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https://doi.org/10.1007/s00780-007-0059-z

I should like to thank Ralf Korn for alerting me to an error in the original paper [2].
The error concerns the threshold at which the yield curve in an affine short rate model
changes from normal (strictly increasing) to humped (endowed with a single maxi-
mum). In particular, it is not true that this threshold is the same for the forward curve
and for the yield curve, as claimed in [2]. Below, the correct mathematical expression
for the threshold is given, supplemented with a self-contained and corrected proof.

1 Setting

In [2], affine short rate models for bond pricing were considered, i.e., models where
the risk-neutral short rate process r = (r;);>0 is given by an affine process in the sense
of [1]. The process r takes values in a state space D, which is either [0, co) or R. In
this setting, the price at time ¢ of a zero-coupon bond with time to maturity x, denoted
by P(t,t + x), is of the form

P(t,t 4 x) =exp (A(x) + r;B(x)),
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where A and B satisfy the generalized Riccati differential equations

0. A(x) = F(B()), A(0) =0, i
3 B(x) = R(B(x)) — 1, B(0) =0. (b

The functions F and R are of Lévy—Khintchine form and their parametrization is
in one-to-one correspondence with the infinitesimal generator of r; cf. [2, Sect. 2].
Derived from the bond price are the yield curve

Y(ror) = _log P(tx, t+x) _ _A)(Cx) . Bix)

and the forward curve
f, ) :=—0clogP(t,t +x)=—A'(x) —r, B (x).

The first objective of [2] was to derive the long-term yield and long-term forward
rate. It was shown that the equation R(c) = 1 has at most a single negative solution c,
and that under mild conditions,

basymp := lim Y (x,r) = lim f(x,r)=—F(c)
X—> 00 X—> 00
if such a solution exists; cf. [2, Theorem 3.7]. We remark that A := —% > (0 was

called quasi-mean-reversion of r in [2], with the convention that A = 0 if no negative
solution c¢ exists. The second objective of [2] was to characterize all possible shapes
of the yield and the forward curve. Recall that in common terminology, the yield or
the forward curve is called

— normal if it is a strictly increasing function of x,
— inverse if it is a strictly decreasing function of x,
— humped if it has exactly one local maximum and no local minimum in (0, 00).

Finally, we recall the technical condition [2, Condition 3.1] in slightly rephrased
form. The condition is necessary to guarantee finite bond prices when negative values
of the short rate are allowed.

Condition 1.1 We assume that r is regular and conservative. If r has state space
D =R, which necessarily implies that R is of the linear form R(x) = Bx (cf. [1]),

we require that

(1/8.01, if g <0,

F(x) <o forall x €
(—00, 0], else.

2 Corrections to results
Theorem 3.1 in [2] should be replaced by the following corrected version.
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Theorem 2.1 Let the risk-neutral short rate be given by a one-dimensional affine
process (r1)>0 satisfying Condition 1.1 and with quasi-mean-reversion —1/c = X > 0.
In addition, suppose that F # 0 and that at least one of F and R is nonlinear. Then
the following hold:

1. The yield curve Y (-, r;) can only be normal, inverse or humped.

2. Define

0 _
by-norm 1 / Fw-F@,
c). Rw-1

_— —ES. RO <0
] 400, if R'(0) > 0.

The yield curve is normal if r; < by.norm, humped if by norm < 11 < biny, and inverse
if 1 > biny.

Remark 2.2 The correction only concerns the expression for by.norm, Which was
called byorm in [2] and erroneously given as bporm = —F’(c)/R’(c). All other parts of
the theorem are the same as in [2, Theorem 3.1].

Corollary 3.11 in [2] should be replaced by the following result.

Theorem 2.3 Define biny as in Theorem 2.1 and set

_F©
R'(¢)

bfw-norm 1=

Under the conditions of Theorem 2.1, the following hold:

1. The forward curve f(-,r:) can only be normal, inverse or humped.

2. The forward curve is normal if r < bfw-norm, humped if biw-norm < ¥+ < biny, and
inverse if ry > biny.

Remark 2.4 We have intentionally renamed the result from corollary to theorem,
since the correction changes the logical structure of the proof. Note that the above
result is equivalent to [2, Corollary 3.11] up to the notational change from bporm
t0 Dfw-norm- Note that by norm 7 bfw-norm in general, while in [2] it was erroneously
claimed that by_norm = bfw-norm-

Corollary 3.12 in [2] should be replaced by the following result.
Corollary 2.5 Under the conditions of Theorem 2.1, it holds that

bw-norm < by—norm < basymp < biny. 2.1

In addition, the state space D of the short rate process satisfies

Dn (by-norm, binv) 75 ?.
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The error also affects [2, Fig. 1], where the expression for bporm should be replaced
by the correct value of by.norm. It also affects the application section [2, Sect. 4],
where the values of byorm and by, are calculated in different models. The corrections
to [2, Sect. 4] are as follows.

In the Vasicek model, the short rate is given by

dri ==\ —0)dt +o0dW;, rgeR,

with A, 6, 0 > 0. This leads to the parametrization

2
)
F(u):)»@u—i—?u ,
R(u) = —Au.
By direct calculation, we obtain
302
by»norm =0 - m’
2
o
bfw-norm =0 F

Note that the value of by norm is now consistent with the results of [3, p. 186].
In the Cox—Ingersoll-Ross model, the short rate is given by

ry=—a(r, —0)dt +o./r,dW;, ro€l0,00),
with a, 6, 0 > 0. This leads to the parametrization

F(u) =abu,

R(u) = —6—2u2 —au
=—3 .

By direct calculation, we obtain

b 2a6 1 2y

- = o s

'y-norm Y —a g aty
ab

bfwnorm = —,

where y :=+/202 4+ aZ2.

In the gamma model, the short rate is given by an Ornstein—Uhlenbeck-type pro-
cess, driven by a compound Poisson process with intensity Ak and exponentially dis-
tributed jump heights of mean 1/6; see [2, Sect. 4.4] for details. In this model, we
have

Fo) MOku
u)—=
1—06u

; R(u) =—hu,
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and by direct calculation, we obtain

kX
by norm = m log(1+6/A),

k6
(14+6/0)?2

bfw—norm =

Since the resulting expressions are quite involved, we omit the calculations for the
extended CIR model [2, Eq. (4.7)].

3 Corrected proofs

To prepare for the corrected proofs, we collect the following properties from [2,

Sects. 2 and 3.1], which hold for the functions F, R, B and for the state space D

under the assumptions of Theorem 2.1:

(P1) F is either strictly convex or linear; the same holds for R. Both functions are
continuously differentiable on the interior of their effective domains.

(P2) The function B is strictly decreasing with limit limy_, o B(x) =c.
(P3) F(0)=R(0) =0and R'(c) < 0. In addition, F'(0) > 0 if D = [0, 00).

(P4) Either

(a) D=][0,00),o0r

(b) D=Rand R(u) =u/c with ¢ <0.
Note that Theorem 2.1 assumes that at least one of F and R is nonlinear. Together
with (P1), this implies

(P1") Atleast one of F and R is strictly convex.

In addition, we introduce the following terminology. Let f : (0,00) — R be a
continuous function. The zero set of f is Z := {x € (0,00) : f(x) =0}. The sign
sequence of Z is the sequence of signs {4+, —} that f takes on the complement
of Z, ordered by the natural order on R. For example, the function x2—1 on
(0, 00) has the finite sign sequence (—-); the function sinx has the infinite sign
sequence (+— + —---). An obvious, but important property is the following: Let
g :(0,00) — (0, 00) be a positive continuous function. Then fg has the same zero
set and the same sign sequence as f.

Proof of Theorem 2.3 From the Riccati equations (1.1), we can write the derivative
of the forward curve as

3 f(x,r) = —B'(x) (F’(B(x)) n r,R/(B(x))) . 3.1)

=:k(x)

Note that by (P2), the factor —B’(x) is strictly positive, and hence 3, f has the same
sign sequence as k. We distinguish cases (a) and (b) as in (P4).
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(a) Assume that r; € D = [0, 00). By (P2), B(x) is strictly decreasing, and by
(P1"), either F’ or R’ is strictly increasing. Thus if r; > 0, it follows that k(x) is a
strictly decreasing function. If r, = 0, then k is either strictly decreasing (if F’ is
strictly convex) or k is constant (if F is linear). By (P1), these are the only possibili-
ties. In addition, the case F' = 0 is ruled out by the assumptions.

(b) Assume that r, € D = R. In this case, R(«) = u/c, and hence R'(u) =1/c is
constant and F” is strictly increasing, by (P1”). We conclude that k is strictly decreas-
ing.

In any case, k is either strictly decreasing or constant and non-zero. Thus the sign
sequence of k can be completely characterized by its initial value £(0) and its asymp-
totic limit as x tends to infinity. Let us first show that

—EO i RI(0) <0
KO)<0 = ri>bny={ FO ' ©r=<0 (3.2)

400, if R’(0) > 0.
Because we have k(0) = F’(0) + r,R’(0), the assertion follows immediately if
R’(0) < 0. Consider the complementary case R’(0) > 0. This rules out case (b) in
(P4), and hence we may assume that D = [0, 00). Since F’(0) > 0 by (P3), (3.2)

follows. Next we show that
F'(c)
R'(c)

lim k(x) >0 <= 71/ < bfwnorm = (3.3)
X—>00
This follows immediately from lim,_ o0 k(x) = F'(c) + r;R'(c) and R'(c) < 0, by
(P3). Combining (3.2) with (3.3) and using that k is either strictly decreasing or con-
stant and non-zero, we obtain

ry > biny <<=k has sign sequence (—),
1 <bfwnorm <= k has sign sequence (+), (3.4)
7t € (Bfw-norm> binv) <=  k has sign sequence (+—).

Since 0y f has the same sign sequence as k, these statements can be directly translated
into monotonicity properties of f. In the first case, the forward curve f is strictly
decreasing, i.e., inverse; in the second case, it is strictly increasing, i.e., normal. In
the third case, it is strictly increasing up to the unique zero of k and then strictly
decreasing, i.e., humped. No other cases are possible. g

Proof of Theorem 2.1 From the Riccati equations (1.1), we can write the derivative
of the yield curve as

1
0¥ (v, r) = 5 (A) + 1 B(x)

: <F(B(x)) +ri(R(BW) - 1))

X

2

Multiplying by the positive function x~, we see that d, Y (x, r;) has the same zero set

and the same sign sequence as
M(x) = (A(x) _ xF(B(x))) tr (B(x) _ x(R(B(x)) _ 1))
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The derivative of M is given by
M (x) = —xB/(x)<F/(B(x)) + r,R/(B(x))) = —xB' (0)k(x),

with k as in (3.1). Note that by (P2), the factor —xB’(x) is strictly positive, and
hence M’ has the same sign sequence as k, which was already analyzed in (3.4).
Since M (0) = 0, we can conclude that
ry > by == M has sign sequence (—),
7t <bfwnorm == M has sign sequence (+), 3.5
rt € (bfw-norm, biny) = M has sign sequence (+—) or (+).
Essentially, the mistake in [2] was to ignore the possible sign sequence (+) in the

third case. Not repeating the same mistake, we take a closer look at the third case
and note that the sign sequence of M is (+—) if and only if

lim M(x) <O0.
X—> 00

Decomposing M (x) = L1(x)+r; L2(x), it remains to study the asymptotic properties
of L and L. We have

X

Li(x)=A(x) — xF(B(x)) =/

0

(F(B(s)) _ F(B(x)))ds

du.

_/B(X) F(u)—F(B(x))du X—00 fc Fu)— F(c)
b R(u)—1 o Rw-1

In addition,

La(x) = B() - x(R(B() — 1) = /Ox (R(B) — R(B())ds

/B@ R(u) — R(B(x)) x—>00 /c R(u)—1
= du ———du=c.
0 R(u) —1 o Ru)—1
Since ¢ < 0, we conclude that
1 ("Fw) —-F
lim M(x) <0 <= 71> bynorm = —/ Mdu.
x—>00 cJe Rwm)—1
By convexity of F and R and using that ¢ < 0, we observe that
1 (O Fu) - F(c) 1 (O F'(c) F'(c)
b - = - 7d > — d = — = ~ .
yonom = /C Ruy—1 "~ ¢ /c R T TR mom
Together with (3.5), this completes the proof. O
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Proof of Corollary 2.5 Recall that R(c) = 1 and ¢ < 0. By convexity of F and R, we
have

Floy< EW=FO _FO _ g,
u—c ¢ (3.6)
O Rw-1 1
R <RW=1_1_po),
u—=c C

for all u € (c, 0). Note that by (P1), either F or R is strictly convex, so that strict
inequalities must hold in either the first or the second line. If R’(0) < 0, then ap-
plying the strictly increasing transformation x —% to the second line in (3.6) and
multiplying term by term with the first, we obtain

F'(c) Fw) —F()  F)  F(0)
- < - < — < - .
R'(c) R(u)— 1 c R'(0)

Applying the integral % foc du to all terms, (2.1) follows. If R’(0) > 0, this approach
is still valid for the first two inequalities in each line of (3.6), but not for the last one.
However, in the case R’(0) > 0, we have set b,y = +00 in (3.2), and the last inequal-
ity in (2.1) holds trivially. It remains to show that D N (by-norm, biny) is nonempty.
F is a convex function and by Condition 1.1 finite at least on the interval (c, 0). It
follows that F’(0) > —oo and thus that bj,y > —o0 in general. If D = [0, 00), then
F’(0) > 0 by (P3) and hence bj,y > 0. Moreover by-norm < basymp = —F(c) < 00,
completing the proof. g
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