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Electrochemical science challenges

As a short personal perspective, this feature article is written to
capture a vision for electrochemistry as a subject fundamen-
tally linked to energy conversion mechanisms. As such, elec-
trochemistry will make considerable future impact, both aca-
demically and practically, in traditional and in emerging topics
linked to energy and linked to new mechanisms for energy
conversion (optical, chemical, mechanical, thermal, etc.). The
field of electrochemical science is broad and diverse, and it
offers fundamental and interdisciplinary challenges at many
levels (which is linked also to educational challenges, e.g. at
university level where electrochemistry often appears inacces-
sible to students and at professional development level where
there is considerable demand for training courses [1]).
Electrochemistry contributes to the development of technolo-
gies such as battery systems, (bio-)fuel cells, organic and in-
organic materials electrosynthesis, electroanalysis, and solar-/
photo-electrochemical systems including artificial photosyn-
thesis. Many of these technologies are associated with com-
plex multiphase electrochemical systems (which are challeng-
ing to unravel and understand at fundamental level). Both
current state-of-the-art in situ imaging or spectroscopy tools
and current state-of-the-art computational tools are still not
sufficiently advanced for fully resolving or explaining/
predicting many important phenomena, but a lot of progress
is being made [2—4].

As a key contribution to analytical measurement tools,
electrochemistry has now been able to reach the single entity
and/or the single molecule domain [5]. Devices have been
developed to detect single redox-active molecules or enzymes
based on rapid feedback signal amplification between two
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very closely spaced electrodes in nanogaps or based on mod-
ulated ion transport in nanochannels [6]. The understanding
and exploitation of electrochemical mechanisms in
nanospaces or at nanoelectrodes remains an interesting and
important challenge with opportunities. In electroanalytical
sensing, new types of devices with multiple amplification
strategies (based on nanostructures or based on molecular
mechanisms) have been developed to probe extremely low
concentrations in biological/health applications, e.g. for diag-
nostic microRNA in blood [7]. This field also presents formi-
dable future challenges with many more crucial analytical
targets in medicine and environmental analysis to be detected
reliably and at low cost.

Mechanisms at electrode surfaces and in composite catalyst
materials require nanoscale study and understanding to unrav-
el the complexity in important electrocatalytic reactions, such
as oxygen evolution or carbon dioxide reduction. Recent
progress towards single nanoparticle electrocatalysis, for ex-
ample, with MOF-derived oxygen evolution catalysts has
been very revealing [8] in terms of true quantifiable catalyst
particle behaviour. However, for practical applications, the
microscopic catalyst performance is only one part of the fac-
tors affecting the overall system performance. There are many
more criteria for technologies to become viable or competi-
tive. Often challenges cannot be addressed solely by
dissection.

Electrochemical processes occur not only at electrodes but
also at membranes [9]. Potential-driven membrane processes
are well-known in biology, where many transport phenomena
as well as photosynthetic machinery are membrane-localized
[10]. The key reason for processes being naturally associated
with membranes is the interfacial energy conversion from
electrochemical potentials to chemical and vice versa. Only
at a membrane can electrochemical potential (notionally the
sum of a chemical potentials and a term related to the interfa-
cial Galvani potentials) gradients persist and be converted
based on intriguingly complex mechanisms such as that re-
ported for ATPases [11]. Therefore, artificial membrane
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systems could offer a wealth of future opportunity and chal-
lenges for electrochemical systems. Lewis, Freund, and co-
workers reviewed recent progress in artificial energy conver-
sion membrane mechanisms for solar energy harvesting and
for electrolytic water splitting [12].

Figure 1 shows a classic four-electrode electrochemical
measurement cell configuration for applying a bias voltage
across a membrane. The working and sense electrodes on
the right and the counter and reference electrode on the left
provide control over potential or current and allow mem-
brane processes to be studied. Here, the membrane is based
on a microhole, e.g. a 20-um diameter hole laser drilled
into a polymer support (as introduced by Girault and co-
workers [13]). The resulting experimental system offers
microelectrode-like mass transport and steady-state elec-
trochemical responses accessible at conventional time
scales [14].

The measurement with an empty microhole and with sym-
metric electrolyte solution on both sides would result in
Ohmic behaviour associated with the specific conductivity
of the electrolyte [15]. When applying an ionomer such as
Nafion [16] asymmetrically onto one side (see Fig. 1b), a
new effect occurs: due to redistribution of electrolyte in the
microhole region, semiconductor-diode-like “closed” and
“open” states are observed at negative or positive bias, respec-
tively. When creating a “junction” of Nafion with other po-
rous materials, the effects can be enhanced and the mechanism
modified [17]. When employing semipermeable ionomers
such as Nafion, there are many nanochannels within this ma-
terial to allow ion transport and ionic current rectification as
defined by the material properties. Similar and more individ-
ually tuneable effects (with substantially lower currents) are
observed also for single nanochannels with asymmetry in
charge or shape [18, 19]. In contrast to conventional micro-
electrode processes, where electron transfer and redox
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Fig. 1 a Four-electrode measurement cell for membrane electrochemistry
with a microhole membrane either asymmetrically deposited or forming a
junction with a second material on the opposite side. b Typical -V curve
(scan rate10 mV s aqueous 10 mM HCI on both sides), showing a
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chemical transformations occur, here at the asymmetrically
modified microhole, primarily ion transport (either for cations
or for anions) occurs unidirectionally. This can be exploited,
for example, by combining two diodes in the AC-driven de-
salination of seawater [20]. In contrast to DC-driven electro-
lytic processes, the AC-driven mechanism can avoid external
driver electrode side product formation and is therefore inher-
ently less energy intensive. Could this or similar types of
rectifier processes lead to new membrane mechanisms for
solar energy conversion processes?

Membrane-based solar energy conversion
mechanisms

In view of a global human population approaching 8 billion, it
is important to ask what the future role of electrochemical
science and technology could be to help ensuring supply of
energy and food and water (all three are closely interconnect-
ed). The supply of water has to be seen as a truly global
challenge. In his book on urbanization, Geoffrey West [21]
highlighted the need for ever more rapid innovation and a
need for technologies to become more sustainable and based
on solar power as an obvious abundant energy source: “...the
scale of solar energy is so vast that in one year it is about twice
as much as will ever be obtained from all the Earth’s non-
renewable resources of coal, oil, natural gas, and uranium
combined”. This should obviously happen in a fair way to
provide benefits to everybody and not just a few. Could mem-
brane (photo-)electrochemistry help provide power, food, and
water in a sustainable manner?

As an interdisciplinary science, electrochemistry can bene-
fit from a closer look at biological processes for guidance.
Membrane processes in biology are ubiquitous and the key
to many crucial processes: transmembrane ion transport, water

501 closed

E/V

closed and open diode. The inset shows an electron micrograph of the
20-pm diameter microhole filled with Nafion and imaged from the poly-
ethylene terephthalate or PET side (reproduced with permission from
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transport, “hoovering” out of undesirable molecular species
from within the cell [11], photoelectrochemical energy con-
version, and electrical signalling/communication.
Electrochemistry has been instrumental in unravelling the
principles of bioenergetics [10, 22] and in analysing the func-
tion of many membrane components. Could this knowledge
be the starting point for new types of membrane processes
based on artificial materials and based on artificial mecha-
nisms to mimic and advance some of the critical processes
we need to water, power, and feed the population? Nature
offers beautifully intricate and effective solutions to problems
like water transport, for example, in the case of water-
transporting channels such as aquaporins [23].

Let us envisage new types of membrane mechanisms may
be with two non-equivalent ionic diodes working against each
other: one diode “pumps” cations and water from one reser-
voir into another reservoir; the second diode “pumps” cations
back but with a different amount of water cotransport.
Combining the two diodes to operate simultaneously (in op-
posite direction) leads to zero net ion transport coupled to
water pumping across membranes. This effect could avoid
externally applied pressure as required in traditional water
purification processes, and it could be powered by solar elec-
tricity. Similarly, membrane pump mechanisms could be de-
veloped for other types of neutral or charged molecules. In
more complex energy conversion scenarios, transport of mol-
ecules across the membrane could be coupled to bipolar redox
chemical conversions within the membrane, similar to those in
bipolar electrochemistry in freely moving objects [24].

Externally applied solar electricity from photovoltaic
panels will be commercially highly competitive as compared
with more complex integrated technologies, as is the case for
solar water splitting to hydrogen. However, it might also be
possible to configure or design membrane mechanisms with a
low-cost directly integrated solar electricity generation [12].
This will require light absorption, charge separation, interfa-
cial redox reactions at opposite sides of the membrane, and
associated unidirectional ion/molecular transport to balance
the overall processes. Designing new materials and composite
structures as well as new mechanisms to give effective artifi-
cial membranes with internal charge separation is a future
challenge, but not impossible. The key here appears to be
finding new integrated mechanisms, for example, by
exploiting ionic diode phenomena. Nanoengineering of new
materials will be required for this type of membrane develop-
ment. Low-cost and sustainable materials will be desirable. In
the (not too distant) future, solar-powered membranes could
perform tasks like atmospheric water harvesting, irrigation for
food production, carbon dioxide reduction and formation of
solar fuels, or the treatment of polluted environments.
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