathematically formal definition of the 
f-adapted Gaussian function.

Definition 1  Let f ∈ (ℝd−1,ℝ) , 𝛴l̂ ∈ d−1(ℝ) , 𝛴l > 0 , 
m = [ml̂,ml]

T ∈ ℝ
d be given. The f-adapted Gaussian den-

sity for 𝛴l̂ , �l , l ∈ {1,… , d} and m is defined as follows:

In the basic form of the CEC algorithm [40], we are 
looking for the optimal Gaussian function in the family of 
all d-dimensional Gaussian densities (ℝd) . In the case of 
AfCEC, we describe each cluster by the f-adapted Gaussian 
function, see Fig. 3. Consequently, we need to find optimal 
density in the class of all curved Gaussians. For the given 
f ∶ ℝ

d−1
→ ℝ , we denote the family of all f-adapted Gauss-

ian functions by

(1)N(m,�)(x) =
1

(2�)d∕2det(�)1∕2
exp

�
−

1

2
‖x − m‖2

�

�
,

𝛴 =

[
𝛴l̂ 0

0 𝛴l

]
,

xl̂ = [x1,… , xl−1, xl+1,… , xd]
T ∈ ℝ

d−1.

(2)
N
(
m,𝛴l̂,𝛴l, f

)
(x) = N

(
ml̂,𝛴l̂

)(
xl̂
)
⋅ N(ml,𝛴l)

(
xl − f

(
xl̂
))

In the AfCEC algorithm, we describe clusters by general-
ized Gaussian distributions from l[f ] where f is in some 
class of functions (we can use any class of functions for 
which the regression procedure works) and l ∈ {1,… , d} . 
Therefore, we will need one more definition. For the family 
 ⊂ (ℝd−1,ℝ) , we define

In the previous considerations, we assumed that one vari-
able was chosen to be dependent. Since, in the case of the 
-adaptive Gaussian density, all computations are applied 
in the canonical basis, we can verify all possible dependent 
variable choices. For the family  ⊂ (ℝd−1,ℝ) , we define 
the family of -adapted Gaussian distributions with all the 
possible choices of dependent variables by

Since our method is based on the CEC approach, we start 
with a short introduction to the method (for a more detailed 
explanation we refer the reader to [40]). To apply CEC, we 
need to introduce the cost function which we want to mini-
mize. In the case of splitting X ⊂ ℝ

d into X1,… ,Xk so that 
we code elements of Xi using a function from the family 
of all Gaussian densities (ℝd) , the mean code-length of a 
randomly chosen element x equals

(3)
l[f ] =

{
N
(
m,𝛴l̂,𝛴l, f

)
∶ m ∈ ℝ

d,𝛴l̂∈d−1(ℝ),𝛴l > 0
}
.

l[ ] =
⋃
f∈

l[f ].

[ ] =

d⋃
l=1

l[ ].

(4)

E(X1,… ,Xk;(ℝ
d)) =

k∑
i=1

pi ⋅
�
− ln(pi) + H×(Xi‖(ℝd))

�

Fig. 3   Level sets for f-adapted Gaussian distribution. a f (x) = 0 , b f (x) = x , c f (x) = 1

8
x2 , d f (x) = 1

16
x3
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where pi =
|Xi|
|X|  . The formula uses the cross-entropy of a 

dataset with respect to the family (ℝd) . In the case of 
AfCEC, our goal is to calculate an explicit formula for the 
cost function in the case of f-adapted Gaussian densities.

Optimization Problem 31  Divide the dataset X ⊂ ℝ
d into k 

pairwise disjoint groups X1,… ,Xk ( X = X1 ∪… ∪ Xk ) such 
that the cost function

where pi =
|Xi|
|X| , is minimal.

If   is a set of functions which are invariant under 
the operations f → a + f  for any a, we have a following 
theorem.

Theorem 1  Let X ⊂ ℝ
d be a dataset, and let a family of 

functions  ⊂ (ℝd−1,ℝ) be invariant under the operations 
f → a + f  for a ∈ ℝ. Let f̄l ∈  for l ∈ {1,… , d} be such 
that f̄l = argmin{f ∈  ∶ |xl − f (xl̂)|2}. Then,

where 𝛴l̂ = cov(Xl̂) and l ∈ {1,… , d}.

We can analyze each cluster separately. For one clus-
ter X ⊂ ℝ

d , we estimate the parameters of the model in 
two steps. First, we consider all of the possible choices 
of dependent variables and calculate functions fl (corre-
sponding to relations xl = fl(xl̂) ), means ml = mean(X

fl
l
) , 

ml̂ = mean(Xl̂) and covariances 𝛴l̂ = cov(Xl̂) , �l = cov(X
fl
l
) 

for l ∈ {1,… , d} . More precisely, we find fl-adapted Gauss-
ian distributions N([ml̂, 0]

T ,𝛴l̂,𝛴l, fl), which realize a mini-
mum of cross-entropy H×(X‖l[ ]), for l ∈ {1,… , d} . 
Then we determine the optimal dependent variable 
j = argminl∈{1,…,d}{H

×(X‖l[ ])}. Consequently, our data-
set is represented by the active function, mean, and covari-
ance matrix

where subscript j ∈ {1,… , d} denotes the dependent vari-
able in the cluster. The above parameters minimize the cost 
function of one cluster H×(X‖[ ]).

CEC allows an automatic reduction in “unnecessary” 
clusters, since, contrary to the case of classical k-means 
and EM, there is a cost of using each cluster. (The step-
by-step view of this process is shown in Fig. 2.) There are 

(5)

E(X1,… ,Xk ;[ ]) =
k∑

i=1

pi
�
− ln(pi) + H×(Xi‖[ ])

�
,

(6)

min
f∈

H×(X‖l[f ]) =
d

2
ln(2𝜋e)+

1

2
ln
�
det

�
𝛴l̂

��
+

1

2
ln

�
1

n

∑
x∈X

���xl − f̄
�
xl̂
����

2
�
,

(7)f = fj, m =
[
mĵ, 0

]
, 𝛴 =

[
𝛴ĵ 0

0 𝛴j

]
,

also several probabilistic approaches which try to estimate 
the correct number of clusters. For example, [11] uses the 
generalized distance between Gaussian mixture models with 
different components number by using the Kullback–Lei-
bler divergence, see [6, 21]. A similar idea is presented by 
[46] (Competitive Expectation Maximization) which uses 
the minimum message length criterion provided by [8]. In 
practice, MDLP can also be directly used in clustering, see 
[42]. However, most of the above-mentioned methods typi-
cally proceed through all the consecutive clusters and do not 
reduce the number of clusters online during the clustering 
process.

Classical AfCEC algorithm presented in [39] uses Lloyd’s 
method. The alternative heuristic was presented by Hartigan 
[14, 15]: repeatedly pick a point and determine its optimal 
(from the cost function’s point of view) cluster assignment. 
Observe that in the crucial step in Hartigan’s approach we 
compare the cross-entropy after and before the switch, while 
the switch removes a given point from one cluster and adds 
it to the other. It means that to apply efficiently the Hartigan 
approach in clustering it is essential to update parameters (7) 
when we add a point to the cluster and downdate parameters 
(7) when we delete a point from group. In the next section, 
we present how we can update and downdate all parameters 
of afCEC online.

4 � Updating the value of the cost function

Recall that for the particular cluster X our goal is to present 
how to update and downdate meta-parameters:

Observe that in the crucial step in Hartigan’s approach 
we compare the cross-entropy after and before the switch. 
Therefore, it is enough to update/downdate only parameters 
on which the afCEC cost function

depends. Evaluating the cost function for the dataset X ∈ ℝ
d 

involves computing two quantities: the covariance matrix 
on Xd̂

and mean squared error (MSE), respectively, on the 
d-coordinate

f = fd, m =
[
md̂, 0

]
, 𝛴 =

[
𝛴d̂ 0

0 𝛴d

]
.

(8)

H×
�
X‖f (ℝ

d)
�
=
d

2
ln(2𝜋e) +

1

2
ln
�
det

�
cov

�
Xd̂

���

+
1

2
ln

�
1

�X�
�
x∈X

�
xd − f

�
xd̂
��2

�
,

(9)𝛴d̂ = cov
(
Xd̂

)
,

(10)𝛴d = MSE(X, f , d) =
1

|X|
∑
x∈X

(
xd − f

(
xd̂
))2

,
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along the active axis defined as the mean squared error of 
the linear least-squares approximation of the data along the 
active axis.

It should be highlighted that for updating the above 
parameters we additionally require some other information. 
In the case of cov(Xd̂) , we need to store the mean(Xd̂) . In 
such a case, we have a simple formula. Update and downdate 
procedures are given by the following formulas:

(a)	 The update procedure:

where p1 =
|X|

|X|+1 , p2 =
1

|X|+1 , and x ∉ X.

(b)	 The downdate procedure:

where q1 =
|X|

|X|−1 , q2 =
1

|X|−1 , and x ∈ X.

In the case of the second quantity 1

�X�
∑

x∈X(xd − f (xd̂))
2 , 

we have a more complicated situation. Our goal is to update/
downdate the regression function f. There are many types of 
regression models. In our work, we consider a general one. 
For a data X ⊂ ℝ

d , we use the model

where fj are linearly independent functions. In the case of 
fj(xd̂) = xj−1 , we obtain a classical polynomial regression. 
Therefore, our goal is to find a vector α =

[
�1 … �m

]T
, 

which minimizes

Directly from the regression theory, we can calculate the 
vector α as a solution to a system of linear equations.

T h e o r e m   2   L e t  X ∈ ℝ
d  b e  g i v e n .  L e t 

f (x) = 𝛼1f1(xd̂) +⋯ + 𝛼mfm(xd̂), where fi ∶ ℝ
d−1

→ ℝ are 
linearly independent functions for which linear regression 
is considered. Then, the vector α which minimizes the mean 
squared error

mean
(
Xd̂ ∪

{
xd̂
})

= p1mean
(
Xd̂

)
+ p2xd̂,

cov
(
Xd̂ ∪

{
xd̂
})

= p1cov
(
Xd̂

)
+p1p2

(
mean

(
Xd̂

)
− xd̂

)(
mean

(
Xd̂

)
− xd̂

)T
,

mean
(
Xd̂⧵

{
xd̂
})

= q1mean
(
Xd̂

)
− q2xd̂,

cov
(
Xd̂⧵

{
xd̂
})

= q1cov
(
Xd̂

)
−q1q2

(
mean

(
Xd̂

)
− xd̂

)(
mean

(
Xd̂

)
− xd̂

)T
,

(11)f (xd̂) =

m∑
j=1

𝛼jfj
(
xd̂
)
,

(12)MSE

(
X,

m∑
j=1

𝛼jfj, d

)
=

1

|X|
∑
x∈X

(
xd −

m∑
j=1

𝛼jfj
(
xd̂
))2

.

satisfies the following linear equation system:

Similar to the previous situation, we will store additional 
elements to be able to update/downdate our parameters. For 
the data X, we denote the matrix from Eq. (14) by AX and 
the vector from Eq. (14) bX . Consequently, Eq. (14) can be 
rewritten in the following form

The main idea is to update/downdate parameters AX and bX 
and solve the linear equation in each iteration to determine 
the updated α.

T h e o r e m   3   L e t  X ∈ ℝ
d  b e  g i v e n .  L e t 

f (xd̂) = 𝛼1f1(xd̂) +⋯ + 𝛼mfm(xd̂), where fi ∶ ℝ
d−1

→ ℝ are 
linearly independent functions for which linear regression 
is considered. For x, update (x ∉ X) and downdate (x ∈ X) 
procedures are given by the following formulas:

(a)	  The update procedure:

(b)	 The downdate procedure:

(13)
1

|X|
∑
x∈X

(
xd −

m∑
j=1

𝛼jfj
(
xd̂
))2

(14)

⎡
⎢⎢⎢⎣

∑
x∈X

f1
�
xd̂
�
f1
�
xd̂
�

…
∑
x∈X

f1
�
xd̂
�
fm
�
xd̂
�

⋮ ⋮∑
x∈X

fm
�
xd̂
�
f1
�
xd̂
�

…
∑
x∈X

fm
�
xd̂
�
fm
�
xd̂
�
⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

𝛼1

⋮

𝛼m

⎤
⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

n∑
x∈X

f1
�
xd̂
�
xd

⋮
n∑

x∈X

fm
�
xd̂
�
xd

⎤
⎥⎥⎥⎥⎥⎦

(15)AX

⎡⎢⎢⎣

�1

⋮

�m

⎤⎥⎥⎦
= bX .

(16)AX∪{x} = AX +

⎡⎢⎢⎣
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�
xd̂
�

⋮
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�
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�
⎤⎥⎥⎦
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�
xd̂
�

⋮
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T

,

(17)bX∪{x} = bX +

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦
xd.

(18)AX⧵{x} = AX −

⎡⎢⎢⎣

f1
�
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⋮
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�
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⋮
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,

(19)
bX⧵{x} = bX −

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤⎥⎥⎦
xd.
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Proof  Let X and x̄ be given. A simple corollary from Theo-
rem 2 is that the vector α which minimizes the mean squared 
error satisfies the following linear equation system:

Now we add/remove x̄ from X. Therefore, by Theorem 2 for 
X ∪ {x̄} or X ⧵ {x̄} , respectively, we obtain

	�  □

Thanks to Theorem 3, we can update parameters AX and 
bX . Then we solve the system of linear equations AXα = bX . 
Therefore, we obtain α for X ∪ {x} or X ⧵ {x} , respectively. 
In the last step, we can update and downdate the mean 
squared error (MSE), respectively, on the d-coordinate by 
using a new value of A, b, α.

T h e o r e m   4   L e t  X ∈ ℝ
d  b e  g i v e n .  L e t 

f (xd̂) = 𝛼1f1(xd̂) +⋯ + 𝛼mfm(xd̂) , where fi ∶ ℝ
d−1

→ ℝ are 
linearly independent functions for which linear regression 
is considered. Then

where

⎛
⎜⎜⎜⎝

�
x∈X

⎡
⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤
⎥⎥⎦

⎡
⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤
⎥⎥⎦

T⎞
⎟⎟⎟⎠

⎡
⎢⎢⎣

𝛼1

⋮

𝛼k

⎤
⎥⎥⎦
=
�
x∈X

⎡
⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤
⎥⎥⎦
xd.

⎛
⎜⎜⎜⎝

�
x∈X

⎡
⎢⎢⎣

f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤
⎥⎥⎦

⎡
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f1
�
xd̂
�

⋮

fm
�
xd̂
�
⎤
⎥⎥⎦

T

±

⎡
⎢⎢⎣

f1(x̄)

⋮

fm(x̄)

⎤
⎥⎥⎦

⎡
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f1(x̄)

⋮

fm(x̄)

⎤
⎥⎥⎦
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⎡
⎢⎢⎣

𝛼1

⋮

𝛼k

⎤
⎥⎥⎦

=
�
x∈X

⎡⎢⎢⎣

f1
�
xd̂
�

⋮

fk
�
xd̂
�
⎤⎥⎥⎦
xd ±

⎡⎢⎢⎣

f1(x̄)

⋮

fk(x̄)

⎤⎥⎥⎦
x̄d.

(20)

MSE

�
X,

m�
j=1

�jfj, d

�
=

1

�X�
⎛⎜⎜⎜⎝

�
x∈X

x2
d
− 2bX

T

⎡
⎢⎢⎣

�1

⋮

�m

⎤
⎥⎥⎦
+

⎡⎢⎢⎣

�1

⋮

�m

⎤
⎥⎥⎦

T

AX

⎡
⎢⎢⎣

�1

⋮

�m

⎤
⎥⎥⎦

⎞⎟⎟⎟⎠
,

AX =
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∑
x∈X

f1
�
xd̂
�
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�
xd̂
�

…
∑
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�
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�
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�
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�

⋮ ⋮∑
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fm
�
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�
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�
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…
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fm
�
xd̂
�
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�
xd̂
�
⎤⎥⎥⎥⎦

and

bX =

⎡⎢⎢⎢⎢⎢⎣

n∑
x∈X

f1
�
xd̂
�
xd

⋮
n∑

x∈X

fm
�
xd̂
�
xd

⎤⎥⎥⎥⎥⎥⎦

.

Proof  We have

	�  □

This can be always done, provided that the matrix �X or 
�X⧵{x} (depending on whether we add or remove the point 
x from the dataset X) is non-singular. Having the values of 
{�1,… , �k} , one can immediately obtain the desired value.

5 � Algorithm

In this section, we present our algorithm. The aim of the 
Hartigan’s method is to find a partition X1,… ,Xn of X, for 
which the cost function (4) is as close as possible to the 
minimum, by subsequently reassigning membership of ele-
ments from X.

To explain Hartigan’s approach more precisely, 
we need the notion of a group membership function 
gr ∶ {1,… , n} → {0,… , k}, which describes the member-
ship of the ith element, where 0 value is a special symbol 
which denotes that xi is as yet unassigned. In other words, if 
gr(i) = l > 0 , then xi is a part of the lth group, and if gr(i) = 0 
then xi is unassigned.

In Algorithm 1, we present a pseudo-code of the method. 
The algorithm starts from an initial clustering, which can 
be obtained randomly or with the use of the k-means++. In 
our case, we assume that we have an initial clustering given 
by cl . (The number of clusters is given by k.) At the begin-
ning, the algorithm calculates the initial values of parameters 
which describe each cluster.
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We want to find such gr ∶ {1,… , n} → {1,… , k} (thus 
all elements of X are assigned) that E(X1,… ,Xk; [ ]) is 
minimal. The basic idea of Hartigan is relatively simple—we 
repeatedly go over all elements of the partition X = (xi)

n
i=1

 
and apply the following steps:

–	 If the chosen set xi is unassigned, assign it to the first 
non-empty group;

–	 Reassign xi to that group for which the decrease in cross-
entropy is maximal;

–	 Check if no group needs to be removed/unassigned, if 
this is the case unassign its all elements;

until no group membership has been changed.
To implement Hartigan’s approach, we still have to add 

a condition regarding when to unassign a given group. For 
example, in the case of AfCEC clustering in ℝd , to avoid 
overfitting we cannot consider clusters which contain less 
then d + 1 points. In practice while applying Hartigan’s 
approach on discrete data, we usually remove clusters which 
contain less then five percent of all dataset.

Observe that in the crucial step in Hartigan’s approach, 
we compare the cross-entropy after and before the switch, 
while the switch removes a given point from one cluster 
and adds it to the other. It means that to apply the Hartigan 
approach efficiently in clustering, it is essential to update/
downdate parameters when we add/delete a point from a 
group by using formulas from Sect. 4.

6 � Experiments

In this section, we present a comparison of the Hartigan 
version of afCEC with density-based methods: GMM, CEC, 
and Lloyd’s afCEC. It is difficult to compare methods, which 
use different number of parameters to approximate data. In 

general, if we use a more complex model, we can fit the data 
better. Therefore, we use indexes which measure level of 
fitting and use penalty for using more complicated models.

Hence, there is a trade-off: the better fit, created by mak-
ing a model more complex by requiring more parameters, 
must be considered in light of the penalty imposed by adding 
more parameters.

To compare the results, we use the standard Akaike infor-
mation criterion (AIC):

and Bayesian information criterion (BIC):

where k is the number of parameters in the model, n is the 
number of points, and LL is a maximized value of the log-
likelihood function.

Let’s analyze the two components of the AIC. The first 
component, − 2LL, is the value of the likelihood function, 
which is the probability of obtaining the data given the can-
didate model. It measures how well the data are fitted by the 
model. Since the likelihood function’s value is multiplied 
by − 2 , ignoring the second component, the model with the 
minimum AIC is the one with the highest value of the likeli-
hood function.

However, to this first component we add an adjustment 
based on the number of estimated parameters. The more 
parameters, the greater the amount added to the first com-
ponent, increasing the value for the AIC and penalizing the 
model. Hence, there is a trade-off: the better fit, created by 
making a model more complex by requiring more param-
eters, must be considered in light of the penalty imposed by 
adding more parameters. This is why the second component 
of the AIC is thought of in terms of a penalty.

The Bayesian information criterion (BIC) is another 
model selection criterion based on information theory but set 
within a Bayesian context. The difference between the BIC 
and the AIC is the greater penalty imposed for the number 
of parameters by the former than the latter.

Consequently, we need a number of parameters which 
are used in each model. In the case of ℝ2 , afCEC uses two 
scalars for the mean, three scalars for the covariance matrix, 
and three scalars for the parabola. It should be emphasized 
that in afCEC, we need to remember which coordinate is 
the dependent one. This parameter is discrete, so we do not 
consider it in our investigation.

6.1 � The computational times

We compared the computational times between Hartigan 
version of afCEC and alternative methods: CEC imple-
mented in R package CEC [37, 40] and GMM from R 
package Rmixmod [23]. We varied the number of dataset 

AIC = −2LL + 2k,

BIC = −2LL + k log(n),

Algorithm 1: (HARTIGAN-BASED afCEC):
input

dataset X
number of clusters k > 0
initial clustering X1, . . . ,Xk

family F ⊂ C(Rd−1,R) for regression
F-adapted Gaussian distributions family A[F ]
cluster reduction parameter ε > 0

define
cluster membership function

cl : X x → l ∈ {1, . . . , k} such that x ∈ Xl

cluster cost function E(Xi) where
E(Y ) = p(− ln(p) +H×(Y [F ])) and p = cardY

cardX
repeat

for x ∈ X do
for i = 1, . . . , k : x /∈ Xi do

if E(Xi ∪ {x}) +E(Xcl(x) \ {x}) < E(Xi) +E(Xcl(x)) then
switch x to Xi

update cl
update/downdate parameters of f -adapted Gaussian distributions in Xi

and Xcl(x) respectively
if cardXi < ε · cardX then

delete cluster Xi

update cl by attaching elements of Xi to existing clusters
end if

end if
end for

end for
until no switch for all subsequent elements of X
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instances and the dimension of the data, see Fig. 4. For this 
purpose, a simple ball-like set was considered.

One can observe that in the case of higher dimensions 
both afCEC methods give slightly worse results since the 
regression function must be fitted with respect to all pos-
sible dependent variables. It should be highlighted that the 
application of afCEC method in high-dimensional spaces 
is rather limited. CEC and GMM methods give comparable 
results for large datasets.

In the case of data with an increasing number of elements, 
we can observe that afCEC method gives comparable results 
to the GMM approach. The method can be applied even 
to reasonably large datasets. We can observe that Lloyd’s 
approach gives slightly better results than Hartigan’s algo-
rithm, since we do not have to update parameters in each 
step. But the use of an online version of the method allows 
to obtain a better minimum of the cost function and conse-
quently, better clustering, see Tables 1 and 2.

6.2 � 2D dataset

Let us start with a synthetic dataset. At first, we report the 
results of afCEC, GMM, CEC in the case of simple 2D sets, 
see the first two examples in Table 1. As we see, for similar 
values of the log-likelihood function, we have to use less 
clusters for afCEC than in GMM and CEC. Moreover, Har-
tigan’s approach gives better results than Lloyd’s method.

Chinese characters consist of straight-line strokes (hori-
zontal, vertical) and curved strokes (slash, backslash and 
many types of hooks). GMM has already been employed 
for analyzing the structure of Chinese characters and has 
achieved commendable performance [46]. However, some 
lines extracted by GMM may be too short, and it is quite 
difficult to join these short lines to form semantic strokes 
due to the ambiguity of joining them together. This problem 

becomes more serious when analyzing handwritten charac-
ters by GMM, and this was the motivation to use afCEC to 
represent Chinese characters, see Fig. 5.

In the case of the characters 猫 (cat) for similar values of 
the log-likelihood function, we have to use 25 clusters for 
Hartigan afCEC and 35 for GMM and CEC. On the other 
hand, for simpler characters 犬 (dog), 火 (father) , we have 
to use 6 clusters for Hartigan afCEC and 10 for GMM and 
CEC, see Table 1.

In general, afCEC method usually obtained clustering 
with the largest value of MLE function. The cost of using 
additional parameters is small and, consequently, afCEC 
gives a better clustering in respect to AIC and BIC criteria, 
see Fig. 6a.

6.3 � 3D scans of objects

In this subsection, we present how our method works in the 
case of segmentation of 3D objects. Similarly as before, 
we report the results of afCEC, GMM, CEC, see Table 2. 
We show how the log-likelihood, BIC, and AIC functions 
change when the number of clusters increases. As we can 
see, for similar values of the log-likelihood function, we 
have to use less clusters for afCEC than for GMM and CEC. 
Moreover, we also obtain a better value of BIC and AIC, see 
the last three examples in Table 2.

The effect of afCEC on 3D objects [2, 3] is shown in 
Fig. 7. Since afCEC is able to cluster data on sub-manifolds 
of ℝd , it is able to fit strongly nonlinear structures of 3D 
scans of objects. Moreover, afCEC method automatically 
reduces unnecessary clusters which allows to reduce too 
small components.

Similar to the previous experiments, afCEC method usu-
ally obtained clusterings with the largest value of MLE func-
tion. The cost of using additional parameters is small, and 

Fig. 4   Comparison of computational efficiency between afCEC, 
CEC, and GMM. a Comparison of computational efficiency between 
afCEC, CEC, and GMM in the case of data with different dimen-

sions. b Comparison of computational efficiency between afCEC, 
CEC, and GMM in the case of data with different number of elements
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consequently, afCEC gives better clusterings with respect to 
AIC and BIC criteria, see Fig. 6b.

6.4 � Comparison with non‑density‑based methods

Now we present a comparison between afCEC and classi-
cal approaches dedicated to clustering of nonlinear datasets: 
kkmeans [24] and spectral clustering [31] (see Fig. 8). We 
also use recent modification of the classical method dedi-
cated to nonlinear data STSC [45], SMMC [43], and SSC 

[7, 44, 48]. In this subsection, we compare algorithms with 
respect to Rand and Jaccard indexes, see Fig. 9.

Kernel methods can be used as a preprocessing for clas-
sical clustering methods. In such a way, spectral clustering 
methods were constructed [5, 24, 31]. The classical kernel 
k-means [24] is equivalent to KPCA prior to the conven-
tional k-means algorithm. Most of kernel methods consist of 
two steps: an embedding into a feature space and a classical 
clustering method used on the data transformed to feature 
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Fig. 5   Effect of Hartigan’s version of afCEC clustering in the case of Chinese characters. a Original dataset. b Hartigan’s afCEC clustering. c 
Hartigan’s afCEC clustering. d Original dataset. e Hartigan’s afCEC clustering. f Hartigan’s afCEC clustering

Fig. 6   Mean values of MLE, BIC, and AIC in the case of 2D and 3D datasets. a Mean values of MLE, BIC, and AIC in the case of 2D datasets. 
b Mean values of MLE, BIC, and AIC in the case of 3D datasets
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space. Therefore, spectral methods are typically time-con-
suming and use large number of parameters.

In the case of datasets of dimension higher than three and 
afCEC approach, due to computational profitability, we used 
a smaller class of quadratic polynomials of the type

instead of the class of all quadratic polynomials

This allows us to fit less parameters in each step, which 
results in a smaller risk of overfitting and helps to effectively 
cluster higher-dimensional data.

In the case of non-density-based method, we use classi-
cal Rand and Jaccard indexes. As we see in Fig. 9 afCEC 
method gives similar results to other approaches and the 
Hartigan modification allows to obtain better score.

(21)f (x1,… , xd−1) =

d−1∑
i=1

aix
2
i
+

d−1∑
i=1

bixi + c,

(22)f (x1,… , xd−1) =

d−1∑
i=1

d−1∑
j=1

aijxixj +

d−1∑
i=1

bixi + c.

6.5 � Data streams

Typical statistical and data mining methods, including clus-
tering, work with “static” datasets, meaning that the com-
plete dataset is available as a whole to perform all neces-
sary computations. However, in recent years more and more 
applications need to work with data which is not static but 
is the result of a continuous data generating process which 
is likely to evolve over time. This type of data is called a 
data stream, and dealing with data streams has become an 
increasingly important area of research.

The characteristic of continually arriving data points 
introduces an important property of data streams, which 
also poses the great challenge: the size of a data stream is 
potentially unbounded. This leads to the following require-
ments for data stream processing algorithms:

–	 Bounded storage The algorithm can only store a very 
limited amount of data to summarize the data stream;

–	 Single pass The incoming data points cannot be perma-
nently stored and need to be processed at once in the 
arriving order;

252015105
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Fig. 7   Segmentation a 3D objects by using Hartigan’s afCEC method. a Original dataset. b Hartigan’s afCEC clustering. c Hartigan’s afCEC 
surfaces. d Original dataset. e Hartigan’s afCEC clustering. f Hartigan’s afCEC surfaces
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–	 Real-time The algorithm has to process data points on 
average at least as fast as the data is arriving;

–	 Concept drift The algorithm has to be able to deal with 
a data generating process which evolves over time (e.g., 
distributions change or a new structure in the data 
appears).

In this section, we present a possible application of afCEC 
method to stream data. We will use the R package stream 
[12]. In our experiments, we use DSD_Benchmark(1) (see 
Fig. 10a) form stream, which contains two clusters moving 
in a two-dimensional space. One moves from the top left to 
the bottom right and the other one moves from the bottom 
left to the top right. Both clusters overlap when they meet 
exactly in the center of the data space. Figure 10a shows 
plots where clusters move over time. Arrows are added to 
highlight the direction of cluster movement.

Figure 10c shows the Rand index for the four data stream 
clustering algorithms and afCEC method over the evolv-
ing data stream. All algorithms show that separating the 
two clusters is impossible around position 3000 when the 
two clusters overlap. It should be highlighted that afCEC 
method has a problem with reconstructing the model after 
the merge. The number of clusters was reduced and cannot 
be reconstructed. It is possible to add a split merge strategy 
[13] which would allow to refit afCEC model. The second 
possible strategy is to add an additional dimension with time 
components. Since afCEC is an affine invariant it does not 
change clustering structures and allows to keep two clusters 
without reduction.

In general, afCEC works in the case when a dataset con-
tains curve-type structures. In the second example, we pre-
sent how the methods work on such data. Similar to the 
previous examples, we consider two clusters (two curve-
type clusters), where the first moves from top left to bottom 
right, and the other one moves from bottom left to top right. 
Figure 10b shows plots where the clusters move over time. 
Arrows are added to highlight the direction of cluster move-
ment. Figure 10d shows the Rand index. As we see, AfCEC 
is able to almost perfectly recover the original clustering .

7 � Conclusions

In this paper, the Hartigan approach to afCEC method for 
clustering curved data, which uses generalized Gaussian dis-
tributions in curvilinear coordinate systems, was presented. 
The afCEC method has a strong theoretical background. 
Moreover, afCEC can be used as a density estimation model. 
Since afCEC is an implementation of the cross-entropy clus-
tering approach, the method reduces unnecessary clusters 
online.

In practice, the algorithm gives essentially better results 
than linear models, like GMM or CEC and the classical 
Lloyd’s approach to afCEC, since we obtain a similar level 
of the Log-likelihood function by using a smaller number of 
parameters to describe the model. Moreover, the online ver-
sion of afCEC method can be use in the case of stream data.

In the future, we want to update our algorithm to allow 
the use of closed curves. Thanks to such a modification, we 
will able either to find more complicated shapes in data or 
to better adapt to the data structure.
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Fig. 8   Effect of clustering Chinese character by Hartigan’s afCEC, kkmeans, and spectral clustering. a Hartigan’s afCEC, b kkmeans, c spectral 
clustering
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Fig. 9   Effect of clustering different datasets from UCI repository character by afCEC, kkmeans and spectral clustering. a Iris dataset. b Wine 
dataset. c Yeast dataset. d Glass dataset. e Breast dataset. f GvHD dataset. g Seeds dataset. h Pendigits dataset
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