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Abstract We investigate the existence of directional derivatives for strongly cone-
paraconvex mappings. Our result is an extension of the classical Valadier result on the
existence of the directional derivative for cone convex mappings with values in weakly
sequentially complete Banach spaces.
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1 Introduction

The concepts of approximate convexity for extended real-valued functions include among
others, γ -paraconvexity [3, 4, 7, 8], γ -semiconcavity [1], α-paraconvexity, strong α-
paraconvexity [9], semiconcavity [1], and approximate convexity [6]. Relations between
these concepts were investigated by Rolewicz [7–9], Daniilidis and Georgiev [2], and Tabor
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and Tabor [11]. These concepts were used, e.g., in [1], to investigate Hamilton–Jacobi equa-
tion. In a series of papers [7–9], Rolewicz investigated Gâteaux and Fréchet differentiability
of strongly α-paraconvex, generalizing in this way the Mazur theorem (1933).

Generalization of the above concepts to vector-valued mappings with values in a general
vector space Y was given by Veselý and Zajicek [13–16], Valadier [12], and Rolewicz [10].
In the paper [10], Rolewicz defined vector-valued strongly α-k paraconvex mappings and
investigated their Gateaux and Fréchet differentiability, where k ∈ K and K is a closed
convex cone in a normed vector space Y .

Let α : R+ → R+ be a nondecreasing function satisfying the condition

lim
t→0+

α(t)

t
= 0.

Let X be a normed space and let k ∈ K . The mapping F : X → Y is strongly α-k
paraconvex on a convex subset A of X if there exists a constant C > 0 such that for every
x1, x2 ∈ A and every λ ∈ [0, 1]
F(λx1 + (1 − λ)x2) ≤K λF(x1) + (1 − λ)F (x2) + C min{λ, 1 − λ}α(‖x1 − x2‖)k, (1)

where x ≤K y ⇐⇒ y − x ∈ K . In the sequel, we use the notation ≤ if the cone K is clear
from the context.

The mapping F : X → Y is strongly α-K paraconvex on a convex subset A of X if
for every k ∈ K there exists a constant C > 0 such that for every x1, x2 ∈ A and every
λ ∈ [0, 1]

F(λx1 + (1 − λ)x2) ≤K λF(x1) + (1 − λ)F (x2) + C min{λ, 1 − λ}α(‖x1 − x2‖)k.

A strongly α(·)-K paraconvex mapping F is called strongly cone-paraconvex if the cone
K and the function α are clear from the context. Since for every λ ∈ [0, 1]

λ(1 − λ) ≤ min{λ, 1 − λ} ≤ 2λ(1 − λ)

condition (1) can be equivalently rewritten as

F(λx1 + (1 − λ)x2) ≤K λF(x1) + (1 − λ)F (x2) + 2Cλ(1 − λ)α(‖x1 − x2‖)k.

Strong cone-paraconvexity generalizes the cone convexity. The mapping F : X → Y is
K-convex on a convex subset A of X if for every x1, x2 ∈ A and every λ ∈ [0, 1]

F(λx1 + (1 − λ)x2) ≤K λF(x1) + (1 − λ)F (x2).

In the present paper, we investigate the existence of directional derivatives for strongly
cone-paraconvex mappings. Our main result (Theorem 2) is a generalization of the theorem
of Valadier [12] concerning directional differentiability of cone convex mappings.

2 Preliminary Facts

Let Y ∗ be the dual space of Y and K∗ ⊂ Y ∗ be the positive dual cone to K ,

K∗ := {y∗ ∈ Y ∗ | y∗(y) ≥ 0 ∀ y ∈ K}.
Clearly, if F is a strongly α(·)-k paraconvex mapping with constant C > 0, then for

every y∗ ∈ K∗, the function y∗ ◦F is a strongly α(·)-paraconvex function with the constant
C · y∗(k).

In a normed space Y , a cone K is normal (see [12]) if there is a number C > 0 such that

0 ≤K x ≤K y ⇒ ‖x‖ ≤ C‖y‖ for all x, y ∈ Y.
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Every normal cone is pointed, i.e., K ∩ (−K) = {0}.
In [13], Veselỳ and Zajiček introduced the concept of d.c. (delta-convex) mappings acting

between Banach spaces X and Y . A mapping F : X → Y is d.c. if there exists a continuous
convex function g : X → R such that for every y∗ ∈ Y ∗ the function y∗ ◦ F + g is a d.c.
function, i.e., it is representable as a difference of two convex functions.

According to [15], F is order d.c. if F is representable as a difference of two cone convex
mappings on A. Consequently, if the cone K is normal, then F is also weakly order d.c.

Moreover, if the range space Y of an order d.c. mapping F is ordered by a well-based
cone K (and this is true for L1(μ)), it is easy to show (see Proposition 4.1 [15]) that the
mapping is then d.c.

In the example below, we show that any strongly ‖ · ‖2-k0-paraconvex mapping is order
d.c.

Example 1 Let X be a Hilbert space. A mapping F : X → Y is strongly ‖·‖2-k0-paraconvex
with constant C ≥ 0 on a convex set A if and only if the mapping F +C‖·‖2k0 is K-convex
on A. Indeed, let x1, x2 ∈ X. Since

λ‖x1‖2 + (1 − λ)‖x2‖2 − ‖λx1 + (1 − λ)x2)‖2 = λ(1 − λ)‖x1 − x2‖2

and

F(λx1 + (1 − λ)x2) ≤K λF(x1) + (1 − λ)F (x2) + Cλ(1 − λ)‖x1 − x2‖2k0

we have

F(λx1 + (1 − λ)x2) + C‖λx1 + (1 − λ)x2)‖2k0

≤K λF(x1) + (1 − λ)F (x2) + C(λ‖x1‖2k0 + (1 − λ)‖x2‖2)k0.

The mapping F(·) = F(·) + C‖ · ‖2k0 is clearly order d.c. Furthermore, if K is well based
(∃y∗ ∈ Y ∗ such that y∗(k) ≥ ‖k‖ for any k ∈ K), then F is d.c.

For d.c. mappings, we have the following result on the existence of directional derivative.

Theorem 1 (Proposition 3.1 of [13]) Let X be a normed linear space and let Y be a Banach
space. Let G ⊂ X be an open convex set and let F : G → Y be a d.c. mapping. Then, the
directional derivative F ′(x0, h) exists whenever x0 ∈ G and h ∈ X.

Let us observe that if the function α(·) is not convex, then we cannot expect a strongly
α(·)-k0 paraconvex mapping F to be d.c.

3 Monotonicity of Difference Quotients

Let X be a normed space. Let Y be a topological vector space and let K ⊂ Y be a closed
convex pointed cone.

For K-convex mappings, the difference quotient is nondecreasing in the sense that

φ(t1) − φ(t2) := F(x0 + t1h) − F(x0)

t1
− F(x0 + t2h) − F(x0)

t2
∈ K for t1 ≥ t2.

For strongly α(·)-K paraconvex and strongly α(·)-k0 paraconvex mappings, the difference
quotient may not be nondecreasing.
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Example 2 Let Y = R, K = R+, α(x) = x2 and let F(x) = −x2. The mapping F

is strongly α(·)-K-paraconvex. Observe that for any x1, x2 ∈ R, we have t (x2
1 + x2

2 ) −
2t (x1x2) ≤ 0 if and only if t ≤ 0. Hence, for t = −λ2 + λ − 1 ≤ 0, we have

(−λ2 + λ − 1)(x2
1 + x2

2 ) − 2x1x2(−λ2 + λ − 1) ≤ 0,

x2
1 (−λ2 + λ − 1) + x1x2(−2λ(1 − λ) + 2) + x2

2 (−(1 − λ)2 + 1 − λ − 1) ≤ 0,

−(λx1 + (1 − λ)x2)
2 ≤ −λx2

1 − (1 − λ)x2
2 + (x1 − x2)

2,

F (λx1 + (1 − λ)x2) ≤ λF(x1) + (1 − λ)F (x2) + (x1 − x2)
2.

The last inequality and Proposition 2.1 from [5] give us paraconvexity of the mapping F .
Let x0 = 0, h = 1. The difference quotient φ(t) = F(x0+th)−F(x0)

t
is decreasing. Indeed,

for t1 ≤ t2, we have φ(t1) = −t1 and φ(t2) = −t2.

The following two propositions are basic tools for the proof of the main result in the
next section. In the proposition below, we investigate the monotonicity properties of the
α(·)-difference quotients for strongly α(·)-k paraconvex mappings.

Proposition 1 Let X be a normed space and let Y be a vector space and ordered by a
convex pointed cone K . Let F : X → Y be strongly α(·)-k0 paraconvex on a convex set
A ⊂ X with constant C ≥ 0, k0 ∈ K \ {0}. For any x0 ∈ A and any h ∈ X, ‖h‖ = 1 such
that x0+th ∈ A for all t sufficiently small, the α(·)-difference quotient mapping φ : R → Y

defined as

φ(t) := F(x0 + th) − F(x0 + t0h)

t − t0
+ C

α(t − t0)

t − t0
k0 for t0 < t, (2)

where t0 ∈ R is α(·)-nondecreasing in the sense that

φ(t) − φ(t1) + C
α(t1 − t0)

t1 − t0
k0 ∈ K for t0 < t1 < t. (3)

Proof Take any t0 < t1 < t . We have 0 < λ := t1−t0
t−t0

< 1 and

x0 + t1h = λ(x0 + th) + (1 − λ)(x0 + t0h).

Let k0 ∈ K \ {0}. Since F is strongly α(·)-k0 paraconvex with constant C ≥ 0, we have

F(x0 + t1h) ≤K λF(x0 + th) + (1 − λ)F (x0 + t0h)

+C min{λ, 1 − λ}α(t − t0)k0.

Hence,

0 ≤K λ[F(x0 + th) − F(x0 + t0h)] − [F(x0 + t1h) − F(x0 + t0h)]
+C min{λ, 1 − λ}α(t − t0)k0,

i.e., [
F(x0 + th) − F(x0 + t0h)

t − t0

]
−

[
F(x0 + t1h) − F(x0 + t0h)

t1 − t0

]

+C min{λ, 1 − λ}α(t − t0)

t1 − t0
k0 ∈ K.

We have
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(i) If λ ≤ 1 − λ, i.e., t1 − t0 ≤ t − t0, then

min{λ, 1 − λ}α(t − t0)

t1 − t0
= α(t − t0)

t − t0
.

(ii) If λ > 1 − λ, i.e., t1−t0
t−t0

>
t−t1
t−t0

, then

min{λ, 1 − λ}α(t − t0)

t1 − t0
= t − t1

t − t0

α(t − t0)

t1 − t0
<

α(t − t0)

t − t0
.

In both cases, [
F(x0 + th) − F(x0 + t0h)

t − t0

]
−

[
F(x0 + t1h) − F(x0 + t0h)

t1 − t0

]

+C
α(t − t0)

t − t0
k0 − C

α(t1 − t0)

t1 − t0
k0 + C

α(t1 − t0)

t1 − t0
k0 ∈ K.

If int K �= ∅, then any strongly α(·)-k0 paraconvex mapping F is strongly α(·)-K para-
convex and for any k ∈ K the α(·)-difference quotients satisfy formula (3) with different
constants C, and in general, one cannot find a single constant C for all 0 �= k ∈ K .

In the proposition below, we investigate the boundedness of α(·)-difference quotient for
strongly α(·)-k paraconvex mappings.

Proposition 2 Let X be a normed space. Let Y be a topological vector space and let Y be
ordered by a closed convex pointed cone K . Let F : X → Y be strongly α(·)-k0 paraconvex
on a convex set A ⊂ X with constant C ≥ 0, k0 ∈ K \ {0}.

For any x0 ∈ A and any h ∈ X, ‖h‖ = 1 such that x0 + th ∈ A for all t sufficiently
small, the α(·)-difference quotient mapping φ : [0, +∞) → Y ,

φ(t) := F(x0 + th) − F(x0)

t
+ C

α(t)

t
k0

is bounded from below in the sense that there are an element a ∈ Y and δ > 0 such that

φ(t) − a ∈ K for 0 < t < δ. (4)

Proof Let us take t0 = −t , t1 = 0. From inclusion (3), we have

F(x0 + th) − F(x0 − th)

2t
+C

α(2t)

2t
k0− F(x0) − F(x0 − th)

t
−C

α(t)

t
k0+C

α(t)

t
k0 ∈ K.

Multiplying both sides by 2t > 0, we get

F(x0 + th) − F(x0 − th) + Cα(2t)k0 − 2F(x0) + 2F(x0 − th) ∈ K.

By simple calculations, we get

F(x0 + th) − F(x0)

t
+ F(x0 − th) − F(x0)

t
+ 2C

α(2t)

2t
k0 ∈ K.

Since limt→0+ α(t)
t

= 0, there exists δ > 0 such that 2C
α(2t)

2t
≤ 1 for t ∈ (0, δ). We have

F(x0 + th) − F(x0)

t
+ k0 ≥K −F(x0 − th) − F(x0)

t
. (5)
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Now, let us take −1 < −t < 0. We have

x0 − th = t (x0 − h)︸ ︷︷ ︸
x1

+(1 − t) x0︸︷︷︸
x2

.

From the α(·)-k0 paraconvexity (1) for λ := t , we get

F(x0 − th) ≤K tF (x0 − h) + (1 − t)F (x0) + C min{t, 1 − t}α(1)k0

By simple calculation, we get

−F(x0 − th) − F(x0)

t
− F(x0) + F(x0 − h) + C

min{t, 1 − t}
t

α(1)k0 ∈ K.

Since min{t,1−t}
t

= 1−|2t−1|
2t

and the fact that 1−|2t−1|
2t

≤ 1 is bounded, we get

−F(x0 − th) − F(x0)

t
− F(x0) + F(x0 − h) + Cα(1)k0 ∈ K.

Hence,

−F(x0 − th) − F(x0)

t
− F(x0) + F(x0 − h) + Cα(1)k0 ∈ K.

From (5), we get

F(x0 + th) − F(x0)

t
− b ≥K 0,

where b := F(x0) − F(x0 − h) − (Cα(1) + 1)k0. Finally,

φ(t) − b ≥K 0 for 0 < t < δ.

4 Main Result

The proof of the main theorem is based on the following lemma.

Lemma 1 Let Y be a Banach space. Let K ⊂ Y be a closed convex normal cone. Let
� : R+ → Y satisfy the following conditions

(i) �(t) ∈ K for any t ∈ R+,
(ii) for 0 < t1 < t we have �(t) − �(t1) + α(t1)

t1
k0 ∈ K for some k0 ∈ K ,

(iii) �(t) is weakly convergent to 0 when t → 0+.

Then, ‖�(t)‖ → 0 when t → 0+.

Proof By contradiction, suppose that ‖�(t)‖ � 0 when t → 0+ and (i) and (ii) are satis-
fied. We will obtain a contradiction with (iii). By this, there is ε > 0 such that for all δ > 0
one can find 0 < t < δ with ‖�(t)‖ > ε. In particular, for δn = 1

n
, there exist tn ∈ (0, 1

n
),

n ∈ N, such that

‖�(tn)‖ > ε. (6)
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Let x ∈ A := co(�(tn), n ∈ N). There are positive numbers λ1, λ2, . . . , λm and
t1, t2 . . . , tm such that x = ∑m

i=1 λi�(ti), where
∑m

i=1 λi = 1. There exists N ∈ N such
that for all n > N , we have

�(t1) − �(tn) + α(tn)

tn
k0 ∈ K,

�(t2) − �(tn) + α(tn)

tn
k0 ∈ K,

...

�(tm) − �(tn) + α(tn)

tn
k0 ∈ K.

We get

x − �(tn) + α(tn)

tn
k0 ∈ K for all n > N.

From the fact that �(tn) ∈ K and K is normal, there is some c > 0 such that ‖�(tn)‖ ≤
c‖x + α(tn)

tn
k0‖. By (6), we obtain ‖x + α(tn)

tn
k0‖ > β := ε

c
for all x ∈ A and n > N .

We show that
Bβ/2 ∩ (A + k0[0, s]) = ∅

for s > 0 satisfying α(tn)
tn

≤ s. To see this, take any 
 ∈ (0, s], where Br := {y ∈ Y : ‖y‖ ≤
r}. Since limn→+∞ α(tn)

tn
= 0, there exists n ∈ N such that

0 ≤K x + α(tn)

tn
k0 ≤K x + 
k0.

By (6) and the normality of K ,

β/2 < ‖x + α(tn)

tn
k0‖ ≤ ‖x + 
k0‖.

From the Hahn–Banach theorem applied to Bβ/2 and (A + k0[0, s]), there is a linear
functional y∗ ∈ Y ∗ and r > 0 such that

y∗(x + 
k0) > r for all x + 
k0 ∈ A + k0[0, s].
In particular, y∗(�(tn) + α(tn)

tn
k0) > r > 0, which contradicts (iii).

We are in a position to prove our main result.

Theorem 2 Let X be a normed space. Let Y be a weakly sequentially complete Banach
space ordered by a closed convex normal cone K . Let F : X → Y be strongly α(·)-k0
paraconvex on a convex set A ⊂ X with constant C ≥ 0, k0 ∈ K \ {0}. Then, the directional
derivative

F ′(x0; h) := lim
t→0+

F(x0 + th) − F(x0)

t

of F at x0 exists for any x0 ∈ A and any direction 0 �= h ∈ X, ‖h‖ = 1 such that x0+th ∈ A

for all t sufficiently small.

Proof Let x0 ∈ A and let 0 �= h ∈ X, ‖h‖ = 1 be such that x0 + th ∈ A for all t sufficiently
small. Let tn ↓ 0. For t0 = 0, the α(·)-difference quotient by (2) takes the form

φ(tn) = F(x0 + tnh) − F(x0)

tn
+ C

α(tn)

tn
k0.
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Let y∗ ∈ K∗. By (4), the sequence an := y∗(φ(tn)), n ∈ N is bounded from below, i.e.,

an ≥ a := y∗(b) for all n sufficiently large and b ∈ Y.

Let us take ε > 0. There is N such that

aN < a + ε

2
, (7)

where a := inf{an : n ∈ N}. Since {tn} is decreasing, from (3), we get

aN − an + C
α(tn)

tn
y∗(k0) ≥ 0 for n > N. (8)

Let bn := C
α(tn)

tn
y∗(k0). Since bn → 0 there is N1 such that bn ≤ ε

2 for n > N1.
From (7) and (8), we get

a − ε < a ≤ an ≤ aN + bn ≤ a + ε

2
+ bn ≤ a + ε for n > max{N,N1}.

Hence, the sequence {an} is convergent and consequently every sequence {y∗(φ(tn))} is
Cauchy for y∗ ∈ K∗.

Let us take any h∗ ∈ Y ∗. We show that the sequence {h∗(φ(tn))} is Cauchy. From the
fact that K is normal, we have Y ∗ = K∗ − K∗ and h∗ = g∗ − q∗ with g∗, q∗ ∈ K∗.
Since {g∗(φ(tn))} and {q∗(φ(tn))} are Cauchy sequences, there exist N1, N2 such that for
n, m > N̄ := max(N1, N2), we have

|g∗(φ(tn)) − g∗(φ(tm))| ≤ ε

2
and |q∗(φ(tn)) − q∗(φ(tm))| ≤ ε

2
.

For n > N̄ , we have

|h∗(φ(tn)) − h∗(φ(tm))| = |g∗(φ(tn)) − q∗(φ(tn)) − g∗(φ(tm)) + q∗(φ(tm))|
≤ ε

2
+ ε

2
= ε.

We show that φ(t) weakly converges when t → 0+, i.e., there is an y0 ∈ Y such that for
arbitrary tn ↓ 0, we have

lim
n→∞ y∗(φ(tn)) = y∗(y0) for any y∗ ∈ Y ∗

which is equivalent to
φ(t) ⇀ y0 when t → 0+. (9)

Since Y is weakly sequentially complete, we need only to show that y0 is the same for
all sequences {tn}, tn ↓ 0. On the contrary, suppose that there are two different weak limits
y1

0 , y2
0 corresponding to sequences t1

n and t2
n , respectively.

We can subtract subsequences {t̄2
n} ⊂ {t2

n} and {t̄1
n} ⊂ {t1

n} such that t̄2
n ≤ t1

n ≤ t̄1
n .

Correspondingly,
y∗(φ(t̄2

n)) ≤ y∗(φ(t1
n)) ≤ y∗(φ(t̄1

n))

which proves that it must be y1
0 = y2

0 .
Now, we show that the mapping �(t) := φ(t) − y0 satisfies all the assumptions of

Lemma 1. From (3) and (9), it is enough to show that �(t) ∈ K for all t ≥ 0.
By contradiction, let us assume that there is some t̄ > 0 such that �(t̄) /∈ K . There exists

y∗ ∈ K∗ such that
y∗(�(t̄)) = y∗(φ(t̄) − y0) < 0. (10)

From inclusion (3) in Proposition 1, we have

φ(t̄) − y0 − φ(t) + y0 + C
α(t)

t
k0 ∈ K for all t ∈ (0, t̄).
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In particular

y∗(φ(t̄) − y0) ≥ y∗
(

φ(t) − y0 − C
α(t)

t
k0

)
for all t ∈ (0, t̄).

And by (10), we get

0 > y∗(φ(t̄) − y0) ≥ y∗
(

φ(t) − y0 − C
α(t)

t
k0

)
for all t ∈ (0, t̄).

Then, by letting t → 0+, we get contradiction with (9). By Lemma 1, �(t) tends to 0
when t → 0+. Since limt→0+ α(t)

t
= 0, we get

lim
t→0+

F(x0 + th) − F(x0)

t
= y0

which completes the proof.

Remark 1 For K-convex mappings F , i.e., strongly α(·)-K paracanovex mappings with
constant C = 0 Theorem 2 can be found in [12].
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