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Abstract We combine forward investment performance processes and ambiguity-
averse portfolio selection. We introduce robust forward criteria which address am-
biguity in the specification of the model, the risk preferences and the investment
horizon. They encode the evolution of dynamically consistent ambiguity-averse pref-
erences.

We focus on establishing dual characterisations of the robust forward criteria,
which is advantageous as the dual problem amounts to the search for an infimum
whereas the primal problem features a saddle point. Our approach to duality builds
on ideas developed in Schied (Finance Stoch. 11:107–129, 2007) and Žitković (Ann.
Appl. Probab. 19:2176–2210, 2009). We also study in detail the so-called time-
monotone criteria. We solve explicitly the example of an investor who starts with
logarithmic utility and applies a quadratic penalty function. Such an investor builds a
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dynamic estimate of the market price of risk λ̂ and updates her stochastic utility in ac-
cordance with the so-perceived elapsed market opportunities. We show that this leads
to a time-consistent optimal investment policy given by a fractional Kelly strategy as-
sociated with λ̂ and with the leverage being proportional to the investor’s confidence
in her estimate.

Keywords Robust forward criteria · Optimal investment · Model uncertainty ·
Ambiguity aversion · Dynamic consistency · Time-consistency · Duality theory

Mathematics Subject Classification (2010) 91B16 · 91G10 · 91B06 · 91G80 ·
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1 Introduction

This paper is a contribution to optimal investment as a problem of normative deci-
sions under uncertainty. This topic is central to financial economics and mathematical
finance, and the relevant body of research is large and diverse. Within it, expected util-
ity maximisation (EUM), with its axiomatic foundation going back to von Neumann
and Morgenstern [68] and Savage [61], is probably the most widely used and ex-
tensively studied framework. In a continuous-time setting, it was first applied to the
optimal portfolio selection by Merton [49] who proposed a stochastic optimisation
problem of the form

max
π

EP[U(Xπ
T )], (1.1)

where P is the historical probability measure, T the trading horizon and U( · ) the
investor’s utility function at T .

Despite the popularity of the above model, there has been a considerable amount
of criticism of the model fundamentals (P, T ,U), for these inputs might be ambigu-
ous, inflexible, not very amenable to applications, and difficult to specify. First, there
are numerous issues regarding elucidation and choice of the utility function U . Some
authors argue that the concept of utility per se is elusive and that one should look for
different, more pragmatic criteria to use in order to quantify the risk preferences of
an investor. We refer the reader to an old note of F. Black [8] where the criterion is
the choice of the optimal portfolio, see also He and Huang [29] and Cox et al. [13],
and to Monin [50] where the criterion is a targeted wealth distribution. Another line
of research accepts the utility as an appropriate device to rank outcomes but chal-
lenges the classical EUM, for empirical evidence shows that investors feel differently
with respect to gains and losses. Among others, see Hershey and Schoemaker [33]
and Kahneman and Tversky [35] which then led to the development of the area of
behavioural finance (see e.g. Barberis and Thaler [4] and Jin and Zhou [34]). Yet
others generalise the concept of utility and move away from terminal-horizon deter-
ministic utilities, as U( · ) above, by allowing state- and path-dependence which can
alleviate several drawbacks of the classical setting. One of the best known paradigms
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are recursive utilities; see e.g. Duffie and Epstein [18], El Karoui et al. [22], Ski-
adas [67]. State-dependent utilities have also been considered in static frameworks;
see e.g. Drèze [17] and Karni [41].

Second, the investment horizon T might not be fixed or a priori known. Such situa-
tions arise, for example, in investment problems with rolling horizons or in problems
in which the horizon needs to be modified due to an inflow of new funds, new market
opportunities, or new investment options and obligations. In this context, it is natural
to study under which model conditions and preference structures one could extend
the standard investment problem beyond a pre-specified horizon in a time-consistent
manner; see e.g. Källblad [36, Sect. 2.2] and [37]. It is also interesting to study util-
ities that are not biased by the horizon choice, like the horizon-unbiased utilities
introduced by Henderson and Hobson [30]; see also Choulli et al. [12].

Last but not least, an investor frequently faces significant ambiguity as to which
market model to use; specifically, how to determine the probability measure P. This
is often referred to as Knightian uncertainty in reference to the original contribution
of Knight [44]. In the seminal work by Gilboa and Schmeidler [28], motivated by
the Ellsberg [23] paradox, the independence axiom was weakened to account for
ambiguity aversion which led to a generalised robust EUM paradigm. It built on
earlier contributions, including Anscombe and Aumann [2] and Schmeidler [66], and
has since been followed and extended in a large number of works; we refer the reader
to Maccheroni et al. [47], Schied [64] and to Föllmer et al. [27] and the references
therein.

Our work here was motivated by the above considerations on the triplet of model
inputs (P, T ,U). We propose a framework that alleviates some of the above short-
comings in a unified manner, combining elements from classical robustness the-
ory and the recently developed forward investment performance approach. We now
briefly introduce the latter before describing our main contributions.

In the absence of model uncertainty, Musiela and Zariphopoulou [53, 54]
introduced the forward performance process as an adapted stochastic criterion
parametrised by wealth and time, denoted by U(x, t), t ≥ 0, and constructed “forward
in time”. Specifically, given today’s profile U(x, t), the forward process U(x,T ) for
an arbitrary upcoming investment horizon T > t is specified so that

U (x, t) ≥ EP[U(Xπ
T ,T )|Ft ,Xt = x] for any admissible π,

U (x, t) = EP[U(Xπ∗
T , T )|Ft ,Xt = x] for the optimal π∗.

This allows considerable flexibility in incorporating changing market opportunities
and investors’ attitudes in a dynamically consistent manner. In contrast, in the clas-
sical formulation, the value function is constructed in a similar manner but in the
opposite time direction: the utility criterion is first chosen at the end of the horizon
and then the dynamic programming principle generates the solution from T to pre-
vious times. The computation of the value function involves the underlying model
for market dynamics for the entire investment period and there is no a priori mecha-
nism to extend the investment problem beyond T in a dynamically consistent manner.
This induces significant limitations, as discussed below in our motivating example in
Sect. 2.1.
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In this paper, we build an analogous decision framework for an agent who faces
model ambiguity. As in the classical robust EUM, we consider an investor in a
stochastic market environment for which she does not know the “true” model. In-
stead, she describes the market reality through relative weighting of stochastic mod-
els with some models being more likely than others, some being excluded altogether,
etc. These views are expressed by a penalty function and are updated dynamically
in time. The investor’s personal evaluation of wealth is expressed through her pref-
erences. When considering a given investment horizon, say T , the investor aims to
maximise the robust expected utility (max-min) functional, similarly to Maccheroni
et al. [47] and Schied [64]. However, we generalise their criterion by considering
stochastic preferences. These preferences evolve forward in time, taking into account
the model ambiguity, and are defined for all investment horizons. Accordingly, we
call them robust forward criteria. They are encoded by pairs of utility fields and
penalty functions which are dynamically consistent.

Our theoretical focus is on defining and further characterising the new investment
criteria. We consider their duals and establish an appropriate duality theory. Sim-
ilarly to Schied [64], as well as Quenez [60] and Schied and Wu [65], the proof
of duality proceeds by using an appropriate minimax theorem and then applying a
model-specific duality result to the inner maximisation. However, unlike [64] which
relied on results of Kramkov and Schachermayer [45], we view the inner maximi-
sation problems under the fixed reference measure P but featuring stochastic utility
functions and apply the duality in Žitković [69]. Our proofs involve a number of
technical and conceptual novelties. In particular, we prove relevant conjugacy rela-
tions and the existence of a dual optimiser for a class of utility functions which are
allowed to be stochastic and finite on the entire real line. Notably, the dynamic con-
sistency conditions are imposed jointly on the penalty function and the utility random
field. Unlike for convex risk measures or the classical EUM, the dynamic aspects of
robust portfolio optimisation seem to have been studied only for specific examples;
see e.g. Laeven and Stadje [46] and Müller [51, Chap. 7]. We provide general results
which in particular highlight the necessity of a conditional stability property of the
penalty functions, see property (2.11) below, in the past only considered for dynamic
risk measures. Further, we also obtain the equivalence between dynamic consistency
in the primal and dual domain and characterise the latter via a suitable submartingale
property. While these are natural properties which are well understood in other con-
texts, e.g. classical EUM, they appear to be novel in the context of robust portfolio
optimisation. We use the dual formulation to study the question of time-consistency
of the optimal strategies. We show that in general, both in our framework as well
as in the classical robust EUM, the optimal strategies may fail to be time-consistent.
This is caused by possibly arbitrary dynamics of the penalty functions. We show that
time-consistency of the optimal strategies is guaranteed under suitable assumptions
of dynamic consistency of the penalty functions.

Apart from the theoretical contribution, we also construct and solve explicitly
some practically relevant examples which showcase the advantages of our approach.
Most notably, we consider an investor who starts with a logarithmic utility and applies
a quadratic penalty function. The investor then builds a dynamic estimate of the mar-
ket price of risk, say λ̂, and updates her stochastic utility in accordance with the so-
perceived elapsed market opportunities. We show that this leads to a time-consistent
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optimal investment policy given by a fractional Kelly strategy associated with λ̂. The
leverage is a function of the investor’s confidence in the estimate λ̂. This solution is
both intuitive and relevant since it corresponds to strategies often followed by large
investors in practice. In the classical robust EUM approach, for a fixed time interval
[0, T ], such behaviour is consistent with the simplest setting of a complete market
and constant penalty weighting and is essentially the only explicit example available
with the classical approach; see Hernández-Hernández and Schied [32]. In a more
complex setting – e.g. incomplete market or general adapted penalty weights –, this
structure is lost; the solution is described via PDE or BSDE methods and the optimal
investment strategies may depend on the setting and on the investment horizon T .
This complexity is due to the entangled nature of solving the problem backwards and
having a deterministic boundary constraint at T . Our approach, in contrast, does not
suffer from such drawbacks and offers a solution which holds in great generality. We
discuss this in detail in Sect. 2.1. A further example of an investor initially endowed
with an exponential utility is studied in Sect. 2.2. In Sect. 5, we discuss the structure
of forward criteria and identify some particular classes or robust forward criteria –
this provides us with yet some further examples.

The rest of the paper is organised as follows. In Sect. 2, the market assumptions
are specified, the robust forward criteria are introduced and motivating examples are
studied. In Sect. 3, equivalent dual characterisations of robust forward criteria are es-
tablished. Then, in Sect. 4, we study the link between dynamic consistency of penalty
functions and time-consistency of optimal investment strategies. In particular, we
discuss a simple example of criteria leading to time-inconsistent optimal investment
strategies. Section 5 is devoted to a mostly formal discussion of various classes of
criteria. Our aim is to illustrate the flexibility of the notion and the fact that inter-
esting preferences might be identified under additional evolutionary requirements. In
particular, time-monotone criteria are linked to a specific PDE. We also argue that for
each robust forward criterion, there exists a specific (standard) forward criterion in
the reference market producing the same optimal behaviour. The proofs are deferred
to Sect. 6.

2 Robust forward criteria: motivation and definition

In order to motivate and illustrate the upcoming definition, we first consider two ex-
amples. In Sect. 2.1, we build a robust forward criterion which combines logarithmic
preferences with a quadratic penalty structure for model ambiguity. The example is
of particular interest as it gives theoretical justification for fractional Kelly strategies
which are often used in practice. Subsequently, in Sect. 2.2, we consider an example
with initial exponential preferences. In Sect. 2.3, we then introduce the general setup
and definition.

2.1 A motivating example: robust forward criteria yielding fractional Kelly
strategies

Consider a probability space (�,F ,F,̂P) with the filtration spanned by a two-
dimensional ̂P-Brownian motion (Ŵt )t≥0 = (Ŵ 1

t , Ŵ 2
t )t≥0 and a market with a zero-
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interest bond and a stock whose price process (St )t≥0 solves

dSt = Stσt (λ̂t dt + dŴ 1
t ), t ≥ 0, (2.1)

for some F-progressively measurable processes λ̂ and σ > 0. An investor acting in
this incomplete market chooses the number of shares, denoted by (πt )t≥0, to buy of
the risky asset. Her wealth process then follows the dynamics

dXπ
t = πtσtSt (λ̂t dt + dŴ 1

t ), X0 = x.

The set of admissible strategies, starting from wealth x at time t ≥ 0, is given by

Ax
t := {π : (πs) is predictable with (Xπ

s )s≥t well defined

with Xπ
t = x and Xπ

s > 0 a.s. for all s ≥ t}.
Before we introduce model uncertainty, let us discuss this simple setup to highlight

the differences between the classical problem (1.1) and the forward performance cri-
teria. An investor solving (1.1) with a time horizon T and utility function U(x) = lnx

is myopic and simply follows the growth-optimal or Kelly [42] strategy which in-

vests the fraction of wealth λ̂t /σt in the risky asset, π∗
t = λ̂t

σt St
Xπ∗

t ; see Bansal and
Lehmann [3] and Kardaras et al. [40] and the references therein for details. While π∗
does not rely on T , or on the particular dynamics of λ̂ in the future, the value function
of the investor with wealth x at time t very much does and is given by

lnx + 1

2
Ê

[∫ T

t

λ̂2
udu

∣

∣

∣

∣

Ft

]

.

In contrast, the analogous time-monotone forward performance process, which gen-
erates the same optimal investment strategy, is given by

U (x, t) = lnx − 1

2

∫ t

0
λ̂2

s ds,

which puts value in the context of the elapsed market opportunities instead. This
allows considerable flexibility in reassessing the upcoming market evolution in a dy-
namically consistent manner. Crucially, as we show below, this setup behaves much
more naturally when model uncertainty is introduced.

Suppose now that the investor acknowledges model ambiguity. She builds, and
updates dynamically, her best estimate ̂P (or equivalently λ̂) of reality, but she is
aware that it might be inaccurate. So the investor considers various other models
and quantifies their relative likelihood via a penalty function γ . To make the setup
precise, when making decisions over the interval [t, T ], we only consider measures
Q ∼ ̂P on FT . We denote by P the set of all F-progressively measurable processes
(νt )t≥0 with

∫ T

0 |νt |2dt < ∞ a.s. for all T > 0. Any measure Q ∼ ̂P on FT may

then be identified with a process η = (η1, η2) ∈ P × P , via dQ
d̂P

|FT
= D

η
T , with the

martingale (D
η
t )t≥0 given by

D
η
t := E

(∫ ·

0
η1

s dŴ 1
s +

∫ ·

0
η2

s dŴ 2
s

)

t

; (2.2)
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we write Q =̂ Q
η . For the present example, we assign it the penalty

γt,T (Qη) :=
{

EQ
η [∫ T

t
δu

2 |ηu|2du|Ft ] if EQ
η [∫ T

t
λ̂2

s ds] < ∞,

+∞ otherwise,
(2.3)

for some adapted nonnegative process (δt ) which controls the strength of the penal-
isation (cf. also (5.3) below); that is, (δt ) quantifies1 the investor’s trust in the esti-
mate ̂P. Note that it is natural to expect γt,T ( · )(ω) to have a global minimum at ̂P|FT

.
We let Qt,T denote the set of Qη with a.s. finite penalty at time t . Finally, we assume
that there exists κ > 1/2 such that Ê[exp(κ

∫ T

0 λ̂2
s ds)] < ∞ for all T > 0; this is a

convenient integrability assumption which can be interpreted as ̂P being reasonable.
We then have the following result, the proof of which is reported in Sect. 6.

Proposition 2.1 Given the investor’s choice of (λ̂t ) and (δt ) as above, let

η̄t := ( − λ̂t /(1 + δt ),0
)

, π̄t := δt

1 + δt

λ̂t

σt

Xπ̄
t

St

, (2.4)

and

U(x, t) := lnx − 1

2

∫ t

0

δs

1 + δs

λ̂2
s ds, t ≥ 0, x ∈R+. (2.5)

Recall that the penalty γ is given by (2.3). Then for all 0 ≤ t ≤ T < ∞,

U(x, t) = ess sup
π∈Ax

t

ess inf
Qη∈Qt,T

(

EQ
η [U(Xπ

T ,T ) + γt,T (Qη)|Ft ]
)

, (2.6)

and the optimum is attained for the saddle point (η̄, π̄) given in (2.4).

The investment strategy given in (2.4) corresponds to strategies used in practice by
some of the large fund managers. Specifically, it is a fractional Kelly strategy where
the investor invests in the growth optimal (Kelly) portfolio corresponding to her best
estimate of the market price of risk λ̂. However, she is not fully invested but instead
chooses a leverage2 proportional to her trust in the estimate λ̂. If δt ↗ ∞ (infinite
trust in the estimation), then π̄t St /Xπ̄

t ↗ λ̂t /σt which is the Kelly strategy associated
with the most likely model ̂P. On the other hand, if δt ↘ 0 (no trust in the estimation),
then π̄t ↘ 0 and the optimal behaviour is to invest nothing. We stress that λ̂ and δ are

1For δt ≡ δ constant, the penalty function in (2.3) corresponds to the entropic penalty γ (Q) = δH(Q|̂P),
for which the optimisation problem in (2.6) may be reformulated as a pure maximisation problem with
a modified utility function (if considering utility from intertemporal consumption, such penalty functions
still yield non-trivial problems; see among others [9, 67]). For (δt ) being a general process, the situation is
however different.
2In practice, the leverage has often a risk interpretation, e.g. it is adjusted to achieve a targeted level

of volatility for the fund. It is adjusted rarely in comparison to the dynamic updating of the estimate λ̂.
Similarly, in our framework, the trust in one’s estimation methods is likely to be adjusted on a much slower
scale than the changes to the estimate itself.
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the investor’s arbitrary inputs. In particular, there is no assumption that λ̂ is a good
estimate of some “true” market price of risk λ. For the dynamic consistency (2.6),
it is only crucial that the investor’s utility function (2.5) evolves in function of the
investor’s perception of the market.

The above solution is intuitive, practically relevant and robust. It is insightful to
compare it with the classical robust EUM framework. The latter would fix an in-
vestment horizon T and take U(x,T ) = lnx with (2.6) defining the value field for
t ≤ T . For some simple setups, e.g. a complete market with δt ≡ δ, this would lead
to the same optimal investment strategy π̄ as in (2.4); cf. Hernández-Hernández and
Schied [32]. However, in more general setups, the optimal strategy would not be ex-
plicit, and would depend on T and the set of measures Qt,T in a complex way; see
e.g. [32, 46] and [51, Chap. 7]. This is due to the requirement to match a pre-specified
deterministic utility at a future target date, which implies that the robust EUM entan-
gles model ambiguity with horizon specification in a rather complex way leading to a
loss of the intuitive structure of the solution. There are further important advantages
of our approach. The classical robust EUM would result in a value function which
is defined on [0, T ] and has a non-trivial volatility, while (2.5) is defined for all time
horizons simultaneously and is monotone in time; see Sect. 5 for a further discussion
of such structural properties.

We believe that the above example showcases the advantages of our approach
over the classical robust EUM. More generally, our idea behind the robust forward
criteria is to take the condition (2.6) of dynamic consistency as the defining prop-
erty, and to study the corresponding class of investment criteria: we say that a pair
of mappings, namely a utility (random) field U : � × [0,∞) ×R → R and a penalty
function γ : {Q∼ P} →R, is a robust forward criterion if they satisfy this property
for all 0 ≤ t ≤ T < ∞; see Definition 2.6 below for the formal definition. This class
of preferences provides dynamically consistent investment criteria which are well de-
fined for all investment horizons. We note that with this terminology, the pair (U,γ )

defined in Proposition 2.1 is a robust forward criterion for which the fractional Kelly
strategy is optimal.

2.2 Second example: robust forward criteria for wealth on R

In our motivating example studied above, wealth was assumed to be positive. We now
present a second explicit example where wealth is allowed to become negative, which
will be the setup of our abstract definitions in Sect. 2.3. The example starts with well-
studied and canonical choices in economics: preferences which exhibit a constant
absolute risk aversion and a multiple-prior (coherent) penalty originally derived via
an axiomatic approach to preferences by Gilboa and Schmeidler [28]. The underlying
setup is the same as in the previous example, with the investor’s best estimate of the
market denoted by ̂P under which the underlying (incomplete) market is specified via
(2.1) and we assume that Ê[exp(2

∫ u

0 λ̂2
s ds)] < ∞ for all u > 0.

The investor’s trust in her current estimation is now described through a pre-
dictable process α, with 0 ≤ αt ≤ λ̂t , in that she considers all models for which the
market price of risk is at most α away from the current best estimate λ̂. That is, for
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the investment interval [t, T ], the investor considers the set of models

Qt,T = {

Q
η ∼̂P|FT

: η = (η1,0) and

λ̂s + η1
s ∈ [λ̂s − αs, λ̂s + αs], s ∈ [t, T ]}, (2.7)

where we assume for simplicity3 that the investor is confident about her modelling
of the market factor Ŵ 2. In practice, λ̂t is likely to be estimated using statistical
methods, and we may think of αt as the width of the confidence interval. We con-
sider a coherent penalty function (γt,T )0≤t≤T , assigning the penalty γt,T (Qη) = 0
for Qη ∈Qt,T and γt,T (Qη) = ∞ otherwise.

We consider at t ≥ 0 the class of admissible strategies

Ax
t := {

π : (πs) is predictable with (Xπ
s )s≥t well defined with Xπ

t = x, and

EQ
η [e 1

2

∫ u
r (aπsσsSs)

2ds] < ∞ for Qη ∈Qr,u, t ≤ r ≤ u
}

,

where the latter part imposes an integrability condition in each market model the
investor considers plausible. We note that in Sect. 3, when proving general duality
results, we do not investigate existence of optimal strategies and therefore simply re-
strict to bounded wealth processes. The parameter a > 0 is effectively used to model
the investor’s risk aversion (cf. (2.9) below); the more risk-averse the investor is, the
smaller her set of available trading strategies.4

The following result is proved in Sect. 6.

Proposition 2.2 Given the investor’s choice of (λ̂t ) and (αt ) as above, suppose that
0 ≤ αt ≤ λ̂t , t ≥ 0, and let

η̄t := [−αt ,0], π̄t := 1

a

λ̂t − αt

σtSt

(2.8)

and

U(x, t) = −e−ax+ 1
2

∫ t
0 (λ̂s−αs)

2ds, t ≥ 0, x ∈ R. (2.9)

Recall that the penalty γ is of entropic type with Qt,T given by (2.7). Then for all
0 ≤ t ≤ T < ∞,

U(x, t) = ess sup
π∈Ax

t

ess inf
Qη∈Qt,T

EQ
η [U(Xπ

T ,T )|Ft ], (2.10)

and the optimum is attained for the saddle point (η̄, π̄) given in (2.8).

3The same results could be obtained by assuming that also η2 lies within some pre-specified interval with
suitably integrable bounds; we omit those details here.
4We note that other definitions would lead to the same result; notably one could require a BMO property
for the martingales

∫

πtσt dWt , see [51, Sect. 7.2].
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Equation (2.10) is a dynamic consistency relation which, as argued above, will
be the defining property for our robust decision criteria. Indeed, the pair (U,γ ) is a
robust forward criterion as defined below in Definition 2.6. The choice of a penalty
of multiple-priors type means that all measures are considered equally likely, and
in consequence the strategy is adjusted to the worst-case scenario. Specifically, the
investor invests an amount proportional to the Sharpe ratio in the worst market model
among the ones she considers plausible, with the proportion depending on the risk
aversion: the higher the risk aversion, the less the amount invested. Similar results
were obtained in the case of a complete market setup in [63]. Robust EUM with
exponential utilities and multiple-priors preferences has also been studied by use of
stochastic control methods in [46, 58] and [51, Sect. 7.2]. In contrast to the these
studies, and in analogy to the logarithmic example in Sect. 2.1, in our setup the natural
behaviour in [63] extends to more general markets. As before, this is possible since
we disentangle the ambiguity of model selection from the horizon specification.

2.3 Definition of robust forward performance criteria

We now turn to a general market setup and define the robust forward criteria.

2.3.1 The underlying market assumptions

The market consists of d + 1 securities whose prices (S0
t ;St ) = (S0

t , S1
t , . . . , Sd

t ),
t ≥ 0, are modelled by a (d + 1)-dimensional càdlàg semimartingale on a filtered
probability space (�,F ,F,P), where the filtration F= (Ft )t∈[0,∞) satisfies the usual
conditions. We let S0 ≡ 1 and assume S to be locally bounded. A portfolio process
π = (πt )t∈[0,∞) is an F-predictable process which is S-integrable on [0, T ] for each
T > 0 and denotes the number of shares held in the risky asset. The associated wealth
process Xπ is given by

Xπ
t =

∫ t

0
πudSu, t ≥ 0.

The set of admissible portfolio processes available to the investor is denoted by A
and is typically a subset of all portfolio processes.

For each T > 0, Me
T denotes the set of equivalent local martingale measures,

that is, the set of measures Q on FT such that Q ∼ P|FT
and each component of

S is a Q-local martingale. Similarly, Ma
T denotes the set of absolutely continuous

local martingale measures. The corresponding sets of density processes are denoted,
respectively, by Ze

T and Za
T . Put differently,

Ze
T =

{(

E

[

dQ

dP|FT

∣

∣

∣

∣

Ft

])

0≤t≤T

: Q ∈Me
T

}

,

and similarly for Za
T . For any nonnegative martingale Zt , t ≤ T , and in particular for

density processes in Za
T , we use the notation Zs,t := Zt

Zs
for 0 ≤ s ≤ t ≤ T , with the

convention Zs,t ≡ 1 on {Zs = 0}.
We impose the following assumption throughout:

Assumption 2.3 The set Me
T is nonempty for each T > 0.
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This assumption is referred to as the absence of arbitrage (NFLVR) on finite hori-
zons; see [69, Sect. 2] for further discussion. Note that while

Me
T1

= {Q|FT1
:Q ∈ Me

T2
} for all 0 ≤ T1 ≤ T2,

there need not exist a set Me of probability measures equivalent to P such that
Me

T = {Q|FT
:Q ∈ Me} for all T > 0. As argued in [69], the condition NFLVR on

finite horizons implies that any density process Z ∈ Ze
T can be extended to a strictly

positive martingale (Zt )t∈[0,∞) such that Z0 = 1 and ZS is a local martingale. The
set of all such processes Z is denoted by Ze. In particular, NFLVR on finite horizons
holds if and only if Ze is nonempty. If the condition of strict positivity is replaced by
the one of nonnegativity, the obtained family is denoted by Za .

2.3.2 Utility random fields and penalty functions

The robust forward criteria which we introduce below combine two elements: a util-
ity random field U(ω,x, t), t ≥ 0, and a family of penalty functions γt,T (Q),
0 ≤ t ≤ T < ∞. The component U(ω, · , t) models the preferences at time t and may
depend on past observations. In addition, the investor faces ambiguity about the “true
model” for the dynamics of the financial assets and forms a view about the relative
plausibility of different probability measures; this is reflected in γt,T (Q)(ω) which
gives the weighting of measures Q on FT . From now on, we focus on the case of U

defined on R; this simplifies some aspects of the duality theory, as explained in Sect. 3
below. Alterations of our abstract definitions to the case of U on R+ are immediate.

Definition 2.4 A random field is a mapping U : � ×R×[0,∞) →R which is mea-
surable with respect to the product of the optional σ -algebra on �×[0,∞) and B(R).
A utility random field is a random field which satisfies the following conditions:

(i) For all t ∈ [0,∞), the mapping x �→ U(ω,x, t) is P(dω)-a.s. a strictly concave
and strictly increasing C1(R)-function which satisfies the Inada conditions

lim
x→−∞

∂

∂x
U(ω,x, t) = ∞, lim

x→∞
∂

∂x
U(ω,x, t) = 0.

(ii) P(dω)-a.s., the mapping t �→ U(ω,x, t) is càdlàg on [0,∞) for all x ∈ R.
(iii) For each x ∈R and T ∈ [0,∞), U( · , x, T ) ∈ L1(FT ).

In what follows, we suppress ω from the notation and simply write U(x, t).
The penalty function γt,T ( · ) should not distinguish between two probability mea-

sures Q1,Q2 ∼ P|FT
which agree at time t when considering the horizon [t, T ], i.e.,

for any A ∈ Ft with P[A] > 0, if EQ1 [1B |Ft ] = EQ2 [1B |Ft ] P-a.s. on A

for any B ∈ FT , then γt,T (Q1) = γt,T (Q2), P-a.s. on A. (2.11)

This means that γt,T (Q) is a function of the conditional density Z
Q

t,T , where for

Q∼ P|FT
, we set Z

Q

t := E[ dQ
dP|FT

|Ft ] and Z
Q

t,T = Z
Q

T /Z
Q

t , t ∈ [0, T ], and we con-

sider {ZQ

t,T : Q ∼ P|FT
} as a subset of L1+(FT ). This justifies the following definition.
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Definition 2.5 For 0 ≤ t ≤ T < ∞, we call a penalty function any mapping γt,T

from {ZQ

t,T : Q ∼ P|FT
} to Ft -measurable [0,+∞]-valued random variables which

satisfies the following conditions:

(i) (convexity) ∀λ ∈ L0(Ft ), 0 ≤ λ ≤ 1, and Z1,Z2 ∈ {ZQ

t,T : Q ∼ P|FT
}, we have

γt,T (λZ1 + (1 − λ)Z2) ≤ λγt,T (Z1) + (1 − λ)γt,T (Z2) a.s.;
(ii) for κ ∈ L∞+ (Ft ), Z �→ E[κγt,T (Z)] is σ(L1,L∞)-lower semicontinuous.

We write γt,T (Q) := γt,T (Z
Q

t,T ) for Q ∼ P|FT
. Moreover, for a given utility random

field U(x, t) and a set of admissible strategies A, we say that (γt,T ), 0 ≤ t ≤ T < ∞,
is an admissible family of penalty functions if for all T > 0 and π ∈A, EQ[U(Xπ

T ,T )]
is well defined in R∪ {∞} for all Q ∈ Qt,T , t ≤ T , where Qt,T is the set of measures
on FT given by

Qt,T := {Q : Q ∼ P|FT
and γt,T (Q) < ∞ a.s.}.

We note that conditional convexity (i) above readily implies (2.11). Conversely,
(2.11) together with convexity only for deterministic λ implies conditional convexity
for simple λ ∈ L0(Ft ), which then yields (i) by using the continuity in (ii).

Condition (2.11) above simply says that if at time t an investor considering [t, T ]
cannot tell apart Q1 from Q2, then she assigns them the same penalty. To the best of
our knowledge, such a condition has previously not been invoked in the context of
robust portfolio optimisation, but it is required here since unlike previous works, we
consider a dynamic problem and prove conditional conjugacy relations. Analogous
conditions have appeared before in the context of dynamic risk measures; see Def-
inition 3.11 of the local property of penalty functions in Cheridito et al. [11] or the
pasting property in Lemma 3.3 in Klöppel and Schweizer [43]. Its importance here
becomes apparent in the proof of Lemma 6.3.

In the above definition, Qt,T is the set of feasible measures considered at time
t when investing over [t, T ]. It may depend on t and T but is non-random. Both
larger and smaller sets could be used, e.g. the (random) set of measures Q with
γt,T (Q)(ω) < ∞ or the set of measures Q with E[γt,T (Q)] < ∞. However, for many
natural penalty functions, these different choices lead to the same value function.
Finally, note that we do not impose any regularity or consistency assumptions on
γt,T (Q) in the time variables. These are not necessary for the abstract results in Sect. 3
and will be introduced later when they appear naturally; see Assumption 4.1.

2.3.3 Robust forward performance criteria

We are now ready to introduce the robust forward criteria. As highlighted above,
these are pairs (U,γ ) which exhibit a dynamic consistency akin to the dynamic pro-
gramming principle.

Definition 2.6 Let U be a utility random field, A a set of admissible strategies and
γ an admissible family of penalty functions. We say that (U,γ ) is a robust forward
criterion if for all 0 ≤ t ≤ T < ∞ and all ξ ∈ L∞(Ft ),

U(ξ, t) = ess sup
π∈A

ess inf
Q∈Qt,T

(

EQ

[

U

(

ξ +
∫ T

t

πsdSs, T

)∣

∣

∣

∣

Ft

]

+ γt,T (Q)

)

a.s. (2.12)
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We note that the above definition is well posed. Indeed, given the assumptions on
U and γ , the conditional expectations in (2.12) are well-defined (extended-valued)
random variables. Since all Q ∈ Qt,T are equivalent to P, for each π ∈ A, the es-
sential infimum is also well defined (extended-valued) with respect to the reference
measure P. The set of admissible strategies A which we consider is specified below;
more generally, and in particular if U were defined on R+, one might need to take an
A which depends on (ξ, t). Naturally, we call an admissible strategy optimal if it at-
tains the supremum in (2.12). However, our definition of robust forward criteria does
not require the existence of optimal investment strategies. In that aspect, we follow
the approach in [69] rather than the original definition in [53, 54]. This is particularly
helpful for the duality theory developed in Sect. 3.

Example 2.7 An example of a robust forward criterion as in Definition 2.6 is given
by the pair (U,γ ) considered in Proposition 2.2. The pair (U,γ ) in Proposition 2.1
is an example corresponding to an analogous definition, but for the case of random
fields defined on R+. We discuss further examples below; see in particular Sect. 5.

The optimisation in (2.12) fits within the robust EUM paradigm as discussed in the
introduction. The crucial difference is that we require (2.12) to hold for all time pairs
t ≤ T . We refer to (2.12) as the dynamic consistency property of (U,γ ); allowing
model ambiguity, it provides a direct extension of the notion of self-generating utility
fields studied in [69] and, consequently, of the notion of forward performance criteria;
see the introduction and Sect. 5.

To relate (2.12) to the more classical dynamic programming principle, it is use-
ful to introduce the family of value functions {u( · ; t, T ) : 0 ≤ t ≤ T < ∞} with
u( · ; t, T ) : L∞(Ft ) → L0(Ft ;R∪ {∞}) given by

u(ξ ; t, T ) := ess sup
π∈A

ess inf
Q∈Qt,T

(

EQ

[

U

(

ξ +
∫ T

t

πsdSs, T

)∣

∣

∣

∣

Ft

]

+ γt,T (Q)

)

. (2.13)

Then (U,γ ) is a robust forward criterion if and only if for all 0 ≤ t ≤ T < ∞ and all
ξ ∈ L∞(Ft ),

U(ξ, t) = u(ξ ; t, T ) a.s.

This then implies a familiar DPP (or martingale optimality principle), namely

u(ξ ; t, T ) = U(ξ, t) = u(ξ ; t, r) (2.14)

= ess sup
π∈A

ess inf
Q∈Qt,r

(

EQ

[

U

(

ξ +
∫ r

t

πsdSs, r

)∣

∣

∣

∣

Ft

]

+ γt,r (Q)

)

= ess sup
π∈A

ess inf
Q∈Qt,r

(

EQ

[

u

(

ξ +
∫ r

t

πsdSs; r, T
)∣

∣

∣

∣

Ft

]

+ γt,r (Q)

)

,

for 0 ≤ t ≤ r ≤ T and ξ ∈ L∞(Ft ).
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The setting of (2.13) corresponds to a very general robust EUM, but we note that
it also has its limitations. For example, the penalty γt,T (Q) associated to a given
measure is fixed and independent of wealth. This has important implications for the
time-consistency of optimal investment strategies. Indeed, as we show in Proposi-
tion 4.4, when the (γt,T ) are dynamically consistent and if we have saddle points
(πt,T ,Qt,T ) solving (2.13), then Q

t,r = Q
t,T |Fr

, t ≤ r ≤ T , and also the optimal
investment strategies are time-consistent. However, in all generality, we could have
(dynamically consistent) robust forward criteria which lead to time-inconsistent opti-
mal strategies – an example is given in Sect. 4. Independence of γt,T (Q) from the in-
vestor’s wealth is also contrary to the empirical evidence as discussed in behavioural
finance, see e.g. Kahneman and Tversky [35], which points to the importance of the
investor’s reference point for judging scenarios. In consequence, we believe that it
might be interesting to study generalisations of the problem in (2.13). Within the
framework of robust EUM, these are possible using quasi-concave utility functionals
introduced in Cerreia-Vioglio et al. [10]. Their use for the (classical) optimal invest-
ment problem has recently been investigated by Källblad [38].

3 Dual characterisation of robust forward criteria

Dual methods have proved useful for the study of optimal investment problems and
this applies also within our setup. In particular, while the primal problem features a
saddle point, the dual problem amounts to the search for a pure infimum, and robust
forward criteria are therefore easier to characterise in the dual rather than the primal
domain. The aim of this section is to establish the equivalence between dynamic
consistency in the primal and the dual domain.

We focus on utility random fields which are finite on the entire real line. The rea-
sons are twofold. First, we complement the work of Schied [64] where only utilities
defined on the positive half-line were studied. Second, this simplifies certain techni-
cal aspects, see also e.g. [25], and allows us to focus on the novelty of our setting.
We note that allowing negative wealth usually complicates the choice of an appro-
priate set of admissible strategies yielding the existence of an optimiser; cf. [59, 62].
This is not a concern for us since we do not require the existence of a primal op-
timiser, and hence, without loss of generality, we can restrict to the set of bounded
wealth processes.5 Accordingly, we set in Definitions 2.4 and 2.6 A = Abd, the set
of all portfolios producing bounded wealth processes. Specifically, Abd = Ā∩ (−Ā),
where Ā is the set of all admissible portfolio processes for which for any T > 0, there
exists a constant c > 0 such that Xπ

t ≥ −c, 0 ≤ t ≤ T , a.s.

5Indeed, a utility field defined on the entire real line does not possess any singularities (cf. Assump-
tion 3.2). The value field defined with respect to a more general (but feasible) set of admissible strategies
would therefore coincide with the one defined with respect to bounded strategies. Definition 2.6 would still
apply since the notion of robust forward criteria is a consistency requirement placed on the preferences
themselves, without reference to an optimal strategy. In consequence, for utility fields defined on the entire
real line, robust forward criteria may be studied and characterised without exactly specifying the domain
of optimisation; see also [69, Remark 3.8]. We also note that since the preferences are stochastic, the ex-
act specification of a feasible set of admissible, but not necessarily bounded, strategies would be highly
involved.
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Given a utility random field U , the associated dual random field, denoted by
V : � × (0,∞) × [0,∞) → R, is given by

V (y, t) = sup
x∈R

(

U(x, t) − xy
)

for y > 0, t ≥ 0; (3.1)

we adjoin to this definition V (0, t) = supx∈R U(x, t) ∈ (−∞,∞], t ≥ 0. The notion
of dynamic consistency in the dual domain is then defined as follows.

Definition 3.1 A pair (V , γ ) consisting of a dual random field and a family of penalty
functions is dynamically consistent (or self-generating) if for all 0 ≤ t ≤ T < ∞ and
all η ∈ L0+(Ft ),

V (η, t) = ess inf
Q∈Qt,T

ess inf
Z∈Za

T

(

EQ[V (ηZt,T /Z
Q

t,T , T )|Ft ] + γt,T (Q)
)

. (3.2)

For later use, we also introduce the dual value field. For any 0 ≤ t ≤ T < ∞, let
v( · ; t, T ) : L0+(Ft ) → L0(Ft ;R∪ {∞}) be given by

v(η; t, T ) := ess inf
Q∈Qt,T

ess inf
Z∈Za

T

(

EQ[V (ηZt,T /Z
Q

t,T , T )|Ft ] + γt,T (Q)
)

. (3.3)

It follows that a pair (V , γ ) consisting of a dual random field and a family of penalty
functions is dynamically consistent if, and only if, for all 0 ≤ t ≤ T < ∞ and all
η ∈ L0+(Ft ),

V (η, t) = v(η; t, T ) a.s.

3.1 Equivalence between primal and dual dynamic consistency

We first introduce the following technical assumption.

Assumption 3.2 For any 0 ≤ t ≤ T < ∞, the set of densities {ZQ

t,T : Q ∈ Qt,T } is

σ(L1,L∞)-compact, and the family {ZQ

t,T U−(x, T ) : Q ∈ Qt,T } is uniformly inte-
grable for any x ∈ R. In addition, for any Q ∈ Qt,T and any nonincreasing sequence
(Dn)n∈N in FT with

⋂

n Dn = ∅, there exists a sequence (an)n∈N in (0,∞) such that

an → ∞ and lim inf
n→∞

1

an

E[ZQ

t,T U−(−an,T )1Dn ] = 0.

For measures Q ∈ Qt,T such that Z
Q

t,T U(x,T ) ∈ L1 for some and hence for
all x ∈ R, although seemingly weaker, the second part of the above assumption
is equivalent to the fact that the stochastic utility function Z

Q

t,T U( · , T ) satisfies
the non-singularity condition in Definition 3.3 in [69]. This is a mild technical as-
sumption which precludes pathological appearances of non-countably additive mea-
sures in the dual treatment. In particular, it is satisfied whenever the utility field
is (x,ω)-uniformly bounded from below by a deterministic utility function; see
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[69, Remark 3.4]. We also note that since {ZQ

t,T : Q ∈ Qt,T } is convex, weak com-

pactness is equivalent to closedness in L0; cf. [65, Lemma 3.2].
Next, we present the first main result, which yields the conjugacy relations be-

tween the functions u(x; t, T ) and v(y; t, T ). We stress that even for t = 0, Theo-
rem 3.3 differs from Theorem 2.4 in [64] in that U( · , T ) is defined on the entire real
line and allowed to be stochastic, and, moreover, we do not impose any finiteness
assumptions. The proof is reported in Sect. 6.1.

Theorem 3.3 Let (U,γ ) be a pair of a utility random field and an admissible family
of penalty functions, suppose that Assumption 3.2 holds, and let V be the associated
dual random field. Then for all 0 ≤ t ≤ T < ∞, ξ ∈ L∞(Ft ) and η ∈ L0+(Ft ), the
associated value fields satisfy

u(ξ ; t, T ) = ess inf
η∈L0+(Ft )

(

v(η; t, T ) + ξη
)

a.s., (3.4)

v(η; t, T ) = ess sup
ξ∈L∞(Ft )

(

u(ξ ; t, T ) − ξη
)

a.s. (3.5)

In consequence, the combination of a utility random field U(x, t) and a family of
penalty functions γt,T is dynamically consistent if and only if the combination of the
dual random field V (y, t) and γt,T is dynamically consistent.

The next result shows that the dual problem admits a solution even though the pri-
mal problem need not (since we have restricted to the use of bounded wealth strate-
gies).

Proposition 3.4 Let (U,γ ) be a pair of a utility random field and an admissible
family of penalty functions, and let V be the associated dual random field. Suppose
that Assumption 3.2 holds. Then for any t ≤ T < ∞ and η ∈ L1+(Ft ), there exist
Q ∈Qt,T and Z ∈ Za

T attaining the infimum in (3.2).

We provide the proof in Sect. 6.1, but remark that the fact that the second com-
ponent of the optimiser lies in Ma

T (as opposed to the larger set of finitely additive
measures) is a consequence of the utility function being finite on the entire real line
(see [69] and also [5, 62]).

We work here under the assumption that the measures in Qt,T are equivalent to
the reference measure. However, under the convention that Z

Q

t,T V (ηZt,T /Z
Q

t,T ) = ∞
on {ZQ

t,T = 0}, our proofs go through with straightforward modifications also when
allowing Qt,T to include all measures absolutely continuous with respect to the refer-
ence measure with finite penalty a.s.; cf. [38] for similar results in the case of (static)
utility functions defined on the positive half-line. We also expect that our proofs might
be further developed so as to rely on weak compactness of level sets of the form
{ZQ

t,T : Q � P|FT
and γt,T (Q) ≤ ξ a.s.}, ξ ∈ L∞(Ft ), rather than of Qt,T . We leave

this topic for future research.
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4 Dynamic consistency of penalty functions and time-consistency of
optimal investment strategies

The definition of robust forward criteria requires the combined criterion consisting of
U(x, t) and γt,T to be dynamically consistent (cf. Definition 2.6). In this section, we
further investigate this assumption and relate it to dynamic consistency of the penalty
functions and time-consistency of the optimal investment strategies. The correspond-
ing proofs are reported in Sect. 6.2.

Assumption 4.1 For any T > 0 and Q ∼ P|FT
, the family of penalty functions (γt,T )

is càdlàg in t ≤ T , γt,t ≡ 0 and

γs,T (Q) = γs,t (Q|Ft
) + EQ[γt,T (Q)|Fs], s ≤ t ≤ T . (4.1)

Moreover,

Qs,T = Q̃s,T , (4.2)

where

Q̃s,T := {

Q ∼ P|FT
: ZQ

T = Z
Q0
t Z

Q1
t,T with Q0 ∈ Qs,t and Q1 ∈ Qt,T , s ≤ t ≤ T

}

.

For any penalty function satisfying (4.1), Qt,T ⊆ Q̃t,T . However, in general, sta-
bility under pasting (4.2) may fail. It may be recovered if different definitions of Qt,T

are used, e.g. with measures satisfying E[γt,T (Q)] < ∞; see the remarks below on
penalty functions associated with risk measures.

The additional structure resulting from Assumption 4.1 allows us to consider the
question of whether for a fixed T > 0, the value field u(x; t, T ) associated with
a general utility field satisfies itself the dynamic programming principle (2.14) for
t ≤ T . We show that under suitable assumptions on the penalty function, this is the
case. For particular choices of preferences, this property has been used to address the
ambiguity-averse problem by stochastic control methods in [31, 32, 51]. The proof
proceeds by first establishing appropriate consistency in the dual domain and then
applying Theorem 3.3.

Proposition 4.2 Let (U,γ ) be a pair of a utility random field and an admissible
family of penalty functions, and let u( · ; t, T ) be the associated value field. Suppose
that Assumptions 3.2 and 4.1 hold. Then for 0 ≤ s ≤ t ≤ T ,

u(x; s, T ) = ess sup
π∈Abd

ess inf
Q∈Qs,t

(

EQ

[

u

(

x +
∫ t

s

πudSu; t, T
)∣

∣

∣

∣

Fs

]

+ γs,t (Q)

)

.

For the case of standard (non-robust) utility maximisation and deterministic utility
functions, it is well known that the value process satisfies the DPP, also referred to
as the martingale optimality principle; see [19, Chap. I]. Proposition 4.2 shows that a
similar consistency property holds for certain ambiguity-averse criteria. However, the
value field associated with a general penalty function may fail to be dynamically con-
sistent; see [64] for counterexamples. Hence, while the standard forward criteria are
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effectively a generalisation (to all positive times) of the value functions associated
with (stochastic) utility functions, within the robust setting, our Definition 2.6 en-
forces additional structure by imposing the dynamic consistency requirement (2.12)
on the pair (U,γ ). In general, however, this is weaker than the assumption of dynamic
consistency of γ . Indeed, as illustrated by the next example, there are dynamically
consistent pairs (U,γ ) where the penalty function γ itself is not dynamically consis-
tent. Such robust forward criteria may lead to time-inconsistent optimal investment
strategies.

Example 4.3 We work in the setting of Sect. 2.1. We set λ̂ ≡ 0 and fix a fam-
ily of bounded random variables (λt,T ) with 0 ≤ t ≤ T , with each λt,T being
Ft -measurable and (λt,T )2 ≤ K , for some K > 0. In turn, let

γt,T (Qη) :=
{

1
2 (T − t)(K − (λt,T )2) if (η1

u, η
2
u) = (λt,T ,0), t ≤ u ≤ T ,

+∞ otherwise.

Let U(x, t) := lnx − t
2K and η

t,T
u := 0 for u < t and η

t,T
u := (λt,T ,0) for t ≤ u ≤ T .

By definition, Qt,T = {Qηt,T } and therefore, using classical results on logarithmic
utility maximisation, we have that

u(ξ ; t, T ) = ln ξ + 1

2
EQ

ηt,T
[∫ T

t

|ηt,T
u |2du

∣

∣

∣

∣

Ft

]

− T

2
K + γt,T (Qηt,T

)

= ln ξ + 1

2
(T − t)(λt,T )2 − T

2
K + 1

2
(T − t)

(

K − (λt,T )2)

= ln ξ − t

2
K = U(ξ, t), t ≤ T .

We easily conclude that (U,γ ) is a robust forward criterion and that dynamic consis-
tency holds. Meanwhile, at time t when considering the interval [t, T ], the resulting

optimal strategy is given by π̄
t,T
u = λt,T

σt
Xπ̄t,T

u , t ≤ u ≤ T . Even when considering
classical robust portfolio optimisation on [0, T ], this may be time-inconsistent since

we may have λt,T

σu
�= λu,T

σu
for t ≤ u ≤ T . In our context of forward criteria, when

T is not fixed, the “optimal strategy” might further be horizon-inconsistent in the
sense that we may have π̄

t,T
t �= π̄

t,T1
t for t ≤ T < T1. Hence, the “optimal strat-

egy” is not really a well-defined concept since it may depend not only on when we
make the decision, but also on which horizon we consider. This is due to funda-
mental (time-)inconsistencies in the beliefs about feasible market models, manifested
through a violation of (4.1).

Observe that in the above example, property (4.1) is violated in a rather simplis-
tic way. Indeed, at any time t , looking to invest on [t, T ], the investor believes that
only one model is feasible. This is a degenerate case since the choice of this model
changes arbitrarily with t and T and there is no consistency requirement. Consider,
for example, the extreme situation when all λt,T are constant and T is fixed. Then
at time zero, the investor picks possibly different models which she will choose to



Robust forward criteria 897

believe in when making investment decisions at t for the period [t, T ]; it is not sur-
prising that this might lead to time-inconsistent investment strategies. However, the
flexibility of fixing the penalty γt,T implies that the dynamic consistency of the value
functions, i.e., (2.14) on [0, T ] or (2.12) in general, may nevertheless be preserved.

In Example 4.3, the lack of time-consistency of optimal strategies is inherited
from the lack of dynamic consistency of the penalty functions, i.e., from the violation
of (4.1). In contrast, when the penalty functions are consistent, we recover the time-
consistency of the optimisers.

Proposition 4.4 Let (U,γ ) be a robust forward criterion such that Assumptions 3.2
and 4.1 hold. Moreover, assume that for each 0 ≤ t < T < ∞ and ξ ∈ L∞(Ft ), there
is a saddle point (πt,T (ξ),Qt,T (ξ)) for which u(ξ ; t, T ) is attained (cf. (2.13)). Then
the saddle point may be taken to be time-consistent in that Qt,T (ξ) = Q

t,T̄ (ξ )|FT
for

all t ≤ T ≤ T̄ , and for 0 ≤ t ≤ u ≤ T ≤ T̄ ,

πt,T
u (ξ) = πt,T̄

u (ξ) and πt,T
u (ξ) = πu,T

u

(

ξ +
∫ u

t

πt,T
s dSs

)

.

Furthermore, for x > 0, there exist a process π̄t , t ≥ 0, and a positive martingale Yt ,
t ≥ 0, such that for all 0 ≤ t < T < ∞, u(x +∫ t

0 π̄sdSs; t, T ) is attained for πt,T = π̄

and Q
t,T = Q̄

T , with dQ̄T

dP|FT
= YT .

The above result, combined with Example 4.3, shows that dynamic consistency of
the penalty functions, i.e., (4.1), is a necessary and sufficient condition for time con-
sistency of the optimal investment strategies to hold for any corresponding criterion.
This applies both to the robust forward criteria studied here as well as to classical
robust expected utility maximisation on a fixed horizon. It leads to interesting open
questions. First, the economic and empirical justification for (4.1) remains unclear. In
fact, it is a non-trivial requirement, and, for example, penalty functions associated to
convex risk measures do not satisfy (4.1) in general; see also Remark 3.5 in Schied
[64]. Second, are there generalisations of the optimisation problem in (2.13) which
would preserve time-consistency of optimal strategies while still violating (4.1)?

Next, we show that the dynamic consistency property of penalty functions leads
to a characterisation of robust forward criteria in terms of a certain “weighted sub-
martingale” property of the dual field. This is used in Sect. 5 to derive an equation
allowing us to investigate particular classes and examples of robust forward criteria.

Proposition 4.5 Let (U,γ ) be a pair of a utility random field and an admissible
family of penalty functions, and let V be the associated dual field. Suppose that As-
sumptions 3.2 and 4.1 hold. Then the following are equivalent:

(i) (U,γ ) is a robust forward criterion.
(ii) For any s > 0 and η ∈ L1+(Fs), we have for all s ≤ t ≤ T < ∞ that

V (ηZs,t /Z
Q

s,t , t) ≤ EQ[V (ηZs,T /Z
Q

s,T , T )|Ft ] + γt,T (Q) (4.3)
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for all Z ∈ Za
T and Q ∈ Qt,T ; moreover, there exist Z ∈ Za and a positive mar-

tingale Yt , t ≥ s, such that for all s ≤ t ≤ T < ∞, (4.3) holds with equality for
Z and QT ∈Qt,T , where dQT

dP|FT
:= YT , T ≥ s.

We conclude this section with brief remarks on the penalty functions γt,T asso-
ciated with (dynamic) convex risk measures (see [1, 7, 11, 43]). Such penalty func-
tions, under minimal regularity/continuity assumptions, satisfy the properties of Def-
inition 2.5. However, the weak compactness condition in Assumption 3.2 usually
requires stronger assumptions. Recall that for static risk measures, it is obtained for
risk measures continuous from below, see [64, Lemma 4.1], and in particular by a
coherent risk measure which only assigns zero penalty to equivalent measures; see
[31] for an example. Regarding Assumption 4.1, the time-consistency of convex risk
measures is characterised by property (4.1), and any time-consistent coherent risk
measure6 admits the pasting property (4.2) (cf. [1, Corr. 1.26]). However, in general,
(4.1) does not imply (4.2). Nevertheless, any convex risk measure admits a robust rep-
resentation where Qt,T is replaced by the set {Q ∼ P|FT

: E[γt,T (Q)] < ∞}, which
in turn satisfies (4.2). This property is crucial for proving the equivalence between
time-consistency of the risk measure and property (4.1) (see e.g. [1, Thm. 1.20] or
[7]). Assuming (4.2) is therefore consistent with the use of time-consistent penalty
functions associated with risk measures.

5 The structure of robust forward criteria and representative cases

In this section, we study the structure of robust forward criteria and subsequently dis-
cuss specific cases. Throughout, we consider the Brownian setup of Sect. 2.1, and
the discussion is mostly formal. We start with the structure of forward criteria and
focus on the non-uniqueness of robust forward criteria for given initial preferences.
Then we study examples of classes where the uniqueness may be recovered. These
classes are obtained by generalising, in various ways, the main example studied in
Sect. 2.1. First, in Sect. 5.2, we consider fields which exhibit logarithmic dependence
on wealth. Then, in Sect. 5.3, we focus on robust forward criteria with no volatility
(cf. (5.6) below). Such criteria are characterised by a specific evolutionary property
and linked to a certain PDE (Eq. (5.7) below). For both examples, the discussion is
in terms of dual fields. Finally, in Sect. 5.4, we show that for each robust forward
criterion, there exists a (standard) forward criterion in the fixed reference market pro-
ducing the same optimal behaviour.

5.1 The structure and non-uniqueness of robust forward criteria

In the standard model-specific setting, the forward performance criteria (see [53, 54])
are not uniquely specified from the initial condition. This is due to the flexibility

6For our case when all measures in Qt,T are equivalent to the reference measure, even more explicit
results hold for coherent risk measures; see [14, 26, 43].
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of the investor to choose the volatility of her criterion. Indeed, a (standard) forward
performance criterion (admitting an Itô decomposition) satisfies the SPDE

dU(x, t) = 1

2

|λ̂tUx(x, t) + σtσ
+
t ax(x, t)|2

Uxx(x, t)
dt + a(x, t) · dŴt , t ≥ 0, (5.1)

with an initial condition U(x,0) = u0(x), where a(x, t) is a parameter-dependent
process (see below). At a formal level, this is an immediate consequence of an appli-
cation of the Itô–Ventzell formula; see [54]. Similarly, the value process in the clas-
sical EUM problem satisfies (under appropriate regularity assumptions) the SPDE
(5.1) on the interval [0, T ). However, the equation is then equipped with a terminal
condition U(x,T ) = U(x) and constitutes a backward SPDE; see e.g. [48]. For a
given terminal condition U(x), when recovering the value process from this back-
ward SPDE, the (unique) solution consists of the pair (U(x, t), a(x, t)) which are
both simultaneously obtained. Due to the volatility component a(x, t), there might,
however, exist multiple stochastic terminal conditions for all of which U( · ,0) co-
incide. Put differently, for a given initial condition u0(x), the forward SPDE (5.1)
might have multiple solutions which are catalogued by their volatility a(x, t). In the
forward approach, it is then down to the investor herself to specify this volatility.
In total analogy, within the robust setting and for a fixed penalty function, in order
to specify robust forward criteria uniquely, we expect the need for further conditions.
These could be either on the form of the primal/dual field or on the choice of volatility
structure. We discuss both below.

From the financial perspective, compared with classical utility maximisation, the
forward formulation considers different inputs to the investment problem, for the
standard as well as the robust case. In the classical setup, the investor’s preferences
are fully characterised via the spatial behaviour of the utility function at a future date,
and the rest is derived. In the forward setting, the fixed inputs are the initial condition
u0(x) and the requirement of dynamic consistency. In order to pin down a unique
criterion, the investor then needs to specify additional evolutionary properties of the
utility field.

5.2 A class of logarithmic robust forward criteria

We start by preserving the logarithmic dependence on wealth seen in the main mo-
tivating example in Sect. 2.1. For this, we need to consider nonnegative wealth, and
since our main results were obtained for utility fields defined on the whole real
line, the discussion is formal. A direct computation shows that up to a constant
shift, the dual field corresponding to U given in (2.5) is V (y, t) = − lny + ∫ t

0 bsds

with bs = − 1
2

δs

1+δs
λ̂2

s . We are interested in obtaining similar fields, but with non-zero
quadratic variation. To this end, we assume that V (y, t) admits the representation

V (y, t) = − lny +
∫ t

0
bsds +

∫ t

0
as · dŴs (5.2)
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for some processes (bt ) and (at ) which do not depend on y. Further, we assign to the
measure Q

η (cf. (2.2)) the penalty7

γt,T (Q) := EQ

[∫ T

t

gu(ηu)du

∣

∣

∣

∣

Ft

]

(5.3)

for some g : [0,∞) × � × R
2 → [0,∞] such that gt ( · ) is proper, convex and

lower semicontinuous, and satisfies the coercivity condition gt (η) ≥ −a + b|η|2 for
some constants a and b (cf. (8.6) in [27]). For example, taking gt (η) = |η|2 for
|η| ≤ g, g > 0, and gt (η) = ∞ otherwise ensures that (γt,T ) satisfies8 both As-
sumptions 3.2 and 4.1; a different quadratic penalty was considered in (2.3). We let
Q = ⋂

T >0 Q0,T .
We assume that (λ̂t ) is in P and let Zν

t = E(− ∫

λ̂sdŴ 1
s − ∫

νsdŴ 2
s )t for ν ∈ P .

Note that Ze = {Zν : ν ∈ P and (Zν
t ) is a ̂P-martingale on [0,∞)}. In particular, the

assumption of NFLVR on finite horizons implies that Zν ∈ Ze for νt ≡ 0. Following
Proposition 4.5, in order for the pair (V , γ ) to satisfy (3.2), we expect that for any
Zν ∈ Ze and Q

η ∈ Q, the process

M
ην
t := V (yZν

t /D
η
t , t) +

∫ t

0
gs(ηs)ds (5.4)

is a Q
η-submartingale, and that there are ν∗ and η∗ for which it is a martingale. We

recall that Qη is specified via dQη

d̂P
|Ft = D

η
t , with D

η
t given in (2.2). A straightforward

application of the Itô–Ventzell formula and formal minimisation over νt yields that
in order for (M

ην
t ) to satisfy this condition, the processes (at ) and (bt ) must satisfy

the relation

bt = − inf
η∈R2

(

gt (η) + (η1 + λ̂t )
2

2
+ at · η

)

a.s., t ≥ 0. (5.5)

We see that for a given initial condition and a fixed penalty gt ( · ), a specification
of the volatility process (at ) typically leads to a unique robust forward criterion,
for the drift is then specified via (5.5). In particular, for the choice of at ≡ 0 and
gt (η) = δt |η|2/2, we recover bt = − 1

2
δt

1+δt
λ̂2

t as expected.
Another approach to pin down a unique U might be to consider fields which are

Markovian. For example, within a (Markovian) stochastic factor model, one could
require that U is represented as a deterministic function of the underlying factors.
This function must then solve a specific equation, closely related to the HJB equation
associated with the classical value function within the same factor model. However,
in the forward setting, the equation has to be solved forward in time and is therefore
ill-posed. We refer to [55] for a study of such criteria in a model-specific setup.

7Recall that according to [15], a dynamic penalty function is time-consistent (cf. (4.1)) within a Brownian
filtration if and only if it is representable as in (5.3).
8This follows e.g. from Lemma 3.1 in [31] and the fact that Qt,T is weakly compact if and only if it is

closed in L0; see also the discussion below Assumption 3.2 above.
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5.3 A class of robust forward criteria with zero volatility

In the previous section, we extended the example of Sect. 2.1 by adding a volatil-
ity term – the stochastic integral in (5.2) – to the representation of the primal (or
dual) field. Here, we generalise it in a different direction: we keep zero volatility, but
drop the specific (logarithmic) dependence on wealth. Specifically, considering util-
ity fields defined on R, we are interested in all criteria for which the volatility of the
dual field is identically zero, i.e.,

dV (y, t) = Vt(y, t)dt, t ≥ 0. (5.6)

We refer to this class as non-volatile or time-monotone criteria. For standard forward
criteria, this additional assumption specifies an interesting class of preferences; we
refer the reader to [6, 53] for further details.

Similarly as for the example given in Sect. 5.2, a straightforward application of the
Itô–Ventzell formula and formal minimisation over νt yields that in order for (M

ην
t )

(cf. (5.4)) to be a submartingale for each choice of ν and η, and a martingale at the
optimum, the random convex function V (y, t) must solve the equation

Vt(y, t) + inf
η∈R2

(

gt (η) + y2Vyy(y, t)

2
(η1

t + λ̂t )
2
)

= 0 a.s., t ≥ 0. (5.7)

This is a random PDE, as opposed to the SPDE we obtained before. Note that (5.7)
implies that non-volatile criteria are in fact monotone in time, which justifies the
terminology. We studied an instance of this equation in Sect. 2.1 when the criterion
was both logarithmic and non-volatile; the appropriate form of the criterion (2.5)
could formally be obtained by substituting the dual ansatz V (y, t) = − lny + ∫ t

0 bsds

into either of Eqs. (5.5) or (5.7).
Equation (5.7) might be viewed as a (dual) Hamilton–Jacobi–Bellman equation.

In particular, a verification theorem stating that every well-behaved (convex) solution
to (5.7) constitutes a robust forward criterion might be proved. However, proving
existence or explicitly solving this equation is hard. In order to illustrate this, consider
the case of no model uncertainty, which corresponds to gt (η) = ∞ for η �= 0. Then
Eq. (5.7) reduces to the random equation

Vt(y, t) + λ̂2
t

2
y2Vyy(y, t) = 0 a.s., t ≥ 0. (5.8)

This equation characterises standard non-volatile criteria in a model with market price
of risk (λ̂t ). Equation (5.8), see [6, 53], is closely related to the (ill-posed) backward
heat equation whose solutions only exist for a specific class of initial conditions, as
characterised by Widder’s theorem. We easily see that Eq. (5.7) inherits difficulties
related to the equation being ill-posed, but in addition it is fully nonlinear. Moreover,
we also need to ensure that its solution is adapted.
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5.4 Equivalent standard (non-robust) forward criteria

We conclude with some remarks on the existence of equivalent forward criteria within
a non-robust setting. First, returning to the example in Sect. 2.1, we observe that the
optimal strategy π̄ in (2.4) can be interpreted as the Kelly strategy in an auxiliary
market where λ̄ := λ̂ + η̄1 = δ

1+δ
λ̂, i.e., where the market price of risk the investor

considers most likely is adjusted by her trust in the estimation. This is an instance
of a general phenomenon. Indeed, if a robust forward criterion (U,γ ), with penalty
function given by (5.3), admits a (consistent) saddle point for all t ≤ T < ∞, say
(π̄ , η̄), then this robust criterion produces the same investment strategy as does the
standard forward criterion

Ũ (x, t) := U(x, t) +
∫ t

0
gs(η̄s)ds

specified in a fictitious market with market price of risk λ̄t = λ̂t + η̄1
t for t ≥ 0. In

turn, an application of Bayes’ rule implies that the optimal strategy associated with
this criterion is also optimal for a forward criterion specified in the reference market,
namely

D
η̄
t Ũ (x, t) = D

η̄
t

(

U(x, t) +
∫ t

0
gs(η̄s)ds

)

.

Note that if U(x, t) is a non-volatile criterion, then D
η̄
t Ũ (x, t) is in general volatile

(cf. Theorem 4 in [52] for examples).
For the class of robust forward criteria for which the above formalism can be made

rigorous, the following holds: If the robust forward criterion admits an optimal strat-
egy, then that strategy is optimal also for a specific standard (non-robust) forward
criterion viewed in the reference market. Naturally, the latter criterion is defined in
terms of the optimal (η̄t ), which is part of the solution to the robust problem and not
a priori known. Nevertheless, on a more abstract level, this implies that viewed as
a class of preference criteria, forward criteria can be argued to be “closed” under
the introduction of a certain type of model uncertainty. For a similar conclusion in
terms of the use of different numeraires, see [21, Theorem 2.5] or [20, Sect. 5.1].
An analogous result was proved for stochastic differential utilities in [67]. In both
cases, the results rely on the notions being general enough to allow stochastic prefer-
ences. The advantage of properly formulating robust forward criteria is the resulting
ability to disentangle the impact on the preferences originating from risk and model
ambiguity; see Sect. 2.1. In consequence, the inverse question to the above obser-
vations appears to be of great interest: Under what conditions can a given (volatile
non-robust) forward criterion be written as a non-volatile robust forward criterion
with respect to some non-trivial penalty function?

Finally, we remark that our analysis here, and thus the above discussion, is re-
stricted to measures equivalent to P. Considering absolutely continuous measures
introduces further complexity (cf. [64] for the static case), but should not alter the
main conclusions; see also the remarks in Sect. 3.1. In contrast, considering a larger
set of possibly mutually singular measures would require new insights; see [16, 57].
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6 Proofs

6.1 Proofs of Theorem 3.3 and Proposition 3.4

Throughout Sect. 6.1, we consider a pair (U,γ ) of a utility random field and an
admissible family of penalty functions and the associated dual field V given in (3.1).
Further, we consider the arbitrary but fixed time points 0 ≤ t ≤ T < ∞. We start by
introducing relevant notation from Zitković [69] since we then apply the duality from
there in our proofs; see (6.6) below. Then, in Sect. 6.1.1, we prove conjugacy relations
and existence of a dual optimiser for a specific auxiliary problem. In Sect. 6.1.2,
Theorem 3.3 and Proposition 3.4 are proved via a reduction to this auxiliary problem.

The spaces Lp , p ∈ [0,∞], are defined with respect to (�,FT ,P|FT
); the space

L1 is identified with its image in (L∞)∗ under the isometric embedding of a Banach
space into its bidual.

Let Kt,T := {∫ T

t
πsdSs : π ∈ Abd} and Ct,T := (Kt,T − L0+) ∩ L∞. The optimi-

sation over Kt,T in (2.13) can then be replaced by optimisation over Ct,T . Given
Q ∈ Qt,T and a random variable κ ∈ L∞+ (Ft ) – we typically consider κ = 1A,
A ∈ Ft , and use it to localise arguments to a set –, we then introduce the function

uQκ (ξ) = sup
g∈Ct,T

E[κZ
Q

t,T U(ξ + g,T )], ξ ∈ L∞(Ft ).

Next, let Dt,T := {ζ ∗ ∈ (L∞)∗ : 〈ζ ∗, ζ 〉 ≤ 0 for all ζ ∈ Ct,T }, and for η ∈ L1+(Ft ), let
Dη

t,T := {ζ ∗ ∈ Dt,T : 〈ζ ∗, ξ 〉 = 〈η, ξ 〉 for all ξ ∈ L∞(Ft )}. Recall that according to
Lemma A.4 in [69],

ζ ∗ ∈Dt,T ∩ L1+ if and only if ζ ∗ = ηZt,T , (6.1)

for some η ∈ L1+(Ft ) and Z ∈ Za
T . Note that the proof of this result uses that the mar-

ket satisfies NFLVR on finite horizons. Define the function V
Q
κ :Dt,T → (−∞,∞]

by

V
Q

κ (ζ ∗) :=

⎧

⎪

⎨

⎪

⎩

E[κZ
Q

t,T V (ζ ∗/(κZ
Q

t,T ), T )], ζ ∗ ∈ L1+ and

{ζ ∗ > 0} ⊆ {κ > 0},
∞, otherwise,

(6.2)

and the function v
Q
κ : L1(Ft ) → (−∞,∞] by

vQκ (η) :=
{

infζ ∗∈Dη
t,T

V
Q
κ (ζ ∗), η ∈ L1+(Ft ),

∞, η ∈ L1(Ft ) \ L1+(Ft ).

Finally, we introduce the auxiliary value functions uκ : L∞(Ft ) → (−∞,∞] and
vκ : L1(Ft ) → (−∞,∞] given, respectively, by

uκ(ξ) = sup
g∈Ct,T

inf
Q∈Qt,T

E
[

κ
(

Z
Q

t,T U(ξ + g,T ) + γt,T (Q)
)]
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and

vκ(η) = inf
Q∈Qt,T

(

vQκ (η) + E[κγt,T (Q)]).

6.1.1 Results for the auxiliary value functions uκ and vκ

We establish in this section results for the auxiliary value functions uκ and vκ intro-
duced above. First, we consider the existence of a dual optimiser.

Proposition 6.1 Suppose the assumptions of Proposition 3.4 hold and let η ∈ L1+(Ft ).
Then there exists (ζ̄ ∗, Q̄) ∈Dη

t,T ×Qt,T such that

vκ(η) = V
Q̄

κ (ζ̄ ∗) + E[κγt,T (Q̄)].
Moreover, the function vκ(η) is convex and weakly lower semicontinuous.

Proof First, since η ∈ L1+(Ft ), by definition,

vQκ (η) = inf
ζ ∗∈Dη

t,T

V
Q

κ (ζ ∗), Q ∈Qt,T . (6.3)

In turn, note that if κŨ(x,T ) ∈ L1 for all x ∈ R, where Ũ(x, T ) := Z
Q

t,T U(x,T ),
using Assumption 3.2 allows us to apply Proposition A.3 in [69] to obtain

V
Q

κ (ζ ∗) = sup
ζ∈L∞

(

E[κZ
Q

t,T U(ζ, T )] − 〈ζ ∗, ζ 〉), ζ ∗ ∈ Dη
t,T . (6.4)

On the other hand, recall that for ζ ∗ ∈ Dt,T ∩ L1+ with {ζ ∗ > 0} ⊆ {κ > 0}, by (6.2)
and the fact that V ( · , T ) is the convex conjugate of U( · , T ),

V
Q

κ (ζ ∗) ≥ E
[

κZ
Q

t,T

(

U (ζ,T ) − ζ ∗ζ/κZ
Q

t,T

)] = E[κZ
Q

t,T U(ζ, T )] − 〈ζ ∗, ζ 〉

for all ζ ∈ L∞; for any other ζ ∗ ∈ Dt,T , VQ
κ (ζ ∗) = ∞. Hence if κŨ(x,T ) /∈ L1 for

some x ∈ R, both sides of (6.4) must equal ∞; (6.4) therefore holds for all Q ∈Qt,T .
Next, note that Dη

t,T ⊆ (L∞)∗ is included in a ball of size 〈η,1〉 with respect to the
operator norm, and such balls are weak∗ compact according to the Banach–Alaoglu
theorem. For any net (ζ ∗

α )α∈A in Dη
t,T , where A is some directed set, there thus ex-

ists a subnet, which we still label by (ζ ∗
α )α∈A, converging in the weak∗ topology to

some ζ̄ ∗ ∈ (L∞)∗. Since Dt,T clearly is weak∗ closed, ζ̄ ∗ ∈ Dt,T . Further, since for
any ξ ∈ L∞(Ft ), 〈ζ̄ ∗, ξ 〉 = limα〈ζ ∗

α , ξ 〉 = 〈η, ξ 〉, we have that ζ̄ ∗ ∈ Dη
t,T ; in conse-

quence, Dη
t,T is weak∗ compact. Recall that {ZQ

t,T : Q ∈ Qt,T } is weakly compact by
assumption.

Fix ζ ∈ L∞ and recall that the set {ZQ

t,T U−(ζ, T ) : Q ∈ Qt,T } is uniformly inte-

grable. The set {ZQ

t,T : Q ∈ Qt,T and E[κZ
Q

t,T U(ζ, T )] ≤ c} is convex. Further, using

the above uniform integrability and Fatou’s lemma, it is closed in L1 and hence by
convexity also weakly closed. It follows that Z �→ E[κZU(ζ,T )] is weakly lower
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semicontinuous on the weakly compact set {ZQ

t,T : Q ∈ Qt,T }. Next, ζ ∗ �→ 〈ζ ∗, ζ 〉,
ζ ∈ L∞, is trivially continuous with respect to the weak∗ topology. Since the point-
wise supremum preserves lower semicontinuity, we thus obtain joint lower semicon-
tinuity of the mapping (ζ ∗,ZQ

t,T ) �→ V
Q
κ (ζ ∗) with respect to the product topology

on Dη
t,T × {ZQ

t,T : Q ∈ Qt,T }. Combined with the assumed lower semicontinuity of
the mapping Z �→ E[κγt,T (Z)] (see Definition 2.5), this implies the existence of a
minimiser (ζ̄ ∗, Z̄) for which vκ(η) is attained.

The convexity of vκ(η) follows immediately from the joint convexity of the map-
ping (ζ ∗,Z) �→ V

Z
κ (ζ ∗) + E[κγt,T (Z)] (cf. (6.4)), where we write V

Z
κ = V

Q
κ for

Z = Z
Q

t,T . In order to establish lower semicontinuity of vκ(η), we take a directed

set A and a net (ηα)α∈A in L1+ with ηα → η weakly. By the above, we can pick

(ζ ∗
α ,Z∗

α) ∈ Dηα

t,T × {ZQ

t,T : Q ∈Qt,T } such that vκ(ηα) = V
Qα
κ (ζ ∗

α ) + E[κγt,T (Zα)].
Thanks to the weak compactness of the set of conditional densities, passing to a sub-
net, (ζ ∗

α ,Z∗
α) converges in the product topology to some element (ζ ∗,Z) in the set

Dt,T × {ZQ

t,T : Q ∈ Qt,T }. Since 〈ζ ∗, ξ 〉 = limα〈ηα, ξ 〉 = 〈η, ξ 〉, ξ ∈ L∞(Ft ), it fol-
lows that ζ ∗ ∈ Dη

t,T . The lower semicontinuity of vκ(η) then follows from the joint

lower semicontinuity of the mapping (ζ ∗,Z) �→ V
Z
κ (ζ ∗) + E[κγt,T (Z)] established

above. �

In order to establish the conjugacy relations for uκ and vκ , we first recall a re-
sult from [69]. To this end, take κ ∈ L∞+ (Ft ) and Q ∈ Qt,T and consider the auxil-

iary stochastic utility function Ũ (x, T ) := Z
Q

t,T U(x,T ), x ∈ R, with convex conju-

gate Ṽ (y, T ) = Z
Q

t,T V (y/Z
Q

t,T , T ), y ≥ 0. Suppose that κŨ(x,T ) ∈ L1, x ∈ R, and
that the second part of Assumption 3.2 holds. Then we may apply Propositions A.1
and A.3 in [69] to obtain

uQκ (ξ) = inf
ζ ∗∈Dt,T

(

V
Q

κ (ζ ∗) + 〈ζ ∗, ξ 〉), ξ ∈ L∞(Ft ). (6.5)

According to (6.1), for each ζ ∗ ∈ Dt,T ∩ L1+, there exists η ∈ L1+(Ft ) such that

ζ ∗ ∈Dη
t,T . Combined with the definitions of VQ

κ and v
Q
κ , (6.5) hence implies

uQκ (ξ) = inf
η∈L1+(Ft )

(

vQκ (η) + 〈ξ, η〉), ξ ∈ L∞(Ft ). (6.6)

We now establish the conjugacy relations between uκ and vκ . This result is the
cornerstone in the proof below of the conditional versions in Theorem 3.3. As in pre-
vious works, see e.g. [60, 64, 65], we use a minimax theorem in order to reformulate
the robust problem as the infimum over a class of non-robust criteria. We then apply
duality to each of the inner maximisation problems. Unlike Schied [64], who used
the EUM duality results of Kramkov and Schachermayer [45], we apply the relation
(6.6) to suitably defined stochastic utility fields considered under the fixed reference
measure. This is of technical as well as conceptual importance and makes key use of
Assumption 3.2.
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Proposition 6.2 Suppose that Assumption 3.2 holds and let κ ∈ L∞+ (Ft ). Then for
all ξ ∈ L∞(Ft ) and η ∈ L1+(Ft ), it holds that

uκ(ξ) = inf
η∈L1+(Ft )

(

vκ(η) + 〈ξ, η〉) and vκ(η) = sup
ξ∈L∞(Ft )

(

uκ(ξ) − 〈ξ, η〉).

Proof By exploiting properties (i) and (ii) of Definition 2.5 and the same arguments
as used in the proof of Proposition 6.1 to establish lower semicontinuity of the func-
tion in (6.4), we obtain that for ξ ∈ L∞(Ft ),

Z �→ E
[

κ
(

ZU(ξ + g,T ) + γt,T (Z)
)]

, g ∈ Ct,T ,

is convex and weakly lower semicontinuous on the convex and weakly compact set
{ZQ

t,T : Q ∈ Qt,T }. Moreover, g �→ E[κZ
Q

t,T U(ξ + g)], Q ∈ Qt,T , is concave on the
convex set Ct,T . Hence the assumptions of [24, Thm. 2] are satisfied, and applying
that result yields

uκ(ξ) = sup
g∈Ct,T

inf
Q∈Qt,T

E
[

κ
(

Z
Q

t,T U(ξ + g,T ) + γt,T (Q)
)]

= inf
Q∈Qt,T

sup
g∈Ct,T

E
[

κ
(

Z
Q

t,T U(ξ + g,T ) + γt,T (Q)
)]

= inf
Q∈Qt,T

(

uQκ (ξ) + E[κγt,T (Q)]), (6.7)

where the last equality follows directly from the definition of u
Q
κ .

Next, note that due to concavity, if U(x0, T ) ∈ L1 for some x0 ∈ R, then
U(x,T ) ∈ L1 for all x ∈ R. Now, using the convention inf∅ = ∞, without loss of
generality, we may replace the set Qt,T in (6.7) by

Qκ
t,T := {Q ∈Qt,T : κZ

Q

t,T U(x,T ) ∈ L1, x ∈R}.
In turn, by Assumption 3.2 and the discussion preceding this proof, for each
Q ∈ Qκ

t,T , the conjugacy relation (6.6) applies and we obtain

uκ(ξ) = inf
Q∈Qκ

t,T

(

inf
η∈L1+(Ft )

(

vQκ (η) + 〈ξ, η〉) + E[κγt,T (Q)]
)

= inf
η∈L1+(Ft )

(

inf
Q∈Qκ

t,T

(

vQκ (η) + E[κγt,T (Q)]) + 〈ξ, η〉
)

= inf
η∈L1+(Ft )

(

vκ(η) + 〈ξ, η〉);

indeed, to see the last equality, recall that v
Q
κ (η), η ∈ L1+(Ft ), is given by (6.3) with

V
Q
κ admitting the representation (6.4), which implies that Qκ

t,T may be replaced by
Qt,T in the second line above.

To establish that vκ is also the convex conjugate of uκ , it now suffices to argue
that vκ is convex and weakly lower semicontinuous, which follows from Proposi-
tion 6.1. �
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6.1.2 Proof of Theorem 3.3 and Proposition 3.4

We are now ready to prove the main results of Sect. 3.1. Our setting is dynamic,
which in this generality appears novel even in the context of the classical robust EUM;
compare e.g. Schied [64]. We proceed by reducing the conditional formulations to the
auxiliary problem studied in Sect. 6.1.1. This is done with the help of the following
lemma which uses crucially that our penalty functions satisfy condition (2.11). For
κ ∈ L∞+ (Ft ) and ξ ∈ L∞(Ft ), we define

Jκ,ξ (Q, g) := κE[ZQ

t,T U(ξ + g,T )|Ft ] + κγt,T (Q), g ∈ Ct,T ,Q ∈Qt,T .

Lemma 6.3 Suppose that Assumption 3.2 holds. Given κ ∈ L∞+ (Ft ), ξ ∈ L∞(Ft )

and g ∈ Ct,T , it then holds that

E

[

ess inf
Q∈Qt,T

Jκ,ξ (Q, g)

]

= inf
Q∈Qt,T

E[Jκ,ξ (Q, g)].

Proof The inequality “≤” is trivial. To show “≥”, define J (Q) := Jκ,ξ (Q, g) for
Q ∈ Qt,T . It suffices to argue that the set {J (Q) : Q ∈ Qt,T } is downward directed
because by Neveu [56, Proposition VI.1.1], there is then a sequence (Qn) ⊆ Qt,T

such that (J (Qn)) decreases to ess infQ∈Qt,T
J (Q). The result then follows by using

monotone convergence. To argue the directedness, let Q1, Q2 ∈ Qt,T , define the set
A := {J (Q1) ≤ J (Q2)} ∈ Ft and let the measure Q̄ be given by

dQ̄

dP|FT

:= 1AZ
Q1
t,T + 1AcZ

Q2
t,T .

Using property (2.11), we have γt,T (Q̄) = 1Aγt,T (Q1) + 1Acγt,T (Q2). So Q̄ ∈ Qt,T

and J (Q̄) = min{J (Q1), J (Q2)} a.s. In consequence, the set {J (Q) :Q ∈Qt,T } is
closed under minimisation and thus downward directed. �

First, we establish the existence of a dual optimiser.

Proof of Proposition 3.4 Recall that η ∈ L1+(Ft ) is fixed and define

κ := (

max{1, v(η; t, T )})−1 ∈ L∞(Ft ).

Note that κ has values in [0,1] and without loss of generality, we may assume
that {κ > 0} �= ∅. Further, we have vκ(κη) < ∞; indeed, by using Proposition 6.2,
Lemma 6.3 and the weak duality between u( · ; t, T ) and v( · ; t, T ) (cf. (6.10) be-
low), we obtain

vκ(κη) = sup
ξ∈L∞(Ft )

(

uκ(ξ) − 〈ξ, κη〉)

≤ sup
ξ∈L∞(Ft )

E[κu(ξ ; t, T ) − ξκη] ≤ E[κv(η; t, T )] ≤ 1.
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According to Proposition 6.1, vκ(κη) is attained for some pair (ζ̄ ∗, Q̄) ∈Dκη
t,T ×Qt,T .

Further, since vκ(κη) < ∞, we have V
Q̄
κ (ζ̄ ∗) < ∞ and thus it follows from (6.2) that

ζ̄ ∗ ∈ L1+. So ζ̄ ∗ ∈ Dκη
t,T ∩ L1+, and according to (6.1), there exists Z̄ ∈ Za

T such that

ζ̄ ∗ = κηZ̄t,T . We now argue that the pair (Z̄, Q̄) attains the essential infimum in (3.2).
By way of contradiction, suppose that there exist ε > 0, a pair (Z′,Q′) ∈ Za

T ×Qt,T

and a set B ∈Ft with P[B] > 0 such that on B ,

EQ
′
[

V

(

η
Z′

t,T

Z
Q′
t,T

, T

)∣

∣

∣

∣

Ft

]

+ γt,T (Q′) + ε < EQ̄

[

V

(

η
Z̄t,T

Z
Q̄

t,T

, T

)∣

∣

∣

∣

Ft

]

+ γt,T (Q̄).

(6.8)
Define now ζ̃ ∗ ∈ L1+ via ζ̃ ∗ := κη(Z′

t,T 1B + Z̄t,T 1Bc); then ζ̃ ∗ ∈ Dκη
t,T . Similarly,

define Q̃ ∈ Qt,T via dQ̃
dP|FT

:= 1BZ
Q

′
t,T + 1BcZ

Q̄

t,T . Multiplying (6.8) by κ , taking

expectations on both sides – noticing that B ⊆ {κ > 0} – and applying property (2.11),
we then obtain

V
Q̃

κ (ζ̃ ∗) + E[κγt,T (Q̃)] − εP[B] ≤ V
Q̄

κ (ζ̄ ∗) + E[κγt,T (Q̄)],
which contradicts the choice of (ζ̄ ∗, Q̄) as the minimiser. �

We now turn to Theorem 3.3. The proof proceeds by assuming that the conditional
conjugacy relations do not hold; taking expectations and applying Proposition 6.2 and
Lemma 6.3, we then obtain a contradiction which allows us to conclude.

Proof of Theorem 3.3 First, we consider assertion (3.4). In order to verify that the
(weak) inequality “≤” holds, note that we trivially have the inequality

u(ξ ; t, T ) ≤ ess inf
Q∈Qt,T

(

ess sup
g∈Ct,T

EQ[U(ξ + g,T )|Ft ] + γt,T (Q)

)

. (6.9)

Since EQ[g] ≤ 0 for all Q ∈ Ma
T , g ∈ Ct,T and U(x,T ) ≤ V (y,T ) + xy a.s. for all

x ∈ R, y ≥ 0, it follows immediately from (6.9) that for all η ∈ L0+(Ft ),

u(ξ ; t, T ) ≤ ess inf
Q∈Qt,T

(

ess inf
Z∈Za

T

EQ[V (ηZt,T /Z
Q

t,T , T )|Ft ] + ξη + γt,T (Q)

)

= v(η; t, T ) + ξη. (6.10)

Next, we argue that the inequality “≥” holds in (3.4) with the infimum on the right-
hand side taken over L1+(Ft ); since L1+(Ft ) ⊆ L0+(Ft ), this trivially yields the claim.
So assume to the contrary that there exist ξ ∈ L∞(Ft ), ε > 0 and A ∈ Ft with
P[A] > 0 such that

ess inf
Q∈Qt,T

(

EQ[U(ξ + g,T )|Ft ] + γt,T (Q)
) + ε1A

≤ EQ[V (ηZt,T /Z
Q

t,T , T )|Ft ] + γt,T (Q) + ξη
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for all g ∈ Kt,T , Z ∈ Za
T , Q ∈ Qt,T and η ∈ L1+(Ft ). Observe that u(ξ ; t, T ) < ∞

a.s. on A and without loss of generality, we may assume that there is M < ∞ such
that u(ξ ; t, T ) ≤ M a.s. on A. Multiplying the latter inequality by κ = 1A, taking
expectations on both sides and applying Lemma 6.3, we then obtain

inf
Q∈Qt,T

E
[

κ
(

Z
Q

t,T U(ξ + g,T ) + γt,T (Q)
)] + εP[A]

≤ E

[

κZ
Q

t,T V

(

η

κ

Zt,T

Z
Q

t,T

, T

)]

+ E[κγt,T (Q)] + E
[

κξη
]

for any η ∈ L1+ and Z ∈ Za
T such that {ηZt,T > 0} ⊆ A. According to (6.1), we

have that for every ζ ∗ ∈ Dη
t,T ∩ L1+ with η ∈ L1+(Ft ), there exists Z ∈ Za

T such that
ζ ∗ = ηZt,T . Using this and taking the supremum over g ∈ Kt,T , we deduce that

uκ(ξ) + εP[A] ≤ V
Q

κ (ζ ∗) + E[κγt,T (Q)] + 〈ξ, η〉
for all η ∈ L1+(Ft ), Q ∈ Qt,T and ζ ∗ ∈ Dη

t,T ∩ L1+ with {ζ ∗ > 0} ⊆ A. Therefore, for

any η ∈ L1+(Ft ) and Q ∈ Qt,T , the above inequality holds for all ζ ∗ ∈ Dη
t,T . Indeed,

if ζ ∗ /∈ L1+ or {ζ ∗ > 0}� A, then it holds that VQ
κ (ζ ∗) = ∞ (cf. (6.2)). Hence,

uκ(ξ) + εP[A] ≤ vQκ (η) + E[κγt,T (Q)] + 〈ξ, η〉
for all η ∈ L1+(Ft ) and Q ∈ Qt,T . In turn, since uκ(ξ) ≤ M < ∞ due to the above
choice of κ , we obtain

uκ(ξ) < uκ(ξ) + εP[A] ≤ inf
η∈L1(Ft )

(

vκ(η) + 〈ξ, η〉),

which according to Proposition 6.2 yields the required contradiction.
Next, we turn to relation (3.5). Note that assertion (3.4) implies that for any

η ∈ L0+(Ft ) and ξ ∈ L∞(Ft ), we have v(η; t, T ) ≥ u(ξ ; t, T ) − ξη. Hence the in-
equality “≥” follows directly. For η ∈ L1+(Ft ), the reverse inequality follows by
similar arguments as above, specifically, by arguing by contradiction and applying
Lemma 6.3 and Proposition 6.2. In turn, for η ∈ L0+(Ft ) and A ∈Ft ,

1AEQ[V (ηZt,T /Z
Q

t,T , T )|Ft ] = 1AEQ[V (1AηZt,T /Z
Q

t,T , T )|Ft ]
for any Q ∈ Qt,T and Z ∈ Za

T ; it follows from the definition of v( · ; t, T ) that
1Av(η; t, T ) = 1Av(1Aη; t, T ) a.s. For an arbitrary η ∈ L0+(Ft ), we may then
define An := {η ≤ n} and ηn := η1An ∈ L1+(Ft ), n ∈ N. By using the identity
1Anv(η; t, T ) = 1Anv(ηn; t, T ) and applying (3.5) to ηn, we then obtain that (3.5)
holds for η on An for any n ∈ N. Since η takes finite values a.s., we thus obtain that
(3.5) holds a.s. �

6.2 Proof of Propositions 4.2, 4.4 and 4.5

In order to prove the results in Sect. 4, we first establish two lemmas. Throughout
this section, we write γ0,t (Q) := γ0,t (Q|Ft

) for Q ∈ Q0,T .
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Lemma 6.4 Let (U,γ ) be a pair of a utility random field and an admissible family
of penalty functions with associated dual field V . Given T > 0, let v(x; t, T ) be the
corresponding dual value field. Suppose that the infimum in (3.2) is attained for any
t ≤ T and η ∈ L1+(Ft ), and that either Assumption 4.1 holds or (4.1) holds and

v−(ζ ; t, T ) ∈ L1(Ft ;Q) for ζ ∈ L0(Ft ) and Q ∈ Q̃0,T , t ≤ T . Then the pair (v, γ )

is dynamically consistent on the interval [0, T ].

Proof Let 0 ≤ s < t < T < ∞ and take η ∈ L1+(Fs), Z ∈ Za
t and Q ∈ Qs,t .

By using similar arguments as in the proof of Lemma 6.3, we obtain that the
optimisation set in (3.3) is downward directed, and so there exists a sequence
(Zn,Qn) ⊆ Za

T ×Qt,T such that the objective function evaluated at (Zn,Qn), n ∈N,

decreases to v(ηZs,t /Z
Q

s,t ; t, T ). By using monotone convergence, we then obtain

EQ

[

v

(

η
Zs,t

Z
Q

s,t

; t, T
)∣

∣

∣

∣

Fs

]

+ γs,t (Q)

= EQ

[

lim
n→∞

(

E
[

Z
Q

n

t,T V
(

η
Zs,t

Z
Q

s,t

Zn
t,T

Z
Qn

t,T

, T
)∣

∣

∣Ft

]

+ γt,T (Z
Q

n

t,T )

)∣

∣

∣

∣

Fs

]

+ γs,t (Q)

= lim
n→∞ E

[

Z
Q

s,tZ
Q

n

t,T V

(

η
Zs,tZ

n
t,T

Z
Q

s,tZ
Qn

t,T

, T

)∣

∣

∣

∣

Fs

]

+ γs,T (Z
Q

s,tZ
Q

n

t,T )

≥ v(η; s, T ), (6.11)

where we used that E[ZtZ
n
t,T |Fu], u ≤ T , belongs to Za

T and that Q̄ ∈ Qs,T for
dQ̄

dP|FT
= Z

Q

t Z
Q

n

t,T . Indeed, (4.2) yields immediately that Q̄ ∈ Qs,T . For the case when

(4.1) holds and v−(ζ ; s, T ) ∈ L1(FT ; Q̄) for ζ ∈ L0(FT ), the fact that v(η; s, t)
is finite implies without loss of generality that EQ[γt,T (Qn)|Fs] < ∞, and thus
Q̄ ∈ Qs,T .

Next, let Z ∈ Za
T and Q ∈ Qs,T be optimal objects for which the infimum in

v(η; s, T ) is attained. From (4.1) we deduce that Q ∈ Qt,T and Q|Ft
∈Qs,t . It follows

that

v(η; s, T ) = E

[

Z
Q

s,T V

(

η
Zs,T

Z
Q

s,T

, T

)∣

∣

∣

∣

Fs

]

+ γs,T (Z
Q

s,T )

= E

[

Z
Q

s,t

(

E
[

Z
Q

t,T V
(

η
Zs,t

Z
Q

s,t

Zt,T

Z
Q

t,T

, T
)∣

∣

∣Ft

]

+ γt,T (Z
Q

t,T )

)∣

∣

∣

∣

Fs

]

+ γs,t (Q)

≥ E

[

Z
Q

s,t v

(

η
Zs,t

Z
Q

s,t

; t, T
)∣

∣

∣

∣

Fs

]

+ γs,t (Q)

≥ v(η; s, T ), (6.12)

where the last inequality is due to (6.11). Hence equality must hold throughout. Fi-
nally, the fact that property (3.2) must hold also for η ∈ L0+(Fs) follows by the same
arguments as used at the end of the proof of Theorem 3.3. �
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Lemma 6.5 Let (U,γ ) be a pair of a utility random field and an admissible family of
penalty functions satisfying (4.1). Let V be the associated dual field, and suppose that
the infimum in (3.2) is attained for t ≤ T < ∞ and η ∈ L1+(Ft ). Then the following
two statements are equivalent:

(i) The pair (V , γ ) satisfies (3.2) for all t ≤ T < ∞ and η ∈ L0+(Ft ).
(ii) For any s > 0 and η ∈ L1+(Fs), it holds for all s ≤ t ≤ T < ∞ that

V (ηZs,t /Z
Q

s,t , t) ≤ EQ[V (ηZs,T /Z
Q

s,T , T )|Ft ] + γt,T (Q) (6.13)

for all Q ∈ Qt,T and Z ∈ Za
T ; moreover, for any T̄ > s, there are Q̄ ∈ Qs,T̄ and

Z̄ ∈Za

T̄
such that (6.13) holds with equality for all s ≤ t ≤ T ≤ T̄ .

Furthermore, if either (a) Q0,T = Q̃0,T , T > 0, or9 (b) for any T > 0 and
ζ ∈ L0(FT ), we have V −(ζ, T ) ∈ L1(FT ;Q) for all Q ∈ Q̃0,T , then (i) and (ii) are
equivalent to the following condition:

(iii) For any s > 0 and η ∈ L1+(Fs), for all s ≤ t ≤ T < ∞, (6.13) holds for all
Q ∈ Qt,T and Z ∈ Za

T ; moreover, there exist a process Z ∈ Za and a sequence
of measures Q

i ∈ Qs,Ti
, i ∈ N, Ti+1 − Ti > i and T1 > s, with Q

i = Q
i+1|FTi

and such that for all s ≤ t ≤ T < ∞, (6.13) holds with equality for (Z,QT ),
where QT := Q

i |FT
∈Qs,T , T ≤ Ti .

Proof 10 In order to argue that (ii) implies (i), note that an application of (6.13) with
s ≡ t immediately yields that the pair (V , γ ) satisfies (3.2) for all t ≤ T < ∞ and
η ∈ L1+(Ft ); the extension to η ∈ L0+(Ft ) then follows by the same arguments as in
the proof of Theorem 3.3.

To show that (i) implies (ii), let s > 0 and η ∈ L1+(Fs). For s ≤ t ≤ T < ∞,

Z ∈Za
T and Q ∈Qt,T , applying (3.2) with η replaced by ηZs,t /Z

Q

s,t then yields

V (ηZs,t /Z
Q

s,t , t) = ess inf
Q̃∈Qt,T

ess inf
Z̃∈Za

T

(

EQ̃

[

V

(

η
Zs,t Z̃t,T

Z
Q

s,tZ
Q̃

t,T

, T

)∣

∣

∣

∣

Ft

]

+ γt,T (Q̃)

)

≤ EQ[V (ηZs,T /Z
Q

s,T , T )|Ft ] + γt,T (Q),

which implies the inequality (6.13).
Next, let T̄ > s and let Z̄ ∈ Za

T̄
and Q̄ ∈ Qs,T̄ be the optimal objects for which

v(η; s, T̄ ) is attained. Since Q̄ ∈ Qs,T̄ , we have that Q̄|FT
∈ Qs,T and Q̄ ∈ QT ,T̄ .

9Condition (b) holds e.g. if U(x,T ) ∈ L1(FT ,Q) for all Q ∈ Q̃0,T .
10In a previously circulated preprint version of this paper, (6.13) was stated only with s = 0 and
η = y ∈ R+. Using regular conditional expectations and convexity, (6.13) then extends to s = 0 and
η ∈ L0+(Ft ) and the inequality “≤” in (3.2) then follows. However, our arguments to deduce equality
in (3.2) were erroneous. Ignoring for simplicity the question of model uncertainty, knowing for y > 0 that
there exists some Zy for which (V (yZ

y
t , t)) is a martingale allows one to deduce that (3.2) holds with

equality for any η of the form η = yZ
y
t , y > 0; but it is not clear why in all generality, this should then

extend to η ∈ L1+(Ft ). Similar comments apply also to the statement and proof of Theorem 3.14 in [69].
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In turn, using that (V , γ ) is self-generating (cf. (3.2)) and performing a calculation
similar to the one in (6.12) (which then holds with equalities throughout), we obtain
that v(η; s, T ) is attained for Z̄s,T and Q̄|FT

, when T ≤ T̄ . We now claim that for
s ≤ t ≤ T ≤ T̄ , (6.13) holds as equality for Z̄ and Q̄. Indeed, suppose contrary to the
claim that there exist ε > 0 and A ∈Ft with P[A] > 0 such that

V (ηZ̄s,t /Z
Q̄

s,t , t) + ε1A ≤ EQ̄[V (ηZ̄s,T /Z
Q̄

s,T , T )|Ft ] + γt,T (Q̄).

Taking expectations under Q̄ and using (4.1) combined with the fact that v(η; s, t)
and v(η; s, T ) are attained by (Z̄s,t , Q̄|Ft

) and (Z̄s,T , Q̄|FT
), we then obtain a con-

tradiction to the identity v(η; s, t) = v(η; s, T ) a.s.
Assertion (iii) trivially implies (ii). Hence, it only remains to show that (i) im-

plies (iii). To this end, let s < T1 < T2 and let (Z1,Q1) ∈Za
T1

×Qs,T1 be an argument
for which v(η; s, T1) is attained. In turn, let (Z∗,Q∗) ∈ Za

T2
×Qs,T2 be an argument

for which v(η; s, T2) is attained and define Z2 and Q
2 by

dQ2

dP|FT2

:= Z
Q

1

T1
Z
Q

∗
T1,T2

, Z2
u := E[Z1

T1
Z∗

T1,T2
|Fu], u ≤ T2.

We next show that also (Z2,Q2) attains the infimum in v(η; s, T2). To this end, recall
first from the proof of “(i) ⇒ (ii)” that v(η; s, T1) is attained for (Z∗

s,T1
,Q∗|FT1

).
Further, note that due to the strict convexity of V ( · , t,ω), (t,ω) ∈ [0,∞) × �, we
have for any z0, z1, y0, y1 ∈ (0,∞) that

z0 + z1

2
V

( 1
2 (y0 + y1)

1
2 (z0 + z1)

, T1,ω

)

≤ 1

2
z0V

(

y0

z0
, T1,ω

)

+ 1

2
z1V

(

y1

z1
, T1,ω

)

,

and the inequality is strict whenever y0
z0

�= y1
z1

; see [65, Eq. (21)]. In consequence, we

must have Z1
s,T1

/Z
Q

1

s,T1
= Z∗

s,T1
/Z

Q
∗

s,T1
a.s. Second, using that (V , γ ) is self-generating

(cf. (3.2)) and the fact that Q∗ ∼ P, performing a similar calculation as in (6.12)
(which then holds with equalities throughout), we obtain that v(ηZ∗

s,T1
/Z

Q
∗

s,T1
;T1, T2)

is attained for (Z∗,Q∗). Combining the above two facts and using once again that
(V , γ ) is self-generating, we obtain

EQ
2
[

V

(

η
Z2

s,T2

Z
Q2

s,T2

, T2

)∣

∣

∣

∣

Fs

]

+ γs,T2(Q
2)

= EQ
1
[

EQ
∗[

V
(

η
Z1

s,T1

Z
Q1

s,T1

Z∗
T1,T2

Z
Q∗
T1,T2

, T2

)∣

∣

∣FT1

]

+ γT1,T2(Z
Q

∗
T1,T2

)

∣

∣

∣

∣

Fs

]

+ γs,T1(Q
1)

= EQ
1
[

V

(

η
Z1

s,T1

Z
Q1

s,T1

, T1

)∣

∣

∣

∣

Fs

]

+ γs,T1(Q
1)

≥ v(η; s, T1) = v(η; s, T2),
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and thus v(η; s, T2) is attained for (Z2,Q2); the fact that Q2 ∈ Q0,T2 is immediate
under the full Assumption 4.1, and follows by similar arguments as in Lemma 6.4 un-
der the assumption (b). We note that (Z2,Q2) was constructed so that Z1

T1
= Z2

T1
and

Q
1 = Q

2|FT1
, and that for any s < T < T2, v(η; s, T ) is attained for Z2

s,T and Q
2|FT

.
For any sequence s < T1 < T2 < · · · , a repetition of the above pasting proce-

dure yields a process Z ∈ Za and a sequence of measures Q
i ∈ Qs,Ti

, i ∈ N, with
Q

i = Q
i+1|FTi

, such that for all T > s, v(η; s, T ) is attained for (Zs,T ,QT ) with

QT := Q
i |FT

∈Qs,T for T ≤ Ti . In turn, applying again the same arguments as used
to show that (i) implies (ii), we obtain that for any s ≤ t ≤ T < ∞, (6.13) holds with
equality for (Z,QT ). Hence (iii) holds and we conclude. �

We now argue that the results in Sect. 4 follow from the above lemmas. First, while
Theorem 3.3, Proposition 3.4 and Lemma 6.4 readily yield Proposition 4.2, Proposi-
tion 4.5 follows from combining Theorem 3.3 and Proposition 3.4 with Lemma 6.5.

Next, we establish Proposition 4.4. To this end, without loss of generality, let t = 0
and x ∈ R. Recall that u( · ;0, T ) and v( · ;0, T ) satisfy the conjugacy relations (see
Theorem 3.3) and let y∗ > 0 be the value for which the infimum in (3.4) is attained;
y∗ is independent of T since u(x;0, T ) = U(x,0), T ≥ 0. By the same arguments as
in the proof of Lemma 6.5 (cf. “(i) ⇒ (iii)”), it follows that there exist Z ∈ Za and
a positive martingale Yt , t ≥ 0, such that for T ≥ 0, QT ∈ Q0,T with dQT

dP|FT
:= YT ,

and v(y∗;0, T ) is attained for ZT and QT . Due to the conjugacy relations and the
existence of a saddle point, it follows (see e.g. the proof of Theorem 2.6 in [64]) that

u(x;0, T ) = sup
π∈A

EQT

[

U

(

x +
∫ T

0
πsdSs, T

)]

+ γ0,T (QT ), T > 0,

and that the supremum on the right-hand side is attained for

X̄T = − V ′(y∗ZT /YT ,T ), T > 0.

The latter implies that X̄T = x − ∫ T

0 dFt with Ft := V ′(y∗Zt/Yt , t). In consequence,

π̄
0,T
0 = π̄

0,T̄
0 , 0 ≤ T ≤ T̄ . To argue that π

t,T
u (ξ) = π

u,T
u (ξ + ∫ u

t
π

t,T
s dSs), t ≤ u ≤ T ,

assume contrary to the claim that there exist ε > 0 and A ∈ Fu with P [A] > 0 such
that

EQT

[

U

(

x +
∫ T

0
π̄0,T

s dSs, T

)∣

∣

∣

∣

Fu

]

+ γu,T (QT ) + ε1A

≤ u

(

x +
∫ u

0
π̄0,T

s dSs;u,T

)

. (6.14)

Taking expectations under Qu, using that (U,γ ) satisfies (2.12) and that (4.1) holds
then yields

EQT

[

U

(

x +
∫ T

0
π̄0,T

s dSs, T

)]

+ γ0,T (QT )

< EQu

[

U

(

x +
∫ u

0
π̄0,T

s dSs, u

)]

+ γ0,u(Qu),
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which gives the contradiction u(x;0, T ) < u(x;0, u). Similarly, assuming the reverse
strict inequality in (6.14) also gives a contradiction and we conclude. �

6.3 Proof of Propositions 2.1 and 2.2

Proof of Proposition 2.1 Let 0 ≤ t ≤ T < ∞ be fixed. Throughout the proof, we

write Ŵs = Ŵ 1
s . To alleviate the notation, let Ls = ∫ s

0 λ̂udŴu and Ms = ∫ s

0
λ̂u

1+δu
dŴu.

Recall that Ê[eκ〈L〉T ] < ∞, κ > 1/2. Take p, p̃ > 1 such that p2p̃2 ≤ 2κ and, with
1
p

+ 1
q

= 1 = 1
p̃

+ 1
q̃

, such that q̃(
p2p̃

2 − p
2 ) = pp̃(pp̃−1)

2(p̃−1)
≤ κ . We then have

Eη̄

[∫ T

0
λ̂2

s ds

]

= Ê[Dη̄
T 〈L〉T ]

≤ Ê[(Dη̄
T )p] 1

p Ê[〈L〉qT ] 1
q

≤ Ê
[

e−pp̃MT − p2p̃2

2 〈M〉T ] 1
pp̃ Ê

[

eκ〈M〉T ] 1
pq̃ Ê[〈L〉qT ] 1

q ,

which is finite. More precisely, out of the three factors, the first is equal to one and
the other two are finite, as is easily seen using Novikov’s condition, the fact that
〈M〉T ≤ 〈L〉T and the assumed integrability of 〈L〉T . It follows that γt,T (Qη̄) < ∞
and hence Q

η̄ ∈Qt,T . Next, let

Nπ,η
u := U(Xπ

u ,u) +
∫ u

t

δs

2
|ηs |2ds, u ≥ t.

It then suffices to show that we have Eη̄[Nπ,η̄
T |Ft ] ≤ N

π,η̄
t for all π ∈ Ax

t , and that

Eη[Nπ̄,η
T |Ft ] ≥ N

π̄,η
t for all Qη ∈Qt,T . For simplicity, and without loss of generality,

we establish the claim for t = 0. For π ∈Ax
0 , the wealth process then satisfies

dXπ
s = πsσsSs

(

(λ̂s + η1
s )ds + dWη

s

)

, s ≤ T ,Xπ
0 = x, (6.15)

where Wη is a Brownian motion under Qη . Due to the form of U and π̄ , a straight-
forward application of Itô’s lemma yields

dNπ̄,η
s = δs

1 + δs

λ̂s

(

(λ̂s + η1
s )ds + dWη

s

) − 1

2

(

δs

1 + δs

λ̂s

)2

ds

−1

2

δs

1 + δs

λ̂2
s ds + δs

2

(

(η1
s )

2 + (η2
s )

2)ds

= δs

1 + δs

λ̂sη
1
s ds + 1

2

δs

(1 + δs)2
λ̂2

s ds + δsλ̂s

1 + δs

dWη
s + δs

2

(

(η1
s )

2 + (η2
s )

2)ds

= δs

2

(

( λ̂s + (1 + δs)η
1
s

1 + δs

)2 + (η2
s )

2
)

ds + δs

1 + δs

λ̂sdWη
s .

Note that δs/(1 + δs) is in (0,1) and thus, by the definition of γ in (2.3), we deduce
that the process

∫ ·
0

δs

1+δs
λ̂sdW

η
s is a martingale under Qη . It follows that Nπ̄,η is a
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submartingale for all Qη ∈ Q0,T , and a martingale for η̄ as specified in (2.4). On the
other hand, it holds that

N
π,η̄
T = U(Xπ

T ,T ) +
∫ T

0

δs

2
(η̄s)

2ds = lnXπ
T − 1

2

∫ T

0

δsλ̂
2
s

1 + δs

− δs λ̂
2
s

(1 + δs)2
ds

= lnXπ
T − 1

2

∫ T

0

(

δs

1 + δs

λ̂s

)2

ds = lnXπ
T − 1

2

∫ T

0
(λ̂s + η̄1

s )
2ds.

Since EQ
η̄ [lnXπ

T ] ≤ EQ
η̄ [lnXπ̄

T ] for any strategy π ∈ Ax
0 , we conclude that

EQ
η̄ [Nπ,η̄

T ] ≤ EQ
η̄ [lnXπ̄

T ] − EQ
η̄

[

1

2

∫ T

0
(λ̂s + η̄1

s )
2ds

]

= lnx = N0,

where the equality follows by a direct computation (see also [39, Example 10.1]). �

Proof of Proposition 2.2 Fix 0 ≤ t ≤ T < ∞. Note that by definition, Qη̄ ∈ Qt,T .
It suffices to show that π̄ ∈ Ax

t ; that U(Xπ̄
u ,u), u ∈ [t, T ], is a submartingale under

any Q
η ∈ Qt,T ; and that for any π ∈ Ax

t , U(Xπ
u ,u), u ∈ [t, T ], is a supermartingale

under Qη̄. Without loss of generality, we let t = 0; we also define λ
η
s := λ̂s + η1

s and
write Ŵs = Ŵ 1

s .
First note that for any strategy π ∈Ax

0 , recalling the form of U from (2.9) and the
wealth dynamics from (6.15), we have

U(Xπ
s , s) = −e−axE

(

− a

∫ s

0
πuσuSudWη̄

u

)

exp

(

1

2

∫ s

0
(λη̄

u − aπuσuSu)
2du

)

,

where Wη̄ is a Brownian motion under Q
η̄ . Using the properties imposed on the

set Ax
0 of admissible strategies, we obtain that the Doléans-Dade exponential in the

above expression is a martingale under any Q
η ∈ Q0,T . In particular, for any π ∈ Ax

0 ,
the process U(Xπ· , · ) is a supermartingale on [0, T ] under Qη̄ .

Next, recall the form of the strategy π̄ from (2.8); it is clearly adapted. Using
the notation L· = ∫ ·

0 λ̂udŴu and M
η· = ∫ ·

0 η1
udŴu, we notice that 〈Mη〉T ≤ 〈L〉T ,

and thus it follows by the same arguments as in the proof of Proposition 2.1 that
Eη[∫ T

0 (λ
η̄
u)

2du] ≤ Eη[〈L〉T ] < ∞ for any η1 with Q
η ∈ Q0,T ; in particular, Xπ̄ is

thus well defined. Recalling again the form of U from (2.9) and the dynamics of the
wealth process from (6.15), we then note that for any η with Q

η ∈Q0,T ,

U(Xπ̄
s , s) = −e−axE

(

−
∫ s

0
λη̄

udWη
u

)

exp

(

−
∫ s

0
λη̄

u(λ
η
u − λη̄

u)du

)

,

where Wη is a Brownian motion under Qη . Using that 0 ≤ λ
η̄
s ≤ λ

η
s , that the Doléans-

Dade exponential of a local martingale is again a local martingale, and that any non-
positive local martingale with integrable initial value is a submartingale, we thus
obtain that U(Xπ̄· , · ) is a submartingale on [0, T ] under any Q

η ∈Q0,T .
Finally, to verify that π̄ is indeed in Ax

0 , it only remains to argue that we have

Eη[e 1
2

∫ T
0 (λ

η̄
u)2du] < ∞ for any Q

η ∈Q0,T . Since
∫ ·

0(λ
η̄
u)

2du ≤ 〈L〉·, it suffices to argue
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that Eη[e 1
2 〈L〉T ] < ∞. To this end, recall that Ê[e2〈L〉T ] < ∞. With p = q = 2, we then

have

Eη
[

e
1
2 〈L〉T ] = Ê

[

eM
η
T − 1

2 〈Mη〉T + 1
2 〈L〉T ]

≤ Ê
[

epM
η
T − 1

2 p2〈Mη〉T ] 1
p Ê

[

e
q
2 (p−1)〈Mη〉T + q

2 〈L〉T ] 1
q

≤ Ê
[

epM
η
T − 1

2 p2〈Mη〉T ] 1
p Ê

[

e
qp
2 〈L〉T ] 1

q ,

which is finite since the first of the two factors is equal to one and the second one is
finite, as can be seen by applying Novikov’s condition, the fact that 〈Mη〉T ≤ 〈L〉T
and the assumed integrability of 〈L〉T . �
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