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Abstract
As data collected and provided by Internet of Things (IoT) devices power an ever-growing number of applications and
services, it is crucial that this data can be trusted. Data provenance solutions combined with blockchain technology are one
way to make data more trustworthy by providing tamper-proof information about the origin and history of data records.
However, current blockchain-based solutions for data provenance fail to take the heterogeneous nature of IoT applications
and their data into account. In this work, we identify functional and non-functional requirements for a secure and extensible
IoT data provenance framework, and conceptualise the framework as a layered architecture. Evaluating the framework using
a proof-of-concept implementation based on Ethereum smart contracts, we conclude that our framework can be used to
realise data provenance concepts for a wide range of IoT use cases. While blockchain technology generally poses constraints
on scalability and privacy, we discuss multiple solutions aiming to overcome these issues.

Keywords Internet of things · IoT · Data provenance · Blockchains · Smart contracts

1 Introduction

The Internet of Things (IoT) is transforming many areas of
our everyday lives. IoT technologies such as GPS, RFID-
based identification, sensors, and low-resource computing
platforms like the Raspberry Pi already play important roles
in various domains, e.g. mobility, logistics, healthcare, and
retail [1]. Since data collected by these technologies find
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application in an increasing number of use cases, ensuring
the trustworthiness of such data is of high importance [2].

Data provenance systems are one way to ensure trustwor-
thiness in the IoT [3]. These systems can provide informa-
tion about the origin and evolution of data such as the vari-
ous stages of data creation and data modifications, who ini-
tiated them, and when and how they took place [4]. In short,
a data provenance system tracks who has created, updated,
deleted, and in some cases read particular data points [4].
In order to trust the information provided by a provenance
system, it is essential that the provenance system stores
information in a tamper-proof and replicable way [5].

Traditionally, in distributed settings, participants must
either trust each other or an independent third party to store
data in a tamper-proof way. With the advent of blockchain
technologies, the requirement of such trust in a central
authority is eliminated. Instead, a decentralised network
can be established, acting as a distributed, tamper-proof
ledger [6]. Thus, leveraging blockchain technology in a data
provenance solution for the IoT is a promising choice [6].

Since the IoT is characterised by a multitude of use cases
and potential application areas [1], an IoT data provenance
solution should account for this diversity [7]. However,
approaches aiming at scenario-agnostic blockchain-based
data provenance solutions for the IoT offer so far no
concrete software solutions [8, 9], while more concrete
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solutions to data provenance in the IoT focus on specific
application areas, for instance, supply chains [10–12],
health monitoring systems [13], or digital forensics [14].

Hence, we propose a generic blockchain-based data
provenance framework for the IoT. Hereby, “generic” refers
to the fact that the framework should not be limited to
be applicable within one particular use case scenario, but
rather should facilitate the recording of provenance data
in a tamper-proof way in arbitrary IoT scenarios. The
advantages of a generic framework are the easier adoption
and faster implementation of provenance concepts by new
use cases as well as the interoperability of applications that
use the framework.

This paper extends our previous work [15] (i) by
providing an additional motivational use case scenario
from digital forensics, (ii) by extending the evaluation by
taking the additional use case into account as well as
by conducting a more rigorous evaluation of transaction
throughput and latency of the solution, and (iii) by providing
a discussion about possible solutions to the scalability and
privacy constraints of a blockchain-based data provenance
solution. Furthermore, the related work has been updated
and extended. The contributions of this work are as follows:

– We define functional and non-functional requirements
for a generic IoT data provenance framework.

– We conceptualise and implement an IoT data prove-
nance framework consisting of smart contracts using a
generic data model to provide provenance functionality
for a wide range of IoT use cases.

– We present an evaluation of the framework with regard
to the defined requirements using a proof-of-concept
implementation with Ethereum smart contracts.

– We discuss possible solutions to the scalability and
privacy limitations of blockchain-based applications for
the IoT.

In the following, we briefly introduce the underlying con-
cepts of data provenance and further motivate our work by
discussing exemplary use case scenarios (Section 2), define
the requirements for a generic blockchain-based data prove-
nance framework (Section 3), and explain the concepts,
architecture, and proof-of-concept implementation of our
solution (Section 4). In Section 5, we evaluate the frame-
work with regard to the defined requirements. The results
of the evaluation are discussed in Section 6. Section 7 pro-
vides an overview of the related work. Finally, Section 8
concludes the paper.

2 Background andmotivation

Data provenance, sometimes also known as lineage or
pedigree [16], identifies the derivation history of data [4].

While originally used for works of art, data provenance
is now relevant in a wide range of use cases, since data
provenance mechanisms help establish a certain level of
trust in data by providing information about its creation,
access, and transfer [4]. Provided provenance data is
secured, forgery, alteration, or repudiation of data can be
prevented [5].

Accordingly, data provenance solutions can help estab-
lish trust in data in the IoT [2]. In the following, we describe
three exemplary use cases for data provenance in the IoT.

2.1 Vaccine supply chains

Immunisation programmes depend on functional, end-
to-end supply chains [17]. In all phases of the supply
chain—from procurement to last-mile distribution—it is of
significant importance that vaccines remain in a temperature
range of around 2–8 ◦C. Otherwise, vaccines lose their
effectiveness. An unbroken, temperature-controlled link
from producer to consumer is also referred to as the cold
chain [17]. Figure 1 shows a simplified model of such
a cold chain enhanced with IoT-technologies, e.g., RFID,
GPS, and sensors [1]. These technologies continuously
track temperature, location, and other conditions of the
vaccines. This provenance data helps establish confidence
in the quality of vaccines and exposes any weak links
along the cold chain. As mentioned in Section 1, an
important requirement for provenance systems is that
recorded provenance information is replicable and tamper-
proof. Recent scandals of vaccine counterfeiting (e.g.,
[18]) have confirmed the urgency of these requirements
in vaccine supply chain systems. Hence, an IoT-powered
data provenance system based on blockchain technology
could provide benefits in vaccine supply chain scenarios.
In particular, it enables the backtracking of errors in case
of breakage of the cold chain, and it helps build and keep
trust in immunisation programmes by preventing counterfeit
vaccines from entering the supply chain.

2.2 Healthmonitoring systems

Health monitoring scenarios are another application area
where secure data provenance records can provide addi-
tional trust in data [13]. In such scenarios, sensors monitor
health conditions of patients such as the patient’s heart rate
and blood pressure. Combined with a real-time analytics
service, the sensor readings can be used to notify relatives
and health professionals in case of medical emergencies,
such as a heart attack. Ideally, the root cause of such a
notification is verifiable, i.e. it is possible to trace back a
notification to the individual sensor readings which caused
it. Otherwise, if the circumstances that led to the emergency
notification are unclear, the possibility that the notification
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Fig. 1 IoT-enhanced vaccine supply chain

was caused by a malicious attack tampering with the sys-
tem cannot be excluded. Having secure provenance data for
a notification, such as information about the individual sen-
sor readings and analytics involved, ensures the reliability
and accuracy of the system.

2.3 Digital forensics

A further use case where data provenance records secured
via blockchain technology can provide benefits is digital
forensics, for instance in scenarios involving accidents
of autonomous vehicles [14]. Ideally, in such cases,
provenance data is available that uncovers the true cause
of the accident. At the same time, it should be impossible
for anyone to illegally alter the provenance data after
an accident occurred. Consider the example in Fig. 2.
The provenance data may consist of data provided by
the manufacturer from when the car was manufactured,
maintenance data provided by garages and workshops, and
data collected while driving by various sensors within and
around the car such as speed, road conditions, and outside
temperature. This data is submitted via transactions to
the provenance framework on the blockchain. When an
accident occurs, the car owner submits a liability claim to
the insurance company. The insurance company can query

the provenance framework and depending on the evidence
forward the liability claim to manufacturers or garages. The
blockchain ensures the integrity of the data and that the
source of the data can be trusted. As such, it can help
investigators resolve any disputes of liability claims.

3 Requirements

This section defines the functional and non-functional
requirements of a generic data provenance framework for
the IoT. Such a framework needs to record provenance
data for addressable data points, i.e. data that has a
unique ID [7]. In accordance with [4] and [7], we
derive the functional requirements (Reqs. (1)–(7)) of
our framework. Furthermore, in accordance with Hasan
et al. [5], we define non-functional requirements that need
to be fulfilled by a tamper-proof data provenance system for
the IoT (Reqs. (8)–(11)).

1. Provenance abstraction: The framework needs to
provide generic data provenance capturing, storing,
and querying functionality which can be adopted
by provenance use cases to map their specific
requirements.

Fig. 2 An IoT data provenance
framework secured via
blockchain technology could
resolve disputes of liability
claims
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2. High-level and low-level provenance: Provenance
records represent high-level as well as low-level data
points. Low-level data points stem from low-level
devices such as sensors. High-level data points do
not have a single physical origin (such as a sensor
reading) but represent more abstract concepts, e.g.
some physical object in a supply chain or an analytics
result based on multiple inputs.

3. Completeness: The provenance records of a data
point can be regarded complete if every relevant
action which has ever been performed on a data point
is gathered [5]. Here, relevance implies that some
actions can be neglected if they do not contribute to
the provenance data of a particular data point.

4. Creation of lineage: Provenance records for a data
point can be created based on the last provenance
record for that same data point. This enables the
creation of lineage. For instance, the lineage of a
data point representing a physical good travelling
along a supply chain can be tracked by creating a
new provenance record based on the old one at each
critical step of the supply chain.

5. Derivation: A provenance record entails references
to the provenance records of the data points that
led to its creation. For instance, a provenance record
for an analytics result based on value readings from
multiple sensors must not only contain information
about the sensor values but must also be able to
access provenance data of those same values, such as
location and time of recording.

6. Provenance for modifications of data points: The
framework enables the tracking of the modification
history of a specific data point. For instance, if an
analytics result runs through multiple stages of differ-
ent calculations, the history of these calculations can
be tracked.

7. Parallel provenance: Multiple provenance records
for the same data point can exist in parallel, e.g.
one provenance trace might track the ownership of
a data point (e.g. the current owner of a physical
good), while another provenance record is tracking
the location of that same data point.

8. Integrity: Integrity mandates that provenance records
cannot be manipulated or modified by an adversary
in any way. This is crucial for establishing trust in
the data. Without guaranteed integrity, clients can
potentially repudiate provenance records.

9. Availability and fault tolerance: The provenance
framework needs to enable clients to reliably
reconstruct the creation and modification history of
data. For that, the provenance data needs to be
available when requested by clients even in the case
that some parts of the system fail.

10. Privacy: In general, privacy requires that the unau-
thorised collection, storage, and access of sensitive
data is prevented. Privacy encompasses confidential-
ity and anonymity. On the one hand, provenance
records of IoT devices may contain sensitive data,
e.g. in a health monitoring system. It is therefore
vital to keep this data confidential, i.e. access to this
data from unauthorised entities needs to be prevented.
On the other hand, even when the data itself is kept
confidential, malicious actors might still be able to
create user profiles by identifying user-specific pat-
terns. As such, traceability of provenance data needs
to be prevented to ensure the anonymity of users.
In the following, we refer to both notions simply as
privacy.

11. Scalability: A provenance system is required to
have a reasonable expenditure. Storing and accessing
provenance data must have a low overhead. Espe-
cially, even though some IoT devices are resource-
constrained, they must not be excluded from partic-
ipating in the provenance framework. Furthermore,
applications in the IoT potentially deal with massive
amounts of data and very frequent data updates which
a provenance solution needs to account for.

4 IoT data provenance framework

This section presents the proposed generic blockchain-
based data provenance framework for the IoT. As mentioned
in Section 1, major benefits of a generic framework are
interoperability between applications using the framework
and the facilitated implementation of provenance concepts
for new IoT use cases. Figure 3 displays the core
architecture of the framework. It consists of three layers
all embedded within a blockchain smart contract platform.
Each layer represents a different level of abstraction with
a diverse set of responsibilities within the framework:
The storage layer is primarily concerned with low-
level representation and storage of provenance data, and
the generic provenance layer provides general-purpose
provenance functionality, while the specific provenance
layer can be modified by use cases to fine-tune the
framework to their specific requirements. To this end,
Section 4.1 describes the data model used for the
representation of provenance data within the framework,
and Section 4.2 explains the storage layer, whereas
Section 4.3 and Section 4.4 describe the generic and specific
provenance layers, respectively.

We provide a proof-of-concept implementation of
the framework consisting of smart contracts written in
Solidity—a smart contract language for the Ethereum
Virtual Machine (EVM). As such, the prototype can

312 Pers Ubiquit Comput (2024) 28:309–323



Fig. 3 Data provenance
framework architecture

Smart Contract Platform

Provenance Storage Layer

Generic Provenance Layer

Specific Provenance Layer

Supply Chain
Provenance

Health Monitoring
Provenance

...
Digital Forensics

Provenance

be deployed on any EVM-compatible blockchain, e.g.
public permissionless blockchains such as Ethereum and
Ethereum Classic, or private permissioned blockchains such
as Hyperledger Burrow [19]. However, the framework is
not restricted to EVM-based blockchains. The described
concepts could also be implemented on any blockchain
platform that provides sufficient scripting capabilities. The
prototype is available as open-source software on Github.1

4.1 Datamodel

Provenance data varies depending on the specific domain
or application [7]. Since the IoT domain is characterised
by heterogeneous applications and a wide range of possible
use cases [1], there is a need for a generalised provenance
data model suitable for IoT applications. As the underlying
data model, our framework utilises a data provenance
model specifically designed for the IoT by Olufowobi
et al. [7]. Instead of taking a document-centric view on
provenance data such as models like the Open Provenance
Model (OPM) [20] or the PROV data model [21] which
track agents performing actions on documents, the model by
Olufowobi et al. focuses on the infrastructure of agents like
sensors, devices, analytics services, and the exchanged data.
The authors argue that in IoT environments provenance can
be recorded in terms of creations or modifications of data
by agents. No distinction between agents and actions is
necessary since a fine-grained definition of agents already
explains the action performed on the data. The model can
therefore account for fine-grained provenance data while
keeping a low overhead.

The model defines a data point as a uniquely identifiable
and addressable piece of data. In the context of IoT systems,
these can be sensor readings, complex analytics results
derived from sensor readings, actuator commands, etc. The
function addr(dp) denotes the address/ID of a data point dp.
The function inputs(dp) refers to the set of input data points

1https://github.com/msigwart/iotprovenance

that have contributed to the creation or modification of a
data point.

The model defines a provenance event as the moment
an IoT system reaches a specific state which requires the
collection of provenance data for a particular data point.
When a provenance event occurs, information of interest
for provenance about the state of the IoT system need
to be recorded. The function context(dp) denotes such
information. The context varies depending on the IoT
application. An example of how the context parameter
might be structured is displayed in Fig. 4. Agents (e.g.
sensors, devices, persons, organisations, etc.) create and/or
modify data points. Here, agents are defined recursively,
i.e. agents can contain other agents (such as devices
containing several sensors). Information related to the
specific provenance event, such as events that triggered
the creation/modification of the data point are defined
in the execution context. Furthermore, time and location
information may be added to the context as well.

Finally, the model defines a provenance record as a
tuple associating the address of a data point with the set
of provenance records of its input data points and the
specific context of the corresponding provenance event. The
provenance function prov(dp), providing the provenance
record for some data point dp, is defined as follows:

prov : dp �→ 〈addr (dp), {prov (idp)| ∀idp ∈ inputs (dp)}, context (dp)〉

Note that this definition of provenance allows for the
description of both creation and modification of data points.
In the former case, the set of input provenance records
contains an empty set. In the latter case, the set of
input provenance records contains the provenance record
of the data point before modification, i.e. prov(dp′) =
〈addr(dp′), {prov(dp), ...}, context(dp′)〉.

The described data provenance model combined with
blockchain technology builds the basis for our IoT data
provenance framework. This way, the framework can not
only represent provenance data for various IoT use cases,
but also provides integrity guarantees for the stored records.
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Fig. 4 UML diagram of an
exemplary provenance record’s
context [7]

Context

Agent Execution
Context

Time
Info

Location
Info

Sensor Device Software
Agent Actuator ...

*
*

has

4.2 Storage layer

This layer is responsible for the low-level storage of
provenance records. It contains the generic representation
for provenance records as defined by the data provenance
model, as well as basic functionality to create, retrieve,
update, and delete provenance records. Delete refers to
the invalidation of provenance records, since truly deleting
data from a blockchain is not possible. An invalidated
provenance record cannot be used as input for subsequent
provenance records.

Listing 1 displays an excerpt of the smart contract
implementing this layer. The internal representation of
provenance records (Lines 2–7) closely resembles the model
discussed above with the field tokenId representing the
ID of a data point. However, not only are data points
addressable, but also the provenance records themselves.
Addressable provenance records allow the storage layer to
manage provenance records as a mapping from provenance
IDs to provenance records: addr (prov) �→ prov where
the function addr(prov) represents the ID of a provenance
record prov. The mapping is implemented via the mapping
keyword (Line 8).

The contract exposes an API for creating, retriev-
ing, updating, and deleting (i.e. invalidating) provenance

Listing 1 Storage contract (excerpt)

records. Note that, while functionality for retrieving prove-
nance records is exposed publicly via the public key-
word (Lines 10ff), functionality for creating, updating,
and deleting records is protected via the internal keyword
(Lines 13ff). These functions cannot be accessed publicly,
but are accessible from inheriting contracts such as the
contract representing the generic provenance layer. Read
functions are publicly accessible since these functions do
not alter the state of the contract.

4.3 Generic provenance layer

The generic provenance layer’s main purpose is to provide
general-purpose provenance functionality on top of the
storage layer; i.e. it provides features that are universally
applicable for a wide range of provenance use cases. For
this, it defines the ownership of data points (Section 4.3.1)
and how to associate provenance records with data points
(Section 4.3.2).

4.3.1 Ownership of data points

While blockchain technology can guarantee the integrity of
data provenance records once those records have entered
the system, mechanisms need to be in place to ensure that
the records that enter the system are correct. As a first step,
we aim to prevent the creation of provenance records by
arbitrary clients, i.e. if client A generates some data point
dp0, we want to make sure that only client A (or any client
authorised by client A) is able to create provenance records
for dp0. Thus, we introduce the notion of ownership of
data points: Each data point belongs to a specific client
of the system, and only the owner or a client authorised
by the owner can create provenance records for it. If an
unauthorised client tries to create a provenance record for a
data point, the system raises an error.

The notion of ownership is closely related to so-called
tokens, i.e. smart contracts deployed on a blockchain that
represent a kind of digital asset [22]. Our framework
leverages tokens to introduce ownership of data points. Each
data point is represented by a single token and a single token
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identifies exactly one data point. This one-to-one mapping
allows us to identify the owner of a data point by identifying
the owner of a particular token.

Each token acts as an entry ticket to the provenance
framework. To create provenance records for a particular
data point, a client first has to become the token owner
or be approved by the owner of the corresponding token.
The prototype uses the Ethereum token standard ERC7212

which defines a common interface for non-fungible assets,
for instance functions for transferring ownership. This has
the advantage that our tokens (i.e. the data points) can
be traded by any client implementing this standard, such
as wallets or exchanges. By transferring ownership, data
points can pass from owner to owner, leaving a trail of
provenance records created by each owner along the way.
This is useful for implementing provenance applications
which aim at creating a lineage (see Section 3), e.g. in
supply chain scenarios and business processes [23, 24].
The generic provenance contract complies to the standard
by inheriting from an existing ERC721 implementation
provided by OpenZeppelin.3

4.3.2 Associating provenance records with data points

The generic provenance layer further links data points
and their respective provenance records. The framework
provides information about associated provenance records
of specific data points. Within the generic provenance layer,
this is achieved by using a mapping from a data point ID to
a set of associated provenance IDs:

addr (dp) �→ {addr (prov1 (dp)), addr (prov2 (dp)), ...}

All associated provenance records (prov1, prov2, etc.)
represent parallel provenance traces for the same data
point. Of those records, each one represents a completely
independent trace of provenance data. For instance, one
trace of provenance records might store the temperature
history of a physical good, while another one stores its
location.

Listing 2 displays an excerpt of the smart contract imple-
menting this layer and demonstrates the general workflow
for creating new provenance records. First, the contract ver-
ifies that a given token (i.e. data point) exists (Line 7)
and that the token belongs to the sender of the mes-
sage (Line 8). After validating the input provenance
records (Line 9), the contract creates a new provenance

2https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
3https://openzeppelin.org/

Listing 2 Generic provenance contract (excerpt)

ID (Line 10), adds it to the list of associated prove-
nance (Line 11), and calls the storage contract’s cre-
ateProvenance function (Line 12). Note that the cre-
ateProvenance function of the generic contract is again
internal, and thus not accessible publicly. This enables spe-
cific provenance contracts which implement concrete use
cases to further adapt the functionality according to their
needs.
4.4 Specific provenance layer

Smart contracts within this layer utilise the functionality
provided by the generic provenance layer, but control a
subset of parameters by themselves. This way, use cases can
customise the provenance model according to their needs,
and control access to the functionality provided by the
storage and generic provenance layers. Listing 3 displays an
excerpt of an exemplary smart contract implementing this
layer.

The provenance model can be customised by defining the
context parameter, so that it presents the provenance data
needed for a specific use case scenario. For instance, in the
case of vaccine supply chains, the context should contain
temperature and location information about individual
vaccines. Hence, a specific contract could define its
own createProvenance function that requires parameters
like temperature, and location (Lines 7ff) which are

Listing 3 Specific provenance contract (example)
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then combined to form the context to be passed on to
the createProvenance function of the generic provenance
contract (Lines 10ff).

Access control happens on two levels. First, a specific
contract defines which parts of the generic provenance
layer’s API are exposed. For instance, even though
the generic provenance layer could permit updating or
deleting (i.e. invalidating) provenance records, this could be
unwanted behaviour in the specific use case at hand. In this
case, the contract in the specific provenance layer simply
“hides” the functionality, i.e. does not expose it publicly.

Second, access control is relevant for controlling the
ownership of data points. Since data point ownership
is the decisive factor with regard to who can create
provenance records for which particular data points,
contracts in the specific provenance layer are responsible
for actually assigning ownership, i.e. which tokens get
assigned to which clients. For simplicity, the example shown
in Listing 3 automatically assigns new tokens to requesting
clients (Lines 2ff). However, ultimately, the most suitable
approach is dictated by the specific use case at hand.
Some further possibilities for assigning ownership are listed
below:

– One possibility is for clients to purchase tokens. This
has the advantage that the framework is publicly
available without the risk of spamming attacks since the
acquisition of tokens incurs financial cost. Essentially,
the token acquisition cost needs to be low enough
for honest users to be willing and able to participate,
but high enough to discourage spammers. Of course,
such an approach cannot prevent malicious actors with
sufficient purchasing power.

– In another approach, the layer manages a white list of
authorised clients allowed to request new tokens. This
way, the list controls exactly who participates in the
provenance system. However, the question arises who
is responsible for managing the white list of authorised
clients. As discussed above, the proposed framework
could also be implemented for private blockchains. In
this case, the white list approach is surely the most
promising one, since simply all participants in the
private blockchain could be white-listed.

– Yet another approach is a list of pending requests.
A client sends a transaction requesting tokens. An
administrator gets notified about the new request
and decides whether to accept or deny the request
by assigning or not assigning corresponding tokens.
While this approach allows a more fine-grained control
over whose requests get accepted and whose requests
get denied, it bears the risk of a high degree of
centralisation due to the administrator having full
control over distributing tokens.

5 Evaluation

We evaluate the framework with regard to the functional and
non-functional requirements defined in Section 3. The use
cases defined in Section 2 act as basis for the evaluation of
Reqs. (1)–(3). In addition, we reason about the fulfilment of
Reqs. (4)–(7) in an exemplary fashion applying the use case
of vaccine supply chains. However, the scenario of vaccine
supply chains is merely used to provide a more descriptive
analysis. The information specific to the vaccine supply
chain can be substituted with data reflecting any other
use case. While the presented framework is blockchain-
agnostic, the non-functional requirements (Reqs. (8)–(11))
are evaluated using the proof-of-concept implementation.
Experiments were performed on the public Ethereum test
networks Rinkeby4 and Ropsten5 between 27 November
and 13 December 2018. Rinkeby and Ropsten are chosen
as test networks since their average block times most
closely resemble the block times of the main Ethereum
network [25]. Rinkeby and Ropsten use the Proof of
Authority (PoA) and Proof of Work (PoW) consensus
mechanisms, respectively.

1. Provenance abstraction The presented framework
consists of multiple abstraction layers. The storage
layer is responsible for low-level storage of prove-
nance records while the generic provenance layer
extends the storage layer’s functionality with generic
provenance features and enhanced access control.
The generic provenance layer can be extended by
use case-specific smart contracts controlling certain
parameters of the application, e.g. by assigning own-
ership of tokens, and/or by exposing or hiding parts
of the generic layer’s API. For instance, in the sce-
nario of vaccine supply chains, a specific provenance
smart contract might give an entity such as the World
Health Organisation complete control over who is
able to acquire tokens, e.g. only trusted vaccine man-
ufacturers. In the use case of health monitoring sys-
tems, multiple approved manufacturers might have
control over assigning ownership of data point IDs.
In the use case of digital forensics, each newly pur-
chased vehicle might automatically get assigned a
new token representing that vehicle. Besides creat-
ing provenance records itself, the vehicle could give
temporary permission to garages or other entities to
create provenance records on its behalf, e.g. to regis-
ter the date and specifics of an inspection. Hence, we
conclude that the framework acts as a base abstrac-
tion which can be extended to fulfil the needs of

4https://rinkeby.etherscan.io/
5https://ropsten.etherscan.io/
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specific provenance use cases. Thus, we regard Req.
(1) as fulfilled.

2. High-level and low-level provenance The framework
identifies each data point by its corresponding token.
As long as a unique token (i.e. ID) gets assigned
to a data point, provenance data for that data point
can be recorded. Hence, the framework does not
pose any restrictions on the nature of the data point.
It is possible to record provenance data for high-
level as well as low-level data points. The context
parameter of a provenance record can be used to
add any kind of information the user desires. In
the use case of vaccine supply chains, provenance
data could not only be collected for the vaccines
themselves, but also for sensor readings along
the supply chain, e.g. temperature readings which
document an uninterrupted cold chain. Within health
monitoring systems, the patients themselves might be
represented by data points. The patients’ provenance
traces are then augmented by provenance data from
low-level data points deriving from medical devices.
Similarly, in the use case of autonomous vehicles, the
vehicles themselves are represented by data points
and their provenance records get augmented by data
points deriving from low-level devices, such as a
speedometer or outside temperature sensors. Hence,
we regard Req. (2) as fulfilled.

3. Completeness The definition of completeness is
largely dependent on the specific provenance use case
at hand. In the example of vaccine supply chains, all
information needed to prove that the cold chain has
not been interrupted and that vaccines come from a
trusted source need to be recorded. Regarding health
monitoring systems, we need to be able to record all
information necessary to provide reliable root cause
information for medical emergencies. With regard to
autonomous vehicles, the system needs to be able
to record all information necessary to resolve any
disputes between parties involved in an accident.
The flexibility of the context parameter defined
by the provenance model allows the collection of
all provenance data relevant for each data point.
Therefore, as each individual provenance record can
be regarded as complete, the framework provides
the necessary foundation for complete provenance
tracking (Req. (3)). However, to truly reconstruct the
creation and modification history of a data point, not
only must the individual provenance records of the
data point be complete, but also the complete trace of
provenance records regarding the data point should
be available. Therefore, in error-prone environments
like the IoT where frequent network or device errors
may occur, individual use cases need to make sure

that sufficient amounts of provenance records reach
the provenance framework in order to enable truly
complete provenance tracking.

4. Creation of lineage As an example, we assume
that the manufacturer SaferVaccines Inc. produces
a new vaccine vacc1. The freshly produced vac-
cine is packaged with an RFID tag and assigned
with a unique ID. A completely new prove-
nance record for the vaccine is created, such
as prov(vacc1) = 〈addr(vacc1),∅, 〈agent =
operator1@Saf erV accinesInc, time =
5am, ...〉〉. Vaccine vacc1 is loaded onto an
aircraft air1. An RFID reader at the fac-
tory gate scans the vaccine and registers a
new provenance record of the vaccine leav-
ing the factory, such as prov (vacc1)′ =
〈addr(vacc1), {prov(vacc1)}, 〈agent =
rf id1@Saf erV accinesInc, time = 5am, ...〉〉.
Shortly after, an RFID reader at the aircraft’s
entrance registers the vaccine entering the air-
craft, e.g. prov(vacc1)

′′ = 〈addr(vacc1),

{prov(vacc1)
′}, 〈agent = rf id1@air1, time =

5am, ...〉〉. The provenance records prov(vacc1),

prov(vacc1)
′, andprov(vacc1)

′′ represent the lin-
eage of the vaccine. This shows exemplarily how the
framework fulfils Req. (4).

(5) Derivation Continuing the example from Req.
(4), inside the aircraft, sensors constantly monitor
the temperature. There are three readings from a
temperature sensor: dp1 = 38◦F, dp2 = 45◦F, dp3 =
40◦F. The provenance records are given as follows:

prov(dp1) = 〈addr(dp1),∅, 〈agent =sensor, time = 7am, ...〉〉
prov(dp2) = 〈addr(dp2),∅, 〈agent =sensor, time = 8am, ...〉〉
prov(dp3) = 〈addr(dp3),∅, 〈agent =sensor, time = 9am, ...〉〉

A fourth data point dp4 is created by a software
agent calculating the average temperature: i.e.
dp4 = (dp1 + dp2 + dp3)/3 = 41◦F. This data
point’s provenance record is defined as prov(dp4) =
〈addr(dp4), {prov(dp1), prov(dp2), prov(dp3)},
〈agent = averager@air1 t ime = 10am, ...〉〉.
Hence, the framework allows for the creation of
provenance records for data points deriving from
multiple other data points (Req. (5)).

6. Provenance for modifications of data points In
a further step, the calculated average temper-
ature dp4 is converted into a different unit:
dp′

4 = 5 ◦C (i.e. from Fahrenheit to Cel-
sius). The resulting provenance record looks like
prov(dp′

4) = 〈addr(dp′
4), {prov(dp4)}, 〈agent =

converter@air1, time = 11am, ...〉〉. Thus, the
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framework is also able to support the modification of
data points (Req. (6)).

7. Parallel provenance Besides measuring the temper-
ature inside the aircraft (air1), we might also want
to track the location of the aircraft at the same
time. The framework enables the creation of parallel
provenance records since each data point is mapped
to a list of associated provenance records (see
Section 4.3). We can create one provenance record
provtemperature(air1) representing the latest temper-
ature inside the aircraft, and one provenance record
provlocation(air1) representing the latest location of
the aircraft. Hence, we regard (Req. (7)) as fulfilled.

8. Integrity The presented framework uses blockchain
technology to provide trustless and tamper-proof
storage of provenance records for IoT data. Thus,
once records have entered the system, the integrity
of records depends on the underlying blockchain
technology. Ethereum is a public blockchain with
around 7075 fully validating nodes securing the
network at the time of writing.6 Because of its
PoW consensus mechanism and the high number of
fully validating nodes, we consider the Ethereum
network as secure. Hence, we consider the integrity
requirement for data and computations on Ethereum
as fulfilled. However, the framework also needs
to provide mechanisms to ensure that only correct
records enter the system in the first place. As a
first step, we implement the concept of ownership
of data points using tokens to prevent arbitrary
clients from creating provenance records. In future
work, this concept could be further extended by
mechanisms that guarantee the correctness of the
records themselves, e.g. via physical unclonable
functions (PUFs) [2].

9. Availability and fault tolerance In public blockchain
networks like Ethereum, potentially any client can
run a full node giving the client access to the
complete state of the blockchain. Furthermore,
blockchains are designed from the ground up to pro-
vide Byzantine fault tolerance. That is, blockchains
continue to operate even if some nodes fail or act
maliciously with imperfect information about these
failures or bad actors. Hence, we consider (Req. (9))
as fulfilled.

10. Privacy While the privacy requirements of a prove-
nance system largely depend on the concrete use
case at hand, in scenarios with sensitive data, such
as a health monitoring system, privacy is cru-
cial [13]. However, privacy remains an ongoing

622 October 2019 (https://ethernodes.org/)

challenge in the realm of (public) blockchains, since a
blockchain’s security relies on data being transparent
and verifiable by every participant. A blockchain-
based data provenance framework suffers from the
same problem. While some propose to use private
blockchains in scenarios where privacy is impor-
tant [13], this is not sufficient in scenarios which also
depend on the system being publicly available, such
as global vaccine supply chains. Possible solutions to
overcome the privacy limitations of blockchain-based
applications in the context of the IoT are discussed in
Section 6.

11. Scalability
Regarding scalability, we evaluate two aspects.

First, we examine the gas consumption of the system.
Second, we measure transaction throughput and
latency.

Gas consumption Creating a new provenance record should
have the same gas consumption whether there are thousand
already existing provenance records in the system or
there are none. Since our framework stores provenance
records as a mapping addr(prov) �→ prov, we can
access records directly via their ID. Hence, creating,
updating, or accessing provenance records is a constant gas
operation. Furthermore, we analyse how the size of the input
parameters influences the gas consumption for creating
provenance records. We examine the creation rather than
the updating or deletion of provenance records since these
operations are generally less expensive than the creation
operation. Evaluating the gas consumption for creation thus
gives a good estimate on the upper limit of gas consumption
of the framework. Figures 5 and 6 show the gas consumption
with regard to the size of the context parameter and the
number of input provenance records, respectively. When
increasing the size of the context parameter, a stepwise
ascent in gas consumption is visible in Fig. 5. As expected,
passing a longer context string when creating a provenance
record causes greater gas consumption, since more storage

Fig. 5 Gas consumption for provenance creation with respect to an
increasing context parameter
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Fig. 6 Gas consumption for provenance creation with respect to an
increasing number of input provenance records

is needed. Similarly, when increasing the number of input
provenance records, gas consumption rises linearly as can
be seen in Fig. 6, though more rapidly in comparison
to increasing the context size. This rapid ascent in gas
consumption stems from the fact that users are only allowed
to add input provenance records that are actually existent
and valid. Thus, when creating new records, the framework
checks, for every input provenance record, if that record
exists and if it is valid. This check can only happen in
a for-loop which is an expensive operation in Ethereum.
Because of the increases in gas consumption caused by
these two input parameters, it makes sense for concrete
provenance use cases to implement limits regarding both
parameters.

Latency The latency of creating provenance records is
evaluated by averaging 100 measurements of the time
passing between the moment a transaction is submitted to
the network and its execution and inclusion in a block. In
general, two factors influence transaction latency, namely
the overall network load and the gas price. With a higher
number of pending transactions (i.e. a higher network
load), not every transaction can be included within the next
immediate block which means higher priced transactions
get prioritised. We repeat the experiment with gas prices of
1, 2, 5, 10, 20 and 50 GWei (1 GWei = 0.000000001 ETH) to
see how the gas price influences transaction latency. While

Fig. 7 Avg. latency for creating provenance records

performing the experiments, we observe the test networks
to make sure that overall network load remains relatively
stable.

Figure 7 shows the average latency and standard
deviation for creating provenance records. Latency on the
Ropsten test network is the highest (average transaction
latency between 15–36 s), followed by Rinkeby (14–35 s).
The standard deviation for Ropsten is also quite high with
values of about 11–29. On average, transactions with gas
prices of only 1 Gwei take longer to be confirmed than
transactions with gas prices of 2 Gwei and beyond. As the
gas price is increased, the average latency converges to the
average block times of the respective networks, since higher
priced transactions are almost certainly included within the
next immediate block. This also explains the higher standard
deviations of Ropsten in comparison with Rinkeby. Rinkeby
uses PoA, that means a new block gets consistently mined
every 14–15 s, resulting in lower standard deviations. In
Ropsten, on the other hand, blocks get mined if a node
can solve the cryptographic puzzle of the PoW. Since
this happens at different intervals, Ropsten exhibits higher
standard deviations.

Transaction throughput To test throughput, we attempt to
submit up to 150 transactions to the test network during
a 60-s time frame. Afterwards, we divide the number of
confirmed transactions with the time frame of 60 s to
calculate the transactions per second (TPS). This is repeated
20 times to calculate the mean and standard deviation. The
experiment is repeated with different gas prices (1, 2, 5, 10,
20 Gwei) on the two different test networks.

The results of the experiment are displayed in Fig. 8.
Generally, throughput for the Rinkeby test network is the
greatest with about 1.6 TPS for gas prices of 1 Gwei and
beyond. On Ropsten, we see a throughput of about 1–
1.2 TPS for gas prices of 2 Gwei and beyond. We explain
the smaller average throughput of the Ropsten test network
by the total load of each network during the experiments
which was generally higher on Ropsten than on Rinkeby.
Note that throughput was measured from a user perspective,
i.e. transactions were submitted from a single account. The

Fig. 8 Avg. throughput for creating provenance records
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maximum global throughput of the Ethereum blockchain is
roughly 20 TPS.

To sum up, the framework is able to fulfil all
functional requirements defined in Section 3. Additionally,
by leveraging blockchain technology, the non-functional
requirements of integrity and availability can be fulfilled.
Regarding scalability and privacy, the use of blockchain
technology poses limitations. While the system scales
with regard to the number of already existent provenance
records, the throughput and latency of the framework
are constrained. Depending on the number of provenance
records that need to be recorded in a given time frame,
the limited throughput and latency can pose problems.
For instance, while in the use case of vaccine supply
chains sensor readings might only occur every so often,
the use case of autonomous vehicles might require multiple
sensor readings per second, leading to high throughput
requirements for the provenance system. Furthermore, the
inherent transparency of blockchain technology naturally
poses a challenge for privacy-sensitive applications such as
in health monitoring solutions.

6 Discussion

As we have demonstrated in Section 5, the presented
framework is able to satisfy Reqs. (1)–(7) by building
on top of the generic data provenance model for the IoT
and by providing abstraction layers which specific use
cases can adopt and extend to fit their own requirements
such as the assignment of ownership of data point IDs.
Furthermore, the framework relies on blockchain tech-
nology to provide guarantees of integrity and availabil-
ity (Req. (8) and Req. (9)). However, the fundamental
design of what makes the blockchain secure causes its
limited scalability and privacy [6]. While in some cases,
permissioned blockchains like Hyperledger Fabric7 can be
employed to provide better privacy and scalability [13],
in global IoT scenarios entailing massive amounts of data
and frequent data updates where public access to the
system is necessary, permissioned blockchains might not
be a viable option [26]. Hence, a solution is needed to
improve the privacy and scalability properties of permis-
sionless blockchain systems while keeping its integrity and
availability guarantees. Several recent blockchain devel-
opments try to tackle these limitations, e.g. state chan-
nels [27], zero-knowledge proofs [28], and sidechains
[29].

7https://www.hyperledger.org/projects/fabric

6.1 State channels

State channels increase scalability by off-chaining state
transitions [27]. Two participants open a state channel
by locking some state on the blockchain (e.g. in a
smart contract). Once locked, they perform transactions
on that state off-chain. The only requirement is that both
participants sign off these transactions, using signatures
verifiable on-chain, and that the transactions are ordered.
This allows both participants to finalise the state on the
blockchain at any time since they can prove via the
signatures that the counterpart agreed to the update. The
guarantee of settling a transaction at any point is as good as
having the transaction executed directly on the blockchain.
This way, state channels reduce the cost of transactions
since only the finalisation step occurs on-chain. As only
the final state update becomes visible in the blockchain,
state channels can further be used to hide any intermediate
transactions from outsiders [27]. These characteristics make
state channels a viable choice for increasing scalability and
improving privacy in blockchain-based IoT applications,
e.g. in scenarios with micro-transactions occurring between
devices. Note that implementations of state channels range
from application-specific (i.e. payment channels [30]) to
generic [31] and from unidirectional to bidirectional. In
this discussion, we consider generic, bidirectional state
channels.

6.2 Zero-knowledge proofs

Zero-knowledge proofs are an off-chaining pattern, where
a prover tries to convince a verifier about the correct exe-
cution of a computation without revealing the parameters
of the computation to the verifier [27]. The aim is for the
verifier to be able to verify that the prover correctly exe-
cuted the computation without the verifier knowing any
of the inputs required for the computation, thus having
zero knowledge. To take advantage of zero-knowledge
proofs in blockchains, zkSNARKs (zero-knowledge Suc-
cinct Non-interactive ARguments of Knowledge) can
be employed [28]. This serves two purposes: resource-
intensive computations can be performed and verified off-
chain and the input of computations can be kept private.

However, proof construction in zkSNARKs is computa-
tionally expensive, leading to high hardware requirements
for the prover. This can be a problem in IoT scenarios if
the prover is hardware-constrained. Also, off-chaining state
transitions is only beneficial when the verification of the
computation is less expensive than the computation itself.
Thus, while zkSNARKs can improve scalability and pri-
vacy, it needs to be evaluated whether the initial overhead is
justifiable in IoT applications.
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6.3 Sidechains

The main idea of sidechains is to take load off of an
existing blockchain (i.e. the parent chain) by outsourcing
some of its data and computation to a separate blockchain
(i.e. the sidechain) [29]. Sidechains are “pegged” to the
parent chain, i.e. the state of the sidechain is secured
via regular commits to the parent chain. Such commits
entail the root hash of a Merkle tree consisting of all
transactions that have occurred on the sidechain. This way,
all transactions of the sidechain are secured via a single
hash on the parent chain. This link enables participants
to retreat back to the secure and reliable parent chain
via so-called exits in case malicious behaviour is detected
on the sidechain [29], e.g. when sidechain validators
mine invalid blocks or withhold blocks completely. While
sidechains can potentially employ different, more efficient
consensus mechanisms than the parent chain, scalability
gains primarily derive from participants of a sidechain not
having to validate all global transactions of the parent
chain anymore, but only the transactions occurring on the
sidechain. Thus, a validator’s hardware requirements can
remain low, while transaction throughput is increased as
transactions and data of the parent chain are split into
multiple different sidechains. As such, sidechains improve
throughput rather than latency [32]. Furthermore, sidechains
could be kept secret to improve privacy.

The three approaches discussed above are promising with
regard to improving scalability and privacy of blockchain
applications. In future work, it needs to be evaluated if and
how these solutions can be employed to provide scalability
and privacy improvements in global IoT scenarios.

7 Related work

As mentioned in Section 1, there are existing studies
which focus on providing a generic blockchain-based
data provenance solutions for the IoT [8, 9]. The
framework presented by Baracaldo et al. addresses the
following requirements [9]: tamper prevention (i.e. ensuring
integrity of provenance data), high availability, fine-grained
access control, and enabling resource-constrained devices
to participate in the framework. However, an actual
implementation is not provided. Similarly, while Polyzos
et al. mention key security requirements of their blockchain-
assisted information distribution system for the IoT [8],
the approach is described only on a conceptual level and
no implementation is given. In contrast, the framework
presented in the work at hand has been fully implemented
and is available as open-source software.

Further solutions related to blockchain-based data
provenance in the realm of the IoT go beyond conceptual

approaches [10–14]. The approaches presented in [10–12]
focus on securing provenance data in supply chains. The
framework proposed in [11] uses a tokenised recipe model
to track the relationship between resources and products,
the authors of [10] propose a blockchain-based system to
track ownership of products in the post supply chain, and
Wu et al. [12] discuss an architecture of permissioned and
public ledgers to comply with the privacy requirements
of trading partners. Griggs et al. present a blockchain-
based patient monitoring system to provide notifications in
case of medical emergencies [13]. The approach utilises
smart health devices and a private blockchain to provide
secure analysis of sensor data. Cebe et al. present a
digital forensics framework based on blockchain technology
that tracks information about vehicles, which, in case of
accidents, can be used for resolving disputes between
drivers, insurance companies, and maintenance service
providers [14]. In general, the solutions presented in [10–
14] all demonstrate how provenance concepts can be
brought onto the blockchain (e.g., via smart contracts).
However, in contrast to our work, though IoT technologies
are addressed, these solutions are use case–specific and do
not provide a generic provenance framework as is required
because of the heterogeneous nature of the IoT [1, 7].

Provenance in the supply chain has also received
attention in the industry. Startups like Provenance8 and
Everledger9 focus on securely tracking goods traveling
along a supply chain via blockchain technology. However,
in contrast to our work, their sole focus lies on tracking
physical items instead of any kind of data within the IoT.

Furthermore, works have also focused on blockchain-
based data provenance solutions outside the IoT
domain [33–36]. Liang et al. present Provchain [33], a
system that provides the ability to record and verify the
operation history of data on the cloud. Whenever an oper-
ation (read/write) happens on a file in the cloud, the cloud
service provider stores a provenance record locally and
anchors the hash of the record to a public blockchain. This
way, a timestamp proof of that particular operation exists
which is verifiable in the future. The information saved on
the blockchain is used for the verification of a provenance
record; however, it does not provide any provenance data
itself. While users can verify that certain operations on a
file have occurred, they still depend on a central entity to
provide them with a complete set of provenance data for
a particular file. Tosh et. al propose BlockCloud [34], a
data provenance solution in the cloud based on a Proof of
Stake (PoS) blockchain to overcome scalability limitations
of blockchains based on PoW. While the architecture of

8https://www.provenance.org/
9https://www.everledger.io/
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BlockCloud is outlined, in contrast to our work, no concrete
implementation details are provided.

Secure provenance for scientific data is in the focus
of [35]. Here, the authors present DataProv, a system which
securely captures scientific provenance data. DataProv uses
the OPM data model [20] for recording provenance data.
The system provides an access control mechanism built on
smart contracts on the Ethereum blockchain platform to
control changes of documents in the cloud while taking
the actual verification process of document changes off the
chain. This privacy-focused solution looks promising also
for IoT-related domains. However, while using the OPM
data model is fine for scientific contexts, in IoT contexts,
the utilization of a simpler, more fine-grained provenance
model could be useful [7].

A completely different solution is offered by Ruan
et al. [36]. Here, the authors provide LineageChain,
a solution that captures fine-grained provenance for
blockchains. Smart contracts that depend on some old state
of the blockchain for execution can query LineageChain
for historical state information in a tamper-evident way.
However, LineageChain requires a modification of the
underlying blockchain protocol itself and thus cannot be
leveraged on existing blockchain platforms.

As can be seen by the discussion, to the best of our
knowledge, there is no other approach which provides
a generic, blockchain-based framework for tracking data
provenance in the IoT.

8 Conclusion

In this paper, we have presented a blockchain-based frame-
work for providing generic data provenance functionality
in the IoT. The framework enables the adoption and imple-
mentation of data provenance concepts for various IoT use
cases. In a first step, we have identified several functional
and non-functional requirements which need to be fulfilled
for creating a secure data provenance solution appropri-
ate for the heterogeneous nature of the IoT. Afterwards,
we have demonstrated how a generic IoT data prove-
nance model together with a layered architecture of smart
contracts can be utilised to satisfy the functional require-
ments. Furthermore, by leveraging blockchain technology,
the framework fulfils the non-functional requirements of
integrity and availability but has some limitations regard-
ing scalability and privacy. As we have seen in the dis-
cussion, multiple current blockchain developments seek
to overcome these issues without jeopardising blockchain
security, namely state channels, zero-knowledge proofs,
and sidechains. Thus, in our future work, we will evaluate
in detail to what extent these approaches provide solu-
tions to the privacy and scalability issues in the context

of blockchain-enhanced IoT applications, such as our data
provenance framework.
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